summaryrefslogtreecommitdiffstats
path: root/llvm/lib/Target/Sparc/RegAlloc/PhyRegAlloc.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'llvm/lib/Target/Sparc/RegAlloc/PhyRegAlloc.cpp')
-rw-r--r--llvm/lib/Target/Sparc/RegAlloc/PhyRegAlloc.cpp1379
1 files changed, 0 insertions, 1379 deletions
diff --git a/llvm/lib/Target/Sparc/RegAlloc/PhyRegAlloc.cpp b/llvm/lib/Target/Sparc/RegAlloc/PhyRegAlloc.cpp
deleted file mode 100644
index 7b224119cef..00000000000
--- a/llvm/lib/Target/Sparc/RegAlloc/PhyRegAlloc.cpp
+++ /dev/null
@@ -1,1379 +0,0 @@
-//===-- PhyRegAlloc.cpp ---------------------------------------------------===//
-//
-// The LLVM Compiler Infrastructure
-//
-// This file was developed by the LLVM research group and is distributed under
-// the University of Illinois Open Source License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-//
-// Traditional graph-coloring global register allocator currently used
-// by the SPARC back-end.
-//
-// NOTE: This register allocator has some special support
-// for the Reoptimizer, such as not saving some registers on calls to
-// the first-level instrumentation function.
-//
-// NOTE 2: This register allocator can save its state in a global
-// variable in the module it's working on. This feature is not
-// thread-safe; if you have doubts, leave it turned off.
-//
-//===----------------------------------------------------------------------===//
-
-#include "AllocInfo.h"
-#include "IGNode.h"
-#include "PhyRegAlloc.h"
-#include "RegAllocCommon.h"
-#include "RegClass.h"
-#include "../LiveVar/FunctionLiveVarInfo.h"
-#include "llvm/Constants.h"
-#include "llvm/DerivedTypes.h"
-#include "llvm/iOther.h"
-#include "llvm/Module.h"
-#include "llvm/Type.h"
-#include "llvm/Analysis/LoopInfo.h"
-#include "llvm/CodeGen/InstrSelection.h"
-#include "llvm/CodeGen/MachineCodeForInstruction.h"
-#include "llvm/CodeGen/MachineFunction.h"
-#include "llvm/CodeGen/MachineFunctionInfo.h"
-#include "llvm/CodeGen/MachineInstr.h"
-#include "llvm/CodeGen/MachineInstrBuilder.h"
-#include "llvm/CodeGen/MachineInstrAnnot.h"
-#include "llvm/CodeGen/Passes.h"
-#include "llvm/Support/InstIterator.h"
-#include "llvm/Target/TargetInstrInfo.h"
-#include "Support/CommandLine.h"
-#include "Support/SetOperations.h"
-#include "Support/STLExtras.h"
-#include <cmath>
-
-namespace llvm {
-
-RegAllocDebugLevel_t DEBUG_RA;
-
-/// The reoptimizer wants to be able to grovel through the register
-/// allocator's state after it has done its job. This is a hack.
-///
-PhyRegAlloc::SavedStateMapTy ExportedFnAllocState;
-const bool SaveStateToModule = true;
-
-static cl::opt<RegAllocDebugLevel_t, true>
-DRA_opt("dregalloc", cl::Hidden, cl::location(DEBUG_RA),
- cl::desc("enable register allocation debugging information"),
- cl::values(
- clEnumValN(RA_DEBUG_None , "n", "disable debug output"),
- clEnumValN(RA_DEBUG_Results, "y", "debug output for allocation results"),
- clEnumValN(RA_DEBUG_Coloring, "c", "debug output for graph coloring step"),
- clEnumValN(RA_DEBUG_Interference,"ig","debug output for interference graphs"),
- clEnumValN(RA_DEBUG_LiveRanges , "lr","debug output for live ranges"),
- clEnumValN(RA_DEBUG_Verbose, "v", "extra debug output"),
- 0));
-
-static cl::opt<bool>
-SaveRegAllocState("save-ra-state", cl::Hidden,
- cl::desc("write reg. allocator state into module"));
-
-FunctionPass *getRegisterAllocator(TargetMachine &T) {
- return new PhyRegAlloc (T);
-}
-
-void PhyRegAlloc::getAnalysisUsage(AnalysisUsage &AU) const {
- AU.addRequired<LoopInfo> ();
- AU.addRequired<FunctionLiveVarInfo> ();
-}
-
-
-/// Initialize interference graphs (one in each reg class) and IGNodeLists
-/// (one in each IG). The actual nodes will be pushed later.
