diff options
Diffstat (limited to 'llvm/lib/Target/Sparc/SparcInstrSelection.cpp')
-rw-r--r-- | llvm/lib/Target/Sparc/SparcInstrSelection.cpp | 2898 |
1 files changed, 0 insertions, 2898 deletions
diff --git a/llvm/lib/Target/Sparc/SparcInstrSelection.cpp b/llvm/lib/Target/Sparc/SparcInstrSelection.cpp deleted file mode 100644 index 57f1251af73..00000000000 --- a/llvm/lib/Target/Sparc/SparcInstrSelection.cpp +++ /dev/null @@ -1,2898 +0,0 @@ -//===-- SparcInstrSelection.cpp -------------------------------------------===// -// -// The LLVM Compiler Infrastructure -// -// This file was developed by the LLVM research group and is distributed under -// the University of Illinois Open Source License. See LICENSE.TXT for details. -// -//===----------------------------------------------------------------------===// -// -// BURS instruction selection for SPARC V9 architecture. -// -//===----------------------------------------------------------------------===// - -#include "llvm/Constants.h" -#include "llvm/DerivedTypes.h" -#include "llvm/Instructions.h" -#include "llvm/Intrinsics.h" -#include "llvm/Module.h" -#include "llvm/CodeGen/InstrForest.h" -#include "llvm/CodeGen/InstrSelection.h" -#include "llvm/CodeGen/InstrSelectionSupport.h" -#include "llvm/CodeGen/MachineCodeForInstruction.h" -#include "llvm/CodeGen/MachineFunction.h" -#include "llvm/CodeGen/MachineFunctionInfo.h" -#include "llvm/CodeGen/MachineInstrBuilder.h" -#include "llvm/CodeGen/MachineInstrAnnot.h" -#include "SparcInstrSelectionSupport.h" -#include "SparcInternals.h" -#include "SparcRegClassInfo.h" -#include "SparcRegInfo.h" -#include "Support/MathExtras.h" -#include <algorithm> -#include <cmath> - -namespace llvm { - -static inline void Add3OperandInstr(unsigned Opcode, InstructionNode* Node, - std::vector<MachineInstr*>& mvec) { - mvec.push_back(BuildMI(Opcode, 3).addReg(Node->leftChild()->getValue()) - .addReg(Node->rightChild()->getValue()) - .addRegDef(Node->getValue())); -} - - -//--------------------------------------------------------------------------- -// Function: FoldGetElemChain -// -// Purpose: -// Fold a chain of GetElementPtr instructions containing only -// constant offsets into an equivalent (Pointer, IndexVector) pair. -// Returns the pointer Value, and stores the resulting IndexVector -// in argument chainIdxVec. This is a helper function for -// FoldConstantIndices that does the actual folding. -//--------------------------------------------------------------------------- - - -// Check for a constant 0. -static inline bool -IsZero(Value* idx) -{ - return (idx == ConstantSInt::getNullValue(idx->getType())); -} - -static Value* -FoldGetElemChain(InstrTreeNode* ptrNode, std::vector<Value*>& chainIdxVec, - bool lastInstHasLeadingNonZero) -{ - InstructionNode* gepNode = dyn_cast<InstructionNode>(ptrNode); - GetElementPtrInst* gepInst = - dyn_cast_or_null<GetElementPtrInst>(gepNode ? gepNode->getInstruction() :0); - - // ptr value is not computed in this tree or ptr value does not come from GEP - // instruction - if (gepInst == NULL) - return NULL; - - // Return NULL if we don't fold any instructions in. - Value* ptrVal = NULL; - - // Now chase the chain of getElementInstr instructions, if any. - // Check for any non-constant indices and stop there. - // Also, stop if the first index of child is a non-zero array index - // and the last index of the current node is a non-array index: - // in that case, a non-array declared type is being accessed as an array - // which is not type-safe, but could be legal. - // - InstructionNode* ptrChild = gepNode; - while (ptrChild && (ptrChild->getOpLabel() == Instruction::GetElementPtr || - ptrChild->getOpLabel() == GetElemPtrIdx)) - { - // Child is a GetElemPtr instruction - gepInst = cast<GetElementPtrInst>(ptrChild->getValue()); - User::op_iterator OI, firstIdx = gepInst->idx_begin(); - User::op_iterator lastIdx = gepInst->idx_end(); - bool allConstantOffsets = true; - - // The first index of every GEP must be an array index. - assert((*firstIdx)->getType() == Type::LongTy && - "INTERNAL ERROR: Structure index for a pointer type!"); - - // If the last instruction had a leading non-zero index, check if the - // current one references a sequential (i.e., indexable) type. - // If not, the code is not type-safe and we would create an illegal GEP - // by folding them, so don't fold any more instructions. - // - if (lastInstHasLeadingNonZero) - if (! isa<SequentialType>(gepInst->getType()->getElementType())) - break; // cannot fold in any preceding getElementPtr instrs. - - // Check that all offsets are constant for this instruction - for (OI = firstIdx; allConstantOffsets && OI != lastIdx; ++OI) - allConstantOffsets = isa<ConstantInt>(*OI); - - if (allConstantOffsets) { - // Get pointer value out of ptrChild. - ptrVal = gepInst->getPointerOperand(); - - // Insert its index vector at the start, skipping any leading [0] - // Remember the old size to check if anything was inserted. - unsigned oldSize = chainIdxVec.size(); - int firstIsZero = IsZero(*firstIdx); - chainIdxVec.insert(chainIdxVec.begin(), firstIdx + firstIsZero, lastIdx); - - // Remember if it has leading zero index: it will be discarded later. - if (oldSize < chainIdxVec.size()) - lastInstHasLeadingNonZero = !firstIsZero; - - // Mark the folded node so no code is generated for it. - ((InstructionNode*) ptrChild)->markFoldedIntoParent(); - - // Get the previous GEP instruction and continue trying to fold - ptrChild = dyn_cast<InstructionNode>(ptrChild->leftChild()); - } else // cannot fold this getElementPtr instr. or any preceding ones - break; - } - - // If the first getElementPtr instruction had a leading [0], add it back. - // Note that this instruction is the *last* one that was successfully - // folded *and* contributed any indices, in the loop above. - // - if (ptrVal && ! lastInstHasLeadingNonZero) - chainIdxVec.insert(chainIdxVec.begin(), ConstantSInt::get(Type::LongTy,0)); - - return ptrVal; -} - - -//--------------------------------------------------------------------------- -// Function: GetGEPInstArgs -// -// Purpose: -// Helper function for GetMemInstArgs that handles the final getElementPtr -// instruction used by (or same as) the memory operation. -// Extracts the indices of the current instruction and tries to fold in -// preceding ones if all indices of the current one are constant. -//--------------------------------------------------------------------------- - -static Value * -GetGEPInstArgs(InstructionNode* gepNode, - std::vector<Value*>& idxVec, - bool& allConstantIndices) -{ - allConstantIndices = true; - GetElementPtrInst* gepI = cast<GetElementPtrInst>(gepNode->getInstruction()); - - // Default pointer is the one from the current instruction. - Value* ptrVal = gepI->getPointerOperand(); - InstrTreeNode* ptrChild = gepNode->leftChild(); - - // Extract the index vector of the GEP instruction. - // If all indices are constant and first index is zero, try to fold - // in preceding GEPs with all constant indices. - for (User::op_iterator OI=gepI->idx_begin(), OE=gepI->idx_end(); - allConstantIndices && OI != OE; ++OI) - if (! isa<Constant>(*OI)) - allConstantIndices = false; // note: this also terminates loop! - - // If we have only constant indices, fold chains of constant indices - // in this and any preceding GetElemPtr instructions. - bool foldedGEPs = false; - bool leadingNonZeroIdx = gepI && ! IsZero(*gepI->idx_begin()); - if (allConstantIndices) - if (Value* newPtr = FoldGetElemChain(ptrChild, idxVec, leadingNonZeroIdx)) { - ptrVal = newPtr; - foldedGEPs = true; - } - - // Append the index vector of the current instruction. - // Skip the leading [0] index if preceding GEPs were folded into this. - idxVec.insert(idxVec.end(), - gepI->idx_begin() + (foldedGEPs && !leadingNonZeroIdx), - gepI->idx_end()); - - return ptrVal; -} - -//--------------------------------------------------------------------------- -// Function: GetMemInstArgs -// -// Purpose: -// Get the pointer value and the index vector for a memory operation -// (GetElementPtr, Load, or Store). If all indices of the given memory -// operation are constant, fold in constant indices in a chain of -// preceding GetElementPtr instructions (if any), and return the -// pointer value of the first instruction in the chain. -// All folded instructions are marked so no code is generated for them. -// -// Return values: -// Returns the pointer Value to use. -// Returns the resulting IndexVector in idxVec. -// Returns true/false in allConstantIndices if all indices are/aren't const. -//--------------------------------------------------------------------------- - -static Value* -GetMemInstArgs(InstructionNode* memInstrNode, - std::vector<Value*>& idxVec, - bool& allConstantIndices) -{ - allConstantIndices = false; - Instruction* memInst = memInstrNode->getInstruction(); - assert(idxVec.size() == 0 && "Need empty vector to return indices"); - - // If there is a GetElemPtr instruction to fold in to this instr, - // it must be in the left child for Load and GetElemPtr, and in the - // right child for Store instructions. - InstrTreeNode* ptrChild = (memInst->getOpcode() == Instruction::Store - ? memInstrNode->rightChild() - : memInstrNode->leftChild()); - - // Default pointer is the one from the current instruction. - Value* ptrVal = ptrChild->getValue(); - - // Find the "last" GetElemPtr instruction: this one or the immediate child. - // There will be none if this is a load or a store from a scalar pointer. - InstructionNode* gepNode = NULL; - if (isa<GetElementPtrInst>(memInst)) - gepNode = memInstrNode; - else if (isa<InstructionNode>(ptrChild) && isa<GetElementPtrInst>(ptrVal)) { - // Child of load/store is a GEP and memInst is its only use. - // Use its indices and mark it as folded. - gepNode = cast<InstructionNode>(ptrChild); - gepNode->markFoldedIntoParent(); - } - - // If there are no indices, return the current pointer. - // Else extract the pointer from the GEP and fold the indices. - return gepNode ? GetGEPInstArgs(gepNode, idxVec, allConstantIndices) - : ptrVal; -} - - -//************************ Internal Functions ******************************/ - - -static inline MachineOpCode -ChooseBprInstruction(const InstructionNode* instrNode) -{ - MachineOpCode opCode; - - Instruction* setCCInstr = - ((InstructionNode*) instrNode->leftChild())->getInstruction(); - - switch(setCCInstr->getOpcode()) - { - case Instruction::SetEQ: opCode = V9::BRZ; break; - case Instruction::SetNE: opCode = V9::BRNZ; break; - case Instruction::SetLE: opCode = V9::BRLEZ; break; - case Instruction::SetGE: opCode = V9::BRGEZ; break; - case Instruction::SetLT: opCode = V9::BRLZ; break; - case Instruction::SetGT: opCode = V9::BRGZ; break; - default: - assert(0 && "Unrecognized VM instruction!"); - opCode = V9::INVALID_OPCODE; - break; - } - - return opCode; -} - - -static inline MachineOpCode -ChooseBpccInstruction(const InstructionNode* instrNode, - const BinaryOperator* setCCInstr) -{ - MachineOpCode opCode = V9::INVALID_OPCODE; - - bool isSigned = setCCInstr->getOperand(0)->getType()->isSigned(); - - if (isSigned) { - switch(setCCInstr->getOpcode()) - { - case Instruction::SetEQ: opCode = V9::BE; break; - case Instruction::SetNE: opCode = V9::BNE; break; - case Instruction::SetLE: opCode = V9::BLE; break; - case Instruction::SetGE: opCode = V9::BGE; break; - case Instruction::SetLT: opCode = V9::BL; break; - case Instruction::SetGT: opCode = V9::BG; break; - default: - assert(0 && "Unrecognized VM instruction!"); - break; - } - } else { - switch(setCCInstr->getOpcode()) - { - case Instruction::SetEQ: opCode = V9::BE; break; - case Instruction::SetNE: opCode = V9::BNE; break; - case Instruction::SetLE: opCode = V9::BLEU; break; - case Instruction::SetGE: opCode = V9::BCC; break; - case Instruction::SetLT: opCode = V9::BCS; break; - case Instruction::SetGT: opCode = V9::BGU; break; - default: - assert(0 && "Unrecognized VM instruction!"); - break; - } - } - - return opCode; -} - -static inline MachineOpCode -ChooseBFpccInstruction(const InstructionNode* instrNode, - const BinaryOperator* setCCInstr) -{ - MachineOpCode opCode = V9::INVALID_OPCODE; - - switch(setCCInstr->getOpcode()) - { - case Instruction::SetEQ: opCode = V9::FBE; break; - case Instruction::SetNE: opCode = V9::FBNE; break; - case Instruction::SetLE: opCode = V9::FBLE; break; - case Instruction::SetGE: opCode = V9::FBGE; break; - case Instruction::SetLT: opCode = V9::FBL; break; - case Instruction::SetGT: opCode = V9::FBG; break; - default: - assert(0 && "Unrecognized VM instruction!"); - break; - } - - return opCode; -} - - -// Create a unique TmpInstruction for a boolean value, -// representing the CC register used by a branch on that value. -// For now, hack this using a little static cache of TmpInstructions. -// Eventually the entire BURG instruction selection should be put -// into a separate class that can hold