summaryrefslogtreecommitdiffstats
path: root/llvm/lib/Target/Sparc/SparcInstrSelection.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'llvm/lib/Target/Sparc/SparcInstrSelection.cpp')
-rw-r--r--llvm/lib/Target/Sparc/SparcInstrSelection.cpp2898
1 files changed, 0 insertions, 2898 deletions
diff --git a/llvm/lib/Target/Sparc/SparcInstrSelection.cpp b/llvm/lib/Target/Sparc/SparcInstrSelection.cpp
deleted file mode 100644
index 57f1251af73..00000000000
--- a/llvm/lib/Target/Sparc/SparcInstrSelection.cpp
+++ /dev/null
@@ -1,2898 +0,0 @@
-//===-- SparcInstrSelection.cpp -------------------------------------------===//
-//
-// The LLVM Compiler Infrastructure
-//
-// This file was developed by the LLVM research group and is distributed under
-// the University of Illinois Open Source License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-//
-// BURS instruction selection for SPARC V9 architecture.
-//
-//===----------------------------------------------------------------------===//
-
-#include "llvm/Constants.h"
-#include "llvm/DerivedTypes.h"
-#include "llvm/Instructions.h"
-#include "llvm/Intrinsics.h"
-#include "llvm/Module.h"
-#include "llvm/CodeGen/InstrForest.h"
-#include "llvm/CodeGen/InstrSelection.h"
-#include "llvm/CodeGen/InstrSelectionSupport.h"
-#include "llvm/CodeGen/MachineCodeForInstruction.h"
-#include "llvm/CodeGen/MachineFunction.h"
-#include "llvm/CodeGen/MachineFunctionInfo.h"
-#include "llvm/CodeGen/MachineInstrBuilder.h"
-#include "llvm/CodeGen/MachineInstrAnnot.h"
-#include "SparcInstrSelectionSupport.h"
-#include "SparcInternals.h"
-#include "SparcRegClassInfo.h"
-#include "SparcRegInfo.h"
-#include "Support/MathExtras.h"
-#include <algorithm>
-#include <cmath>
-
-namespace llvm {
-
-static inline void Add3OperandInstr(unsigned Opcode, InstructionNode* Node,
- std::vector<MachineInstr*>& mvec) {
- mvec.push_back(BuildMI(Opcode, 3).addReg(Node->leftChild()->getValue())
- .addReg(Node->rightChild()->getValue())
- .addRegDef(Node->getValue()));
-}
-
-
-//---------------------------------------------------------------------------
-// Function: FoldGetElemChain
-//
-// Purpose:
-// Fold a chain of GetElementPtr instructions containing only
-// constant offsets into an equivalent (Pointer, IndexVector) pair.
-// Returns the pointer Value, and stores the resulting IndexVector
-// in argument chainIdxVec. This is a helper function for
-// FoldConstantIndices that does the actual folding.
-//---------------------------------------------------------------------------
-
-
-// Check for a constant 0.
-static inline bool
-IsZero(Value* idx)
-{
- return (idx == ConstantSInt::getNullValue(idx->getType()));
-}
-
-static Value*
-FoldGetElemChain(InstrTreeNode* ptrNode, std::vector<Value*>& chainIdxVec,
- bool lastInstHasLeadingNonZero)
-{
- InstructionNode* gepNode = dyn_cast<InstructionNode>(ptrNode);
- GetElementPtrInst* gepInst =
- dyn_cast_or_null<GetElementPtrInst>(gepNode ? gepNode->getInstruction() :0);
-
- // ptr value is not computed in this tree or ptr value does not come from GEP
- // instruction
- if (gepInst == NULL)
- return NULL;
-
- // Return NULL if we don't fold any instructions in.
- Value* ptrVal = NULL;
-
- // Now chase the chain of getElementInstr instructions, if any.
- // Check for any non-constant indices and stop there.
- // Also, stop if the first index of child is a non-zero array index
- // and the last index of the current node is a non-array index:
- // in that case, a non-array declared type is being accessed as an array
- // which is not type-safe, but could be legal.
- //
- InstructionNode* ptrChild = gepNode;
- while (ptrChild && (ptrChild->getOpLabel() == Instruction::GetElementPtr ||
- ptrChild->getOpLabel() == GetElemPtrIdx))
- {
- // Child is a GetElemPtr instruction
- gepInst = cast<GetElementPtrInst>(ptrChild->getValue());
- User::op_iterator OI, firstIdx = gepInst->idx_begin();
- User::op_iterator lastIdx = gepInst->idx_end();
- bool allConstantOffsets = true;
-
- // The first index of every GEP must be an array index.
- assert((*firstIdx)->getType() == Type::LongTy &&
- "INTERNAL ERROR: Structure index for a pointer type!");
-
- // If the last instruction had a leading non-zero index, check if the
- // current one references a sequential (i.e., indexable) type.
- // If not, the code is not type-safe and we would create an illegal GEP
- // by folding them, so don't fold any more instructions.
- //
- if (lastInstHasLeadingNonZero)
- if (! isa<SequentialType>(gepInst->getType()->getElementType()))
- break; // cannot fold in any preceding getElementPtr instrs.
-
- // Check that all offsets are constant for this instruction
- for (OI = firstIdx; allConstantOffsets && OI != lastIdx; ++OI)
- allConstantOffsets = isa<ConstantInt>(*OI);
-
- if (allConstantOffsets) {
- // Get pointer value out of ptrChild.
- ptrVal = gepInst->getPointerOperand();
-
- // Insert its index vector at the start, skipping any leading [0]
- // Remember the old size to check if anything was inserted.
- unsigned oldSize = chainIdxVec.size();
- int firstIsZero = IsZero(*firstIdx);
- chainIdxVec.insert(chainIdxVec.begin(), firstIdx + firstIsZero, lastIdx);
-
- // Remember if it has leading zero index: it will be discarded later.
- if (oldSize < chainIdxVec.size())
- lastInstHasLeadingNonZero = !firstIsZero;
-
- // Mark the folded node so no code is generated for it.
- ((InstructionNode*) ptrChild)->markFoldedIntoParent();
-
- // Get the previous GEP instruction and continue trying to fold
- ptrChild = dyn_cast<InstructionNode>(ptrChild->leftChild());
- } else // cannot fold this getElementPtr instr. or any preceding ones
- break;
- }
-
- // If the first getElementPtr instruction had a leading [0], add it back.
- // Note that this instruction is the *last* one that was successfully
- // folded *and* contributed any indices, in the loop above.
- //
- if (ptrVal && ! lastInstHasLeadingNonZero)
- chainIdxVec.insert(chainIdxVec.begin(), ConstantSInt::get(Type::LongTy,0));
-
- return ptrVal;
-}
-
-
-//---------------------------------------------------------------------------
-// Function: GetGEPInstArgs
-//
-// Purpose:
-// Helper function for GetMemInstArgs that handles the final getElementPtr
-// instruction used by (or same as) the memory operation.
-// Extracts the indices of the current instruction and tries to fold in
-// preceding ones if all indices of the current one are constant.
-//---------------------------------------------------------------------------
-
-static Value *
-GetGEPInstArgs(InstructionNode* gepNode,
- std::vector<Value*>& idxVec,
- bool& allConstantIndices)
-{
- allConstantIndices = true;
- GetElementPtrInst* gepI = cast<GetElementPtrInst>(gepNode->getInstruction());
-
- // Default pointer is the one from the current instruction.
- Value* ptrVal = gepI->getPointerOperand();
- InstrTreeNode* ptrChild = gepNode->leftChild();
-
- // Extract the index vector of the GEP instruction.
- // If all indices are constant and first index is zero, try to fold
- // in preceding GEPs with all constant indices.
- for (User::op_iterator OI=gepI->idx_begin(), OE=gepI->idx_end();
- allConstantIndices && OI != OE; ++OI)
- if (! isa<Constant>(*OI))
- allConstantIndices = false; // note: this also terminates loop!
-
- // If we have only constant indices, fold chains of constant indices
- // in this and any preceding GetElemPtr instructions.
- bool foldedGEPs = false;
- bool leadingNonZeroIdx = gepI && ! IsZero(*gepI->idx_begin());
- if (allConstantIndices)
- if (Value* newPtr = FoldGetElemChain(ptrChild, idxVec, leadingNonZeroIdx)) {
- ptrVal = newPtr;
- foldedGEPs = true;
- }
-
- // Append the index vector of the current instruction.
- // Skip the leading [0] index if preceding GEPs were folded into this.
- idxVec.insert(idxVec.end(),
- gepI->idx_begin() + (foldedGEPs && !leadingNonZeroIdx),
- gepI->idx_end());
-
- return ptrVal;
-}
-
-//---------------------------------------------------------------------------
-// Function: GetMemInstArgs
-//
-// Purpose:
-// Get the pointer value and the index vector for a memory operation
-// (GetElementPtr, Load, or Store). If all indices of the given memory
-// operation are constant, fold in constant indices in a chain of
-// preceding GetElementPtr instructions (if any), and return the
-// pointer value of the first instruction in the chain.
-// All folded instructions are marked so no code is generated for them.
-//
-// Return values:
-// Returns the pointer Value to use.
-// Returns the resulting IndexVector in idxVec.
-// Returns true/false in allConstantIndices if all indices are/aren't const.
-//---------------------------------------------------------------------------
-
-static Value*
-GetMemInstArgs(InstructionNode* memInstrNode,
- std::vector<Value*>& idxVec,
- bool& allConstantIndices)
-{
- allConstantIndices = false;
- Instruction* memInst = memInstrNode->getInstruction();
- assert(idxVec.size() == 0 && "Need empty vector to return indices");
-
- // If there is a GetElemPtr instruction to fold in to this instr,
- // it must be in the left child for Load and GetElemPtr, and in the
- // right child for Store instructions.
- InstrTreeNode* ptrChild = (memInst->getOpcode() == Instruction::Store
- ? memInstrNode->rightChild()
- : memInstrNode->leftChild());
-
- // Default pointer is the one from the current instruction.
- Value* ptrVal = ptrChild->getValue();
-
- // Find the "last" GetElemPtr instruction: this one or the immediate child.
- // There will be none if this is a load or a store from a scalar pointer.
- InstructionNode* gepNode = NULL;
- if (isa<GetElementPtrInst>(memInst))
- gepNode = memInstrNode;
- else if (isa<InstructionNode>(ptrChild) && isa<GetElementPtrInst>(ptrVal)) {
- // Child of load/store is a GEP and memInst is its only use.
- // Use its indices and mark it as folded.
- gepNode = cast<InstructionNode>(ptrChild);
- gepNode->markFoldedIntoParent();
- }
-
- // If there are no indices, return the current pointer.
- // Else extract the pointer from the GEP and fold the indices.
- return gepNode ? GetGEPInstArgs(gepNode, idxVec, allConstantIndices)
- : ptrVal;
-}
-
-
-//************************ Internal Functions ******************************/
-
-
-static inline MachineOpCode
-ChooseBprInstruction(const InstructionNode* instrNode)
-{
- MachineOpCode opCode;
-
- Instruction* setCCInstr =
- ((InstructionNode*) instrNode->leftChild())->getInstruction();
-
- switch(setCCInstr->getOpcode())
- {
- case Instruction::SetEQ: opCode = V9::BRZ; break;
- case Instruction::SetNE: opCode = V9::BRNZ; break;
- case Instruction::SetLE: opCode = V9::BRLEZ; break;
- case Instruction::SetGE: opCode = V9::BRGEZ; break;
- case Instruction::SetLT: opCode = V9::BRLZ; break;
- case Instruction::SetGT: opCode = V9::BRGZ; break;
- default:
- assert(0 && "Unrecognized VM instruction!");
- opCode = V9::INVALID_OPCODE;
- break;
- }
-
- return opCode;
-}
-
-
-static inline MachineOpCode
-ChooseBpccInstruction(const InstructionNode* instrNode,
- const BinaryOperator* setCCInstr)
-{
- MachineOpCode opCode = V9::INVALID_OPCODE;
-
- bool isSigned = setCCInstr->getOperand(0)->getType()->isSigned();
-
- if (isSigned) {
- switch(setCCInstr->getOpcode())
- {
- case Instruction::SetEQ: opCode = V9::BE; break;
- case Instruction::SetNE: opCode = V9::BNE; break;
- case Instruction::SetLE: opCode = V9::BLE; break;
- case Instruction::SetGE: opCode = V9::BGE; break;
- case Instruction::SetLT: opCode = V9::BL; break;
- case Instruction::SetGT: opCode = V9::BG; break;
- default:
- assert(0 && "Unrecognized VM instruction!");
- break;
- }
- } else {
- switch(setCCInstr->getOpcode())
- {
- case Instruction::SetEQ: opCode = V9::BE; break;
- case Instruction::SetNE: opCode = V9::BNE; break;
- case Instruction::SetLE: opCode = V9::BLEU; break;
- case Instruction::SetGE: opCode = V9::BCC; break;
- case Instruction::SetLT: opCode = V9::BCS; break;
- case Instruction::SetGT: opCode = V9::BGU; break;
- default:
- assert(0 && "Unrecognized VM instruction!");
- break;
- }
- }
-
- return opCode;
-}
-
-static inline MachineOpCode
-ChooseBFpccInstruction(const InstructionNode* instrNode,
- const BinaryOperator* setCCInstr)
-{
- MachineOpCode opCode = V9::INVALID_OPCODE;
-
- switch(setCCInstr->getOpcode())
- {
- case Instruction::SetEQ: opCode = V9::FBE; break;
- case Instruction::SetNE: opCode = V9::FBNE; break;
- case Instruction::SetLE: opCode = V9::FBLE; break;
- case Instruction::SetGE: opCode = V9::FBGE; break;
- case Instruction::SetLT: opCode = V9::FBL; break;
- case Instruction::SetGT: opCode = V9::FBG; break;
- default:
- assert(0 && "Unrecognized VM instruction!");
- break;
- }
-
- return opCode;
-}
-
-
-// Create a unique TmpInstruction for a boolean value,
-// representing the CC register used by a branch on that value.
-// For now, hack this using a little static cache of TmpInstructions.
-// Eventually the entire BURG instruction selection should be put
-// into a separate class that can hold such information.
-// The static cache is not too bad because the memory for these
-// TmpInstructions will be freed along with the rest of the Function anyway.
-//
-static TmpInstruction*
-GetTmpForCC(Value* boolVal, const Function *F, const Type* ccType,
- MachineCodeForInstruction& mcfi)
-{
- typedef hash_map<const Value*, TmpInstruction*> BoolTmpCache;
- static BoolTmpCache boolToTmpCache; // Map boolVal -> TmpInstruction*
- static const Function *lastFunction = 0;// Use to flush cache between funcs
-
- assert(boolVal->getType() == Type::BoolTy && "Weird but ok! Delete assert");
-
- if (lastFunction != F) {
- lastFunction = F;
- boolToTmpCache.clear();
- }
-
- // Look for tmpI and create a new one otherwise. The new value is
- // directly written to map using the ref returned by operator[].