-///
-void PhyRegAlloc::createIGNodeListsAndIGs() {
- if (DEBUG_RA >= RA_DEBUG_LiveRanges) std::cerr << "Creating LR lists ...\n";
-
- LiveRangeMapType::const_iterator HMI = LRI->getLiveRangeMap()->begin();
- LiveRangeMapType::const_iterator HMIEnd = LRI->getLiveRangeMap()->end();
-
- for (; HMI != HMIEnd ; ++HMI ) {
- if (HMI->first) {
- LiveRange *L = HMI->second; // get the LiveRange
- if (!L) {
- if (DEBUG_RA)
- std::cerr << "\n**** ?!?WARNING: NULL LIVE RANGE FOUND FOR: "
- << RAV(HMI->first) << "****\n";
- continue;
- }
-
- // if the Value * is not null, and LR is not yet written to the IGNodeList
- if (!(L->getUserIGNode()) ) {
- RegClass *const RC = // RegClass of first value in the LR
- RegClassList[ L->getRegClassID() ];
- RC->addLRToIG(L); // add this LR to an IG
- }
- }
- }
-
- // init RegClassList
- for ( unsigned rc=0; rc < NumOfRegClasses ; rc++)
- RegClassList[rc]->createInterferenceGraph();
-
- if (DEBUG_RA >= RA_DEBUG_LiveRanges) std::cerr << "LRLists Created!\n";
-}
-
-
-/// Add all interferences for a given instruction. Interference occurs only
-/// if the LR of Def (Inst or Arg) is of the same reg class as that of live
-/// var. The live var passed to this function is the LVset AFTER the
-/// instruction.
-///
-void PhyRegAlloc::addInterference(const Value *Def, const ValueSet *LVSet,
- bool isCallInst) {
- ValueSet::const_iterator LIt = LVSet->begin();
-
- // get the live range of instruction
- const LiveRange *const LROfDef = LRI->getLiveRangeForValue( Def );
-
- IGNode *const IGNodeOfDef = LROfDef->getUserIGNode();
- assert( IGNodeOfDef );
-
- RegClass *const RCOfDef = LROfDef->getRegClass();
-
- // for each live var in live variable set
- for ( ; LIt != LVSet->end(); ++LIt) {
-
- if (DEBUG_RA >= RA_DEBUG_Verbose)
- std::cerr << "< Def=" << RAV(Def) << ", Lvar=" << RAV(*LIt) << "> ";
-
- // get the live range corresponding to live var
- LiveRange *LROfVar = LRI->getLiveRangeForValue(*LIt);
-
- // LROfVar can be null if it is a const since a const
- // doesn't have a dominating def - see Assumptions above
- if (LROfVar)
- if (LROfDef != LROfVar) // do not set interf for same LR
- if (RCOfDef == LROfVar->getRegClass()) // 2 reg classes are the same
- RCOfDef->setInterference( LROfDef, LROfVar);
- }
-}
-
-
-/// For a call instruction, this method sets the CallInterference flag in
-/// the LR of each variable live in the Live Variable Set live after the
-/// call instruction (except the return value of the call instruction - since
-/// the return value does not interfere with that call itself).
-///
-void PhyRegAlloc::setCallInterferences(const MachineInstr *MInst,
- const ValueSet *LVSetAft) {
- if (DEBUG_RA >= RA_DEBUG_Interference)
- std::cerr << "\n For call inst: " << *MInst;
-
- // for each live var in live variable set after machine inst
- for (ValueSet::const_iterator LIt = LVSetAft->begin(), LEnd = LVSetAft->end();
- LIt != LEnd; ++LIt) {
-
- // get the live range corresponding to live var
- LiveRange *const LR = LRI->getLiveRangeForValue(*LIt );
-
- // LR can be null if it is a const since a const
- // doesn't have a dominating def - see Assumptions above
- if (LR ) {
- if (DEBUG_RA >= RA_DEBUG_Interference) {
- std::cerr << "\n\tLR after Call: ";
- printSet(*LR);
- }
- LR->setCallInterference();
- if (DEBUG_RA >= RA_DEBUG_Interference) {
- std::cerr << "\n ++After adding call interference for LR: " ;
- printSet(*LR);
- }
- }
-
- }
-
- // Now find the LR of the return value of the call
- // We do this because, we look at the LV set *after* the instruction
- // to determine, which LRs must be saved across calls. The return value
- // of the call is live in this set - but it does not interfere with call
- // (i.e., we can allocate a volatile register to the return value)
- CallArgsDescriptor* argDesc = CallArgsDescriptor::get(MInst);
-
- if (const Value *RetVal = argDesc->getReturnValue()) {
- LiveRange *RetValLR = LRI->getLiveRangeForValue( RetVal );
- assert( RetValLR && "No LR for RetValue of call");
- RetValLR->clearCallInterference();
- }
-
- // If the CALL is an indirect call, find the LR of the function pointer.