such information. -// The static cache is not too bad because the memory for these -// TmpInstructions will be freed along with the rest of the Function anyway. -// -static TmpInstruction* -GetTmpForCC(Value* boolVal, const Function *F, const Type* ccType, - MachineCodeForInstruction& mcfi) -{ - typedef hash_map<const Value*, TmpInstruction*> BoolTmpCache; - static BoolTmpCache boolToTmpCache; // Map boolVal -> TmpInstruction* - static const Function *lastFunction = 0;// Use to flush cache between funcs - - assert(boolVal->getType() == Type::BoolTy && "Weird but ok! Delete assert"); - - if (lastFunction != F) { - lastFunction = F; - boolToTmpCache.clear(); - } - - // Look for tmpI and create a new one otherwise. The new value is - // directly written to map using the ref returned by operator[]. - TmpInstruction*& tmpI = boolToTmpCache[boolVal]; - if (tmpI == NULL) - tmpI = new TmpInstruction(mcfi, ccType, boolVal); - - return tmpI; -} - - -static inline MachineOpCode -ChooseBccInstruction(const InstructionNode* instrNode, - const Type*& setCCType) -{ - InstructionNode* setCCNode = (InstructionNode*) instrNode->leftChild(); - assert(setCCNode->getOpLabel() == SetCCOp); - BinaryOperator* setCCInstr =cast<BinaryOperator>(setCCNode->getInstruction()); - setCCType = setCCInstr->getOperand(0)->getType(); - - if (setCCType->isFloatingPoint()) - return ChooseBFpccInstruction(instrNode, setCCInstr); - else - return ChooseBpccInstruction(instrNode, setCCInstr); -} - - -// WARNING: since this function has only one caller, it always returns -// the opcode that expects an immediate and a register. If this function -// is ever used in cases where an opcode that takes two registers is required, -// then modify this function and use convertOpcodeFromRegToImm() where required. -// -// It will be necessary to expand convertOpcodeFromRegToImm() to handle the -// new cases of opcodes. -static inline MachineOpCode -ChooseMovFpcciInstruction(const InstructionNode* instrNode) -{ - MachineOpCode opCode = V9::INVALID_OPCODE; - - switch(instrNode->getInstruction()->getOpcode()) - { - case Instruction::SetEQ: opCode = V9::MOVFEi; break; - case Instruction::SetNE: opCode = V9::MOVFNEi; break; - case Instruction::SetLE: opCode = V9::MOVFLEi; break; - case Instruction::SetGE: opCode = V9::MOVFGEi; break; - case Instruction::SetLT: opCode = V9::MOVFLi; break; - case Instruction::SetGT: opCode = V9::MOVFGi; break; - default: - assert(0 && "Unrecognized VM instruction!"); - break; - } - - return opCode; -} - - -// ChooseMovpcciForSetCC -- Choose a conditional-move instruction -// based on the type of SetCC operation. -// -// WARNING: since this function has only one caller, it always returns -// the opcode that expects an immediate and a register. If this function -// is ever used in cases where an opcode that takes two registers is required, -// then modify this function and use convertOpcodeFromRegToImm() where required. -// -// It will be necessary to expand convertOpcodeFromRegToImm() to handle the -// new cases of opcodes. -// -static MachineOpCode -ChooseMovpcciForSetCC(const InstructionNode* instrNode) -{ - MachineOpCode opCode = V9::INVALID_OPCODE; - - const Type* opType = instrNode->leftChild()->getValue()->getType(); - assert(opType->isIntegral() || isa<PointerType>(opType)); - bool noSign = opType->isUnsigned() || isa<PointerType>(opType); - - switch(instrNode->getInstruction()->getOpcode()) - { - case Instruction::SetEQ: opCode = V9::MOVEi; break; - case Instruction::SetLE: opCode = noSign? V9::MOVLEUi : V9::MOVLEi; break; - case Instruction::SetGE: opCode = noSign? V9::MOVCCi : V9::MOVGEi; break; - case Instruction::SetLT: opCode = noSign? V9::MOVCSi : V9::MOVLi; break; - case Instruction::SetGT: opCode = noSign? V9::MOVGUi : V9::MOVGi; break; - case Instruction::SetNE: opCode = V9::MOVNEi; break; - default: assert(0 && "Unrecognized LLVM instr!"); break; - } - - return opCode; -} - - -// ChooseMovpregiForSetCC -- Choose a conditional-move-on-register-value -// instruction based on the type of SetCC operation. These instructions -// compare a register with 0 and perform the move is the comparison is true. -// -// WARNING: like the previous function, this function it always returns -// the opcode that expects an immediate and a register. See above. -// -static MachineOpCode -ChooseMovpregiForSetCC(const InstructionNode* instrNode) -{ - MachineOpCode opCode = V9::INVALID_OPCODE; - - switch(instrNode->getInstruction()->getOpcode()) - { - case Instruction::SetEQ: opCode = V9::MOVRZi; break; - case Instruction::SetLE: opCode = V9::MOVRLEZi; break; - case Instruction::SetGE: opCode = V9::MOVRGEZi; break; - case Instruction::SetLT: opCode = V9::MOVRLZi; break; - case Instruction::SetGT: opCode = V9::MOVRGZi; break; - case Instruction::SetNE: opCode = V9::MOVRNZi; break; - default: assert(0 && "Unrecognized VM instr!"); break; - } - - return opCode; -} - - -static inline MachineOpCode -ChooseConvertToFloatInstr(const TargetMachine& target, - OpLabel vopCode, const Type* opType) -{ - assert((vopCode == ToFloatTy || vopCode == ToDoubleTy) && - "Unrecognized convert-to-float opcode!"); - assert((opType->isIntegral() || opType->isFloatingPoint() || - isa<PointerType>(opType)) - && "Trying to convert a non-scalar type to FLOAT/DOUBLE?"); - - MachineOpCode opCode = V9::INVALID_OPCODE; - - unsigned opSize = target.getTargetData().getTypeSize(opType); - - if (opType == Type::FloatTy) - opCode = (vopCode == ToFloatTy? V9::NOP : V9::FSTOD); - else if (opType == Type::DoubleTy) - opCode = (vopCode == ToFloatTy? V9::FDTOS : V9::NOP); - else if (opSize <= 4) - opCode = (vopCode == ToFloatTy? V9::FITOS : V9::FITOD); - else { - assert(opSize == 8 && "Unrecognized type size > 4 and < 8!"); - opCode = (vopCode == ToFloatTy? V9::FXTOS : V9::FXTOD); - } - - return opCode; -} - -static inline MachineOpCode -ChooseConvertFPToIntInstr(const TargetMachine& target, - const Type* destType, const Type* opType) -{ - assert((opType == Type::FloatTy || opType == Type::DoubleTy) - && "This function should only be called for FLOAT or DOUBLE"); - assert((destType->isIntegral() || isa<PointerType>(destType)) - && "Trying to convert FLOAT/DOUBLE to a non-scalar type?"); - - MachineOpCode opCode = V9::INVALID_OPCODE; - - unsigned destSize = target.getTargetData().getTypeSize(destType); - - if (destType == Type::UIntTy) - assert(destType != Type::UIntTy && "Expand FP-to-uint beforehand."); - else if (destSize <= 4) - opCode = (opType == Type::FloatTy)? V9::FSTOI : V9::FDTOI; - else { - assert(destSize == 8 && "Unrecognized type size > 4 and < 8!"); - opCode = (opType == Type::FloatTy)? V9::FSTOX : V9::FDTOX; - } - - return opCode; -} - -static MachineInstr* -CreateConvertFPToIntInstr(const TargetMachine& target, - Value* srcVal, - Value* destVal, - const Type* destType) -{ - MachineOpCode opCode = ChooseConvertFPToIntInstr(target, destType, - srcVal->getType()); - assert(opCode != V9::INVALID_OPCODE && "Expected to need conversion!"); - return BuildMI(opCode, 2).addReg(srcVal).addRegDef(destVal); -} - -// CreateCodeToConvertFloatToInt: Convert FP value to signed or unsigned integer -// The FP value must be converted to the dest type in an FP register, -// and the result is then copied from FP to int register via memory. -// SPARC does not have a float-to-uint conversion, only a float-to-int (fdtoi). -// Since fdtoi converts to signed integers, any FP value V between MAXINT+1 -// and MAXUNSIGNED (i.e., 2^31 <= V <= 2^32-1) would be converted incorrectly. -// Therefore, for converting an FP value to uint32_t, we first need to convert -// to uint64_t and then to uint32_t. -// -static void -CreateCodeToConvertFloatToInt(const TargetMachine& target, - Value* opVal, - Instruction* destI, - std::vector<MachineInstr*>& mvec, - MachineCodeForInstruction& mcfi) -{ - Function* F = destI->getParent()->getParent(); - - // Create a temporary to represent the FP register into which the - // int value will placed after conversion. The type of this temporary - // depends on the type of FP register to use: single-prec for a 32-bit - // int or smaller; double-prec for a 64-bit int. - // - size_t destSize = target.getTargetData().getTypeSize(destI->getType()); - - const Type* castDestType = destI->getType(); // type for the cast instr result - const Type* castDestRegType; // type for cast instruction result reg - TmpInstruction* destForCast; // dest for cast instruction - Instruction* fpToIntCopyDest = destI; // dest for fp-reg-to-int-reg copy instr - - // For converting an FP value to uint32_t, we first need to convert to - // uint64_t and then to uint32_t, as explained above. - if (destI->getType() == Type::UIntTy) { - castDestType = Type::ULongTy; // use this instead of type of destI - castDestRegType = Type::DoubleTy; // uint64_t needs 64-bit FP register. - destForCast = new TmpInstruction(mcfi, castDestRegType, opVal); - fpToIntCopyDest = new TmpInstruction(mcfi, castDestType, destForCast); - } - else { - castDestRegType = (destSize > 4)? Type::DoubleTy : Type::FloatTy; - destForCast = new TmpInstruction(mcfi, castDestRegType, opVal); - } - - // Create the fp-to-int conversion instruction (src and dest regs are FP regs) - mvec.push_back(CreateConvertFPToIntInstr(target, opVal, destForCast, - castDestType)); - - // Create the fpreg-to-intreg copy code - target.getInstrInfo().CreateCodeToCopyFloatToInt(target, F, destForCast, - fpToIntCopyDest, mvec, mcfi); - - // Create the uint64_t to uint32_t conversion, if needed - if (destI->getType() == Type::UIntTy) - target.getInstrInfo(). - CreateZeroExtensionInstructions(target, F, fpToIntCopyDest, destI, - /*numLowBits*/ 32, mvec, mcfi); -} - - -static inline MachineOpCode -ChooseAddInstruction(const InstructionNode* instrNode) -{ - return ChooseAddInstructionByType(instrNode->getInstruction()->getType()); -} - - -static inline MachineInstr* -CreateMovFloatInstruction(const InstructionNode* instrNode, - const Type* resultType) -{ - return BuildMI((resultType == Type::FloatTy) ? V9::FMOVS : V9::FMOVD, 2) - .addReg(instrNode->leftChild()->getValue()) - .addRegDef(instrNode->getValue()); -} - -static inline MachineInstr* -CreateAddConstInstruction(const InstructionNode* instrNode) -{ - MachineInstr* minstr = NULL; - - Value* constOp = ((InstrTreeNode*) instrNode->rightChild())->getValue(); - assert(isa<Constant>(constOp)); - - // Cases worth optimizing are: - // (1) Add with 0 for float or double: use an FMOV of appropriate type, - // instead of an FADD (1 vs 3 cycles). There is no integer MOV. - // - if (ConstantFP *FPC = dyn_cast<ConstantFP>(constOp)) { - double dval = FPC->getValue(); - if (dval == 0.0) - minstr = CreateMovFloatInstruction(instrNode, - instrNode->getInstruction()->getType()); - } - - return minstr; -} - - -static inline MachineOpCode -ChooseSubInstructionByType(const Type* resultType) -{ - MachineOpCode opCode = V9::INVALID_OPCODE; - - if (resultType->isInteger() || isa<PointerType>(resultType)) { - opCode = V9::SUBr; - } else { - switch(resultType->getPrimitiveID()) - { - case Type::FloatTyID: opCode = V9::FSUBS; break; - case Type::DoubleTyID: opCode = V9::FSUBD; break; - default: assert(0 && "Invalid type for SUB instruction"); break; - } - } - - return opCode; -} - - -static inline MachineInstr* -CreateSubConstInstruction(const InstructionNode* instrNode) -{ - MachineInstr* minstr = NULL; - - Value* constOp = ((InstrTreeNode*) instrNode->rightChild())->getValue(); - assert(isa<Constant>(constOp)); - - // Cases worth optimizing are: - // (1) Sub with 0 for float or double: use an FMOV of appropriate type, - // instead of an FSUB (1 vs 3 cycles). There is no integer MOV. - // - if (ConstantFP *FPC = dyn_cast<ConstantFP>(constOp)) { - double dval = FPC->getValue(); - if (dval == 0.0) - minstr = CreateMovFloatInstruction(instrNode, - instrNode->getInstruction()->getType()); - } - - return minstr; -} - - -static inline MachineOpCode -ChooseFcmpInstruction(const InstructionNode* instrNode) -{ - MachineOpCode opCode = V9::INVALID_OPCODE; - - Value* operand = ((InstrTreeNode*) instrNode->leftChild())->getValue(); - switch(operand->getType()->getPrimitiveID()) { - case Type::FloatTyID: opCode = V9::FCMPS; break; - case Type::DoubleTyID: opCode = V9::FCMPD; break; - default: assert(0 && "Invalid type for FCMP instruction"); break; - } - - return opCode; -} - - -// Assumes that leftArg and rightArg are both cast instructions. -// -static inline bool -BothFloatToDouble(const InstructionNode* instrNode) -{ - InstrTreeNode* leftArg = instrNode->leftChild(); - InstrTreeNode* rightArg = instrNode->rightChild(); - InstrTreeNode* leftArgArg = leftArg->leftChild(); - InstrTreeNode* rightArgArg = rightArg->leftChild(); - assert(leftArg->getValue()->getType() == rightArg->getValue()->getType()); - - // Check if both arguments are floats cast to double - return (leftArg->getValue()->getType() == Type::DoubleTy && - leftArgArg->getValue()->getType() == Type::FloatTy && - rightArgArg->getValue()->getType() == Type::FloatTy); -} - - -static inline MachineOpCode -ChooseMulInstructionByType(const Type* resultType) -{ - MachineOpCode opCode = V9::INVALID_OPCODE; - - if (resultType->isInteger()) - opCode = V9::MULXr; - else - switch(resultType->getPrimitiveID()) - { - case Type::FloatTyID: opCode = V9::FMULS; break; - case Type::DoubleTyID: opCode = V9::FMULD; break; - default: assert(0 && "Invalid type for MUL instruction"); break; - } - - return opCode; -} - - - -static inline MachineInstr* -CreateIntNegInstruction(const TargetMachine& target, - Value* vreg) -{ - return BuildMI(V9::SUBr, 3).addMReg(target.getRegInfo().getZeroRegNum()) - .addReg(vreg).addRegDef(vreg); -} - - -// Create instruction sequence for any shift operation. -// SLL or SLLX on an operand smaller than the integer reg. size (64bits) -// requires a second instruction for explicit sign-extension. -// Note that we only have to worry about a sign-bit appearing in the -// most significant bit of the operand after shifting (e.g., bit 32 of -// Int or bit 16 of Short), so we do not have to worry about results -// that are as large as a normal integer register. -// -static inline void -CreateShiftInstructions(const TargetMachine& target, - Function* F, - MachineOpCode shiftOpCode, - Value* argVal1, - Value* optArgVal2, /* Use optArgVal2 if not NULL */ - unsigned optShiftNum, /* else use optShiftNum */ - Instruction* destVal, - std::vector<MachineInstr*>& mvec, - MachineCodeForInstruction& mcfi) -{ - assert((optArgVal2 != NULL || optShiftNum <= 64) && - "Large shift sizes unexpected, but can be handled below: " - "You need to check whether or not it fits in immed field below"); - - // If this is a logical left shift of a type smaller than the standard - // integer reg. size, we have to extend the sign-bit into upper bits - // of dest, so we need to put the result of the SLL into a temporary. - // - Value* shiftDest = destVal; - unsigned opSize = target.getTargetData().getTypeSize(argVal1->getType()); - - if ((shiftOpCode == V9::SLLr5 || shiftOpCode == V9::SLLXr6) && opSize < 8) { - // put SLL result into a temporary - shiftDest = new TmpInstruction(mcfi, argVal1, optArgVal2, "sllTmp"); - } - - MachineInstr* M = (optArgVal2 != NULL) - ? BuildMI(shiftOpCode, 3).addReg(argVal1).addReg(optArgVal2) - .addReg(shiftDest, MachineOperand::Def) - : BuildMI(shiftOpCode, 3).addReg(argVal1).addZImm(optShiftNum) - .addReg(shiftDest, MachineOperand::Def); - mvec.push_back(M); - - if (shiftDest != destVal) { - // extend the sign-bit of the result into all upper bits of dest - assert(8*opSize <= 32 && "Unexpected type size > 4 and < IntRegSize?"); - target.getInstrInfo(). - CreateSignExtensionInstructions(target, F, shiftDest, destVal, - 8*opSize, mvec, mcfi); - } -} - - -// Does not create any instructions if we cannot exploit constant to -// create a cheaper instruction. -// This returns the approximate cost of the instructions generated, -// which is used to pick the cheapest when both operands are constant. -static unsigned -CreateMulConstInstruction(const TargetMachine &target, Function* F, - Value* lval, Value* rval, Instruction* destVal, - std::vector<MachineInstr*>& mvec, - MachineCodeForInstruction& mcfi) -{ - /* Use max. multiply cost, viz., cost of MULX */ - unsigned cost = target.getInstrInfo().minLatency(V9::MULXr); - unsigned firstNewInstr = mvec.size(); - - Value* constOp = rval; - if (! isa<Constant>(constOp)) - return cost; - - // Cases worth optimizing are: - // (1) Multiply by 0 or 1 for any type: replace with copy (ADD or FMOV) - // (2) Multiply by 2^x for integer types: replace with Shift - // - const Type* resultType = destVal->getType(); - - if (resultType->isInteger() || isa<PointerType>(resultType)) { - bool isValidConst; - int64_t C = (int64_t) target.getInstrInfo().ConvertConstantToIntType(target, - constOp, constOp->getType(), isValidConst); - if (isValidConst) { - unsigned pow; - bool needNeg = false; - if (C < 0) { - needNeg = true; - C = -C; - } - - if (C == 0 || C == 1) { - cost = target.getInstrInfo().minLatency(V9::ADDr); - unsigned Zero = target.getRegInfo().getZeroRegNum(); - MachineInstr* M; - if (C == 0) - M =BuildMI(V9::ADDr,3).addMReg(Zero).addMReg(Zero).addRegDef(destVal); - else - M = BuildMI(V9::ADDr,3).addReg(lval).addMReg(Zero).addRegDef(destVal); - mvec.push_back(M); - } else if (isPowerOf2(C, pow)) { - unsigned opSize = target.getTargetData().getTypeSize(resultType); - MachineOpCode opCode = (opSize <= 32)? V9::SLLr5 : V9::SLLXr6; - CreateShiftInstructions(target, F, opCode, lval, NULL, pow, - destVal, mvec, mcfi); - } - - if (mvec.size() > 0 && needNeg) { - // insert <reg = SUB 0, reg> after the instr to flip the sign - MachineInstr* M = CreateIntNegInstruction(target, destVal); - mvec.push_back(M); - } - } - } else { - if (ConstantFP *FPC = dyn_cast<ConstantFP>(constOp)) { - double dval = FPC->getValue(); - if (fabs(dval) == 1) { - MachineOpCode opCode = (dval < 0) - ? (resultType == Type::FloatTy? V9::FNEGS : V9::FNEGD) - : (resultType == Type::FloatTy? V9::FMOVS : V9::FMOVD); - mvec.push_back(BuildMI(opCode,2).addReg(lval).addRegDef(destVal)); - } - } - } - - if (firstNewInstr < mvec.size()) { - cost = 0; - for (unsigned i=firstNewInstr; i < mvec.size(); ++i) - cost += target.getInstrInfo().minLatency(mvec[i]->getOpcode()); - } - - return cost; -} - - -// Does not create any instructions if we cannot exploit constant to -// create a cheaper instruction. -// -static inline void -CreateCheapestMulConstInstruction(const TargetMachine &target, - Function* F, - Value* lval, Value* rval, - Instruction* destVal, - std::vector<MachineInstr*>& mvec, - MachineCodeForInstruction& mcfi) -{ - Value* constOp; - if (isa<Constant>(lval) && isa<Constant>(rval)) { - // both operands are constant: evaluate and "set" in dest - Constant* P = ConstantExpr::get(Instruction::Mul, - cast<Constant>(lval), - cast<Constant>(rval)); - target.getInstrInfo().CreateCodeToLoadConst(target,F,P,destVal,mvec,mcfi); - } - else if (isa<Constant>(rval)) // rval is constant, but not lval - CreateMulConstInstruction(target, F, lval, rval, destVal, mvec, mcfi); - else if (isa<Constant>(lval)) // lval is constant, but not rval - CreateMulConstInstruction(target, F, lval, rval, destVal, mvec, mcfi); - - // else neither is constant - return; -} - -// Return NULL if we cannot exploit constant to create a cheaper instruction -static inline void -CreateMulInstruction(const TargetMachine &target, Function* F, - Value* lval, Value* rval, Instruction* destVal, - std::vector<MachineInstr*>& mvec, - MachineCodeForInstruction& mcfi, - MachineOpCode forceMulOp = INVALID_MACHINE_OPCODE) -{ - unsigned L = mvec.size(); - CreateCheapestMulConstInstruction(target,F, lval, rval, destVal, mvec, mcfi); - if (mvec.size() == L) { - // no instructions were added so create MUL reg, reg, reg. - // Use FSMULD if both operands are actually floats cast to doubles. - // Otherwise, use the default opcode for the appropriate type. - MachineOpCode mulOp = ((forceMulOp != INVALID_MACHINE_OPCODE) - ? forceMulOp - : ChooseMulInstructionByType(destVal->getType())); - mvec.push_back(BuildMI(mulOp, 3).addReg(lval).addReg(rval) - .addRegDef(destVal)); - } -} - - -// Generate a divide instruction for Div or Rem. -// For Rem, this assumes that the operand type will be signed if the result -// type is signed. This is correct because they must have the same sign. -// -static inline MachineOpCode -ChooseDivInstruction(TargetMachine &target, - const InstructionNode* instrNode) -{ - MachineOpCode opCode = V9::INVALID_OPCODE; - - const Type* resultType = instrNode->getInstruction()->getType(); - - if (resultType->isInteger()) - opCode = resultType->isSigned()? V9::SDIVXr : V9::UDIVXr; - else - switch(resultType->getPrimitiveID()) - { - case Type::FloatTyID: opCode = V9::FDIVS; break; - case Type::DoubleTyID: opCode = V9::FDIVD; break; - default: assert(0 && "Invalid type for DIV instruction"); break; - } - - return opCode; -} - - -// Return if we cannot exploit constant to create a cheaper instruction -static void -CreateDivConstInstruction(TargetMachine &target, - const InstructionNode* instrNode, - std::vector<MachineInstr*>& mvec) -{ - Value* LHS = instrNode->leftChild()->getValue(); - Value* constOp = ((InstrTreeNode*) instrNode->rightChild())->getValue(); - if (!isa<Constant>(constOp)) - return; - - Instruction* destVal = instrNode->getInstruction(); - unsigned ZeroReg = target.getRegInfo().getZeroRegNum(); - - // Cases worth optimizing are: - // (1) Divide by 1 for any type: replace with copy (ADD or FMOV) - // (2) Divide by 2^x for integer types: replace with SR[L or A]{X} - // - const Type* resultType = instrNode->getInstruction()->getType(); - - if (resultType->isInteger()) { - unsigned pow; - bool isValidConst; - int64_t C = (int64_t) target.getInstrInfo().ConvertConstantToIntType(target, - constOp, constOp->getType(), isValidConst); - if (isValidConst) { - bool needNeg = false; - if (C < 0) { - needNeg = true; - C = -C; - } - - if (C == 1) { - mvec.push_back(BuildMI(V9::ADDr, 3).addReg(LHS).addMReg(ZeroReg) - .addRegDef(destVal)); - } else if (isPowerOf2(C, pow)) { - unsigned opCode; - Value* shiftOperand; - unsigned opSize = target.getTargetData().getTypeSize(resultType); - - if (resultType->isSigned()) { - // For N / 2^k, if the operand N is negative, - // we need to add (2^k - 1) before right-shifting by k, i.e., - // - // (N / 2^k) = N >> k, if N >= 0; - // (N + 2^k - 1) >> k, if N < 0 - // - // If N is <= 32 bits, use: - // sra N, 31, t1 // t1 = ~0, if N < 0, 0 else - // srl t1, 32-k, t2 // t2 = 2^k - 1, if N < 0, 0 else - // add t2, N, t3 // t3 = N + 2^k -1, if N < 0, N else - // sra t3, k, result // result = N / 2^k - // - // If N is 64 bits, use: - // srax N, k-1, t1 // t1 = sign bit in high k positions - // srlx t1, 64-k, t2 // t2 = 2^k - 1, if N < 0, 0 else - // add t2, N, t3 // t3 = N + 2^k -1, if N < 0, N else - // sra t3, k, result // result = N / 2^k - // - TmpInstruction *sraTmp, *srlTmp, *addTmp; - MachineCodeForInstruction& mcfi - = MachineCodeForInstruction::get(destVal); - sraTmp = new TmpInstruction(mcfi, resultType, LHS, 0, "getSign"); - srlTmp = new TmpInstruction(mcfi, resultType, LHS, 0, "getPlus2km1"); - addTmp = new TmpInstruction(mcfi, resultType, LHS, srlTmp,"incIfNeg"); - - // Create the SRA or SRAX instruction to get the sign bit - mvec.push_back(BuildMI((opSize > 4)? V9::SRAXi6 : V9::SRAi5, 3) - .addReg(LHS) - .addSImm((resultType==Type::LongTy)? pow-1 : 31) - .addRegDef(sraTmp)); - - // Create the SRL or SRLX instruction to get the sign bit - mvec.push_back(BuildMI((opSize > 4)? V9::SRLXi6 : V9::SRLi5, 3) - .addReg(sraTmp) - .addSImm((resultType==Type::LongTy)? 64-pow : 32-pow) - .addRegDef(srlTmp)); - - // Create the ADD instruction to add 2^pow-1 for negative values - mvec.push_back(BuildMI(V9::ADDr, 3).addReg(LHS).addReg(srlTmp) - .addRegDef(addTmp)); - - // Get the shift operand and "right-shift" opcode to do the divide - shiftOperand = addTmp; - opCode = (opSize > 4)? V9::SRAXi6 : V9::SRAi5; - } else { - // Get the shift operand and "right-shift" opcode to do the divide - shiftOperand = LHS; - opCode = (opSize > 4)? V9::SRLXi6 : V9::SRLi5; - } - - // Now do the actual shift! - mvec.push_back(BuildMI(opCode, 3).addReg(shiftOperand).addZImm(pow) - .addRegDef(destVal)); - } - - if (needNeg && (C == 1 || isPowerOf2(C, pow))) { - // insert <reg = SUB 0, reg> after the instr to flip the sign - mvec.push_back(CreateIntNegInstruction(target, destVal)); - } - } - } else { - if (ConstantFP *FPC = dyn_cast<ConstantFP>(constOp)) { - double dval = FPC->getValue(); - if (fabs(dval) == 1) { - unsigned opCode = - (dval < 0) ? (resultType == Type::FloatTy? V9::FNEGS : V9::FNEGD) - : (resultType == Type::FloatTy? V9::FMOVS : V9::FMOVD); - - mvec.push_back(BuildMI(opCode, 2).addReg(LHS).addRegDef(destVal)); - } - } - } -} - - -static void -CreateCodeForVariableSizeAlloca(const TargetMachine& target, - Instruction* result, - unsigned tsize, - Value* numElementsVal, - std::vector<MachineInstr*>& getMvec) -{ - Value* totalSizeVal; - MachineInstr* M; - MachineCodeForInstruction& mcfi = MachineCodeForInstruction::get(result); - Function *F = result->getParent()->getParent(); - - // Enforce the alignment constraints on the stack pointer at - // compile time if the total size is a known constant. - if (isa<Constant>(numElementsVal)) { - bool isValid; - int64_t numElem = (int64_t) target.getInstrInfo(). - ConvertConstantToIntType(target, numElementsVal, - numElementsVal->getType(), isValid); - assert(isValid && "Unexpectedly large array dimension in alloca!"); - int64_t total = numElem * tsize; - if (int extra= total % target.getFrameInfo().getStackFrameSizeAlignment()) - total += target.getFrameInfo().getStackFrameSizeAlignment() - extra; - totalSizeVal = ConstantSInt::get(Type::IntTy, total); - } else { - // The