- TmpInstruction*& tmpI = boolToTmpCache[boolVal];
- if (tmpI == NULL)
- tmpI = new TmpInstruction(mcfi, ccType, boolVal);
-
- return tmpI;
-}
-
-
-static inline MachineOpCode
-ChooseBccInstruction(const InstructionNode* instrNode,
- const Type*& setCCType)
-{
- InstructionNode* setCCNode = (InstructionNode*) instrNode->leftChild();
- assert(setCCNode->getOpLabel() == SetCCOp);
- BinaryOperator* setCCInstr =cast<BinaryOperator>(setCCNode->getInstruction());
- setCCType = setCCInstr->getOperand(0)->getType();
-
- if (setCCType->isFloatingPoint())
- return ChooseBFpccInstruction(instrNode, setCCInstr);
- else
- return ChooseBpccInstruction(instrNode, setCCInstr);
-}
-
-
-// WARNING: since this function has only one caller, it always returns
-// the opcode that expects an immediate and a register. If this function
-// is ever used in cases where an opcode that takes two registers is required,
-// then modify this function and use convertOpcodeFromRegToImm() where required.
-//
-// It will be necessary to expand convertOpcodeFromRegToImm() to handle the
-// new cases of opcodes.
-static inline MachineOpCode
-ChooseMovFpcciInstruction(const InstructionNode* instrNode)
-{
- MachineOpCode opCode = V9::INVALID_OPCODE;
-
- switch(instrNode->getInstruction()->getOpcode())
- {
- case Instruction::SetEQ: opCode = V9::MOVFEi; break;
- case Instruction::SetNE: opCode = V9::MOVFNEi; break;
- case Instruction::SetLE: opCode = V9::MOVFLEi; break;
- case Instruction::SetGE: opCode = V9::MOVFGEi; break;
- case Instruction::SetLT: opCode = V9::MOVFLi; break;
- case Instruction::SetGT: opCode = V9::MOVFGi; break;
- default:
- assert(0 && "Unrecognized VM instruction!");
- break;
- }
-
- return opCode;
-}
-
-
-// ChooseMovpcciForSetCC -- Choose a conditional-move instruction
-// based on the type of SetCC operation.
-//
-// WARNING: since this function has only one caller, it always returns
-// the opcode that expects an immediate and a register. If this function
-// is ever used in cases where an opcode that takes two registers is required,
-// then modify this function and use convertOpcodeFromRegToImm() where required.
-//
-// It will be necessary to expand convertOpcodeFromRegToImm() to handle the
-// new cases of opcodes.
-//
-static MachineOpCode
-ChooseMovpcciForSetCC(const InstructionNode* instrNode)
-{
- MachineOpCode opCode = V9::INVALID_OPCODE;
-
- const Type* opType = instrNode->leftChild()->getValue()->getType();
- assert(opType->isIntegral() || isa<PointerType>(opType));
- bool noSign = opType->isUnsigned() || isa<PointerType>(opType);
-
- switch(instrNode->getInstruction()->getOpcode())
- {
- case Instruction::SetEQ: opCode = V9::MOVEi; break;
- case Instruction::SetLE: opCode = noSign? V9::MOVLEUi : V9::MOVLEi; break;
- case Instruction::SetGE: opCode = noSign? V9::MOVCCi : V9::MOVGEi; break;
- case Instruction::SetLT: opCode = noSign? V9::MOVCSi : V9::MOVLi; break;
- case Instruction::SetGT: opCode = noSign? V9::MOVGUi : V9::MOVGi; break;
- case Instruction::SetNE: opCode = V9::MOVNEi; break;
- default: assert(0 && "Unrecognized LLVM instr!"); break;
- }
-
- return opCode;
-}
-
-
-// ChooseMovpregiForSetCC -- Choose a conditional-move-on-register-value
-// instruction based on the type of SetCC operation. These instructions
-// compare a register with 0 and perform the move is the comparison is true.
-//
-// WARNING: like the previous function, this function it always returns
-// the opcode that expects an immediate and a register. See above.
-//
-static MachineOpCode
-ChooseMovpregiForSetCC(const InstructionNode* instrNode)
-{
- MachineOpCode opCode = V9::INVALID_OPCODE;
-
- switch(instrNode->getInstruction()->getOpcode())
- {
- case Instruction::SetEQ: opCode = V9::MOVRZi; break;
- case Instruction::SetLE: opCode = V9::MOVRLEZi; break;
- case Instruction::SetGE: opCode = V9::MOVRGEZi; break;
- case Instruction::SetLT: opCode = V9::MOVRLZi; break;
- case Instruction::SetGT: opCode = V9::MOVRGZi; break;
- case Instruction::SetNE: opCode = V9::MOVRNZi; break;
- default: assert(0 && "Unrecognized VM instr!"); break;
- }
-
- return opCode;
-}
-
-
-static inline MachineOpCode
-ChooseConvertToFloatInstr(const TargetMachine& target,
- OpLabel vopCode, const Type* opType)
-{
- assert((vopCode == ToFloatTy || vopCode == ToDoubleTy) &&
- "Unrecognized convert-to-float opcode!");
- assert((opType->isIntegral() || opType->isFloatingPoint() ||
- isa<PointerType>(opType))
- && "Trying to convert a non-scalar type to FLOAT/DOUBLE?");
-
- MachineOpCode opCode = V9::INVALID_OPCODE;
-
- unsigned opSize = target.getTargetData().getTypeSize(opType);
-
- if (opType == Type::FloatTy)
- opCode = (vopCode == ToFloatTy? V9::NOP : V9::FSTOD);
- else if (opType == Type::DoubleTy)
- opCode = (vopCode == ToFloatTy? V9::FDTOS : V9::NOP);
- else if (opSize <= 4)
- opCode = (vopCode == ToFloatTy? V9::FITOS : V9::FITOD);
- else {
- assert(opSize == 8 && "Unrecognized type size > 4 and < 8!");
- opCode = (vopCode == ToFloatTy? V9::FXTOS : V9::FXTOD);
- }
-
- return opCode;
-}
-
-static inline MachineOpCode
-ChooseConvertFPToIntInstr(const TargetMachine& target,
- const Type* destType, const Type* opType)
-{
- assert((opType == Type::FloatTy || opType == Type::DoubleTy)
- && "This function should only be called for FLOAT or DOUBLE");
- assert((destType->isIntegral() || isa<PointerType>(destType))
- && "Trying to convert FLOAT/DOUBLE to a non-scalar type?");
-
- MachineOpCode opCode = V9::INVALID_OPCODE;
-
- unsigned destSize = target.getTargetData().getTypeSize(destType);
-
- if (destType == Type::UIntTy)
- assert(destType != Type::UIntTy && "Expand FP-to-uint beforehand.");
- else if (destSize <= 4)
- opCode = (opType == Type::FloatTy)? V9::FSTOI : V9::FDTOI;
- else {
- assert(destSize == 8 && "Unrecognized type size > 4 and < 8!");
- opCode = (opType == Type::FloatTy)? V9::FSTOX : V9::FDTOX;
- }
-
- return opCode;
-}
-
-static MachineInstr*
-CreateConvertFPToIntInstr(const TargetMachine& target,
- Value* srcVal,
- Value* destVal,
- const Type* destType)
-{
- MachineOpCode opCode = ChooseConvertFPToIntInstr(target, destType,
- srcVal->getType());
- assert(opCode != V9::INVALID_OPCODE && "Expected to need conversion!");
- return BuildMI(opCode, 2).addReg(srcVal).addRegDef(destVal);
-}
-
-// CreateCodeToConvertFloatToInt: Convert FP value to signed or unsigned integer
-// The FP value must be converted to the dest type in an FP register,
-// and the result is then copied from FP to int register via memory.
-// SPARC does not have a float-to-uint conversion, only a float-to-int (fdtoi).
-// Since fdtoi converts to signed integers, any FP value V between MAXINT+1
-// and MAXUNSIGNED (i.e., 2^31 <= V <= 2^32-1) would be converted incorrectly.
-// Therefore, for converting an FP value to uint32_t, we first need to convert
-// to uint64_t and then to uint32_t.
-//
-static void
-CreateCodeToConvertFloatToInt(const TargetMachine& target,
- Value* opVal,
- Instruction* destI,
- std::vector<MachineInstr*>& mvec,
- MachineCodeForInstruction& mcfi)
-{
- Function* F = destI->getParent()->getParent();
-
- // Create a temporary to represent the FP register into which the
- // int value will placed after conversion. The type of this temporary
- // depends on the type of FP register to use: single-prec for a 32-bit
- // int or smaller; double-prec for a 64-bit int.
- //
- size_t destSize = target.getTargetData().getTypeSize(destI->getType());
-
- const Type* castDestType = destI->getType(); // type for the cast instr result
- const Type* castDestRegType; // type for cast instruction result reg
- TmpInstruction* destForCast; // dest for cast instruction
- Instruction* fpToIntCopyDest = destI; // dest for fp-reg-to-int-reg copy instr
-
- // For converting an FP value to uint32_t, we first need to convert to
- // uint64_t and then to uint32_t, as explained above.
- if (destI->getType() == Type::UIntTy) {
- castDestType = Type::ULongTy; // use this instead of type of destI
- castDestRegType = Type::DoubleTy; // uint64_t needs 64-bit FP register.
- destForCast = new TmpInstruction(mcfi, castDestRegType, opVal);
- fpToIntCopyDest = new TmpInstruction(mcfi, castDestType, destForCast);
- }
- else {
- castDestRegType = (destSize > 4)? Type::DoubleTy : Type::FloatTy;
- destForCast = new TmpInstruction(mcfi, castDestRegType, opVal);
- }
-
- // Create the fp-to-int conversion instruction (src and dest regs are FP regs)
- mvec.push_back(CreateConvertFPToIntInstr(target, opVal, destForCast,
- castDestType));
-
- // Create the fpreg-to-intreg copy code
- target.getInstrInfo().CreateCodeToCopyFloatToInt(target, F, destForCast,
- fpToIntCopyDest, mvec, mcfi);
-
- // Create the uint64_t to uint32_t conversion, if needed
- if (destI->getType() == Type::UIntTy)
- target.getInstrInfo().
- CreateZeroExtensionInstructions(target, F, fpToIntCopyDest, destI,
- /*numLowBits*/ 32, mvec, mcfi);
-}
-
-
-static inline MachineOpCode
-ChooseAddInstruction(const InstructionNode* instrNode)
-{
- return ChooseAddInstructionByType(instrNode->getInstruction()->getType());
-}
-
-
-static inline MachineInstr*
-CreateMovFloatInstruction(const InstructionNode* instrNode,
- const Type* resultType)
-{
- return BuildMI((resultType == Type::FloatTy) ? V9::FMOVS : V9::FMOVD, 2)
- .addReg(instrNode->leftChild()->getValue())
- .addRegDef(instrNode->getValue());
-}
-
-static inline MachineInstr*
-CreateAddConstInstruction(const InstructionNode* instrNode)
-{
- MachineInstr* minstr = NULL;
-
- Value* constOp = ((InstrTreeNode*) instrNode->rightChild())->getValue();
- assert(isa<Constant>(constOp));
-
- // Cases worth optimizing are:
- // (1) Add with 0 for float or double: use an FMOV of appropriate type,
- // instead of an FADD (1 vs 3 cycles). There is no integer MOV.
- //
- if (ConstantFP *FPC = dyn_cast<ConstantFP>(constOp)) {
- double dval = FPC->getValue();
- if (dval == 0.0)
- minstr = CreateMovFloatInstruction(instrNode,
- instrNode->getInstruction()->getType());
- }
-
- return minstr;
-}
-
-
-static inline MachineOpCode
-ChooseSubInstructionByType(const Type* resultType)
-{
- MachineOpCode opCode = V9::INVALID_OPCODE;
-
- if (resultType->isInteger() || isa<PointerType>(resultType)) {
- opCode = V9::SUBr;
- } else {
- switch(resultType->getPrimitiveID())
- {
- case Type::FloatTyID: opCode = V9::FSUBS; break;
- case Type::DoubleTyID: opCode = V9::FSUBD; break;
- default: assert(0 && "Invalid type for SUB instruction"); break;
- }
- }
-
- return opCode;
-}
-
-
-static inline MachineInstr*
-CreateSubConstInstruction(const InstructionNode* instrNode)
-{
- MachineInstr* minstr = NULL;
-
- Value* constOp = ((InstrTreeNode*) instrNode->rightChild())->getValue();
- assert(isa<Constant>(constOp));
-
- // Cases worth optimizing are:
- // (1) Sub with 0 for float or double: use an FMOV of appropriate type,
- // instead of an FSUB (1 vs 3 cycles). There is no integer MOV.
- //
- if (ConstantFP *FPC = dyn_cast<ConstantFP>(constOp)) {
- double dval = FPC->getValue();
- if (dval == 0.0)
- minstr = CreateMovFloatInstruction(instrNode,
- instrNode->getInstruction()->getType());
- }
-
- return minstr;
-}
-
-
-static inline MachineOpCode
-ChooseFcmpInstruction(const InstructionNode* instrNode)
-{
- MachineOpCode opCode = V9::INVALID_OPCODE;
-
- Value* operand = ((InstrTreeNode*) instrNode->leftChild())->getValue();
- switch(operand->getType()->getPrimitiveID()) {
- case Type::FloatTyID: opCode = V9::FCMPS; break;
- case Type::DoubleTyID: opCode = V9::FCMPD; break;
- default: assert(0 && "Invalid type for FCMP instruction"); break;
- }
-
- return opCode;
-}
-
-
-// Assumes that leftArg and rightArg are both cast instructions.
-//
-static inline bool
-BothFloatToDouble(const InstructionNode* instrNode)
-{
- InstrTreeNode* leftArg = instrNode->leftChild();
- InstrTreeNode* rightArg = instrNode->rightChild();
- InstrTreeNode* leftArgArg = leftArg->leftChild();
- InstrTreeNode* rightArgArg = rightArg->leftChild();
- assert(leftArg->getValue()->getType() == rightArg->getValue()->getType());
-
- // Check if both arguments are floats cast to double
- return (leftArg->getValue()->getType() == Type::DoubleTy &&
- leftArgArg->getValue()->getType() == Type::FloatTy &&
- rightArgArg->getValue()->getType() == Type::FloatTy);
-}
-
-
-static inline MachineOpCode
-ChooseMulInstructionByType(const Type* resultType)
-{
- MachineOpCode opCode = V9::INVALID_OPCODE;
-
- if (resultType->isInteger())
- opCode = V9::MULXr;
- else
- switch(resultType->getPrimitiveID())
- {
- case Type::FloatTyID: opCode = V9::FMULS; break;
- case Type::DoubleTyID: opCode = V9::FMULD; break;
- default: assert(0 && "Invalid type for MUL instruction"); break;
- }
-
- return opCode;
-}
-
-
-
-static inline MachineInstr*
-CreateIntNegInstruction(const TargetMachine& target,
- Value* vreg)
-{
- return BuildMI(V9::SUBr, 3).addMReg(target.getRegInfo().getZeroRegNum())
- .addReg(vreg).addRegDef(vreg);
-}
-
-
-// Create instruction sequence for any shift operation.