- // That has a call interference because it conflicts with outgoing args.
- if (const Value *AddrVal = argDesc->getIndirectFuncPtr()) {
- LiveRange *AddrValLR = LRI->getLiveRangeForValue( AddrVal );
- assert( AddrValLR && "No LR for indirect addr val of call");
- AddrValLR->setCallInterference();
- }
-}
-
-
-/// Create interferences in the IG of each RegClass, and calculate the spill
-/// cost of each Live Range (it is done in this method to save another pass
-/// over the code).
-///
-void PhyRegAlloc::buildInterferenceGraphs() {
- if (DEBUG_RA >= RA_DEBUG_Interference)
- std::cerr << "Creating interference graphs ...\n";
-
- unsigned BBLoopDepthCost;
- for (MachineFunction::iterator BBI = MF->begin(), BBE = MF->end();
- BBI != BBE; ++BBI) {
- const MachineBasicBlock &MBB = *BBI;
- const BasicBlock *BB = MBB.getBasicBlock();
-
- // find the 10^(loop_depth) of this BB
- BBLoopDepthCost = (unsigned)pow(10.0, LoopDepthCalc->getLoopDepth(BB));
-
- // get the iterator for machine instructions
- MachineBasicBlock::const_iterator MII = MBB.begin();
-
- // iterate over all the machine instructions in BB
- for ( ; MII != MBB.end(); ++MII) {
- const MachineInstr *MInst = MII;
-
- // get the LV set after the instruction
- const ValueSet &LVSetAI = LVI->getLiveVarSetAfterMInst(MInst, BB);
- bool isCallInst = TM.getInstrInfo().isCall(MInst->getOpcode());
-
- if (isCallInst) {
- // set the isCallInterference flag of each live range which extends
- // across this call instruction. This information is used by graph
- // coloring algorithm to avoid allocating volatile colors to live ranges
- // that span across calls (since they have to be saved/restored)
- setCallInterferences(MInst, &LVSetAI);
- }
-
- // iterate over all MI operands to find defs
- for (MachineInstr::const_val_op_iterator OpI = MInst->begin(),
- OpE = MInst->end(); OpI != OpE; ++OpI) {
- if (OpI.isDef()) // create a new LR since def
- addInterference(*OpI, &LVSetAI, isCallInst);
-
- // Calculate the spill cost of each live range
- LiveRange *LR = LRI->getLiveRangeForValue(*OpI);
- if (LR) LR->addSpillCost(BBLoopDepthCost);
- }
-
- // Mark all operands of pseudo-instructions as interfering with one
- // another. This must be done because pseudo-instructions may be
- // expanded to multiple instructions by the assembler, so all the
- // operands must get distinct registers.
- if (TM.getInstrInfo().isPseudoInstr(MInst->getOpcode()))
- addInterf4PseudoInstr(MInst);
-
- // Also add interference for any implicit definitions in a machine
- // instr (currently, only calls have this).
- unsigned NumOfImpRefs = MInst->getNumImplicitRefs();
- for (unsigned z=0; z < NumOfImpRefs; z++)
- if (MInst->getImplicitOp(z).isDef())
- addInterference( MInst->getImplicitRef(z), &LVSetAI, isCallInst );
-
- } // for all machine instructions in BB
- } // for all BBs in function
-
- // add interferences for function arguments. Since there are no explicit
- // defs in the function for args, we have to add them manually
- addInterferencesForArgs();
-
- if (DEBUG_RA >= RA_DEBUG_Interference)
- std::cerr << "Interference graphs calculated!\n";
-}
-
-
-/// Mark all operands of the given MachineInstr as interfering with one
-/// another.