size is not a constant. Generate code to compute it and - // code to pad the size for stack alignment. - // Create a Value to hold the (constant) element size - Value* tsizeVal = ConstantSInt::get(Type::IntTy, tsize); - - // Create temporary values to hold the result of MUL, SLL, SRL - // To pad `size' to next smallest multiple of 16: - // size = (size + 15) & (-16 = 0xfffffffffffffff0) - // - TmpInstruction* tmpProd = new TmpInstruction(mcfi,numElementsVal, tsizeVal); - TmpInstruction* tmpAdd15= new TmpInstruction(mcfi,numElementsVal, tmpProd); - TmpInstruction* tmpAndf0= new TmpInstruction(mcfi,numElementsVal, tmpAdd15); - - // Instruction 1: mul numElements, typeSize -> tmpProd - // This will optimize the MUL as far as possible. - CreateMulInstruction(target, F, numElementsVal, tsizeVal, tmpProd, getMvec, - mcfi, INVALID_MACHINE_OPCODE); - - // Instruction 2: andn tmpProd, 0x0f -> tmpAndn - getMvec.push_back(BuildMI(V9::ADDi, 3).addReg(tmpProd).addSImm(15) - .addReg(tmpAdd15, MachineOperand::Def)); - - // Instruction 3: add tmpAndn, 0x10 -> tmpAdd16 - getMvec.push_back(BuildMI(V9::ANDi, 3).addReg(tmpAdd15).addSImm(-16) - .addReg(tmpAndf0, MachineOperand::Def)); - - totalSizeVal = tmpAndf0; - } - - // Get the constant offset from SP for dynamically allocated storage - // and create a temporary Value to hold it. - MachineFunction& mcInfo = MachineFunction::get(F); - bool growUp; - ConstantSInt* dynamicAreaOffset = - ConstantSInt::get(Type::IntTy, - target.getFrameInfo().getDynamicAreaOffset(mcInfo,growUp)); - assert(! growUp && "Has SPARC v9 stack frame convention changed?"); - - unsigned SPReg = target.getRegInfo().getStackPointer(); - - // Instruction 2: sub %sp, totalSizeVal -> %sp - getMvec.push_back(BuildMI(V9::SUBr, 3).addMReg(SPReg).addReg(totalSizeVal) - .addMReg(SPReg,MachineOperand::Def)); - - // Instruction 3: add %sp, frameSizeBelowDynamicArea -> result - getMvec.push_back(BuildMI(V9::ADDr,3).addMReg(SPReg).addReg(dynamicAreaOffset) - .addRegDef(result)); -} - - -static void -CreateCodeForFixedSizeAlloca(const TargetMachine& target, - Instruction* result, - unsigned tsize, - unsigned numElements, - std::vector<MachineInstr*>& getMvec) -{ - assert(tsize > 0 && "Illegal (zero) type size for alloca"); - assert(result && result->getParent() && - "Result value is not part of a function?"); - Function *F = result->getParent()->getParent(); - MachineFunction &mcInfo = MachineFunction::get(F); - - // Put the variable in the dynamically sized area of the frame if either: - // (a) The offset is too large to use as an immediate in load/stores - // (check LDX because all load/stores have the same-size immed. field). - // (b) The object is "large", so it could cause many other locals, - // spills, and temporaries to have large offsets. - // NOTE: We use LARGE = 8 * argSlotSize = 64 bytes. - // You've gotta love having only 13 bits for constant offset values :-|. - // - unsigned paddedSize; - int offsetFromFP = mcInfo.getInfo()->computeOffsetforLocalVar(result, - paddedSize, - tsize * numElements); - - if (((int)paddedSize) > 8 * target.getFrameInfo().getSizeOfEachArgOnStack() || - ! target.getInstrInfo().constantFitsInImmedField(V9::LDXi,offsetFromFP)) { - CreateCodeForVariableSizeAlloca(target, result, tsize, - ConstantSInt::get(Type::IntTy,numElements), - getMvec); - return; - } - - // else offset fits in immediate field so go ahead and allocate it. - offsetFromFP = mcInfo.getInfo()->allocateLocalVar(result, tsize *numElements); - - // Create a temporary Value to hold the constant offset. - // This is needed because it may not fit in the immediate field. - ConstantSInt* offsetVal = ConstantSInt::get(Type::IntTy, offsetFromFP); - - // Instruction 1: add %fp, offsetFromFP -> result - unsigned FPReg = target.getRegInfo().getFramePointer(); - getMvec.push_back(BuildMI(V9::ADDr, 3).addMReg(FPReg).addReg(offsetVal) - .addRegDef(result)); -} - - -//------------------------------------------------------------------------ -// Function SetOperandsForMemInstr -// -// Choose addressing mode for the given load or store instruction. -// Use [reg+reg] if it is an indexed reference, and the index offset is -// not a constant or if it cannot fit in the offset field. -// Use [reg+offset] in all other cases. -// -// This assumes that all array refs are "lowered" to one of these forms: -// %x = load (subarray*) ptr, constant ; single constant offset -// %x = load (subarray*) ptr, offsetVal ; single non-constant offset -// Generally, this should happen via strength reduction + LICM. -// Also, strength reduction should take care of using the same register for -// the loop index variable and an array index, when that is profitable. -//------------------------------------------------------------------------ - -static void -SetOperandsForMemInstr(unsigned Opcode, - std::vector<MachineInstr*>& mvec, - InstructionNode* vmInstrNode, - const TargetMachine& target) -{ - Instruction* memInst = vmInstrNode->getInstruction(); - // Index vector, ptr value, and flag if all indices are const. - std::vector<Value*> idxVec; - bool allConstantIndices; - Value* ptrVal = GetMemInstArgs(vmInstrNode, idxVec, allConstantIndices); - - // Now create the appropriate operands for the machine instruction. - // First, initialize so we default to storing the offset in a register. - int64_t smallConstOffset = 0; - Value* valueForRegOffset = NULL; - MachineOperand::MachineOperandType offsetOpType = - MachineOperand::MO_VirtualRegister; - - // Check if there is an index vector and if so, compute the - // right offset for structures and for arrays - // - if (!idxVec.empty()) { - const PointerType* ptrType = cast<PointerType>(ptrVal->getType()); - - // If all indices are constant, compute the combined offset directly. - if (allConstantIndices) { - // Compute the offset value using the index vector. Create a - // virtual reg. for it since it may not fit in the immed field. - uint64_t offset = target.getTargetData().getIndexedOffset(ptrType,idxVec); - valueForRegOffset = ConstantSInt::get(Type::LongTy, offset); - } else { - // There is at least one non-constant offset. Therefore, this must - // be an array ref, and must have been lowered to a single non-zero - // offset. (An extra leading zero offset, if any, can be ignored.) - // Generate code sequence to compute address from index. - // - bool firstIdxIsZero = IsZero(idxVec[0]); - assert(idxVec.size() == 1U + firstIdxIsZero - && "Array refs must be lowered before Instruction Selection"); - - Value* idxVal = idxVec[firstIdxIsZero]; - - std::vector<MachineInstr*> mulVec; - Instruction* addr = - new TmpInstruction(MachineCodeForInstruction::get(memInst), - Type::ULongTy, memInst); - - // Get the array type indexed by idxVal, and compute its element size. - // The call to getTypeSize() will fail if size is not constant. - const Type* vecType = (firstIdxIsZero - ? GetElementPtrInst::getIndexedType(ptrType, - std::vector<Value*>(1U, idxVec[0]), - /*AllowCompositeLeaf*/ true) - : ptrType); - const Type* eltType = cast<SequentialType>(vecType)->getElementType(); - ConstantUInt* eltSizeVal = ConstantUInt::get(Type::ULongTy, - target.getTargetData().getTypeSize(eltType)); - - // CreateMulInstruction() folds constants intelligently enough. - CreateMulInstruction(target, memInst->getParent()->getParent(), - idxVal, /* lval, not likely to be const*/ - eltSizeVal, /* rval, likely to be constant */ - addr, /* result */ - mulVec, MachineCodeForInstruction::get(memInst), - INVALID_MACHINE_OPCODE); - - assert(mulVec.size() > 0 && "No multiply code created?"); - mvec.insert(mvec.end(), mulVec.begin(), mulVec.end()); - - valueForRegOffset = addr; - } - } else { - offsetOpType = MachineOperand::MO_SignExtendedImmed; - smallConstOffset = 0; - } - - // For STORE: - // Operand 0 is value, operand 1 is ptr, operand 2 is offset - // For LOAD or GET_ELEMENT_PTR, - // Operand 0 is ptr, operand 1 is offset, operand 2 is result. - // - unsigned offsetOpNum, ptrOpNum; - MachineInstr *MI; - if (memInst->getOpcode() == Instruction::Store) { - if (offsetOpType == MachineOperand::MO_VirtualRegister) { - MI = BuildMI(Opcode, 3).addReg(vmInstrNode->leftChild()->getValue()) - .addReg(ptrVal).addReg(valueForRegOffset); - } else { - Opcode = convertOpcodeFromRegToImm(Opcode); - MI = BuildMI(Opcode, 3).addReg(vmInstrNode->leftChild()->getValue()) - .addReg(ptrVal).addSImm(smallConstOffset); - } - } else { - if (offsetOpType == MachineOperand::MO_VirtualRegister) { - MI = BuildMI(Opcode, 3).addReg(ptrVal).addReg(valueForRegOffset) - .addRegDef(memInst); - } else { - Opcode = convertOpcodeFromRegToImm(Opcode); - MI = BuildMI(Opcode, 3).addReg(ptrVal).addSImm(smallConstOffset) - .addRegDef(memInst); - } - } - mvec.push_back(MI); -} - - -// -// Substitute operand `operandNum' of the instruction in node `treeNode' -// in place of the use(s) of that instruction in node `parent'. -// Check both explicit and implicit operands! -// Also make sure to skip over a parent who: -// (1) is a list node in the Burg tree, or -// (2) itself had its results forwarded to its parent -// -static void -ForwardOperand(InstructionNode* treeNode, - InstrTreeNode* parent, - int operandNum) -{ - assert(treeNode && parent && "Invalid invocation of ForwardOperand"); - - Instruction* unusedOp = treeNode->getInstruction(); - Value* fwdOp = unusedOp->getOperand(operandNum); - - // The parent itself may be a list node, so find the real parent instruction - while (parent->getNodeType() != InstrTreeNode::NTInstructionNode) - { - parent = parent->parent(); - assert(parent && "ERROR: Non-instruction node has no parent in tree."); - } - InstructionNode* parentInstrNode = (InstructionNode*) parent; - - Instruction* userInstr = parentInstrNode->getInstruction(); - MachineCodeForInstruction &mvec = MachineCodeForInstruction::get(userInstr); - - // The parent's mvec would be empty if it was itself forwarded. - // Recursively call ForwardOperand in that case... - // - if (mvec.size() == 0) { - assert(parent->parent() != NULL && - "Parent could not have been forwarded, yet has no instructions?"); - ForwardOperand(treeNode, parent->parent(), operandNum); - } else { - for (unsigned i=0, N=mvec.size(); i < N; i++) { - MachineInstr* minstr = mvec[i]; - for (unsigned i=0, numOps=minstr->getNumOperands(); i < numOps; ++i) { - const MachineOperand& mop = minstr->getOperand(i); - if (mop.getType() == MachineOperand::MO_VirtualRegister && - mop.getVRegValue() == unusedOp) - { - minstr->SetMachineOperandVal(i, MachineOperand::MO_VirtualRegister, - fwdOp); - } - } - - for (unsigned i=0,numOps=minstr->getNumImplicitRefs(); i<numOps; ++i) - if (minstr->getImplicitRef(i) == unusedOp) - minstr->setImplicitRef(i, fwdOp); - } - } -} - - -inline bool -AllUsesAreBranches(const Instruction* setccI) -{ - for (Value::use_const_iterator UI=setccI->use_begin(), UE=setccI->use_end(); - UI != UE; ++UI) - if (! isa<TmpInstruction>(*UI) // ignore tmp instructions here - && cast<Instruction>(*UI)->getOpcode() != Instruction::Br) - return false; - return true; -} - -// Generate code for any intrinsic that needs a special code sequence -// instead of a regular call. If not that kind of intrinsic, do nothing. -// Returns true if code was generated, otherwise false. -// -static bool CodeGenIntrinsic(Intrinsic::ID iid, CallInst &callInstr, - TargetMachine &target, - std::vector<MachineInstr*>& mvec) { - switch (iid) { - default: - assert(0 && "Unknown intrinsic function call should have been lowered!"); - case Intrinsic::va_start: { - // Get the address of the first incoming vararg argument on the stack - bool ignore; - Function* func = cast<Function>(callInstr.getParent()->getParent()); - int numFixedArgs = func->getFunctionType()->getNumParams(); - int fpReg = target.getFrameInfo().getIncomingArgBaseRegNum(); - int argSize = target.getFrameInfo().getSizeOfEachArgOnStack(); - int firstVarArgOff = numFixedArgs * argSize + target.getFrameInfo(). - getFirstIncomingArgOffset(MachineFunction::get(func), ignore); - mvec.push_back(BuildMI(V9::ADDi, 3).addMReg(fpReg).addSImm(firstVarArgOff). - addRegDef(&callInstr)); - return true; - } - - case Intrinsic::va_end: - return true; // no-op on Sparc - - case Intrinsic::va_copy: - // Simple copy of current va_list (arg1) to new va_list (result) - mvec.push_back(BuildMI(V9::ORr, 3). - addMReg(target.getRegInfo().getZeroRegNum()). - addReg(callInstr.getOperand(1)). - addRegDef(&callInstr)); - return true; - } -} - -//******************* Externally Visible Functions *************************/ - -//------------------------------------------------------------------------ -// External Function: ThisIsAChainRule -// -// Purpose: -// Check if a given BURG rule is a chain rule. -//------------------------------------------------------------------------ - -extern bool -ThisIsAChainRule(int eruleno) -{ - switch(eruleno) - { - case 111: // stmt: reg - case 123: - case 124: - case 125: - case 126: - case 127: - case 128: - case 129: - case 130: - case 131: - case 132: - case 133: - case 155: - case 221: - case 222: - case 241: - case 242: - case 243: - case 244: - case 245: - case 321: - return true; break; - - default: - return false; break; - } -} - - -//------------------------------------------------------------------------ -// External Function: GetInstructionsByRule -// -// Purpose: -// Choose machine instructions for the SPARC according to the -// patterns chosen by the BURG-generated parser. -//------------------------------------------------------------------------ - -void -GetInstructionsByRule(InstructionNode* subtreeRoot, - int ruleForNode, - short* nts, - TargetMachine &target, - std::vector<MachineInstr*>& mvec) -{ - bool checkCast = false; // initialize here to use fall-through - bool maskUnsignedResult = false; - int nextRule; - int forwardOperandNum = -1; - unsigned allocaSize = 0; - MachineInstr* M, *M2; - unsigned L; - bool foldCase = false; - - mvec.clear(); - - // If the code for this instruction was folded into the parent (user), - // then do nothing! - if (subtreeRoot->isFoldedIntoParent()) - return; - - // - // Let's check for chain rules outside the switch so that we don't have - // to duplicate the list of chain rule production numbers here again - // - if (ThisIsAChainRule(ruleForNode)) { - // Chain rules have a single nonterminal on the RHS. - // Get the rule that matches the RHS non-terminal and use that instead. - // - assert(nts[0] && ! nts[1] - && "A chain rule should have only one RHS non-terminal!"); - nextRule = burm_rule(subtreeRoot->state, nts[0]); - nts = burm_nts[nextRule]; - GetInstructionsByRule(subtreeRoot, nextRule, nts, target, mvec); - } else { - switch(ruleForNode) { - case 1: // stmt: Ret - case 2: // stmt: RetValue(reg) - { // NOTE: Prepass of register allocation is responsible - // for moving return value to appropriate register. - // Copy the return value to the required return register. - // Mark the return Value as an implicit ref of the RET instr.. - // Mark the return-address register as a hidden virtual reg. - // Finally put a NOP in the delay slot. - ReturnInst *returnInstr=cast<ReturnInst>(subtreeRoot->getInstruction()); - Value* retVal = returnInstr->getReturnValue(); - MachineCodeForInstruction& mcfi = - MachineCodeForInstruction::get(returnInstr); - - // Create a hidden virtual reg to represent the return address register - // used by the machine instruction but not represented in LLVM. - // - Instruction* returnAddrTmp = new TmpInstruction(mcfi, returnInstr); - - MachineInstr* retMI = - BuildMI(V9::JMPLRETi, 3).addReg(returnAddrTmp).addSImm(8) - .addMReg(target.getRegInfo().getZeroRegNum(), MachineOperand::Def); - - // If there is a value to return, we need to: - // (a) Sign-extend the value if it is smaller than 8 bytes (reg size) - // (b) Insert a copy to copy the return value to the appropriate reg. - // -- For FP values, create a FMOVS or FMOVD instruction - // -- For non-FP values, create an add-with-0 instruction - // - if (retVal != NULL) { - const SparcRegInfo& regInfo = - (SparcRegInfo&) target.getRegInfo(); - const Type* retType = retVal->getType(); - unsigned regClassID = regInfo.getRegClassIDOfType(retType); - unsigned retRegNum = (retType->isFloatingPoint() - ? (unsigned) SparcFloatRegClass::f0 - : (unsigned) SparcIntRegClass::i0); - retRegNum = regInfo.getUnifiedRegNum(regClassID, retRegNum); - - // () Insert sign-extension instructions for small signed values. - // - Value* retValToUse = retVal; - if (retType->isIntegral() && retType->isSigned()) { - unsigned retSize = target.getTargetData().getTypeSize(retType); - if (retSize <= 4) { - // create a temporary virtual reg. to hold the sign-extension - retValToUse = new TmpInstruction(mcfi, retVal); - - // sign-extend retVal and put the result in the temporary reg. - target.getInstrInfo().CreateSignExtensionInstructions - (target, returnInstr->getParent()->getParent(), - retVal, retValToUse, 8*retSize, mvec, mcfi); - } - } - - // (b) Now, insert a copy to to the appropriate register: - // -- For FP values, create a FMOVS or FMOVD instruction - // -- For non-FP values, create an add-with-0 instruction - // - // First, create a virtual register to represent the register and - // mark this vreg as being an implicit operand of the ret MI. - TmpInstruction* retVReg = - new TmpInstruction(mcfi, retValToUse, NULL, "argReg"); - - retMI->addImplicitRef(retVReg); - - if (retType->isFloatingPoint()) - M = (BuildMI(retType==Type::FloatTy? V9::FMOVS : V9::FMOVD, 2) - .addReg(retValToUse).addReg(retVReg, MachineOperand::Def)); - else - M = (BuildMI(ChooseAddInstructionByType(retType), 3) - .addReg(retValToUse).addSImm((int64_t) 0) - .addReg(retVReg, MachineOperand::Def)); - - // Mark the operand with the register it should be assigned - M->SetRegForOperand(M->getNumOperands()-1, retRegNum); - retMI->SetRegForImplicitRef(retMI->getNumImplicitRefs()-1, retRegNum); - - mvec.push_back(M); - } - - // Now insert the RET instruction and a NOP for the delay slot - mvec.push_back(retMI); - mvec.push_back(BuildMI(V9::NOP, 0)); - - break; - } - - case 3: // stmt: Store(reg,reg) - case 4: // stmt: Store(reg,ptrreg) - SetOperandsForMemInstr(ChooseStoreInstruction( - subtreeRoot->leftChild()->getValue()->getType()), - mvec, subtreeRoot, target); - break; - - case 5: // stmt: BrUncond - { - BranchInst *BI = cast<BranchInst>(subtreeRoot->getInstruction()); - mvec.push_back(BuildMI(V9::BA, 1).addPCDisp(BI->getSuccessor(0))); - - // delay slot - mvec.push_back(BuildMI(V9::NOP, 0)); - break; - } - - case 206: // stmt: BrCond(setCCconst) - { // setCCconst => boolean was computed with `%b = setCC type reg1 const' - // If the constant is ZERO, we can use the branch-on-integer-register - // instructions and avoid the SUBcc instruction entirely. - // Otherwise this is just the same as case 5, so just fall through. - // - InstrTreeNode* constNode = subtreeRoot->leftChild()->rightChild(); - assert(constNode && - constNode->getNodeType() ==InstrTreeNode::NTConstNode); - Constant *constVal = cast<Constant>(constNode->getValue()); - bool isValidConst; - - if ((constVal->getType()->isInteger() - || isa<PointerType>(constVal->getType())) - && target.getInstrInfo().ConvertConstantToIntType(target, - constVal, constVal->getType(), isValidConst) == 0 - && isValidConst) - { - // That constant is a zero after all... - // Use the left child of setCC as the first argument! - // Mark the setCC node so that no code is generated for it. - InstructionNode* setCCNode = (InstructionNode*) - subtreeRoot->leftChild(); - assert(setCCNode->getOpLabel() == SetCCOp); - setCCNode->markFoldedIntoParent(); - - BranchInst* brInst=cast<BranchInst>(subtreeRoot->getInstruction()); - - M = BuildMI(ChooseBprInstruction(subtreeRoot), 2) - .addReg(setCCNode->leftChild()->getValue()) - .addPCDisp(brInst->getSuccessor(0)); - mvec.push_back(M); - - // delay slot - mvec.push_back(BuildMI(V9::NOP, 0)); - - // false branch - mvec.push_back(BuildMI(V9::BA, 1) - .addPCDisp(brInst->getSuccessor(1))); - - // delay slot - mvec.push_back(BuildMI(V9::NOP, 0)); - break; - } - // ELSE FALL THROUGH - } - - case 6: // stmt: BrCond(setCC) - { // bool => boolean was computed with SetCC. - // The branch to use depends on whether it is FP, signed, or unsigned. - // If it is an integer CC, we also need to find the unique - // TmpInstruction representing that CC. - // - BranchInst* brInst = cast<BranchInst>(subtreeRoot->getInstruction()); - const Type* setCCType; - unsigned Opcode = ChooseBccInstruction(subtreeRoot, setCCType); - Value* ccValue = GetTmpForCC(subtreeRoot->leftChild()->getValue(), - brInst->getParent()->getParent(), - setCCType, - MachineCodeForInstruction::get(brInst)); - M = BuildMI(Opcode, 2).addCCReg(ccValue) - .addPCDisp(brInst->getSuccessor(0)); - mvec.push_back(M); - - // delay slot - mvec.push_back(BuildMI(V9::NOP, 0)); - - // false branch - mvec.push_back(BuildMI(V9::BA, 1).addPCDisp(brInst->getSuccessor(1))); - - // delay slot - mvec.push_back(BuildMI(V9::NOP, 0)); - break; - } - - case 208: // stmt: BrCond(boolconst) - { - // boolconst => boolean is a constant; use BA to first or second label - Constant* constVal = - cast<Constant>(subtreeRoot->leftChild()->getValue()); - unsigned dest = cast<ConstantBool>(constVal)->getValue()? 0 : 1; - - M = BuildMI(V9::BA, 1).addPCDisp( - cast<BranchInst>(subtreeRoot->getInstruction())->getSuccessor(dest)); - mvec.push_back(M); - - // delay slot - mvec.push_back(BuildMI(V9::NOP, 0)); - break; - } - - case 8: // stmt: BrCond(boolreg) - { // boolreg => boolean is recorded in an integer register. - // Use branch-on-integer-register instruction. - // - BranchInst *BI = cast<BranchInst>(subtreeRoot->getInstruction()); - M = BuildMI(V9::BRNZ, 2).addReg(subtreeRoot->leftChild()->getValue()) - .addPCDisp(BI->getSuccessor(0)); - mvec.push_back(M); - - // delay slot - mvec.push_back(BuildMI(V9::NOP, 0)); - - // false branch - mvec.push_back(BuildMI(V9::BA, 1).addPCDisp(BI->getSuccessor(1))); - - // delay slot - mvec.push_back(BuildMI(V9::NOP, 0)); - break; - } - - case 9: // stmt: Switch(reg) - assert(0 && "*** SWITCH instruction is not implemented yet."); - break; - - case 10: // reg: VRegList(reg, reg) - assert(0 && "VRegList should never be the topmost non-chain rule"); - break; - - case 21: // bool: Not(bool,reg): Compute with a conditional-move-on-reg - { // First find the unary operand. It may be left or right, usually right. - Instruction* notI = subtreeRoot->getInstruction(); - Value* notArg = BinaryOperator::getNotArgument( - cast<BinaryOperator>(subtreeRoot->getInstruction())); - unsigned ZeroReg = target.getRegInfo().getZeroRegNum(); - - // Unconditionally set register to 0 - mvec.push_back(BuildMI(V9::SETHI, 2).addZImm(0).addRegDef(notI)); - - // Now conditionally move 1 into the register. - // Mark the register as a use (as well as a def) because the old - // value will be retained if the condition is false. - mvec.push_back(BuildMI(V9::MOVRZi, 3).addReg(notArg).addZImm(1) - .addReg(notI, MachineOperand::UseAndDef)); - - break; - } - - case 421: // reg: BNot(reg,reg): Compute as reg = reg XOR-NOT 0 - { // First find the unary operand. It may be left or right, usually right. - Value* notArg = BinaryOperator::getNotArgument( - cast<BinaryOperator>(subtreeRoot->getInstruction())); - unsigned ZeroReg = target.getRegInfo().getZeroRegNum(); - mvec.push_back(BuildMI(V9::XNORr, 3).addReg(notArg).addMReg(ZeroReg) - .addRegDef(subtreeRoot->getValue())); - break; - } - - case 322: // reg: Not(tobool, reg): - // Fold CAST-TO-BOOL with NOT by inverting the sense of cast-to-bool - foldCase = true; - // Just fall through! - - case 22: // reg: ToBoolTy(reg): - { - Instruction* castI = subtreeRoot->getInstruction(); - Value* opVal = subtreeRoot->leftChild()->getValue(); - assert(opVal->getType()->isIntegral() || - isa<PointerType>(opVal->getType())); - - // Unconditionally set register to 0 - mvec.push_back(BuildMI(V9::SETHI, 2).addZImm(0).addRegDef(castI)); - - // Now conditionally move 1 into the register. - // Mark the register as a use (as well as a def) because the old - // value will be retained if the condition is false. - MachineOpCode opCode = foldCase? V9::MOVRZi : V9::MOVRNZi; - mvec.push_back(BuildMI(opCode, 3).addReg(opVal).addZImm(1) - .addReg(castI, MachineOperand::UseAndDef)); - - break; - } - - case 23: // reg: ToUByteTy(reg) - case 24: // reg: ToSByteTy(reg) - case 25: // reg: ToUShortTy(reg) - case 26: // reg: ToShortTy(reg) - case 27: // reg: ToUIntTy(reg) - case 28: // reg: ToIntTy(reg) - case 29: // reg: ToULongTy(reg) - case 30: // reg: ToLongTy(reg) - { - //====================================================================== - // Rules for integer conversions: - // - //-------- - // From ISO 1998 C++ Standard, Sec. 4.7: - // - // 2. If the destination type is unsigned, the resulting value is - // the least unsigned integer congruent to the source integer - // (modulo 2n where n is the number of bits used to represent the - // unsigned type). [Note: In a two s complement representation, - // this conversion is conceptual and there is no change in the - // bit pattern (if there is no truncation). ] - // - // 3. If the destination type is signed, the value is unchanged if - // it can be represented in the destination type (and bitfield width); - // otherwise, the value is implementation-defined. - //-------- - // - // Since we assume 2s complement representations, this implies: - // - // -- If operand is smaller than destination, zero-extend or sign-extend - // according to the signedness of the *operand*: source decides: - // (1) If operand is signed, sign-extend it. - // If dest is unsigned, zero-ext the result! - // (2) If operand is unsigned, our current invariant is that - // it's high bits are correct, so zero-extension is not needed. - // - // -- If operand is same size as or larger than destination, - // zero-extend or sign-extend according to the signedness of - // the *destination*: destination decides: - // (1) If destination is signed, sign-extend (truncating if needed) - // This choice is implementation defined. We sign-extend the - // operand, which matches both Sun's cc and gcc3.2. - // (2) If destination is unsigned, zero-extend (truncating if needed) - //====================================================================== - - Instruction* destI = subtreeRoot->getInstruction(); - Function* currentFunc = destI->getParent()->getParent(); - MachineCodeForInstruction& mcfi=MachineCodeForInstruction::get(destI); - - Value* opVal = subtreeRoot->leftChild()->getValue(); - const Type* opType = opVal->getType(); - const Type* destType = destI->getType(); - unsigned opSize = target.getTargetData().getTypeSize(opType); - unsigned destSize = target.getTargetData().getTypeSize(destType); - - bool isIntegral = opType->isIntegral() || isa<PointerType>(opType); - - if (opType == Type::BoolTy || - opType == destType || - isIntegral && opSize == destSize && opSize == 8) { - // nothing to do in all these cases - forwardOperandNum = 0; // forward first operand to user - - } else if (opType->isFloatingPoint()) { - - CreateCodeToConvertFloatToInt(target, opVal, destI, mvec, mcfi); - if (destI->getType()->isUnsigned() && destI->getType() !