-// SLL or SLLX on an operand smaller than the integer reg. size (64bits)
-// requires a second instruction for explicit sign-extension.
-// Note that we only have to worry about a sign-bit appearing in the
-// most significant bit of the operand after shifting (e.g., bit 32 of
-// Int or bit 16 of Short), so we do not have to worry about results
-// that are as large as a normal integer register.
-//
-static inline void
-CreateShiftInstructions(const TargetMachine& target,
- Function* F,
- MachineOpCode shiftOpCode,
- Value* argVal1,
- Value* optArgVal2, /* Use optArgVal2 if not NULL */
- unsigned optShiftNum, /* else use optShiftNum */
- Instruction* destVal,
- std::vector<MachineInstr*>& mvec,
- MachineCodeForInstruction& mcfi)
-{
- assert((optArgVal2 != NULL || optShiftNum <= 64) &&
- "Large shift sizes unexpected, but can be handled below: "
- "You need to check whether or not it fits in immed field below");
-
- // If this is a logical left shift of a type smaller than the standard
- // integer reg. size, we have to extend the sign-bit into upper bits
- // of dest, so we need to put the result of the SLL into a temporary.
- //
- Value* shiftDest = destVal;
- unsigned opSize = target.getTargetData().getTypeSize(argVal1->getType());
-
- if ((shiftOpCode == V9::SLLr5 || shiftOpCode == V9::SLLXr6) && opSize < 8) {
- // put SLL result into a temporary
- shiftDest = new TmpInstruction(mcfi, argVal1, optArgVal2, "sllTmp");
- }
-
- MachineInstr* M = (optArgVal2 != NULL)
- ? BuildMI(shiftOpCode, 3).addReg(argVal1).addReg(optArgVal2)
- .addReg(shiftDest, MachineOperand::Def)
- : BuildMI(shiftOpCode, 3).addReg(argVal1).addZImm(optShiftNum)
- .addReg(shiftDest, MachineOperand::Def);
- mvec.push_back(M);
-
- if (shiftDest != destVal) {
- // extend the sign-bit of the result into all upper bits of dest
- assert(8*opSize <= 32 && "Unexpected type size > 4 and < IntRegSize?");
- target.getInstrInfo().
- CreateSignExtensionInstructions(target, F, shiftDest, destVal,
- 8*opSize, mvec, mcfi);
- }
-}
-
-
-// Does not create any instructions if we cannot exploit constant to
-// create a cheaper instruction.
-// This returns the approximate cost of the instructions generated,
-// which is used to pick the cheapest when both operands are constant.
-static unsigned
-CreateMulConstInstruction(const TargetMachine &target, Function* F,
- Value* lval, Value* rval, Instruction* destVal,
- std::vector<MachineInstr*>& mvec,
- MachineCodeForInstruction& mcfi)
-{
- /* Use max. multiply cost, viz., cost of MULX */
- unsigned cost = target.getInstrInfo().minLatency(V9::MULXr);
- unsigned firstNewInstr = mvec.size();
-
- Value* constOp = rval;
- if (! isa<Constant>(constOp))
- return cost;
-
- // Cases worth optimizing are:
- // (1) Multiply by 0 or 1 for any type: replace with copy (ADD or FMOV)
- // (2) Multiply by 2^x for integer types: replace with Shift
- //
- const Type* resultType = destVal->getType();
-
- if (resultType->isInteger() || isa<PointerType>(resultType)) {
- bool isValidConst;
- int64_t C = (int64_t) target.getInstrInfo().ConvertConstantToIntType(target,
- constOp, constOp->getType(), isValidConst);
- if (isValidConst) {
- unsigned pow;
- bool needNeg = false;
- if (C < 0) {
- needNeg = true;
- C = -C;
- }
-
- if (C == 0 || C == 1) {
- cost = target.getInstrInfo().minLatency(V9::ADDr);
- unsigned Zero = target.getRegInfo().getZeroRegNum();
- MachineInstr* M;
- if (C == 0)
- M =BuildMI(V9::ADDr,3).addMReg(Zero).addMReg(Zero).addRegDef(destVal);
- else
- M = BuildMI(V9::ADDr,3).addReg(lval).addMReg(Zero).addRegDef(destVal);
- mvec.push_back(M);
- } else if (isPowerOf2(C, pow)) {
- unsigned opSize = target.getTargetData().getTypeSize(resultType);
- MachineOpCode opCode = (opSize <= 32)? V9::SLLr5 : V9::SLLXr6;
- CreateShiftInstructions(target, F, opCode, lval, NULL, pow,
- destVal, mvec, mcfi);
- }
-
- if (mvec.size() > 0 && needNeg) {
- // insert <reg = SUB 0, reg> after the instr to flip the sign
- MachineInstr* M = CreateIntNegInstruction(target, destVal);
- mvec.push_back(M);
- }
- }
- } else {
- if (ConstantFP *FPC = dyn_cast<ConstantFP>(constOp)) {
- double dval = FPC->getValue();
- if (fabs(dval) == 1) {
- MachineOpCode opCode = (dval < 0)
- ? (resultType == Type::FloatTy? V9::FNEGS : V9::FNEGD)
- : (resultType == Type::FloatTy? V9::FMOVS : V9::FMOVD);
- mvec.push_back(BuildMI(opCode,2).addReg(lval).addRegDef(destVal));
- }
- }
- }
-
- if (firstNewInstr < mvec.size()) {
- cost = 0;
- for (unsigned i=firstNewInstr; i < mvec.size(); ++i)
- cost += target.getInstrInfo().minLatency(mvec[i]->getOpcode());
- }
-
- return cost;
-}
-
-
-// Does not create any instructions if we cannot exploit constant to
-// create a cheaper instruction.
-//
-static inline void
-CreateCheapestMulConstInstruction(const TargetMachine &target,
- Function* F,
- Value* lval, Value* rval,
- Instruction* destVal,
- std::vector<MachineInstr*>& mvec,
- MachineCodeForInstruction& mcfi)
-{
- Value* constOp;
- if (isa<Constant>(lval) && isa<Constant>(rval)) {
- // both operands are constant: evaluate and "set" in dest
- Constant* P = ConstantExpr::get(Instruction::Mul,
- cast<Constant>(lval),
- cast<Constant>(rval));
- target.getInstrInfo().CreateCodeToLoadConst(target,F,P,destVal,mvec,mcfi);
- }
- else if (isa<Constant>(rval)) // rval is constant, but not lval
- CreateMulConstInstruction(target, F, lval, rval, destVal, mvec, mcfi);
- else if (isa<Constant>(lval)) // lval is constant, but not rval
- CreateMulConstInstruction(target, F, lval, rval, destVal, mvec, mcfi);
-
- // else neither is constant
- return;
-}
-
-// Return NULL if we cannot exploit constant to create a cheaper instruction
-static inline void
-CreateMulInstruction(const TargetMachine &target, Function* F,
- Value* lval, Value* rval, Instruction* destVal,
- std::vector<MachineInstr*>& mvec,
- MachineCodeForInstruction& mcfi,
- MachineOpCode forceMulOp = INVALID_MACHINE_OPCODE)
-{
- unsigned L = mvec.size();
- CreateCheapestMulConstInstruction(target,F, lval, rval, destVal, mvec, mcfi);
- if (mvec.size() == L) {
- // no instructions were added so create MUL reg, reg, reg.
- // Use FSMULD if both operands are actually floats cast to doubles.
- // Otherwise, use the default opcode for the appropriate type.
- MachineOpCode mulOp = ((forceMulOp != INVALID_MACHINE_OPCODE)
- ? forceMulOp
- : ChooseMulInstructionByType(destVal->getType()));
- mvec.push_back(BuildMI(mulOp, 3).addReg(lval).addReg(rval)
- .addRegDef(destVal));
- }
-}
-
-
-// Generate a divide instruction for Div or Rem.
-// For Rem, this assumes that the operand type will be signed if the result
-// type is signed. This is correct because they must have the same sign.
-//
-static inline MachineOpCode
-ChooseDivInstruction(TargetMachine &target,
- const InstructionNode* instrNode)
-{
- MachineOpCode opCode = V9::INVALID_OPCODE;
-
- const Type* resultType = instrNode->getInstruction()->getType();
-
- if (resultType->isInteger())
- opCode = resultType->isSigned()? V9::SDIVXr : V9::UDIVXr;
- else
- switch(resultType->getPrimitiveID())
- {
- case Type::FloatTyID: opCode = V9::FDIVS; break;
- case Type::DoubleTyID: opCode = V9::FDIVD; break;
- default: assert(0 && "Invalid type for DIV instruction"); break;
- }
-
- return opCode;
-}
-
-
-// Return if we cannot exploit constant to create a cheaper instruction
-static void
-CreateDivConstInstruction(TargetMachine &target,
- const InstructionNode* instrNode,
- std::vector<MachineInstr*>& mvec)
-{
- Value* LHS = instrNode->leftChild()->getValue();
- Value* constOp = ((InstrTreeNode*) instrNode->rightChild())->getValue();
- if (!isa<Constant>(constOp))
- return;
-
- Instruction* destVal = instrNode->getInstruction();
- unsigned ZeroReg = target.getRegInfo().getZeroRegNum();
-
- // Cases worth optimizing are:
- // (1) Divide by 1 for any type: replace with copy (ADD or FMOV)
- // (2) Divide by 2^x for integer types: replace with SR[L or A]{X}
- //
- const Type* resultType = instrNode->getInstruction()->getType();
-
- if (resultType->isInteger()) {
- unsigned pow;
- bool isValidConst;
- int64_t C = (int64_t) target.getInstrInfo().ConvertConstantToIntType(target,
- constOp, constOp->getType(), isValidConst);
- if (isValidConst) {
- bool needNeg = false;
- if (C < 0) {
- needNeg = true;
- C = -C;
- }
-
- if (C == 1) {
- mvec.push_back(BuildMI(V9::ADDr, 3).addReg(LHS).addMReg(ZeroReg)
- .addRegDef(destVal));
- } else if (isPowerOf2(C, pow)) {
- unsigned opCode;
- Value* shiftOperand;
- unsigned opSize = target.getTargetData().getTypeSize(resultType);
-
- if (resultType->isSigned()) {
- // For N / 2^k, if the operand N is negative,
- // we need to add (2^k - 1) before right-shifting by k, i.e.,
- //
- // (N / 2^k) = N >> k, if N >= 0;
- // (N + 2^k - 1) >> k, if N < 0
- //
- // If N is <= 32 bits, use:
- // sra N, 31, t1 // t1 = ~0, if N < 0, 0 else
- // srl t1, 32-k, t2 // t2 = 2^k - 1, if N < 0, 0 else
- // add t2, N, t3 // t3 = N + 2^k -1, if N < 0, N else
- // sra t3, k, result // result = N / 2^k
- //
- // If N is 64 bits, use:
- // srax N, k-1, t1 // t1 = sign bit in high k positions
- // srlx t1, 64-k, t2 // t2 = 2^k - 1, if N < 0, 0 else
- // add t2, N, t3 // t3 = N + 2^k -1, if N < 0, N else
- // sra t3, k, result // result = N / 2^k
- //
- TmpInstruction *sraTmp, *srlTmp, *addTmp;
- MachineCodeForInstruction& mcfi
- = MachineCodeForInstruction::get(destVal);
- sraTmp = new TmpInstruction(mcfi, resultType, LHS, 0, "getSign");
- srlTmp = new TmpInstruction(mcfi, resultType, LHS, 0, "getPlus2km1");
- addTmp = new TmpInstruction(mcfi, resultType, LHS, srlTmp,"incIfNeg");
-
- // Create the SRA or SRAX instruction to get the sign bit
- mvec.push_back(BuildMI((opSize > 4)? V9::SRAXi6 : V9::SRAi5, 3)
- .addReg(LHS)
- .addSImm((resultType==Type::LongTy)? pow-1 : 31)
- .addRegDef(sraTmp));
-
- // Create the SRL or SRLX instruction to get the sign bit
- mvec.push_back(BuildMI((opSize > 4)? V9::SRLXi6 : V9::SRLi5, 3)
- .addReg(sraTmp)
- .addSImm((resultType==Type::LongTy)? 64-pow : 32-pow)
- .addRegDef(srlTmp));
-
- // Create the ADD instruction to add 2^pow-1 for negative values
- mvec.push_back(BuildMI(V9::ADDr, 3).addReg(LHS).addReg(srlTmp)
- .addRegDef(addTmp));
-
- // Get the shift operand and "right-shift" opcode to do the divide
- shiftOperand = addTmp;
- opCode = (opSize > 4)? V9::SRAXi6 : V9::SRAi5;
- } else {
- // Get the shift operand and "right-shift" opcode to do the divide
- shiftOperand = LHS;
- opCode = (opSize > 4)? V9::SRLXi6 : V9::SRLi5;
- }
-
- // Now do the actual shift!
- mvec.push_back(BuildMI(opCode, 3).addReg(shiftOperand).addZImm(pow)
- .addRegDef(destVal));
- }
-
- if (needNeg && (C == 1 || isPowerOf2(C, pow))) {
- // insert <reg = SUB 0, reg> after the instr to flip the sign
- mvec.push_back(CreateIntNegInstruction(target, destVal));
- }
- }
- } else {
- if (ConstantFP *FPC = dyn_cast<ConstantFP>(constOp)) {
- double dval = FPC->getValue();
- if (fabs(dval) == 1) {
- unsigned opCode =
- (dval < 0) ? (resultType == Type::FloatTy? V9::FNEGS : V9::FNEGD)
- : (resultType == Type::FloatTy? V9::FMOVS : V9::FMOVD);
-
- mvec.push_back(BuildMI(opCode, 2).addReg(LHS).addRegDef(destVal));
- }
- }
- }
-}
-
-
-static void
-CreateCodeForVariableSizeAlloca(const TargetMachine& target,
- Instruction* result,
- unsigned tsize,
- Value* numElementsVal,
- std::vector<MachineInstr*>& getMvec)
-{
- Value* totalSizeVal;
- MachineInstr* M;
- MachineCodeForInstruction& mcfi = MachineCodeForInstruction::get(result);
- Function *F = result->getParent()->getParent();
-
- // Enforce the alignment constraints on the stack pointer at
- // compile time if the total size is a known constant.
- if (isa<Constant>(numElementsVal)) {
- bool isValid;
- int64_t numElem = (int64_t) target.getInstrInfo().