-///
-void PhyRegAlloc::addInterf4PseudoInstr(const MachineInstr *MInst) {
- bool setInterf = false;
-
- // iterate over MI operands to find defs
- for (MachineInstr::const_val_op_iterator It1 = MInst->begin(),
- ItE = MInst->end(); It1 != ItE; ++It1) {
- const LiveRange *LROfOp1 = LRI->getLiveRangeForValue(*It1);
- assert((LROfOp1 || It1.isDef()) && "No LR for Def in PSEUDO insruction");
-
- MachineInstr::const_val_op_iterator It2 = It1;
- for (++It2; It2 != ItE; ++It2) {
- const LiveRange *LROfOp2 = LRI->getLiveRangeForValue(*It2);
-
- if (LROfOp2) {
- RegClass *RCOfOp1 = LROfOp1->getRegClass();
- RegClass *RCOfOp2 = LROfOp2->getRegClass();
-
- if (RCOfOp1 == RCOfOp2 ){
- RCOfOp1->setInterference( LROfOp1, LROfOp2 );
- setInterf = true;
- }
- } // if Op2 has a LR
- } // for all other defs in machine instr
- } // for all operands in an instruction
-
- if (!setInterf && MInst->getNumOperands() > 2) {
- std::cerr << "\nInterf not set for any operand in pseudo instr:\n";
- std::cerr << *MInst;
- assert(0 && "Interf not set for pseudo instr with > 2 operands" );
- }
-}
-
-
-/// Add interferences for incoming arguments to a function.
-///
-void PhyRegAlloc::addInterferencesForArgs() {
- // get the InSet of root BB
- const ValueSet &InSet = LVI->getInSetOfBB(&Fn->front());
-
- for (Function::const_aiterator AI = Fn->abegin(); AI != Fn->aend(); ++AI) {
- // add interferences between args and LVars at start
- addInterference(AI, &InSet, false);
-
- if (DEBUG_RA >= RA_DEBUG_Interference)
- std::cerr << " - %% adding interference for argument " << RAV(AI) << "\n";
- }
-}
-
-
-/// The following are utility functions used solely by updateMachineCode and
-/// the functions that it calls. They should probably be folded back into
-/// updateMachineCode at some point.
-///
-
-// used by: updateMachineCode (1 time), PrependInstructions (1 time)
-inline void InsertBefore(MachineInstr* newMI, MachineBasicBlock& MBB,
- MachineBasicBlock::iterator& MII) {
- MII = MBB.insert(MII, newMI);
- ++MII;
-}
-
-// used by: AppendInstructions (1 time)
-inline void InsertAfter(MachineInstr* newMI, MachineBasicBlock& MBB,
- MachineBasicBlock::iterator& MII) {
- ++MII; // insert before the next instruction
- MII = MBB.insert(MII, newMI);
-}
-
-// used by: updateMachineCode (2 times)
-inline void PrependInstructions(std::vector<MachineInstr *> &IBef,
- MachineBasicBlock& MBB,
- MachineBasicBlock::iterator& MII,
- const std::string& msg) {
- if (!IBef.empty()) {
- MachineInstr* OrigMI = MII;
- std::vector<MachineInstr *>::iterator AdIt;
- for (AdIt = IBef.begin(); AdIt != IBef.end() ; ++AdIt) {
- if (DEBUG_RA) {
- if (OrigMI) std::cerr << "For MInst:\n " << *OrigMI;
- std::cerr << msg << "PREPENDed instr:\n " << **AdIt << "\n";
- }
- InsertBefore(*AdIt, MBB, MII);
- }
- }
-}
-
-// used by: updateMachineCode (1 time)
-inline void AppendInstructions(std::vector<MachineInstr *> &IAft,
- MachineBasicBlock& MBB,
- MachineBasicBlock::iterator& MII,
- const std::string& msg) {
- if (!IAft.empty()) {
- MachineInstr* OrigMI = MII;
- std::vector<MachineInstr *>::iterator AdIt;
- for ( AdIt = IAft.begin(); AdIt != IAft.end() ; ++AdIt ) {
- if (DEBUG_RA) {
- if (OrigMI) std::cerr << "For MInst:\n " << *OrigMI;
- std::cerr << msg << "APPENDed instr:\n " << **AdIt << "\n";
- }
- InsertAfter(*AdIt, MBB, MII);
- }
- }
-}
-
-/// Set the registers for operands in the given MachineInstr, if a register was
-/// successfully allocated. Return true if any of its operands has been marked
-/// for spill.
-///
-bool PhyRegAlloc::markAllocatedRegs(MachineInstr* MInst)
-{
- bool instrNeedsSpills = false;
-
- // First, set the registers for operands in the machine instruction
- // if a register was successfully allocated. Do this first because we
- // will need to know which registers are already used by this instr'n.