=Type::UIntTy) - maskUnsignedResult = true; // not handled by fp->int code - - } else if (isIntegral) { - - bool opSigned = opType->isSigned(); - bool destSigned = destType->isSigned(); - unsigned extSourceInBits = 8 * std::min<unsigned>(opSize, destSize); - - assert(! (opSize == destSize && opSigned == destSigned) && - "How can different int types have same size and signedness?"); - - bool signExtend = (opSize < destSize && opSigned || - opSize >= destSize && destSigned); - - bool signAndZeroExtend = (opSize < destSize && destSize < 8u && - opSigned && !destSigned); - assert(!signAndZeroExtend || signExtend); - - bool zeroExtendOnly = opSize >= destSize && !destSigned; - assert(!zeroExtendOnly || !signExtend); - - if (signExtend) { - Value* signExtDest = (signAndZeroExtend - ? new TmpInstruction(mcfi, destType, opVal) - : destI); - - target.getInstrInfo().CreateSignExtensionInstructions - (target, currentFunc,opVal,signExtDest,extSourceInBits,mvec,mcfi); - - if (signAndZeroExtend) - target.getInstrInfo().CreateZeroExtensionInstructions - (target, currentFunc, signExtDest, destI, 8*destSize, mvec, mcfi); - } - else if (zeroExtendOnly) { - target.getInstrInfo().CreateZeroExtensionInstructions - (target, currentFunc, opVal, destI, extSourceInBits, mvec, mcfi); - } - else - forwardOperandNum = 0; // forward first operand to user - - } else - assert(0 && "Unrecognized operand type for convert-to-integer"); - - break; - } - - case 31: // reg: ToFloatTy(reg): - case 32: // reg: ToDoubleTy(reg): - case 232: // reg: ToDoubleTy(Constant): - - // If this instruction has a parent (a user) in the tree - // and the user is translated as an FsMULd instruction, - // then the cast is unnecessary. So check that first. - // In the future, we'll want to do the same for the FdMULq instruction, - // so do the check here instead of only for ToFloatTy(reg). - // - if (subtreeRoot->parent() != NULL) { - const MachineCodeForInstruction& mcfi = - MachineCodeForInstruction::get( - cast<InstructionNode>(subtreeRoot->parent())->getInstruction()); - if (mcfi.size() == 0 || mcfi.front()->getOpcode() == V9::FSMULD) - forwardOperandNum = 0; // forward first operand to user - } - - if (forwardOperandNum != 0) { // we do need the cast - Value* leftVal = subtreeRoot->leftChild()->getValue(); - const Type* opType = leftVal->getType(); - MachineOpCode opCode=ChooseConvertToFloatInstr(target, - subtreeRoot->getOpLabel(), opType); - if (opCode == V9::NOP) { // no conversion needed - forwardOperandNum = 0; // forward first operand to user - } else { - // If the source operand is a non-FP type it must be - // first copied from int to float register via memory! - Instruction *dest = subtreeRoot->getInstruction(); - Value* srcForCast; - int n = 0; - if (! opType->isFloatingPoint()) { - // Create a temporary to represent the FP register - // into which the integer will be copied via memory. - // The type of this temporary will determine the FP - // register used: single-prec for a 32-bit int or smaller, - // double-prec for a 64-bit int. - // - uint64_t srcSize = - target.getTargetData().getTypeSize(leftVal->getType()); - Type* tmpTypeToUse = - (srcSize <= 4)? Type::FloatTy : Type::DoubleTy; - MachineCodeForInstruction &destMCFI = - MachineCodeForInstruction::get(dest); - srcForCast = new TmpInstruction(destMCFI, tmpTypeToUse, dest); - - target.getInstrInfo().CreateCodeToCopyIntToFloat(target, - dest->getParent()->getParent(), - leftVal, cast<Instruction>(srcForCast), - mvec, destMCFI); - } else - srcForCast = leftVal; - - M = BuildMI(opCode, 2).addReg(srcForCast).addRegDef(dest); - mvec.push_back(M); - } - } - break; - - case 19: // reg: ToArrayTy(reg): - case 20: // reg: ToPointerTy(reg): - forwardOperandNum = 0; // forward first operand to user - break; - - case 233: // reg: Add(reg, Constant) - maskUnsignedResult = true; - M = CreateAddConstInstruction(subtreeRoot); - if (M != NULL) { - mvec.push_back(M); - break; - } - // ELSE FALL THROUGH - - case 33: // reg: Add(reg, reg) - maskUnsignedResult = true; - Add3OperandInstr(ChooseAddInstruction(subtreeRoot), subtreeRoot, mvec); - break; - - case 234: // reg: Sub(reg, Constant) - maskUnsignedResult = true; - M = CreateSubConstInstruction(subtreeRoot); - if (M != NULL) { - mvec.push_back(M); - break; - } - // ELSE FALL THROUGH - - case 34: // reg: Sub(reg, reg) - maskUnsignedResult = true; - Add3OperandInstr(ChooseSubInstructionByType( - subtreeRoot->getInstruction()->getType()), - subtreeRoot, mvec); - break; - - case 135: // reg: Mul(todouble, todouble) - checkCast = true; - // FALL THROUGH - - case 35: // reg: Mul(reg, reg) - { - maskUnsignedResult = true; - MachineOpCode forceOp = ((checkCast && BothFloatToDouble(subtreeRoot)) - ? (MachineOpCode)V9::FSMULD - : INVALID_MACHINE_OPCODE); - Instruction* mulInstr = subtreeRoot->getInstruction(); - CreateMulInstruction(target, mulInstr->getParent()->getParent(), - subtreeRoot->leftChild()->getValue(), - subtreeRoot->rightChild()->getValue(), - mulInstr, mvec, - MachineCodeForInstruction::get(mulInstr),forceOp); - break; - } - case 335: // reg: Mul(todouble, todoubleConst) - checkCast = true; - // FALL THROUGH - - case 235: // reg: Mul(reg, Constant) - { - maskUnsignedResult = true; - MachineOpCode forceOp = ((checkCast && BothFloatToDouble(subtreeRoot)) - ? (MachineOpCode)V9::FSMULD - : INVALID_MACHINE_OPCODE); - Instruction* mulInstr = subtreeRoot->getInstruction(); - CreateMulInstruction(target, mulInstr->getParent()->getParent(), - subtreeRoot->leftChild()->getValue(), - subtreeRoot->rightChild()->getValue(), - mulInstr, mvec, - MachineCodeForInstruction::get(mulInstr), - forceOp); - break; - } - case 236: // reg: Div(reg, Constant) - maskUnsignedResult = true; - L = mvec.size(); - CreateDivConstInstruction(target, subtreeRoot, mvec); - if (mvec.size() > L) - break; - // ELSE FALL THROUGH - - case 36: // reg: Div(reg, reg) - { - maskUnsignedResult = true; - - // If either operand of divide is smaller than 64 bits, we have - // to make sure the unused top bits are correct because they affect - // the result. These bits are already correct for unsigned values. - // They may be incorrect for signed values, so sign extend to fill in. - Instruction* divI = subtreeRoot->getInstruction(); - Value* divOp1 = subtreeRoot->leftChild()->getValue(); - Value* divOp2 = subtreeRoot->rightChild()->getValue(); - Value* divOp1ToUse = divOp1; - Value* divOp2ToUse = divOp2; - if (divI->getType()->isSigned()) { - unsigned opSize=target.getTargetData().getTypeSize(divI->getType()); - if (opSize < 8) { - MachineCodeForInstruction& mcfi=MachineCodeForInstruction::get(divI); - divOp1ToUse = new TmpInstruction(mcfi, divOp1); - divOp2ToUse = new TmpInstruction(mcfi, divOp2); - target.getInstrInfo(). - CreateSignExtensionInstructions(target, - divI->getParent()->getParent(), - divOp1, divOp1ToUse, - 8*opSize, mvec, mcfi); - target.getInstrInfo(). - CreateSignExtensionInstructions(target, - divI->getParent()->getParent(), - divOp2, divOp2ToUse, - 8*opSize, mvec, mcfi); - } - } - - mvec.push_back(BuildMI(ChooseDivInstruction(target, subtreeRoot), 3) - .addReg(divOp1ToUse) - .addReg(divOp2ToUse) - .addRegDef(divI)); - - break; - } - - case 37: // reg: Rem(reg, reg) - case 237: // reg: Rem(reg, Constant) - { - maskUnsignedResult = true; - - Instruction* remI = subtreeRoot->getInstruction(); - Value* divOp1 = subtreeRoot->leftChild()->getValue(); - Value* divOp2 = subtreeRoot->rightChild()->getValue(); - - MachineCodeForInstruction& mcfi = MachineCodeForInstruction::get(remI); - - // If second operand of divide is smaller than 64 bits, we have - // to make sure the unused top bits are correct because they affect - // the result. These bits are already correct for unsigned values. - // They may be incorrect for signed values, so sign extend to fill in. - // - Value* divOpToUse = divOp2; - if (divOp2->getType()->isSigned()) { - unsigned opSize=target.getTargetData().getTypeSize(divOp2->getType()); - if (opSize < 8) { - divOpToUse = new TmpInstruction(mcfi, divOp2); - target.getInstrInfo(). - CreateSignExtensionInstructions(target, - remI->getParent()->getParent(), - divOp2, divOpToUse, - 8*opSize, mvec, mcfi); - } - } - - // Now compute: result = rem V1, V2 as: - // result = V1 - (V1 / signExtend(V2)) * signExtend(V2) - // - TmpInstruction* quot = new TmpInstruction(mcfi, divOp1, divOpToUse); - TmpInstruction* prod = new TmpInstruction(mcfi, quot, divOpToUse); - - mvec.push_back(BuildMI(ChooseDivInstruction(target, subtreeRoot), 3) - .addReg(divOp1).addReg(divOpToUse).addRegDef(quot)); - - mvec.push_back(BuildMI(ChooseMulInstructionByType(remI->getType()), 3) - .addReg(quot).addReg(divOpToUse).addRegDef(prod)); - - mvec.push_back(BuildMI(ChooseSubInstructionByType(remI->getType()), 3) - .addReg(divOp1).addReg(prod).addRegDef(remI)); - - break; - } - - case 38: // bool: And(bool, bool) - case 138: // bool: And(bool, not) - case 238: // bool: And(bool, boolconst) - case 338: // reg : BAnd(reg, reg) - case 538: // reg : BAnd(reg, Constant) - Add3OperandInstr(V9::ANDr, subtreeRoot, mvec); - break; - - case 438: // bool: BAnd(bool, bnot) - { // Use the argument of NOT as the second argument! - // Mark the NOT node so that no code is generated for it. - // If the type is boolean, set 1 or 0 in the result register. - InstructionNode* notNode = (InstructionNode*) subtreeRoot->rightChild(); - Value* notArg = BinaryOperator::getNotArgument( - cast<BinaryOperator>(notNode->getInstruction())); - notNode->markFoldedIntoParent(); - Value *lhs = subtreeRoot->leftChild()->getValue(); - Value *dest = subtreeRoot->getValue(); - mvec.push_back(BuildMI(V9::ANDNr, 3).addReg(lhs).addReg(notArg) - .addReg(dest, MachineOperand::Def)); - - if (notArg->getType() == Type::BoolTy) { - // set 1 in result register if result of above is non-zero - mvec.push_back(BuildMI(V9::MOVRNZi, 3).addReg(dest).addZImm(1) - .addReg(dest, MachineOperand::UseAndDef)); - } - - break; - } - - case 39: // bool: Or(bool, bool) - case 139: // bool: Or(bool, not) - case 239: // bool: Or(bool, boolconst) - case 339: // reg : BOr(reg, reg) - case 539: // reg : BOr(reg, Constant) - Add3OperandInstr(V9::ORr, subtreeRoot, mvec); - break; - - case 439: // bool: BOr(bool, bnot) - { // Use the argument of NOT as the second argument! - // Mark the NOT node so that no code is generated for it. - // If the type is boolean, set 1 or 0 in the result register. - InstructionNode* notNode = (InstructionNode*) subtreeRoot->rightChild(); - Value* notArg = BinaryOperator::getNotArgument( - cast<BinaryOperator>(notNode->getInstruction())); - notNode->markFoldedIntoParent(); - Value *lhs = subtreeRoot->leftChild()->getValue(); - Value *dest = subtreeRoot->getValue(); - - mvec.push_back(BuildMI(V9::ORNr, 3).addReg(lhs).addReg(notArg) - .addReg(dest, MachineOperand::Def)); - - if (notArg->getType() == Type::BoolTy) { - // set 1 in result register if result of above is non-zero - mvec.push_back(BuildMI(V9::MOVRNZi, 3).addReg(dest).addZImm(1) - .addReg(dest, MachineOperand::UseAndDef)); - } - - break; - } - - case 40: // bool: Xor(bool, bool) - case 140: // bool: Xor(bool, not) - case 240: // bool: Xor(bool, boolconst) - case 340: // reg : BXor(reg, reg) - case 540: // reg : BXor(reg, Constant) - Add3OperandInstr(V9::XORr, subtreeRoot, mvec); - break; - - case 440: // bool: BXor(bool, bnot) - { // Use the argument of NOT as the second argument! - // Mark the NOT node so that no code is generated for it. - // If the type is boolean, set 1 or 0 in the result register. - InstructionNode* notNode = (InstructionNode*) subtreeRoot->rightChild(); - Value* notArg = BinaryOperator::getNotArgument( - cast<BinaryOperator>(notNode->getInstruction())); - notNode->markFoldedIntoParent(); - Value *lhs = subtreeRoot->leftChild()->getValue(); - Value *dest = subtreeRoot->getValue(); - mvec.push_back(BuildMI(V9::XNORr, 3).addReg(lhs).addReg(notArg) - .addReg(dest, MachineOperand::Def)); - - if (notArg->getType() == Type::BoolTy) { - // set 1 in result register if result of above is non-zero - mvec.push_back(BuildMI(V9::MOVRNZi, 3).addReg(dest).addZImm(1) - .addReg(dest, MachineOperand::UseAndDef)); - } - break; - } - - case 41: // setCCconst: SetCC(reg, Constant) - { // Comparison is with a constant: - // - // If the bool result must be computed into a register (see below), - // and the constant is int ZERO, we can use the MOVR[op] instructions - // and avoid the SUBcc instruction entirely. - // Otherwise this is just the same as case 42, so just fall through. - // - // The result of the SetCC must be computed and stored in a register if - // it is used outside the current basic block (so it must be computed - // as a boolreg) or it is used by anything other than a branch. - // We will use a conditional move to do this. - // - Instruction* setCCInstr = subtreeRoot->getInstruction(); - bool computeBoolVal = (subtreeRoot->parent() == NULL || - ! AllUsesAreBranches(setCCInstr)); - - if (computeBoolVal) { - InstrTreeNode* constNode = subtreeRoot->rightChild(); - assert(constNode && - constNode->getNodeType() ==InstrTreeNode::NTConstNode); - Constant *constVal = cast<Constant>(constNode->getValue()); - bool isValidConst; - - if ((constVal->getType()->isInteger() - || isa<PointerType>(constVal->getType())) - && target.getInstrInfo().ConvertConstantToIntType(target, - constVal, constVal->getType(), isValidConst) == 0 - && isValidConst) - { - // That constant is an integer zero after all... - // Use a MOVR[op] to compute the boolean result - // Unconditionally set register to 0 - mvec.push_back(BuildMI(V9::SETHI, 2).addZImm(0) - .addRegDef(setCCInstr)); - - // Now conditionally move 1 into the register. - // Mark the register as a use (as well as a def) because the old - // value will be retained if the condition is false. - MachineOpCode movOpCode = ChooseMovpregiForSetCC(subtreeRoot); - mvec.push_back(BuildMI(movOpCode, 3) - .addReg(subtreeRoot->leftChild()->getValue()) - .addZImm(1) - .addReg(setCCInstr, MachineOperand::UseAndDef)); - - break; - } - } - // ELSE FALL THROUGH - } - - case 42: // bool: SetCC(reg, reg): - { - // This generates a SUBCC instruction, putting the difference in a - // result reg. if needed, and/or setting a condition code if needed. - // - Instruction* setCCInstr = subtreeRoot->getInstruction(); - Value* leftVal = subtreeRoot->leftChild()->getValue(); - Value* rightVal = subtreeRoot->rightChild()->getValue(); - const Type* opType = leftVal->getType(); - bool isFPCompare = opType->isFloatingPoint(); - - // If the boolean result of the SetCC is used outside the current basic - // block (so it must be computed as a boolreg) or is used by anything - // other than a branch, the boolean must be computed and stored - // in a result register. We will use a conditional move to do this. - // - bool computeBoolVal = (subtreeRoot->parent() == NULL || - ! AllUsesAreBranches(setCCInstr)); - - // A TmpInstruction is created to represent the CC "result". - // Unlike other instances of TmpInstruction, this one is used - // by machine code of multiple LLVM instructions, viz., - // the SetCC and the branch. Make sure to get the same one! - // Note that we do this even for FP CC registers even though they - // are explicit operands, because the type of the operand - // needs to be a floating point condition code, not an integer - // condition code. Think of this as casting the bool result to - // a FP condition code register. - // Later, we mark the 4th operand as being a CC register, and as a def. - // - TmpInstruction* tmpForCC = GetTmpForCC(setCCInstr, - setCCInstr->getParent()->getParent(), - leftVal->getType(), - MachineCodeForInstruction::get(setCCInstr)); - - // If the operands are signed values smaller than 4 bytes, then they - // must be sign-extended in order to do a valid 32-bit comparison - // and get the right result in the 32-bit CC register (%icc). - // - Value* leftOpToUse = leftVal; - Value* rightOpToUse = rightVal; - if (opType->isIntegral() && opType->isSigned()) { - unsigned opSize = target.getTargetData().getTypeSize(opType); - if (opSize < 4) { - MachineCodeForInstruction& mcfi = - MachineCodeForInstruction::get(setCCInstr); - - // create temporary virtual regs. to hold the sign-extensions - leftOpToUse = new TmpInstruction(mcfi, leftVal); - rightOpToUse = new TmpInstruction(mcfi, rightVal); - - // sign-extend each operand and put the result in the temporary reg. - target.getInstrInfo().CreateSignExtensionInstructions - (target, setCCInstr->getParent()->getParent(), - leftVal, leftOpToUse, 8*opSize, mvec, mcfi); - target.getInstrInfo().CreateSignExtensionInstructions - (target, setCCInstr->getParent()->getParent(), - rightVal, rightOpToUse, 8*opSize, mvec, mcfi); - } - } - - if (! isFPCompare) { - // Integer condition: set CC and discard result. - mvec.push_back(BuildMI(V9::SUBccr, 4) - .addReg(leftOpToUse) - .addReg(rightOpToUse) - .addMReg(target.getRegInfo() - .getZeroRegNum(), MachineOperand::Def) - .addCCReg(tmpForCC, MachineOperand::Def)); - } else { - // FP condition: dest of FCMP should be some FCCn register - mvec.push_back(BuildMI(ChooseFcmpInstruction(subtreeRoot), 3) - .addCCReg(tmpForCC, MachineOperand::Def) - .addReg(leftOpToUse) - .addReg(rightOpToUse)); - } - - if (computeBoolVal) { - MachineOpCode movOpCode = (isFPCompare - ? ChooseMovFpcciInstruction(subtreeRoot) - : ChooseMovpcciForSetCC(subtreeRoot)); - - // Unconditionally set register to 0 - M = BuildMI(V9::SETHI, 2).addZImm(0).addRegDef(setCCInstr); - mvec.push_back(M); - - // Now conditionally move 1 into the register. - // Mark the register as a use (as well as a def) because the old - // value will be retained if the condition is false. - M = (BuildMI(movOpCode, 3).addCCReg(tmpForCC).addZImm(1) - .addReg(setCCInstr, MachineOperand::UseAndDef)); - mvec.push_back(M); - } - break; - } - - case 51: // reg: Load(reg) - case 52: // reg: Load(ptrreg) - SetOperandsForMemInstr(ChooseLoadInstruction( - subtreeRoot->getValue()->getType()), - mvec, subtreeRoot, target); - break; - - case 55: // reg: GetElemPtr(reg) - case 56: // reg: GetElemPtrIdx(reg,reg) - // If the GetElemPtr was folded into the user (parent), it will be - // caught above. For other cases, we have to compute the address. - SetOperandsForMemInstr(V9::ADDr, mvec, subtreeRoot, target); - break; - - case 57: // reg: Alloca: Implement as 1 instruction: - { // add %fp, offsetFromFP -> result - AllocationInst* instr = - cast<AllocationInst>(subtreeRoot->getInstruction()); - unsigned tsize = - target.getTargetData().getTypeSize(instr->getAllocatedType()); - assert(tsize != 0); - CreateCodeForFixedSizeAlloca(target, instr, tsize, 1, mvec); - break; - } - - case 58: // reg: Alloca(reg): Implement as 3 instructions: - // mul num, typeSz -> tmp - // sub %sp, tmp -> %sp - { // add %sp, frameSizeBelowDynamicArea -> result - AllocationInst* instr = - cast<AllocationInst>(subtreeRoot->getInstruction()); - const Type* eltType = instr->getAllocatedType(); - - // If #elements is constant, use simpler code for fixed-size allocas - int tsize = (int) target.getTargetData().getTypeSize(eltType); - Value* numElementsVal = NULL; - bool isArray = instr->isArrayAllocation(); - - if (!isArray || isa<Constant>(numElementsVal = instr->getArraySize())) { - // total size is constant: generate code for fixed-size alloca - unsigned numElements = isArray? - cast<ConstantUInt>(numElementsVal)->getValue() : 1; - CreateCodeForFixedSizeAlloca(target, instr, tsize, - numElements, mvec); - } else { - // total size is not constant. - CreateCodeForVariableSizeAlloca(target, instr, tsize, - numElementsVal, mvec); - } - break; - } - - case 61: // reg: Call - { // Generate a direct (CALL) or indirect (JMPL) call. - // Mark the return-address register, the indirection - // register (for indirect calls), the operands of the Call, - // and the return value (if any) as implicit operands - // of the machine instruction. - // - // If this is a varargs function, floating point arguments - // have to passed in integer registers so insert - // copy-float-to-int instructions for each float operand. - // - CallInst *callInstr = cast<CallInst>(subtreeRoot->getInstruction()); - Value *callee = callInstr->getCalledValue(); - Function* calledFunc = dyn_cast<Function>(callee); - - // Check if this is an intrinsic function that needs a special code - // sequence (e.g., va_start). Indirect calls cannot be special. - // - bool specialIntrinsic = false; - Intrinsic::ID iid; - if (calledFunc && (iid=(Intrinsic::ID)calledFunc->getIntrinsicID())) - specialIntrinsic = CodeGenIntrinsic(iid, *callInstr, target, mvec); - - // If not, generate the normal call sequence for the function. - // This can also handle any intrinsics that are just function calls. - // - if (! specialIntrinsic) { - Function* currentFunc = callInstr->getParent()->getParent(); - MachineFunction& MF = MachineFunction::get(currentFunc); - MachineCodeForInstruction& mcfi = - MachineCodeForInstruction::get(callInstr); - const SparcRegInfo& regInfo = - (SparcRegInfo&) target.getRegInfo(); - const TargetFrameInfo& frameInfo = target.getFrameInfo(); - - // Create hidden virtual register for return address with type void* - TmpInstruction* retAddrReg = - new TmpInstruction(mcfi, PointerType::get(Type::VoidTy), callInstr); - - // Generate the machine instruction and its operands. - // Use CALL for direct function calls; this optimistically assumes - // the PC-relative address fits in the CALL address field (22 bits). - // Use JMPL for indirect calls. - // This will be added to mvec later, after operand copies. - // - MachineInstr* callMI; - if (calledFunc) // direct function call - callMI = BuildMI(V9::CALL, 1).addPCDisp(callee); - else // indirect function call - callMI = (BuildMI(V9::JMPLCALLi,3).addReg(callee) - .addSImm((int64_t)0).addRegDef(retAddrReg)); - - const FunctionType* funcType = - cast<FunctionType>(cast<PointerType>(callee->getType()) - ->getElementType()); - bool isVarArgs = funcType->isVarArg(); - bool noPrototype = isVarArgs && funcType->getNumParams() == 0; - - // Use a descriptor to pass information about call arguments - // to the register allocator. This descriptor will be "owned" - // and freed automatically when the MachineCodeForInstruction - // object for the callInstr goes away. - CallArgsDescriptor* argDesc = - new CallArgsDescriptor(callInstr, retAddrReg,isVarArgs,noPrototype); - assert(callInstr->getOperand(0) == callee - && "This is assumed in the loop below!"); - - // Insert sign-extension instructions for small signed values, - // if this is an unknown function (i.e., called via a funcptr) - // or an external one (i.e., which may not be compiled by llc). - // - if (calledFunc == NULL || calledFunc->isExternal()) { - for (unsigned i=1, N=callInstr->getNumOperands(); i < N; ++i) { - Value* argVal = callInstr->getOperand(i); - const Type* argType = argVal->getType(); - if (argType->isIntegral() && argType->isSigned()) { - unsigned argSize = target.getTargetData().getTypeSize(argType); - if (argSize <= 4) { - // create a temporary virtual reg. to hold the sign-extension - TmpInstruction* argExtend = new TmpInstruction(mcfi, argVal); - - // sign-extend argVal and put the result in the temporary reg. - target.getInstrInfo().CreateSignExtensionInstructions - (target, currentFunc, argVal, argExtend, - 8*argSize, mvec, mcfi); - - // replace argVal with argExtend in CallArgsDescriptor - argDesc->getArgInfo(i-1).replaceArgVal(argExtend); - } - } - } - } - - // Insert copy instructions to get all the arguments into - // all the places that they need to be. - // - for (unsigned i=1, N=callInstr->getNumOperands(); i < N; ++i) { - int argNo = i-1; - CallArgInfo& argInfo = argDesc->getArgInfo(argNo); - Value* argVal = argInfo.getArgVal(); // don't use callInstr arg here - const Type* argType = argVal->getType(); - unsigned regType = regInfo.getRegTypeForDataType(argType); - unsigned argSize = target.getTargetData().getTypeSize(argType); - int regNumForArg = TargetRegInfo::getInvalidRegNum(); - unsigned regClassIDOfArgReg; - - // Check for FP arguments to varargs functions. - // Any such argument in the first $K$ args must be passed in an - // integer register. If there is no prototype, it must also - // be passed as an FP register. - // K = #integer argument registers. - bool isFPArg = argVal->getType()->isFloatingPoint(); - if (isVarArgs && isFPArg) { - - if (noPrototype) { - // It is a function with no prototype: pass value - // as an FP value as well as a varargs