- ConvertConstantToIntType(target, numElementsVal,
- numElementsVal->getType(), isValid);
- assert(isValid && "Unexpectedly large array dimension in alloca!");
- int64_t total = numElem * tsize;
- if (int extra= total % target.getFrameInfo().getStackFrameSizeAlignment())
- total += target.getFrameInfo().getStackFrameSizeAlignment() - extra;
- totalSizeVal = ConstantSInt::get(Type::IntTy, total);
- } else {
- // The size is not a constant. Generate code to compute it and
- // code to pad the size for stack alignment.
- // Create a Value to hold the (constant) element size
- Value* tsizeVal = ConstantSInt::get(Type::IntTy, tsize);
-
- // Create temporary values to hold the result of MUL, SLL, SRL
- // To pad `size' to next smallest multiple of 16:
- // size = (size + 15) & (-16 = 0xfffffffffffffff0)
- //
- TmpInstruction* tmpProd = new TmpInstruction(mcfi,numElementsVal, tsizeVal);
- TmpInstruction* tmpAdd15= new TmpInstruction(mcfi,numElementsVal, tmpProd);
- TmpInstruction* tmpAndf0= new TmpInstruction(mcfi,numElementsVal, tmpAdd15);
-
- // Instruction 1: mul numElements, typeSize -> tmpProd
- // This will optimize the MUL as far as possible.
- CreateMulInstruction(target, F, numElementsVal, tsizeVal, tmpProd, getMvec,
- mcfi, INVALID_MACHINE_OPCODE);
-
- // Instruction 2: andn tmpProd, 0x0f -> tmpAndn
- getMvec.push_back(BuildMI(V9::ADDi, 3).addReg(tmpProd).addSImm(15)
- .addReg(tmpAdd15, MachineOperand::Def));
-
- // Instruction 3: add tmpAndn, 0x10 -> tmpAdd16
- getMvec.push_back(BuildMI(V9::ANDi, 3).addReg(tmpAdd15).addSImm(-16)
- .addReg(tmpAndf0, MachineOperand::Def));
-
- totalSizeVal = tmpAndf0;
- }
-
- // Get the constant offset from SP for dynamically allocated storage
- // and create a temporary Value to hold it.
- MachineFunction& mcInfo = MachineFunction::get(F);
- bool growUp;
- ConstantSInt* dynamicAreaOffset =
- ConstantSInt::get(Type::IntTy,
- target.getFrameInfo().getDynamicAreaOffset(mcInfo,growUp));
- assert(! growUp && "Has SPARC v9 stack frame convention changed?");
-
- unsigned SPReg = target.getRegInfo().getStackPointer();
-
- // Instruction 2: sub %sp, totalSizeVal -> %sp
- getMvec.push_back(BuildMI(V9::SUBr, 3).addMReg(SPReg).addReg(totalSizeVal)
- .addMReg(SPReg,MachineOperand::Def));
-
- // Instruction 3: add %sp, frameSizeBelowDynamicArea -> result
- getMvec.push_back(BuildMI(V9::ADDr,3).addMReg(SPReg).addReg(dynamicAreaOffset)
- .addRegDef(result));
-}
-
-
-static void
-CreateCodeForFixedSizeAlloca(const TargetMachine& target,
- Instruction* result,
- unsigned tsize,
- unsigned numElements,
- std::vector<MachineInstr*>& getMvec)
-{
- assert(tsize > 0 && "Illegal (zero) type size for alloca");
- assert(result && result->getParent() &&
- "Result value is not part of a function?");
- Function *F = result->getParent()->getParent();
- MachineFunction &mcInfo = MachineFunction::get(F);
-
- // Put the variable in the dynamically sized area of the frame if either:
- // (a) The offset is too large to use as an immediate in load/stores
- // (check LDX because all load/stores have the same-size immed. field).
- // (b) The object is "large", so it could cause many other locals,
- // spills, and temporaries to have large offsets.
- // NOTE: We use LARGE = 8 * argSlotSize = 64 bytes.
- // You've gotta love having only 13 bits for constant offset values :-|.
- //
- unsigned paddedSize;
- int offsetFromFP = mcInfo.getInfo()->computeOffsetforLocalVar(result,
- paddedSize,
- tsize * numElements);
-
- if (((int)paddedSize) > 8 * target.getFrameInfo().getSizeOfEachArgOnStack() ||
- ! target.getInstrInfo().constantFitsInImmedField(V9::LDXi,offsetFromFP)) {
- CreateCodeForVariableSizeAlloca(target, result, tsize,
- ConstantSInt::get(Type::IntTy,numElements),
- getMvec);
- return;
- }
-
- // else offset fits in immediate field so go ahead and allocate it.
- offsetFromFP = mcInfo.getInfo()->allocateLocalVar(result, tsize *numElements);
-
- // Create a temporary Value to hold the constant offset.
- // This is needed because it may not fit in the immediate field.
- ConstantSInt* offsetVal = ConstantSInt::get(Type::IntTy, offsetFromFP);
-
- // Instruction 1: add %fp, offsetFromFP -> result
- unsigned FPReg = target.getRegInfo().getFramePointer();
- getMvec.push_back(BuildMI(V9::ADDr, 3).addMReg(FPReg).addReg(offsetVal)
- .addRegDef(result));
-}
-
-
-//------------------------------------------------------------------------
-// Function SetOperandsForMemInstr
-//
-// Choose addressing mode for the given load or store instruction.
-// Use [reg+reg] if it is an indexed reference, and the index offset is
-// not a constant or if it cannot fit in the offset field.
-// Use [reg+offset] in all other cases.
-//
-// This assumes that all array refs are "lowered" to one of these forms:
-// %x = load (subarray*) ptr, constant ; single constant offset
-// %x = load (subarray*) ptr, offsetVal ; single non-constant offset
-// Generally, this should happen via strength reduction + LICM.
-// Also, strength reduction should take care of using the same register for
-// the loop index variable and an array index, when that is profitable.
-//------------------------------------------------------------------------
-
-static void
-SetOperandsForMemInstr(unsigned Opcode,
- std::vector<MachineInstr*>& mvec,
- InstructionNode* vmInstrNode,
- const TargetMachine& target)
-{
- Instruction* memInst = vmInstrNode->getInstruction();
- // Index vector, ptr value, and flag if all indices are const.
- std::vector<Value*> idxVec;
- bool allConstantIndices;
- Value* ptrVal = GetMemInstArgs(vmInstrNode, idxVec, allConstantIndices);
-
- // Now create the appropriate operands for the machine instruction.
- // First, initialize so we default to storing the offset in a register.
- int64_t smallConstOffset = 0;
- Value* valueForRegOffset = NULL;
- MachineOperand::MachineOperandType offsetOpType =
- MachineOperand::MO_VirtualRegister;
-
- // Check if there is an index vector and if so, compute the
- // right offset for structures and for arrays
- //
- if (!idxVec.empty()) {
- const PointerType* ptrType = cast<PointerType>(ptrVal->getType());
-
- // If all indices are constant, compute the combined offset directly.
- if (allConstantIndices) {
- // Compute the offset value using the index vector. Create a
- // virtual reg. for it since it may not fit in the immed field.
- uint64_t offset = target.getTargetData().getIndexedOffset(ptrType,idxVec);
- valueForRegOffset = ConstantSInt::get(Type::LongTy, offset);
- } else {
- // There is at least one non-constant offset. Therefore, this must
- // be an array ref, and must have been lowered to a single non-zero
- // offset. (An extra leading zero offset, if any, can be ignored.)
- // Generate code sequence to compute address from index.
- //
- bool firstIdxIsZero = IsZero(idxVec[0]);
- assert(idxVec.size() == 1U + firstIdxIsZero
- && "Array refs must be lowered before Instruction Selection");
-
- Value* idxVal = idxVec[firstIdxIsZero];
-
- std::vector<MachineInstr*> mulVec;
- Instruction* addr =
- new TmpInstruction(MachineCodeForInstruction::get(memInst),
- Type::ULongTy, memInst);
-
- // Get the array type indexed by idxVal, and compute its element size.
- // The call to getTypeSize() will fail if size is not constant.
- const Type* vecType = (firstIdxIsZero
- ? GetElementPtrInst::getIndexedType(ptrType,
- std::vector<Value*>(1U, idxVec[0]),
- /*AllowCompositeLeaf*/ true)
- : ptrType);
- const Type* eltType = cast<SequentialType>(vecType)->getElementType();
- ConstantUInt* eltSizeVal = ConstantUInt::get(Type::ULongTy,
- target.getTargetData().getTypeSize(eltType));
-
- // CreateMulInstruction() folds constants intelligently enough.
- CreateMulInstruction(target, memInst->getParent()->getParent(),
- idxVal, /* lval, not likely to be const*/
- eltSizeVal, /* rval, likely to be constant */
- addr, /* result */
- mulVec, MachineCodeForInstruction::get(memInst),
- INVALID_MACHINE_OPCODE);
-
- assert(mulVec.size() > 0 && "No multiply code created?");
- mvec.insert(mvec.end(), mulVec.begin(), mulVec.end());
-
- valueForRegOffset = addr;
- }
- } else {
- offsetOpType = MachineOperand::MO_SignExtendedImmed;
- smallConstOffset = 0;
- }
-
- // For STORE:
- // Operand 0 is value, operand 1 is ptr, operand 2 is offset
- // For LOAD or GET_ELEMENT_PTR,
- // Operand 0 is ptr, operand 1 is offset, operand 2 is result.
- //
- unsigned offsetOpNum, ptrOpNum;
- MachineInstr *MI;
- if (memInst->getOpcode() == Instruction::Store) {
- if (offsetOpType == MachineOperand::MO_VirtualRegister) {
- MI = BuildMI(Opcode, 3).addReg(vmInstrNode->leftChild()->getValue())
- .addReg(ptrVal).addReg(valueForRegOffset);
- } else {
- Opcode = convertOpcodeFromRegToImm(Opcode);
- MI = BuildMI(Opcode, 3).addReg(vmInstrNode->leftChild()->getValue())
- .addReg(ptrVal).addSImm(smallConstOffset);
- }
- } else {
- if (offsetOpType == MachineOperand::MO_VirtualRegister) {
- MI = BuildMI(Opcode, 3).addReg(ptrVal).addReg(valueForRegOffset)
- .addRegDef(memInst);
- } else {
- Opcode = convertOpcodeFromRegToImm(Opcode);
- MI = BuildMI(Opcode, 3).addReg(ptrVal).addSImm(smallConstOffset)
- .addRegDef(memInst);
- }
- }
- mvec.push_back(MI);
-}
-
-
-//
-// Substitute operand `operandNum' of the instruction in node `treeNode'
-// in place of the use(s) of that instruction in node `parent'.
-// Check both explicit and implicit operands!
-// Also make sure to skip over a parent who:
-// (1) is a list node in the Burg tree, or
-// (2) itself had its results forwarded to its parent
-//
-static void
-ForwardOperand(InstructionNode* treeNode,
- InstrTreeNode* parent,
- int operandNum)
-{
- assert(treeNode && parent && "Invalid invocation of ForwardOperand");
-
- Instruction* unusedOp = treeNode->getInstruction();
- Value* fwdOp = unusedOp->getOperand(operandNum);
-
- // The parent itself may be a list node, so find the real parent instruction
- while (parent->getNodeType() != InstrTreeNode::NTInstructionNode)
- {
- parent = parent->parent();
- assert(parent && "ERROR: Non-instruction node has no parent in tree.");
- }
- InstructionNode* parentInstrNode = (InstructionNode*) parent;
-
- Instruction* userInstr = parentInstrNode->getInstruction();
- MachineCodeForInstruction &mvec = MachineCodeForInstruction::get(userInstr);
-
- // The parent's mvec would be empty if it was itself forwarded.
- // Recursively call ForwardOperand in that case...
- //
- if (mvec.size() == 0) {
- assert(parent->parent() != NULL &&
- "Parent could not have been forwarded, yet has no instructions?");
- ForwardOperand(treeNode, parent->parent(), operandNum);
- } else {
- for (unsigned i=0, N=mvec.size(); i < N; i++) {
- MachineInstr* minstr = mvec[i];
- for (unsigned i=0, numOps=minstr->getNumOperands(); i < numOps; ++i) {
- const MachineOperand& mop = minstr->getOperand(i);
- if (mop.getType() == MachineOperand::MO_VirtualRegister &&
- mop.getVRegValue() == unusedOp)
- {
- minstr->SetMachineOperandVal(i, MachineOperand::MO_VirtualRegister,
- fwdOp);
- }
- }
-
- for (unsigned i=0,numOps=minstr->getNumImplicitRefs(); i<numOps; ++i)
- if (minstr->getImplicitRef(i) == unusedOp)
- minstr->setImplicitRef(i, fwdOp);
- }
- }
-}
-
-
-inline bool
-AllUsesAreBranches(const Instruction* setccI)
-{
- for (Value::use_const_iterator UI=setccI->use_begin(), UE=setccI->use_end();
- UI != UE; ++UI)
- if (! isa<TmpInstruction>(*UI) // ignore tmp instructions here
- && cast<Instruction>(*UI)->getOpcode() != Instruction::Br)
- return false;
- return true;
-}
-
-// Generate code for any intrinsic that needs a special code sequence
-// instead of a regular call. If not that kind of intrinsic, do nothing.
-// Returns true if code was generated, otherwise false.
-//
-static bool CodeGenIntrinsic(Intrinsic::ID iid, CallInst &callInstr,
- TargetMachine &target,
- std::vector<MachineInstr*>& mvec) {
- switch (iid) {
- default:
- assert(0 && "Unknown intrinsic function call should have been lowered!");
- case Intrinsic::va_start: {
- // Get the address of the first incoming vararg argument on the stack
- bool ignore;
- Function* func = cast<Function>(callInstr.getParent()->getParent());
- int numFixedArgs = func->getFunctionType()->getNumParams();
- int fpReg = target.getFrameInfo().getIncomingArgBaseRegNum();
- int argSize = target.getFrameInfo().getSizeOfEachArgOnStack();
- int firstVarArgOff = numFixedArgs * argSize + target.getFrameInfo().
- getFirstIncomingArgOffset(MachineFunction::get(func), ignore);
- mvec.push_back(BuildMI(V9::ADDi, 3).addMReg(fpReg).addSImm(firstVarArgOff).
- addRegDef(&callInstr));
- return true;
- }
-
- case Intrinsic::va_end:
- return true; // no-op on Sparc
-
- case Intrinsic::va_copy:
- // Simple copy of current va_list (arg1) to new va_list (result)
- mvec.push_back(BuildMI(V9::ORr, 3).
- addMReg(target.getRegInfo().getZeroRegNum()).
- addReg(callInstr.getOperand(1)).
- addRegDef(&callInstr));
- return true;
- }
-}
-
-//******************* Externally Visible Functions *************************/
-
-//------------------------------------------------------------------------
-// External Function: ThisIsAChainRule
-//
-// Purpose:
-// Check if a given BURG rule is a chain rule.