value. The FP value - // may go in a register or on the stack. The copy instruction - // to the outgoing reg/stack is created by the normal argument - // handling code since this is the "normal" passing mode. - // - regNumForArg = regInfo.regNumForFPArg(regType, - false, false, argNo, - regClassIDOfArgReg); - if (regNumForArg == regInfo.getInvalidRegNum()) - argInfo.setUseStackSlot(); - else - argInfo.setUseFPArgReg(); - } - - // If this arg. is in the first $K$ regs, add special copy- - // float-to-int instructions to pass the value as an int. - // To check if it is in the first $K$, get the register - // number for the arg #i. These copy instructions are - // generated here because they are extra cases and not needed - // for the normal argument handling (some code reuse is - // possible though -- later). - // - int copyRegNum = regInfo.regNumForIntArg(false, false, argNo, - regClassIDOfArgReg); - if (copyRegNum != regInfo.getInvalidRegNum()) { - // Create a virtual register to represent copyReg. Mark - // this vreg as being an implicit operand of the call MI - const Type* loadTy = (argType == Type::FloatTy - ? Type::IntTy : Type::LongTy); - TmpInstruction* argVReg = new TmpInstruction(mcfi, loadTy, - argVal, NULL, - "argRegCopy"); - callMI->addImplicitRef(argVReg); - - // Get a temp stack location to use to copy - // float-to-int via the stack. - // - // FIXME: For now, we allocate permanent space because - // the stack frame manager does not allow locals to be - // allocated (e.g., for alloca) after a temp is - // allocated! - // - // int tmpOffset = MF.getInfo()->pushTempValue(argSize); - int tmpOffset = MF.getInfo()->allocateLocalVar(argVReg); - - // Generate the store from FP reg to stack - unsigned StoreOpcode = ChooseStoreInstruction(argType); - M = BuildMI(convertOpcodeFromRegToImm(StoreOpcode), 3) - .addReg(argVal).addMReg(regInfo.getFramePointer()) - .addSImm(tmpOffset); - mvec.push_back(M); - - // Generate the load from stack to int arg reg - unsigned LoadOpcode = ChooseLoadInstruction(loadTy); - M = BuildMI(convertOpcodeFromRegToImm(LoadOpcode), 3) - .addMReg(regInfo.getFramePointer()).addSImm(tmpOffset) - .addReg(argVReg, MachineOperand::Def); - - // Mark operand with register it should be assigned - // both for copy and for the callMI - M->SetRegForOperand(M->getNumOperands()-1, copyRegNum); - callMI->SetRegForImplicitRef(callMI->getNumImplicitRefs()-1, - copyRegNum); - mvec.push_back(M); - - // Add info about the argument to the CallArgsDescriptor - argInfo.setUseIntArgReg(); - argInfo.setArgCopy(copyRegNum); - } else { - // Cannot fit in first $K$ regs so pass arg on stack - argInfo.setUseStackSlot(); - } - } else if (isFPArg) { - // Get the outgoing arg reg to see if there is one. - regNumForArg = regInfo.regNumForFPArg(regType, false, false, - argNo, regClassIDOfArgReg); - if (regNumForArg == regInfo.getInvalidRegNum()) - argInfo.setUseStackSlot(); - else { - argInfo.setUseFPArgReg(); - regNumForArg =regInfo.getUnifiedRegNum(regClassIDOfArgReg, - regNumForArg); - } - } else { - // Get the outgoing arg reg to see if there is one. - regNumForArg = regInfo.regNumForIntArg(false,false, - argNo, regClassIDOfArgReg); - if (regNumForArg == regInfo.getInvalidRegNum()) - argInfo.setUseStackSlot(); - else { - argInfo.setUseIntArgReg(); - regNumForArg =regInfo.getUnifiedRegNum(regClassIDOfArgReg, - regNumForArg); - } - } - - // - // Now insert copy instructions to stack slot or arg. register - // - if (argInfo.usesStackSlot()) { - // Get the stack offset for this argument slot. - // FP args on stack are right justified so adjust offset! - // int arguments are also right justified but they are - // always loaded as a full double-word so the offset does - // not need to be adjusted. - int argOffset = frameInfo.getOutgoingArgOffset(MF, argNo); - if (argType->isFloatingPoint()) { - unsigned slotSize = frameInfo.getSizeOfEachArgOnStack(); - assert(argSize <= slotSize && "Insufficient slot size!"); - argOffset += slotSize - argSize; - } - - // Now generate instruction to copy argument to stack - MachineOpCode storeOpCode = - (argType->isFloatingPoint() - ? ((argSize == 4)? V9::STFi : V9::STDFi) : V9::STXi); - - M = BuildMI(storeOpCode, 3).addReg(argVal) - .addMReg(regInfo.getStackPointer()).addSImm(argOffset); - mvec.push_back(M); - } - else if (regNumForArg != regInfo.getInvalidRegNum()) { - - // Create a virtual register to represent the arg reg. Mark - // this vreg as being an implicit operand of the call MI. - TmpInstruction* argVReg = - new TmpInstruction(mcfi, argVal, NULL, "argReg"); - - callMI->addImplicitRef(argVReg); - - // Generate the reg-to-reg copy into the outgoing arg reg. - // -- For FP values, create a FMOVS or FMOVD instruction - // -- For non-FP values, create an add-with-0 instruction - if (argType->isFloatingPoint()) - M=(BuildMI(argType==Type::FloatTy? V9::FMOVS :V9::FMOVD,2) - .addReg(argVal).addReg(argVReg, MachineOperand::Def)); - else - M = (BuildMI(ChooseAddInstructionByType(argType), 3) - .addReg(argVal).addSImm((int64_t) 0) - .addReg(argVReg, MachineOperand::Def)); - - // Mark the operand with the register it should be assigned - M->SetRegForOperand(M->getNumOperands()-1, regNumForArg); - callMI->SetRegForImplicitRef(callMI->getNumImplicitRefs()-1, - regNumForArg); - - mvec.push_back(M); - } - else - assert(argInfo.getArgCopy() != regInfo.getInvalidRegNum() && - "Arg. not in stack slot, primary or secondary register?"); - } - - // add call instruction and delay slot before copying return value - mvec.push_back(callMI); - mvec.push_back(BuildMI(V9::NOP, 0)); - - // Add the return value as an implicit ref. The call operands - // were added above. Also, add code to copy out the return value. - // This is always register-to-register for int or FP return values. - // - if (callInstr->getType() != Type::VoidTy) { - // Get the return value reg. - const Type* retType = callInstr->getType(); - - int regNum = (retType->isFloatingPoint() - ? (unsigned) SparcFloatRegClass::f0 - : (unsigned) SparcIntRegClass::o0); - unsigned regClassID = regInfo.getRegClassIDOfType(retType); - regNum = regInfo.getUnifiedRegNum(regClassID, regNum); - - // Create a virtual register to represent it and mark - // this vreg as being an implicit operand of the call MI - TmpInstruction* retVReg = - new TmpInstruction(mcfi, callInstr, NULL, "argReg"); - - callMI->addImplicitRef(retVReg, /*isDef*/ true); - - // Generate the reg-to-reg copy from the return value reg. - // -- For FP values, create a FMOVS or FMOVD instruction - // -- For non-FP values, create an add-with-0 instruction - if (retType->isFloatingPoint()) - M = (BuildMI(retType==Type::FloatTy? V9::FMOVS : V9::FMOVD, 2) - .addReg(retVReg).addReg(callInstr, MachineOperand::Def)); - else - M = (BuildMI(ChooseAddInstructionByType(retType), 3) - .addReg(retVReg).addSImm((int64_t) 0) - .addReg(callInstr, MachineOperand::Def)); - - // Mark the operand with the register it should be assigned - // Also mark the implicit ref of the call defining this operand - M->SetRegForOperand(0, regNum); - callMI->SetRegForImplicitRef(callMI->getNumImplicitRefs()-1,regNum); - - mvec.push_back(M); - } - - // For the CALL instruction, the ret. addr. reg. is also implicit - if (isa<Function>(callee)) - callMI->addImplicitRef(retAddrReg, /*isDef*/ true); - - MF.getInfo()->popAllTempValues(); // free temps used for this inst - } - - break; - } - - case 62: // reg: Shl(reg, reg) - { - Value* argVal1 = subtreeRoot->leftChild()->getValue(); - Value* argVal2 = subtreeRoot->rightChild()->getValue(); - Instruction* shlInstr = subtreeRoot->getInstruction(); - - const Type* opType = argVal1->getType(); - assert((opType->isInteger() || isa<PointerType>(opType)) && - "Shl unsupported for other types"); - unsigned opSize = target.getTargetData().getTypeSize(opType); - - CreateShiftInstructions(target, shlInstr->getParent()->getParent(), - (opSize > 4)? V9::SLLXr6:V9::SLLr5, - argVal1, argVal2, 0, shlInstr, mvec, - MachineCodeForInstruction::get(shlInstr)); - break; - } - - case 63: // reg: Shr(reg, reg) - { - const Type* opType = subtreeRoot->leftChild()->getValue()->getType(); - assert((opType->isInteger() || isa<PointerType>(opType)) && - "Shr unsupported for other types"); - unsigned opSize = target.getTargetData().getTypeSize(opType); - Add3OperandInstr(opType->isSigned() - ? (opSize > 4? V9::SRAXr6 : V9::SRAr5) - : (opSize > 4? V9::SRLXr6 : V9::SRLr5), - subtreeRoot, mvec); - break; - } - - case 64: // reg: Phi(reg,reg) - break; // don't forward the value - - case 65: // reg: VANext(reg): the va_next(va_list, type) instruction - { // Increment the va_list pointer register according to the type. - // All LLVM argument types are <= 64 bits, so use one doubleword. - Instruction* vaNextI = subtreeRoot->getInstruction(); - assert(target.getTargetData().getTypeSize(vaNextI->getType()) <= 8 && - "We assumed that all LLVM parameter types <= 8 bytes!"); - int argSize = target.getFrameInfo().getSizeOfEachArgOnStack(); - mvec.push_back(BuildMI(V9::ADDi, 3).addReg(vaNextI->getOperand(0)). - addSImm(argSize).addRegDef(vaNextI)); - break; - } - - case 66: // reg: VAArg (reg): the va_arg instruction - { // Load argument from stack using current va_list pointer value. - // Use 64-bit load for all non-FP args, and LDDF or double for FP. - Instruction* vaArgI = subtreeRoot->getInstruction(); - MachineOpCode loadOp = (vaArgI->getType()->isFloatingPoint() - ? (vaArgI->getType() == Type::FloatTy - ? V9::LDFi : V9::LDDFi) - : V9::LDXi); - mvec.push_back(BuildMI(loadOp, 3).addReg(vaArgI->getOperand(0)). - addSImm(0).addRegDef(vaArgI)); - break; - } - - case 71: // reg: VReg - case 72: // reg: Constant - break; // don't forward the value - - default: - assert(0 && "Unrecognized BURG rule"); - break; - } - } - - if (forwardOperandNum >= 0) { - // We did not generate a machine instruction but need to use operand. - // If user is in the same tree, replace Value in its machine operand. - // If not, insert a copy instruction which should get coalesced away - // by register allocation. - if (subtreeRoot->parent() != NULL) - ForwardOperand(subtreeRoot, subtreeRoot->parent(), forwardOperandNum); - else { - std::vector<MachineInstr*> minstrVec; - Instruction* instr = subtreeRoot->getInstruction(); - target.getInstrInfo(). - CreateCopyInstructionsByType(target, - instr->getParent()->getParent(), - instr->getOperand(forwardOperandNum), - instr, minstrVec, - MachineCodeForInstruction::get(instr)); - assert(minstrVec.size() > 0); - mvec.insert(mvec.end(), minstrVec.begin(), minstrVec.end()); - } - } - - if (maskUnsignedResult) { - // If result is unsigned and smaller than int reg size, - // we need to clear high bits of result value. - assert(forwardOperandNum < 0 && "Need mask but no instruction generated"); - Instruction* dest = subtreeRoot->getInstruction(); - if (dest->getType()->isUnsigned()) { - unsigned destSize=target.getTargetData().getTypeSize(dest->getType()); - if (destSize <= 4) { - // Mask high 64 - N bits, where N = 4*destSize. - - // Use a TmpInstruction to represent the - // intermediate result before masking. Since those instructions - // have already been generated, go back and substitute tmpI - // for dest in the result position of each one of them. - // - MachineCodeForInstruction& mcfi = MachineCodeForInstruction::get(dest); - TmpInstruction *tmpI = new TmpInstruction(mcfi, dest->getType(), - dest, NULL, "maskHi"); - Value* srlArgToUse = tmpI; - - unsigned numSubst = 0; - for (unsigned i=0, N=mvec.size(); i < N; ++i) { - - // Make sure we substitute all occurrences of dest in these instrs. - // Otherwise, we will have bogus code. - bool someArgsWereIgnored = false; - - // Make sure not to substitute an upwards-exposed use -- that would - // introduce a use of `tmpI' with no preceding def. Therefore, - // substitute a use or def-and-use operand only if a previous def - // operand has already been substituted (i.e., numSusbt > 0). - // - numSubst += mvec[i]->substituteValue(dest, tmpI, - /*defsOnly*/ numSubst == 0, - /*notDefsAndUses*/ numSubst > 0, - someArgsWereIgnored); - assert(!someArgsWereIgnored && - "Operand `dest' exists but not replaced: probably bogus!"); - } - assert(numSubst > 0 && "Operand `dest' not replaced: probably bogus!"); - - // Left shift 32-N if size (N) is less than 32 bits. - // Use another tmp. virtual register to represent this result. - if (destSize < 4) { - srlArgToUse = new TmpInstruction(mcfi, dest->getType(), - tmpI, NULL, "maskHi2"); - mvec.push_back(BuildMI(V9::SLLXi6, 3).addReg(tmpI) - .addZImm(8*(4-destSize)) - .addReg(srlArgToUse, MachineOperand::Def)); - } - - // Logical right shift 32-N to get zero extension in top 64-N bits. - mvec.push_back(BuildMI(V9::SRLi5, 3).addReg(srlArgToUse) - .addZImm(8*(4-destSize)) - .addReg(dest, MachineOperand::Def)); - - } else if (destSize < 8) { - assert(0 && "Unsupported type size: 32 < size < 64 bits"); - } - } - } -} - -} |