-//------------------------------------------------------------------------
-
-extern bool
-ThisIsAChainRule(int eruleno)
-{
- switch(eruleno)
- {
- case 111: // stmt: reg
- case 123:
- case 124:
- case 125:
- case 126:
- case 127:
- case 128:
- case 129:
- case 130:
- case 131:
- case 132:
- case 133:
- case 155:
- case 221:
- case 222:
- case 241:
- case 242:
- case 243:
- case 244:
- case 245:
- case 321:
- return true; break;
-
- default:
- return false; break;
- }
-}
-
-
-//------------------------------------------------------------------------
-// External Function: GetInstructionsByRule
-//
-// Purpose:
-// Choose machine instructions for the SPARC according to the
-// patterns chosen by the BURG-generated parser.
-//------------------------------------------------------------------------
-
-void
-GetInstructionsByRule(InstructionNode* subtreeRoot,
- int ruleForNode,
- short* nts,
- TargetMachine &target,
- std::vector<MachineInstr*>& mvec)
-{
- bool checkCast = false; // initialize here to use fall-through
- bool maskUnsignedResult = false;
- int nextRule;
- int forwardOperandNum = -1;
- unsigned allocaSize = 0;
- MachineInstr* M, *M2;
- unsigned L;
- bool foldCase = false;
-
- mvec.clear();
-
- // If the code for this instruction was folded into the parent (user),
- // then do nothing!
- if (subtreeRoot->isFoldedIntoParent())
- return;
-
- //
- // Let's check for chain rules outside the switch so that we don't have
- // to duplicate the list of chain rule production numbers here again
- //
- if (ThisIsAChainRule(ruleForNode)) {
- // Chain rules have a single nonterminal on the RHS.
- // Get the rule that matches the RHS non-terminal and use that instead.
- //
- assert(nts[0] && ! nts[1]
- && "A chain rule should have only one RHS non-terminal!");
- nextRule = burm_rule(subtreeRoot->state, nts[0]);
- nts = burm_nts[nextRule];
- GetInstructionsByRule(subtreeRoot, nextRule, nts, target, mvec);
- } else {
- switch(ruleForNode) {
- case 1: // stmt: Ret
- case 2: // stmt: RetValue(reg)
- { // NOTE: Prepass of register allocation is responsible
- // for moving return value to appropriate register.
- // Copy the return value to the required return register.
- // Mark the return Value as an implicit ref of the RET instr..
- // Mark the return-address register as a hidden virtual reg.
- // Finally put a NOP in the delay slot.
- ReturnInst *returnInstr=cast<ReturnInst>(subtreeRoot->getInstruction());
- Value* retVal = returnInstr->getReturnValue();
- MachineCodeForInstruction& mcfi =
- MachineCodeForInstruction::get(returnInstr);
-
- // Create a hidden virtual reg to represent the return address register
- // used by the machine instruction but not represented in LLVM.
- //
- Instruction* returnAddrTmp = new TmpInstruction(mcfi, returnInstr);
-
- MachineInstr* retMI =
- BuildMI(V9::JMPLRETi, 3).addReg(returnAddrTmp).addSImm(8)
- .addMReg(target.getRegInfo().getZeroRegNum(), MachineOperand::Def);
-
- // If there is a value to return, we need to:
- // (a) Sign-extend the value if it is smaller than 8 bytes (reg size)
- // (b) Insert a copy to copy the return value to the appropriate reg.
- // -- For FP values, create a FMOVS or FMOVD instruction
- // -- For non-FP values, create an add-with-0 instruction
- //
- if (retVal != NULL) {
- const SparcRegInfo& regInfo =
- (SparcRegInfo&) target.getRegInfo();
- const Type* retType = retVal->getType();
- unsigned regClassID = regInfo.getRegClassIDOfType(retType);
- unsigned retRegNum = (retType->isFloatingPoint()
- ? (unsigned) SparcFloatRegClass::f0
- : (unsigned) SparcIntRegClass::i0);
- retRegNum = regInfo.getUnifiedRegNum(regClassID, retRegNum);
-
- // () Insert sign-extension instructions for small signed values.
- //
- Value* retValToUse = retVal;
- if (retType->isIntegral() && retType->isSigned()) {
- unsigned retSize = target.getTargetData().getTypeSize(retType);
- if (retSize <= 4) {
- // create a temporary virtual reg. to hold the sign-extension
- retValToUse = new TmpInstruction(mcfi, retVal);
-
- // sign-extend retVal and put the result in the temporary reg.
- target.getInstrInfo().CreateSignExtensionInstructions
- (target, returnInstr->getParent()->getParent(),
- retVal, retValToUse, 8*retSize, mvec, mcfi);
- }
- }
-
- // (b) Now, insert a copy to to the appropriate register:
- // -- For FP values, create a FMOVS or FMOVD instruction
- // -- For non-FP values, create an add-with-0 instruction
- //
- // First, create a virtual register to represent the register and
- // mark this vreg as being an implicit operand of the ret MI.
- TmpInstruction* retVReg =
- new TmpInstruction(mcfi, retValToUse, NULL, "argReg");
-
- retMI->addImplicitRef(retVReg);
-
- if (retType->isFloatingPoint())
- M = (BuildMI(retType==Type::FloatTy? V9::FMOVS : V9::FMOVD, 2)
- .addReg(retValToUse).addReg(retVReg, MachineOperand::Def));
- else
- M = (BuildMI(ChooseAddInstructionByType(retType), 3)
- .addReg(retValToUse).addSImm((int64_t) 0)
- .addReg(retVReg, MachineOperand::Def));
-
- // Mark the operand with the register it should be assigned
- M->SetRegForOperand(M->getNumOperands()-1, retRegNum);
- retMI->SetRegForImplicitRef(retMI->getNumImplicitRefs()-1, retRegNum);
-
- mvec.push_back(M);
- }
-
- // Now insert the RET instruction and a NOP for the delay slot
- mvec.push_back(retMI);
- mvec.push_back(BuildMI(V9::NOP, 0));
-
- break;
- }
-
- case 3: // stmt: Store(reg,reg)
- case 4: // stmt: Store(reg,ptrreg)
- SetOperandsForMemInstr(ChooseStoreInstruction(
- subtreeRoot->leftChild()->getValue()->getType()),
- mvec, subtreeRoot, target);
- break;
-
- case 5: // stmt: BrUncond
- {
- BranchInst *BI = cast<BranchInst>(subtreeRoot->getInstruction());
- mvec.push_back(BuildMI(V9::BA, 1).addPCDisp(BI->getSuccessor(0)));
-
- // delay slot
- mvec.push_back(BuildMI(V9::NOP, 0));
- break;
- }
-
- case 206: // stmt: BrCond(setCCconst)
- { // setCCconst => boolean was computed with `%b = setCC type reg1 const'
- // If the constant is ZERO, we can use the branch-on-integer-register
- // instructions and avoid the SUBcc instruction entirely.
- // Otherwise this is just the same as case 5, so just fall through.
- //
- InstrTreeNode* constNode = subtreeRoot->leftChild()->rightChild();
- assert(constNode &&
- constNode->getNodeType() ==InstrTreeNode::NTConstNode);
- Constant *constVal = cast<Constant>(constNode->getValue());
- bool isValidConst;
-
- if ((constVal->getType()->isInteger()
- || isa<PointerType>(constVal->getType()))
- && target.getInstrInfo().ConvertConstantToIntType(target,
- constVal, constVal->getType(), isValidConst) == 0
- && isValidConst)
- {
- // That constant is a zero after all...
- // Use the left child of setCC as the first argument!
- // Mark the setCC node so that no code is generated for it.
- InstructionNode* setCCNode = (InstructionNode*)
- subtreeRoot->leftChild();
- assert(setCCNode->getOpLabel() == SetCCOp);
- setCCNode->markFoldedIntoParent();
-
- BranchInst* brInst=cast<BranchInst>(subtreeRoot->getInstruction());
-
- M = BuildMI(ChooseBprInstruction(subtreeRoot), 2)
- .addReg(setCCNode->leftChild()->getValue())
- .addPCDisp(brInst->getSuccessor(0));
- mvec.push_back(M);
-
- // delay slot
- mvec.push_back(BuildMI(V9::NOP, 0));
-
- // false branch
- mvec.push_back(BuildMI(V9::BA, 1)
- .addPCDisp(brInst->getSuccessor(1)));
-
- // delay slot
- mvec.push_back(BuildMI(V9::NOP, 0));
- break;
- }
- // ELSE FALL THROUGH
- }
-
- case 6: // stmt: BrCond(setCC)
- { // bool => boolean was computed with SetCC.
- // The branch to use depends on whether it is FP, signed, or unsigned.
- // If it is an integer CC, we also need to find the unique
- // TmpInstruction representing that CC.
- //
- BranchInst* brInst = cast<BranchInst>(subtreeRoot->getInstruction());
- const Type* setCCType;
- unsigned Opcode = ChooseBccInstruction(subtreeRoot, setCCType);
- Value* ccValue = GetTmpForCC(subtreeRoot->leftChild()->getValue(),
- brInst->getParent()->getParent(),
- setCCType,
- MachineCodeForInstruction::get(brInst));
- M = BuildMI(Opcode, 2).addCCReg(ccValue)
- .addPCDisp(brInst->getSuccessor(0));
- mvec.push_back(M);
-
- // delay slot
- mvec.push_back(BuildMI(V9::NOP, 0));
-
- // false branch
- mvec.push_back(BuildMI(V9::BA, 1).addPCDisp(brInst->getSuccessor(1)));
-
- // delay slot
- mvec.push_back(BuildMI(V9::NOP, 0));
- break;
- }
-
- case 208: // stmt: BrCond(boolconst)
- {
- // boolconst => boolean is a constant; use BA to first or second label
- Constant* constVal =
- cast<Constant>(subtreeRoot->leftChild()->getValue());
- unsigned dest = cast<ConstantBool>(constVal)->getValue()? 0 : 1;
-
- M = BuildMI(V9::BA, 1).addPCDisp(
- cast<BranchInst>(subtreeRoot->getInstruction())->getSuccessor(dest));
- mvec.push_back(M);
-
- // delay slot
- mvec.push_back(BuildMI(V9::NOP, 0));
- break;
- }
-
- case 8: // stmt: BrCond(boolreg)
- { // boolreg => boolean is recorded in an integer register.
- // Use branch-on-integer-register instruction.
- //
- BranchInst *BI = cast<BranchInst>(subtreeRoot->getInstruction());
- M = BuildMI(V9::BRNZ, 2).addReg(subtreeRoot->leftChild()->getValue())
- .addPCDisp(BI->getSuccessor(0));
- mvec.push_back(M);
-
- // delay slot
- mvec.push_back(BuildMI(V9::NOP, 0));
-
- // false branch
- mvec.push_back(BuildMI(V9::BA, 1).addPCDisp(BI->getSuccessor(1)));
-
- // delay slot
- mvec.push_back(BuildMI(V9::NOP, 0));
- break;
- }
-
- case 9: // stmt: Switch(reg)
- assert(0 && "*** SWITCH instruction is not implemented yet.");
- break;
-
- case 10: // reg: VRegList(reg, reg)
- assert(0 && "VRegList should never be the topmost non-chain rule");
- break;
-
- case 21: // bool: Not(bool,reg): Compute with a conditional-move-on-reg
- { // First find the unary operand. It may be left or right, usually right.
- Instruction* notI = subtreeRoot->getInstruction();
- Value* notArg = BinaryOperator::getNotArgument(
- cast<BinaryOperator>(subtreeRoot->getInstruction()));
- unsigned ZeroReg = target.getRegInfo().getZeroRegNum();
-
- // Unconditionally set register to 0
- mvec.push_back(BuildMI(V9::SETHI, 2).addZImm(0).addRegDef(notI));
-
- // Now conditionally move 1 into the register.
- // Mark the register as a use (as well as a def) because the old
- // value will be retained if the condition is false.
- mvec.push_back(BuildMI(V9::MOVRZi, 3).addReg(notArg).addZImm(1)
- .addReg(notI, MachineOperand::UseAndDef));
-
- break;
- }
-
- case 421: // reg: BNot(reg,reg): Compute as reg = reg XOR-NOT 0
- { // First find the unary operand. It may be left or right, usually right.
- Value* notArg = BinaryOperator::getNotArgument(
- cast<BinaryOperator>(subtreeRoot->getInstruction()));
- unsigned ZeroReg = target.getRegInfo().getZeroRegNum();
- mvec.push_back(BuildMI(V9::XNORr, 3).addReg(notArg).addMReg(ZeroReg)
- .addRegDef(subtreeRoot->getValue()));
- break;
- }
-
- case 322: // reg: Not(tobool, reg):
- // Fold CAST-TO-BOOL with NOT by inverting the sense of cast-to-bool
- foldCase = true;
- // Just fall through!
-
- case 22: // reg: ToBoolTy(reg):
- {
- Instruction* castI = subtreeRoot->getInstruction();
- Value* opVal = subtreeRoot->leftChild()->getValue();
- assert(opVal->getType()->isIntegral() ||
- isa<PointerType>(opVal->getType()));
-
- // Unconditionally set register to 0
- mvec.push_back(BuildMI(V9::SETHI, 2).addZImm(0).addRegDef(castI));
-
- // Now conditionally move 1 into the register.
- // Mark the register as a use (as well as a def) because the old
- // value will be retained if the condition is false.
- MachineOpCode opCode = foldCase? V9::MOVRZi : V9::MOVRNZi;
- mvec.push_back(BuildMI(opCode, 3).addReg(opVal).addZImm(1)
- .addReg(castI, MachineOperand::UseAndDef));
-
- break;
- }
-
- case 23: // reg: ToUByteTy(reg)
- case 24: // reg: ToSByteTy(reg)
- case 25: // reg: ToUShortTy(reg)
- case 26: // reg: ToShortTy(reg)
- case 27: // reg: ToUIntTy(reg)
- case 28: // reg: ToIntTy(reg)
- case 29: // reg: ToULongTy(reg)
- case 30: // reg: ToLongTy(reg)
- {
- //======================================================================
- // Rules for integer conversions:
- //
- //--------
- // From ISO 1998 C++ Standard, Sec. 4.7:
- //
- // 2. If the destination type is unsigned, the resulting value is
- // the least unsigned integer congruent to the source integer
- // (modulo 2n where n is the number of bits used to represent the
- // unsigned type). [Note: In a two s complement representation,
- // this conversion is conceptual and there is no change in the
- // bit pattern (if there is no truncation). ]
- //
- // 3. If the destination type is signed, the value is unchanged if
- // it can be represented in the destination type (and bitfield width);
- // otherwise, the value is implementation-defined.
- //--------
- //
- // Since we assume 2s complement representations, this implies:
- //
- // -- If operand is smaller than destination, zero-extend or sign-extend
- // according to the signedness of the *operand*: source decides:
- // (1) If operand is signed, sign-extend it.
- // If dest is unsigned, zero-ext the result!
- // (2) If operand is unsigned, our current invariant is that
- // it's high bits are correct, so zero-extension is not needed.
- //
- // -- If operand is same size as or larger than destination,
- // zero-extend or sign-extend according to the signedness of
- // the *destination*: destination decides:
- // (1) If destination is signed, sign-extend (truncating if needed)
- // This choice is implementation defined. We sign-extend the
- // operand, which matches both Sun's cc and gcc3.2.
- // (2) If destination is unsigned, zero-extend (truncating if needed)
- //======================================================================
-
- Instruction* destI = subtreeRoot->getInstruction();
- Function* currentFunc = destI->getParent()->getParent();
- MachineCodeForInstruction& mcfi=MachineCodeForInstruction::get(destI);
-
- Value* opVal = subtreeRoot->leftChild()->getValue();
- const Type* opType = opVal->getType();
- const Type* destType = destI->getType();
- unsigned opSize = target.getTargetData().getTypeSize(opType);
- unsigned destSize = target.getTargetData().getTypeSize(destType);
-
- bool isIntegral = opType->isIntegral() || isa<PointerType>(opType);
-
- if (opType == Type::BoolTy ||
- opType == destType ||
- isIntegral && opSize == destSize && opSize == 8) {
- // nothing to do in all these cases
- forwardOperandNum = 0; // forward first operand to user
-
- } else if (opType->isFloatingPoint()) {
-
- CreateCodeToConvertFloatToInt(target, opVal, destI, mvec, mcfi);
- if (destI->getType()->isUnsigned() && destI->getType() !=Type::UIntTy)
- maskUnsignedResult = true; // not handled by fp->int code
-
- } else if (isIntegral) {
-
- bool opSigned = opType->isSigned();
- bool destSigned = destType->isSigned();
- unsigned extSourceInBits = 8 * std::min<unsigned>(opSize, destSize);
-
- assert(! (opSize == destSize && opSigned == destSigned) &&
- "How can different int types have same size and signedness?");
-
- bool signExtend = (opSize < destSize && opSigned ||
- opSize >= destSize && destSigned);
-
- bool signAndZeroExtend = (opSize < destSize && destSize < 8u &&
- opSigned && !destSigned);
- assert(!signAndZeroExtend || signExtend);
-
- bool zeroExtendOnly = opSize >= destSize && !destSigned;
- assert(!zeroExtendOnly || !signExtend);
-
- if (signExtend) {
- Value* signExtDest = (signAndZeroExtend
- ? new TmpInstruction(mcfi, destType, opVal)
- : destI);
-
- target.getInstrInfo().CreateSignExtensionInstructions
- (target, currentFunc,opVal,signExtDest,extSourceInBits,mvec,mcfi);
-
- if (signAndZeroExtend)
- target.getInstrInfo().CreateZeroExtensionInstructions
- (target, currentFunc, signExtDest, destI, 8*destSize, mvec, mcfi);
- }
- else if (zeroExtendOnly) {
- target.getInstrInfo().CreateZeroExtensionInstructions
- (target, currentFunc, opVal, destI, extSourceInBits, mvec, mcfi);
- }
- else
- forwardOperandNum = 0; // forward first operand to user
-
- } else
- assert(0 && "Unrecognized operand type for convert-to-integer");
-
- break;
- }
-
- case 31: // reg: ToFloatTy(reg):
- case 32: // reg: ToDoubleTy(reg):
- case 232: // reg: ToDoubleTy(Constant):
-
- // If this instruction has a parent (a user) in the tree
- // and the user is translated as an FsMULd instruction,
- // then the cast is unnecessary. So check that first.
- // In the future, we'll want to do the same for the FdMULq instruction,
- // so do the check here instead of only for ToFloatTy(reg).
- //
- if (subtreeRoot->parent() != NULL) {
- const MachineCodeForInstruction& mcfi =
- MachineCodeForInstruction::get(
- cast<InstructionNode>(subtreeRoot->parent())->getInstruction());
- if (mcfi.size() == 0 || mcfi.front()->getOpcode() == V9::FSMULD)
- forwardOperandNum = 0; // forward first operand to user
- }
-
- if (forwardOperandNum != 0) { // we do need the cast
- Value* leftVal = subtreeRoot->leftChild()->getValue();
- const Type* opType = leftVal->getType();
- MachineOpCode opCode=ChooseConvertToFloatInstr(target,
- subtreeRoot->getOpLabel(), opType);
- if (opCode == V9::NOP) { // no conversion needed
- forwardOperandNum = 0; // forward first operand to user
- } else {
- // If the source operand is a non-FP type it must be
- // first copied from int to float register via memory!
- Instruction *dest = subtreeRoot->getInstruction();
- Value* srcForCast;
- int n = 0;
- if (! opType->isFloatingPoint()) {
- // Create a temporary to represent the FP register
- // into which the integer will be copied via memory.
- // The type of this temporary will determine the FP
- // register used: single-prec for a 32-bit int or smaller,
- // double-prec for a 64-bit int.
- //
- uint64_t srcSize =
- target.getTargetData().getTypeSize(leftVal->getType());
- Type* tmpTypeToUse =
- (srcSize <= 4)? Type::FloatTy : Type::DoubleTy;
- MachineCodeForInstruction &destMCFI =
- MachineCodeForInstruction::get(dest);
- srcForCast = new TmpInstruction(destMCFI, tmpTypeToUse, dest);
-
- target.getInstrInfo().CreateCodeToCopyIntToFloat(target,
- dest->getParent()->getParent(),
- leftVal, cast<Instruction>(srcForCast),
- mvec, destMCFI);
- } else
- srcForCast = leftVal;
-
- M = BuildMI(opCode, 2).addReg(srcForCast).addRegDef(dest);
- mvec.push_back(M);
- }
- }
- break;
-
- case 19: // reg: ToArrayTy(reg):
- case 20: // reg: ToPointerTy(reg):
- forwardOperandNum = 0; // forward first operand to user
- break;
-
- case 233: // reg: Add(reg, Constant)
- maskUnsignedResult = true;
- M = CreateAddConstInstruction(subtreeRoot);
- if (M != NULL) {
- mvec.push_back(M);
- break;
- }
- // ELSE FALL THROUGH
-
- case 33: // reg: Add(reg, reg)
- maskUnsignedResult = true;
- Add3OperandInstr(ChooseAddInstruction(subtreeRoot), subtreeRoot, mvec);
- break;
-
- case 234: // reg: Sub(reg, Constant)
- maskUnsignedResult = true;
- M = CreateSubConstInstruction(subtreeRoot);
- if (M != NULL) {
- mvec.push_back(M);
- break;
- }
- // ELSE FALL THROUGH
-
- case 34: // reg: Sub(reg, reg)
- maskUnsignedResult = true;
- Add3OperandInstr(ChooseSubInstructionByType(
- subtreeRoot->getInstruction()->getType()),
- subtreeRoot, mvec);
- break;
-
- case 135: // reg: Mul(todouble, todouble)
- checkCast = true;
- // FALL THROUGH
-
- case 35: // reg: Mul(reg, reg)
- {
- maskUnsignedResult = true;
- MachineOpCode forceOp = ((checkCast && BothFloatToDouble(subtreeRoot))
- ? (MachineOpCode)V9::FSMULD
- : INVALID_MACHINE_OPCODE);
- Instruction* mulInstr = subtreeRoot->getInstruction();
- CreateMulInstruction(target, mulInstr->getParent()->getParent(),
- subtreeRoot->leftChild()->getValue(),
- subtreeRoot->rightChild()->getValue(),
- mulInstr, mvec,
- MachineCodeForInstruction::get(mulInstr),forceOp);
- break;
- }
- case 335: // reg: Mul(todouble, todoubleConst)
- checkCast = true;
- // FALL THROUGH
-
- case 235: // reg: Mul(reg, Constant)
- {
- maskUnsignedResult = true;
- MachineOpCode forceOp = ((checkCast && BothFloatToDouble(subtreeRoot))
- ? (MachineOpCode)V9::FSMULD
- : INVALID_MACHINE_OPCODE);
- Instruction* mulInstr = subtreeRoot->getInstruction();
- CreateMulInstruction(target, mulInstr->getParent()->getParent(),
- subtreeRoot->leftChild()->getValue(),
- subtreeRoot->rightChild()->getValue(),
- mulInstr, mvec,
- MachineCodeForInstruction::get(mulInstr),
- forceOp);
- break;
- }
- case 236: // reg: Div(reg, Constant)
- maskUnsignedResult = true;
- L = mvec.size();
- CreateDivConstInstruction(target, subtreeRoot, mvec);
- if (mvec.size() > L)
- break;
- // ELSE FALL THROUGH
-
- case 36: // reg: Div(reg, reg)
- {
- maskUnsignedResult = true;
-
- // If either operand of divide is smaller than 64 bits, we have
- // to make sure the unused top bits are correct because they affect
- // the result. These bits are already correct for unsigned values.
- // They may be incorrect for signed values, so sign extend to fill in.
- Instruction* divI = subtreeRoot->getInstruction();
- Value* divOp1 = subtreeRoot->leftChild()->getValue();
- Value* divOp2 = subtreeRoot->rightChild()->getValue();
- Value* divOp1ToUse = divOp1;
- Value* divOp2ToUse = divOp2;
- if (divI->getType()->isSigned()) {
- unsigned opSize=target.getTargetData().getTypeSize(divI->getType());
- if (opSize < 8) {
- MachineCodeForInstruction& mcfi=MachineCodeForInstruction::get(divI);
- divOp1ToUse = new TmpInstruction(mcfi, divOp1);
- divOp2ToUse = new TmpInstruction(mcfi, divOp2);
- target.getInstrInfo().
- CreateSignExtensionInstructions(target,
- divI->getParent()->getParent(),
- divOp1, divOp1ToUse,
- 8*opSize, mvec, mcfi);
- target.getInstrInfo().
- CreateSignExtensionInstructions(target,
- divI->getParent()->getParent(),
- divOp2, divOp2ToUse,
- 8*opSize, mvec, mcfi);
- }
- }
-
- mvec.push_back(BuildMI(ChooseDivInstruction(target, subtreeRoot), 3)
- .addReg(divOp1ToUse)
- .addReg(divOp2ToUse)
- .addRegDef(divI));
-
- break;
- }
-
- case 37: // reg: Rem(reg, reg)
- case 237: // reg: Rem(reg, Constant)
- {
- maskUnsignedResult = true;
-
- Instruction* remI = subtreeRoot->getInstruction();
- Value* divOp1 = subtreeRoot->leftChild()->getValue();
- Value* divOp2 = subtreeRoot->rightChild()->getValue();
-
- MachineCodeForInstruction& mcfi = MachineCodeForInstruction::get(remI);
-
- // If second operand of divide is smaller than 64 bits, we have
- // to make sure the unused top bits are correct because they affect
- // the result. These bits are already correct for unsigned values.
- // They may be incorrect for signed values, so sign extend to fill in.
- //
- Value* divOpToUse = divOp2;
- if (divOp2->getType()->isSigned()) {
- unsigned opSize=target.getTargetData().getTypeSize(divOp2->getType());
- if (opSize < 8) {
- divOpToUse = new TmpInstruction(mcfi, divOp2);
- target.getInstrInfo().
- CreateSignExtensionInstructions(target,
- remI->getParent()->getParent(),
- divOp2, divOpToUse,
- 8*opSize, mvec, mcfi);
- }
- }
-
- // Now compute: result = rem V1, V2 as:
- // result = V1 - (V1 / signExtend(V2)) * signExtend(V2)
- //
- TmpInstruction* quot = new TmpInstruction(mcfi, divOp1, divOpToUse);
- TmpInstruction* prod = new TmpInstruction(mcfi, quot, divOpToUse);
-
- mvec.push_back(BuildMI(ChooseDivInstruction(target, subtreeRoot), 3)
- .addReg(divOp1).addReg(divOpToUse).addRegDef(quot));
-
- mvec.push_back(BuildMI(ChooseMulInstructionByType(remI->getType()), 3)
- .addReg(quot).addReg(divOpToUse).addRegDef(prod));
-
- mvec.push_back(BuildMI(ChooseSubInstructionByType(remI->getType()), 3)
- .addReg(divOp1).addReg(prod).addRegDef(remI));
-
- break;
- }
-
- case 38: // bool: And(bool, bool)
- case 138: // bool: And(bool, not)
- case 238: // bool: And(bool, boolconst)
- case 338: // reg : BAnd(reg, reg)
- case 538: // reg : BAnd(reg, Constant)
- Add3OperandInstr(V9::ANDr, subtreeRoot, mvec);
- break;
-
- case 438: // bool: BAnd(bool, bnot)
- { // Use the argument of NOT as the second argument!
- // Mark the NOT node so that no code is generated for it.
- // If the type is boolean, set 1 or 0 in the result register.
- InstructionNode* notNode = (InstructionNode*) subtreeRoot->rightChild();
- Value* notArg = BinaryOperator::getNotArgument(
- cast<BinaryOperator>(notNode->getInstruction()));
- notNode->markFoldedIntoParent();
- Value *lhs = subtreeRoot->leftChild()->getValue();
- Value *dest = subtreeRoot->getValue();
- mvec.push_back(BuildMI(V9::ANDNr, 3).addReg(lhs).addReg(notArg)
- .addReg(dest, MachineOperand::Def));
-
- if (notArg->getType() == Type::BoolTy) {
- // set 1 in result register if result of above is non-zero
- mvec.push_back(BuildMI(V9::MOVRNZi, 3).addReg(dest).addZImm(1)
- .addReg(dest, MachineOperand::UseAndDef));
- }
-
- break;
- }
-
- case 39: // bool: Or(bool, bool)
- case 139: // bool: Or(bool, not)
- case 239: // bool: Or(bool, boolconst)
- case 339: // reg : BOr(reg, reg)
- case 539: // reg : BOr(reg, Constant)
- Add3OperandInstr(V9::ORr, subtreeRoot, mvec);
- break;
-
- case 439: // bool: BOr(bool, bnot)
- { // Use the argument of NOT as the second argument!
- // Mark the NOT node so that no code is generated for it.
- // If the type is boolean, set 1 or 0 in the result register.
- InstructionNode* notNode = (InstructionNode*) subtreeRoot->rightChild();
- Value* notArg = BinaryOperator::getNotArgument(
- cast<BinaryOperator>(notNode->getInstruction()));
- notNode->markFoldedIntoParent();
- Value *lhs = subtreeRoot->leftChild()->getValue();
- Value *dest = subtreeRoot->getValue();
-
- mvec.push_back(BuildMI(V9::ORNr, 3).addReg(lhs).addReg(notArg)
- .addReg(dest, MachineOperand::Def));
-
- if (notArg->getType() == Type::BoolTy) {
- // set 1 in result register if result of above is non-zero
- mvec.push_back(BuildMI(V9::MOVRNZi, 3).addReg(dest).addZImm(1)
- .addReg(dest, MachineOperand::UseAndDef));
- }
-
- break;
- }
-
- case 40: // bool: Xor(bool, bool)
- case 140: // bool: Xor(bool, not)
- case 240: // bool: Xor(bool, boolconst)
- case 340: // reg : BXor(reg, reg)
- case 540: // reg : BXor(reg, Constant)
- Add3OperandInstr(V9::XORr, subtreeRoot, mvec);
- break;
-
- case 440: // bool: BXor(bool, bnot)
- { // Use the argument of NOT as the second argument!
- // Mark the NOT node so that no code is generated for it.
- // If the type is boolean, set 1 or 0 in the result register.
- InstructionNode* notNode = (InstructionNode*) subtreeRoot->rightChild();
- Value* notArg = BinaryOperator::getNotArgument(
- cast<BinaryOperator>(notNode->getInstruction()));
- notNode->markFoldedIntoParent();
- Value *lhs = subtreeRoot->leftChild()->getValue();
- Value *dest = subtreeRoot->getValue();
- mvec.push_back(BuildMI(V9::XNORr, 3).addReg(lhs).addReg(notArg)
- .addReg(dest, MachineOperand::Def));
-
- if (notArg->getType() == Type::BoolTy) {
- // set 1 in result register if result of above is non-zero
- mvec.push_back(BuildMI(V9::MOVRNZi, 3).addReg(dest).addZImm(1)
- .addReg(dest, MachineOperand::UseAndDef));
- }
- break;
- }
-
- case 41: // setCCconst: SetCC(reg, Constant)
- { // Comparison is with a constant:
- //
- // If the bool result must be computed into a register (see below),
- // and the constant is int ZERO, we can use the MOVR[op] instructions
- // and avoid the SUBcc instruction entirely.
- // Otherwise this is just the same as case 42, so just fall through.
- //
- // The result of the SetCC must be computed and stored in a register if
- // it is used outside the current basic block (so it must be computed
- // as a boolreg) or it is used by anything other than a branch.
- // We will use a conditional move to do this.
- //
- Instruction* setCCInstr = subtreeRoot->getInstruction();
- bool computeBoolVal = (subtreeRoot->parent() == NULL ||
- ! AllUsesAreBranches(setCCInstr));
-
- if (computeBoolVal) {
- InstrTreeNode* constNode = subtreeRoot->rightChild();
- assert(constNode &&
- constNode->getNodeType() ==InstrTreeNode::NTConstNode);
- Constant *constVal = cast<Constant>(constNode->getValue());
- bool isValidConst;
-
- if ((constVal->getType()->isInteger()
- || isa<PointerType>(constVal->getType()))
- && target.getInstrInfo().ConvertConstantToIntType(target,
- constVal, constVal->getType(), isValidConst) == 0
- && isValidConst)
- {
- // That constant is an integer zero after all...
- // Use a MOVR[op] to compute the boolean result
- // Unconditionally set register to 0
- mvec.push_back(BuildMI(V9::SETHI, 2).addZImm(0)
- .addRegDef(setCCInstr));
-
- // Now conditionally move 1 into the register.
- // Mark the register as a use (as well as a def) because the old
- // value will be retained if the condition is false.
- MachineOpCode movOpCode = ChooseMovpregiForSetCC(subtreeRoot);
- mvec.push_back(BuildMI(movOpCode, 3)
- .addReg(subtreeRoot->leftChild()->getValue())
- .addZImm(1)
- .addReg(setCCInstr, MachineOperand::UseAndDef));
-
- break;
- }
- }
- // ELSE FALL THROUGH
- }
-
- case 42: // bool: SetCC(reg, reg):
- {
- // This generates a SUBCC instruction, putting the difference in a
- // result reg. if needed, and/or setting a condition code if needed.
- //
- Instruction* setCCInstr = subtreeRoot->getInstruction();
- Value* leftVal = subtreeRoot->leftChild()->getValue();
- Value* rightVal = subtreeRoot->rightChild()->getValue();
- const Type* opType = leftVal->getType();
- bool isFPCompare = opType->isFloatingPoint();
-
- // If the boolean result of the SetCC is used outside the current basic
- // block (so it must be computed as a boolreg) or is used by anything
- // other than a branch, the boolean must be computed and stored
- // in a result register. We will use a conditional move to do this.
- //
- bool computeBoolVal = (subtreeRoot->parent() == NULL ||
- ! AllUsesAreBranches(setCCInstr));
-
- // A TmpInstruction is created to represent the CC "result".
- // Unlike other instances of TmpInstruction, this one is used
- // by machine code of multiple LLVM instructions, viz.,
- // the SetCC and the branch. Make sure to get the same one!
- // Note that we do this even for FP CC registers even though they
- // are explicit operands, because the type of the operand
- // needs to be a floating point condition code, not an integer
- // condition code. Think of this as casting the bool result to
- // a FP condition code register.
- // Later, we mark the 4th operand as being a CC register, and as a def.
- //
- TmpInstruction* tmpForCC = GetTmpForCC(setCCInstr,
- setCCInstr->getParent()->getParent(),
- leftVal->getType(),
- MachineCodeForInstruction::get(setCCInstr));
-
- // If the operands are signed values smaller than 4 bytes, then they
- // must be sign-extended in order to do a valid 32-bit comparison
- // and get the right result in the 32-bit CC register (%icc).
- //
- Value* leftOpToUse = leftVal;
- Value* rightOpToUse = rightVal;
- if (opType->isIntegral() && opType->isSigned()) {
- unsigned opSize = target.getTargetData().getTypeSize(opType);
- if (opSize < 4) {
- MachineCodeForInstruction& mcfi =
- MachineCodeForInstruction::get(setCCInstr);
-
- // create temporary virtual regs. to hold the sign-extensions
- leftOpToUse = new TmpInstruction(mcfi, leftVal);
- rightOpToUse = new TmpInstruction(mcfi, rightVal);
-
- // sign-extend each operand and put the result in the temporary reg.
- target.getInstrInfo().CreateSignExtensionInstructions
- (target, setCCInstr->getParent()->getParent(),
- leftVal, leftOpToUse, 8*opSize, mvec, mcfi);
- target.getInstrInfo().CreateSignExtensionInstructions
- (target, setCCInstr->getParent()->getParent(),
- rightVal, rightOpToUse, 8*opSize, mvec, mcfi);
- }
- }
-
- if (! isFPCompare) {
- // Integer condition: set CC and discard result.
- mvec.push_back(BuildMI(V9::SUBccr, 4)
- .addReg(leftOpToUse)
- .addReg(rightOpToUse)
- .addMReg(target.getRegInfo()
- .getZeroRegNum(), MachineOperand::Def)
- .addCCReg(tmpForCC, MachineOperand::Def));
- } else {
- // FP condition: dest of FCMP should be some FCCn register
- mvec.push_back(BuildMI(ChooseFcmpInstruction(subtreeRoot), 3)
- .addCCReg(tmpForCC, MachineOperand::Def)
- .addReg(leftOpToUse)
- .addReg(rightOpToUse));
- }
-
- if (computeBoolVal) {
- MachineOpCode movOpCode = (isFPCompare
- ? ChooseMovFpcciInstruction(subtreeRoot)
- : ChooseMovpcciForSetCC(subtreeRoot));
-
- // Unconditionally set register to 0
- M = BuildMI(V9::SETHI, 2).addZImm(0).addRegDef(setCCInstr);
- mvec.push_back(M);
-
- // Now conditionally move 1 into the register.
- // Mark the register as a use (as well as a def) because the old
- // value will be retained if the condition is false.
- M = (BuildMI(movOpCode, 3).addCCReg(tmpForCC).addZImm(1)
- .addReg(setCCInstr, MachineOperand::UseAndDef));
- mvec.push_back(M);
- }
- break;
- }
-
- case 51: // reg: Load(reg)
- case 52: // reg: Load(ptrreg)
- SetOperandsForMemInstr(ChooseLoadInstruction(
- subtreeRoot->getValue()->getType()),
- mvec, subtreeRoot, target);
- break;
-
- case 55: // reg: GetElemPtr(reg)
- case 56: // reg: GetElemPtrIdx(reg,reg)
- // If the GetElemPtr was folded into the user (parent), it will be
- // caught above. For other cases, we have to compute the address.
- SetOperandsForMemInstr(V9::ADDr, mvec, subtreeRoot, target);
- break;
-
- case 57: // reg: Alloca: Implement as 1 instruction:
- { // add %fp, offsetFromFP -> result
- AllocationInst* instr =
- cast<AllocationInst>(subtreeRoot->getInstruction());
- unsigned tsize =
- target.getTargetData().getTypeSize(instr->getAllocatedType());
- assert(tsize != 0);
- CreateCodeForFixedSizeAlloca(target, instr, tsize, 1, mvec);
- break;
- }
-
- case 58: // reg: Alloca(reg): Implement as 3 instructions:
- // mul num, typeSz -> tmp
- // sub %sp, tmp -> %sp
- { // add %sp, frameSizeBelowDynamicArea -> result
- AllocationInst* instr =
- cast<AllocationInst>(subtreeRoot->getInstruction());
- const Type* eltType = instr->getAllocatedType();
-
- // If #elements is constant, use simpler code for fixed-size allocas
- int tsize = (int) target.getTargetData().getTypeSize(eltType);
- Value* numElementsVal = NULL;
- bool isArray = instr->isArrayAllocation();
-
- if (!isArray || isa<Constant>(numElementsVal = instr->getArraySize())) {
- // total size is constant: generate code for fixed-size alloca
- unsigned numElements = isArray?
- cast<ConstantUInt>(numElementsVal)->getValue() : 1;
- CreateCodeForFixedSizeAlloca(target, instr, tsize,
- numElements, mvec);
- } else {
- // total size is not constant.
- CreateCodeForVariableSizeAlloca(target, instr, tsize,
- numElementsVal, mvec);
- }
- break;
- }
-
- case 61: // reg: Call
- { // Generate a direct (CALL) or indirect (JMPL) call.
- // Mark the return-address register, the indirection
- // register (for indirect calls), the operands of the Call,
- // and the return value (if any) as implicit operands
- // of the machine instruction.
- //
- // If this is a varargs function, floating point arguments
- // have to passed in integer registers so insert
- // copy-float-to-int instructions for each float operand.
- //
- CallInst *callInstr = cast<CallInst>(subtreeRoot->getInstruction());
- Value *callee = callInstr->getCalledValue();
- Function* calledFunc = dyn_cast<Function>(callee);
-
- // Check if this is an intrinsic function that needs a special code
- // sequence (e.g., va_start). Indirect calls cannot be special.
- //
- bool specialIntrinsic = false;
- Intrinsic::ID iid;
- if (calledFunc && (iid=(Intrinsic::ID)calledFunc->getIntrinsicID()))
- specialIntrinsic = CodeGenIntrinsic(iid, *callInstr, target, mvec);
-
- // If not, generate the normal call sequence for the function.
- // This can also handle any intrinsics that are just function calls.
- //
- if (! specialIntrinsic) {
- Function* currentFunc = callInstr->getParent()->getParent();
- MachineFunction& MF = MachineFunction::get(currentFunc);
- MachineCodeForInstruction& mcfi =
- MachineCodeForInstruction::get(callInstr);
- const SparcRegInfo& regInfo =
- (SparcRegInfo&) target.getRegInfo();
- const TargetFrameInfo& frameInfo = target.getFrameInfo();
-
- // Create hidden virtual register for return address with type void*
- TmpInstruction* retAddrReg =
- new TmpInstruction(mcfi, PointerType::get(Type::VoidTy), callInstr);
-
- // Generate the machine instruction and its operands.
- // Use CALL for direct function calls; this optimistically assumes
- // the PC-relative address fits in the CALL address field (22 bits).
- // Use JMPL for indirect calls.
- // This will be added to mvec later, after operand copies.
- //
- MachineInstr* callMI;
- if (calledFunc) // direct function call
- callMI = BuildMI(V9::CALL, 1).addPCDisp(callee);
- else // indirect function call
- callMI = (BuildMI(V9::JMPLCALLi,3).addReg(callee)
- .addSImm((int64_t)0).addRegDef(retAddrReg));
-
- const FunctionType* funcType =
- cast<FunctionType>(cast<PointerType>(callee->getType())
- ->getElementType());
- bool isVarArgs = funcType->isVarArg();
- bool noPrototype = isVarArgs && funcType->getNumParams() == 0;
-
- // Use a descriptor to pass information about call arguments
- // to the register allocator. This descriptor will be "owned"
- // and freed automatically when the MachineCodeForInstruction
- // object for the callInstr goes away.
- CallArgsDescriptor* argDesc =
- new CallArgsDescriptor(callInstr, retAddrReg,isVarArgs,noPrototype);
- assert(callInstr->getOperand(0) == callee
- && "This is assumed in the loop below!");
-
- // Insert sign-extension instructions for small signed values,
- // if this is an unknown function (i.e., called via a funcptr)
- // or an external one (i.e., which may not be compiled by llc).
- //
- if (calledFunc == NULL || calledFunc->isExternal()) {
- for (unsigned i=1, N=callInstr->getNumOperands(); i < N; ++i) {
- Value* argVal = callInstr->getOperand(i);
- const Type* argType = argVal->getType();
- if (argType->isIntegral() && argType->isSigned()) {
- unsigned argSize = target.getTargetData().getTypeSize(argType);
- if (argSize <= 4) {
- // create a temporary virtual reg. to hold the sign-extension
- TmpInstruction* argExtend = new TmpInstruction(mcfi, argVal);
-
- // sign-extend argVal and put the result in the temporary reg.
- target.getInstrInfo().CreateSignExtensionInstructions
- (target, currentFunc, argVal, argExtend,
- 8*argSize, mvec, mcfi);
-
- // replace argVal with argExtend in CallArgsDescriptor
- argDesc->getArgInfo(i-1).replaceArgVal(argExtend);
- }
- }
- }
- }
-
- // Insert copy instructions to get all the arguments into
- // all the places that they need to be.
- //
- for (unsigned i=1, N=callInstr->getNumOperands(); i < N; ++i) {
- int argNo = i-1;
- CallArgInfo& argInfo = argDesc->getArgInfo(argNo);
- Value* argVal = argInfo.getArgVal(); // don't use callInstr arg here
- const Type* argType = argVal->getType();
- unsigned regType = regInfo.getRegTypeForDataType(argType);
- unsigned argSize = target.getTargetData().getTypeSize(argType);
- int regNumForArg = TargetRegInfo::getInvalidRegNum();
- unsigned regClassIDOfArgReg;
-
- // Check for FP arguments to varargs functions.
- // Any such argument in the first $K$ args must be passed in an
- // integer register. If there is no prototype, it must also
- // be passed as an FP register.
- // K = #integer argument registers.
- bool isFPArg = argVal->getType()->isFloatingPoint();
- if (isVarArgs && isFPArg) {
-
- if (noPrototype) {
- // It is a function with no prototype: pass value
- // as an FP value as well as a varargs value. The FP value
- // may go in a register or on the stack. The copy instruction
- // to the outgoing reg/stack is created by the normal argument
- // handling code since this is the "normal" passing mode.
- //
- regNumForArg = regInfo.regNumForFPArg(regType,
- false, false, argNo,
- regClassIDOfArgReg);
- if (regNumForArg == regInfo.getInvalidRegNum())
- argInfo.setUseStackSlot();
- else
- argInfo.setUseFPArgReg();
- }
-
- // If this arg. is in the first $K$ regs, add special copy-
- // float-to-int instructions to pass the value as an int.
- // To check if it is in the first $K$, get the register
- // number for the arg #i. These copy instructions are
- // generated here because they are extra cases and not needed
- // for the normal argument handling (some code reuse is
- // possible though -- later).
- //
- int copyRegNum = regInfo.regNumForIntArg(false, false, argNo,
- regClassIDOfArgReg);
- if (copyRegNum != regInfo.getInvalidRegNum()) {
- // Create a virtual register to represent copyReg. Mark
- // this vreg as being an implicit operand of the call MI
- const Type* loadTy = (argType == Type::FloatTy
- ? Type::IntTy : Type::LongTy);
- TmpInstruction* argVReg = new TmpInstruction(mcfi, loadTy,
- argVal, NULL,
- "argRegCopy");
- callMI->addImplicitRef(argVReg);
-
- // Get a temp stack location to use to copy
- // float-to-int via the stack.
- //
- // FIXME: For now, we allocate permanent space because
- // the stack frame manager does not allow locals to be
- // allocated (e.g., for alloca) after a temp is
- // allocated!
- //
- // int tmpOffset = MF.getInfo()->pushTempValue(argSize);
- int tmpOffset = MF.getInfo()->allocateLocalVar(argVReg);
-
- // Generate the store from FP reg to stack
- unsigned StoreOpcode = ChooseStoreInstruction(argType);
- M = BuildMI(convertOpcodeFromRegToImm(StoreOpcode), 3)
- .addReg(argVal).addMReg(regInfo.getFramePointer())
- .addSImm(tmpOffset);
- mvec.push_back(M);
-
- // Generate the load from stack to int arg reg
- unsigned LoadOpcode = ChooseLoadInstruction(loadTy);
- M = BuildMI(convertOpcodeFromRegToImm(LoadOpcode), 3)
- .addMReg(regInfo.getFramePointer()).addSImm(tmpOffset)
- .addReg(argVReg, MachineOperand::Def);
-
- // Mark operand with register it should be assigned
- // both for copy and for the callMI
- M->SetRegForOperand(M->getNumOperands()-1, copyRegNum);
- callMI->SetRegForImplicitRef(callMI->getNumImplicitRefs()-1,
- copyRegNum);
- mvec.push_back(M);
-
- // Add info about the argument to the CallArgsDescriptor
- argInfo.setUseIntArgReg();
- argInfo.setArgCopy(copyRegNum);
- } else {
- // Cannot fit in first $K$ regs so pass arg on stack
- argInfo.setUseStackSlot();
- }
- } else if (isFPArg) {
- // Get the outgoing arg reg to see if there is one.
- regNumForArg = regInfo.regNumForFPArg(regType, false, false,
- argNo, regClassIDOfArgReg);
- if (regNumForArg == regInfo.getInvalidRegNum())
- argInfo.setUseStackSlot();
- else {
- argInfo.setUseFPArgReg();
- regNumForArg =regInfo.getUnifiedRegNum(regClassIDOfArgReg,
- regNumForArg);
- }
- } else {
- // Get the outgoing arg reg to see if there is one.
- regNumForArg = regInfo.regNumForIntArg(false,false,
- argNo, regClassIDOfArgReg);
- if (regNumForArg == regInfo.getInvalidRegNum())
- argInfo.setUseStackSlot();
- else {
- argInfo.setUseIntArgReg();
- regNumForArg =regInfo.getUnifiedRegNum(regClassIDOfArgReg,
- regNumForArg);
- }
- }
-
- //
- // Now insert copy instructions to stack slot or arg. register
- //
- if (argInfo.usesStackSlot()) {
- // Get the stack offset for this argument slot.
- // FP args on stack are right justified so adjust offset!
- // int arguments are also right justified but they are
- // always loaded as a full double-word so the offset does
- // not need to be adjusted.
- int argOffset = frameInfo.getOutgoingArgOffset(MF, argNo);
- if (argType->isFloatingPoint()) {
- unsigned slotSize = frameInfo.getSizeOfEachArgOnStack();
- assert(argSize <= slotSize && "Insufficient slot size!");
- argOffset += slotSize - argSize;
- }
-
- // Now generate instruction to copy argument to stack
- MachineOpCode storeOpCode =
- (argType->isFloatingPoint()
- ? ((argSize == 4)? V9::STFi : V9::STDFi) : V9::STXi);
-
- M = BuildMI(storeOpCode, 3).addReg(argVal)
- .addMReg(regInfo.getStackPointer()).addSImm(argOffset);
- mvec.push_back(M);
- }
- else if (regNumForArg != regInfo.getInvalidRegNum()) {
-
- // Create a virtual register to represent the arg reg. Mark
- // this vreg as being an implicit operand of the call MI.
- TmpInstruction* argVReg =
- new TmpInstruction(mcfi, argVal, NULL, "argReg");
-
- callMI->addImplicitRef(argVReg);
-
- // Generate the reg-to-reg copy into the outgoing arg reg.
- // -- For FP values, create a FMOVS or FMOVD instruction
- // -- For non-FP values, create an add-with-0 instruction
- if (argType->isFloatingPoint())
- M=(BuildMI(argType==Type::FloatTy? V9::FMOVS :V9::FMOVD,2)
- .addReg(argVal).addReg(argVReg, MachineOperand::Def));
- else
- M = (BuildMI(ChooseAddInstructionByType(argType), 3)
- .addReg(argVal).addSImm((int64_t) 0)
- .addReg(argVReg, MachineOperand::Def));
-
- // Mark the operand with the register it should be assigned
- M->SetRegForOperand(M->getNumOperands()-1, regNumForArg);
- callMI->SetRegForImplicitRef(callMI->getNumImplicitRefs()-1,
- regNumForArg);
-
- mvec.push_back(M);
- }
- else
- assert(argInfo.getArgCopy() != regInfo.getInvalidRegNum() &&
- "Arg. not in stack slot, primary or secondary register?");
- }
-
- // add call instruction and delay slot before copying return value
- mvec.push_back(callMI);
- mvec.push_back(BuildMI(V9::NOP, 0));
-
- // Add the return value as an implicit ref. The call operands
- // were added above. Also, add code to copy out the return value.
- // This is always register-to-register for int or FP return values.
- //
- if (callInstr->getType() != Type::VoidTy) {
- // Get the return value reg.
- const Type* retType = callInstr->getType();
-
- int regNum = (retType->isFloatingPoint()
- ? (unsigned) SparcFloatRegClass::f0
- : (unsigned) SparcIntRegClass::o0);
- unsigned regClassID = regInfo.getRegClassIDOfType(retType);
- regNum = regInfo.getUnifiedRegNum(regClassID, regNum);
-
- // Create a virtual register to represent it and mark
- // this vreg as being an implicit operand of the call MI
- TmpInstruction* retVReg =
- new TmpInstruction(mcfi, callInstr, NULL, "argReg");
-
- callMI->addImplicitRef(retVReg, /*isDef*/ true);
-
- // Generate the reg-to-reg copy from the return value reg.
- // -- For FP values, create a FMOVS or FMOVD instruction
- // -- For non-FP values, create an add-with-0 instruction
- if (retType->isFloatingPoint())
- M = (BuildMI(retType==Type::FloatTy? V9::FMOVS : V9::FMOVD, 2)
- .addReg(retVReg).addReg(callInstr, MachineOperand::Def));
- else
- M = (BuildMI(ChooseAddInstructionByType(retType), 3)
- .addReg(retVReg).addSImm((int64_t) 0)
- .addReg(callInstr, MachineOperand::Def));
-
- // Mark the operand with the register it should be assigned
- // Also mark the implicit ref of the call defining this operand
- M->SetRegForOperand(0, regNum);
- callMI->SetRegForImplicitRef(callMI->getNumImplicitRefs()-1,regNum);
-
- mvec.push_back(M);
- }
-
- // For the CALL instruction, the ret. addr. reg. is also implicit
- if (isa<Function>(callee))
- callMI->addImplicitRef(retAddrReg, /*isDef*/ true);
-
- MF.getInfo()->popAllTempValues(); // free temps used for this inst
- }
-
- break;
- }
-
- case 62: // reg: Shl(reg, reg)
- {
- Value* argVal1 = subtreeRoot->leftChild()->getValue();
- Value* argVal2 = subtreeRoot->rightChild()->getValue();
- Instruction* shlInstr = subtreeRoot->getInstruction();
-
- const Type* opType = argVal1->getType();
- assert((opType->isInteger() || isa<PointerType>(opType)) &&
- "Shl unsupported for other types");
- unsigned opSize = target.getTargetData().getTypeSize(opType);
-
- CreateShiftInstructions(target, shlInstr->getParent()->getParent(),
- (opSize > 4)? V9::SLLXr6:V9::SLLr5,
- argVal1, argVal2, 0, shlInstr, mvec,
- MachineCodeForInstruction::get(shlInstr));
- break;
- }
-
- case 63: // reg: Shr(reg, reg)
- {
- const Type* opType = subtreeRoot->leftChild()->getValue()->getType();
- assert((opType->isInteger() || isa<PointerType>(opType)) &&
- "Shr unsupported for other types");
- unsigned opSize = target.getTargetData().getTypeSize(opType);
- Add3OperandInstr(opType->isSigned()
- ? (opSize > 4? V9::SRAXr6 : V9::SRAr5)
- : (opSize > 4? V9::SRLXr6 : V9::SRLr5),
- subtreeRoot, mvec);
- break;
- }
-
- case 64: // reg: Phi(reg,reg)
- break; // don't forward the value
-
- case 65: // reg: VANext(reg): the va_next(va_list, type) instruction
- { // Increment the va_list pointer register according to the type.
- // All LLVM argument types are <= 64 bits, so use one doubleword.
- Instruction* vaNextI = subtreeRoot->getInstruction();
- assert(target.getTargetData().getTypeSize(vaNextI->getType()) <= 8 &&
- "We assumed that all LLVM parameter types <= 8 bytes!");
- int argSize = target.getFrameInfo().getSizeOfEachArgOnStack();
- mvec.push_back(BuildMI(V9::ADDi, 3).addReg(vaNextI->getOperand(0)).
- addSImm(argSize).addRegDef(vaNextI));
- break;
- }
-
- case 66: // reg: VAArg (reg): the va_arg instruction
- { // Load argument from stack using current va_list pointer value.
- // Use 64-bit load for all non-FP args, and LDDF or double for FP.
- Instruction* vaArgI = subtreeRoot->getInstruction();
- MachineOpCode loadOp = (vaArgI->getType()->isFloatingPoint()
- ? (vaArgI->getType() == Type::FloatTy
- ? V9::LDFi : V9::LDDFi)
- : V9::LDXi);
- mvec.push_back(BuildMI(loadOp, 3).addReg(vaArgI->getOperand(0)).
- addSImm(0).addRegDef(vaArgI));
- break;
- }
-
- case 71: // reg: VReg
- case 72: // reg: Constant
- break; // don't forward the value
-
- default:
- assert(0 && "Unrecognized BURG rule");
- break;
- }
- }
-
- if (forwardOperandNum >= 0) {
- // We did not generate a machine instruction but need to use operand.
- // If user is in the same tree, replace Value in its machine operand.
- // If not, insert a copy instruction which should get coalesced away
- // by register allocation.
- if (subtreeRoot->parent() != NULL)
- ForwardOperand(subtreeRoot, subtreeRoot->parent(), forwardOperandNum);
- else {
- std::vector<MachineInstr*> minstrVec;
- Instruction* instr = subtreeRoot->getInstruction();
- target.getInstrInfo().
- CreateCopyInstructionsByType(target,
- instr->getParent()->getParent(),
- instr->getOperand(forwardOperandNum),
- instr, minstrVec,
- MachineCodeForInstruction::get(instr));
- assert(minstrVec.size() > 0);
- mvec.insert(mvec.end(), minstrVec.begin(), minstrVec.end());
- }
- }
-
- if (maskUnsignedResult) {
- // If result is unsigned and smaller than int reg size,
- // we need to clear high bits of result value.
- assert(forwardOperandNum < 0 && "Need mask but no instruction generated");
- Instruction* dest = subtreeRoot->getInstruction();
- if (dest->getType()->isUnsigned()) {
- unsigned destSize=target.getTargetData().getTypeSize(dest->getType());
- if (destSize <= 4) {
- // Mask high 64 - N bits, where N = 4*destSize.
-
- // Use a TmpInstruction to represent the
- // intermediate result before masking. Since those instructions
- // have already been generated, go back and substitute tmpI
- // for dest in the result position of each one of them.
- //
- MachineCodeForInstruction& mcfi = MachineCodeForInstruction::get(dest);
- TmpInstruction *tmpI = new TmpInstruction(mcfi, dest->getType(),
- dest, NULL, "maskHi");
- Value* srlArgToUse = tmpI;
-
- unsigned numSubst = 0;
- for (unsigned i=0, N=mvec.size(); i < N; ++i) {
-
- // Make sure we substitute all occurrences of dest in these instrs.
- // Otherwise, we will have bogus code.
- bool someArgsWereIgnored = false;
-
- // Make sure not to substitute an upwards-exposed use -- that would
- // introduce a use of `tmpI' with no preceding def. Therefore,
- // substitute a use or def-and-use operand only if a previous def
- // operand has already been substituted (i.e., numSusbt > 0).
- //
- numSubst += mvec[i]->substituteValue(dest, tmpI,
- /*defsOnly*/ numSubst == 0,
- /*notDefsAndUses*/ numSubst > 0,
- someArgsWereIgnored);
- assert(!someArgsWereIgnored &&
- "Operand `dest' exists but not replaced: probably bogus!");
- }
- assert(numSubst > 0 && "Operand `dest' not replaced: probably bogus!");
-
- // Left shift 32-N if size (N) is less than 32 bits.
- // Use another tmp. virtual register to represent this result.
- if (destSize < 4) {
- srlArgToUse = new TmpInstruction(mcfi, dest->getType(),
- tmpI, NULL, "maskHi2");
- mvec.push_back(BuildMI(V9::SLLXi6, 3).addReg(tmpI)
- .addZImm(8*(4-destSize))
- .addReg(srlArgToUse, MachineOperand::Def));
- }
-
- // Logical right shift 32-N to get zero extension in top 64-N bits.
- mvec.push_back(BuildMI(V9::SRLi5, 3).addReg(srlArgToUse)
- .addZImm(8*(4-destSize))
- .addReg(dest, MachineOperand::Def));
-
- } else if (destSize < 8) {
- assert(0 && "Unsupported type size: 32 < size < 64 bits");
- }
- }
- }
-}
-
-}
OpenPOWER on IntegriCloud