- for (unsigned OpNum=0; OpNum < MInst->getNumOperands(); ++OpNum) {
- MachineOperand& Op = MInst->getOperand(OpNum);
- if (Op.getType() == MachineOperand::MO_VirtualRegister ||
- Op.getType() == MachineOperand::MO_CCRegister) {
- const Value *const Val = Op.getVRegValue();
- if (const LiveRange* LR = LRI->getLiveRangeForValue(Val)) {
- // Remember if any operand needs spilling
- instrNeedsSpills |= LR->isMarkedForSpill();
-
- // An operand may have a color whether or not it needs spilling
- if (LR->hasColor())
- MInst->SetRegForOperand(OpNum,
- MRI.getUnifiedRegNum(LR->getRegClassID(),
- LR->getColor()));
- }
- }
- } // for each operand
-
- return instrNeedsSpills;
-}
-
-/// Mark allocated registers (using markAllocatedRegs()) on the instruction
-/// that MII points to. Then, if it's a call instruction, insert caller-saving
-/// code before and after it. Finally, insert spill code before and after it,
-/// using insertCode4SpilledLR().
-///
-void PhyRegAlloc::updateInstruction(MachineBasicBlock::iterator& MII,
- MachineBasicBlock &MBB) {
- MachineInstr* MInst = MII;
- unsigned Opcode = MInst->getOpcode();
-
- // Reset tmp stack positions so they can be reused for each machine instr.
- MF->getInfo()->popAllTempValues();
-
- // Mark the operands for which regs have been allocated.
- bool instrNeedsSpills = markAllocatedRegs(MII);
-
-#ifndef NDEBUG
- // Mark that the operands have been updated. Later,
- // setRelRegsUsedByThisInst() is called to find registers used by each
- // MachineInst, and it should not be used for an instruction until
- // this is done. This flag just serves as a sanity check.
- OperandsColoredMap[MInst] = true;
-#endif
-
- // Now insert caller-saving code before/after the call.
- // Do this before inserting spill code since some registers must be
- // used by save/restore and spill code should not use those registers.
- if (TM.getInstrInfo().isCall(Opcode)) {
- AddedInstrns &AI = AddedInstrMap[MInst];
- insertCallerSavingCode(AI.InstrnsBefore, AI.InstrnsAfter, MInst,
- MBB.getBasicBlock());
- }
-
- // Now insert spill code for remaining operands not allocated to
- // registers. This must be done even for call return instructions
- // since those are not handled by the special code above.
- if (instrNeedsSpills)
- for (unsigned OpNum=0; OpNum < MInst->getNumOperands(); ++OpNum) {
- MachineOperand& Op = MInst->getOperand(OpNum);
- if (Op.getType() == MachineOperand::MO_VirtualRegister ||
- Op.getType() == MachineOperand::MO_CCRegister) {
- const Value* Val = Op.getVRegValue();
- if (const LiveRange *LR = LRI->getLiveRangeForValue(Val))
- if (LR->isMarkedForSpill())
- insertCode4SpilledLR(LR, MII, MBB, OpNum);
- }
- } // for each operand
-}
-
-/// Iterate over all the MachineBasicBlocks in the current function and set
-/// the allocated registers for each instruction (using updateInstruction()),
-/// after register allocation is complete. Then move code out of delay slots.
-///
-void PhyRegAlloc::updateMachineCode()
-{
- // Insert any instructions needed at method entry
- MachineBasicBlock::iterator MII = MF->front().begin();
- PrependInstructions(AddedInstrAtEntry.InstrnsBefore, MF->front(), MII,
- "At function entry: \n");
- assert(AddedInstrAtEntry.InstrnsAfter.empty() &&
- "InstrsAfter should be unnecessary since we are just inserting at "
- "the function entry point here.");
-
- for (MachineFunction::iterator BBI = MF->begin(), BBE = MF->end();
- BBI != BBE; ++BBI) {
- MachineBasicBlock &MBB = *BBI;
-
- // Iterate over all machine instructions in BB and mark operands with
- // their assigned registers or insert spill code, as appropriate.
- // Also, fix operands of call/return instructions.
- for (MachineBasicBlock::iterator MII = MBB.begin(); MII != MBB.end(); ++MII)
- if (! TM.getInstrInfo().isDummyPhiInstr(MII->getOpcode()))
- updateInstruction(MII, MBB);
-
- // Now, move code out of delay slots of branches and returns if needed.
- // (Also, move "after" code from calls to the last delay slot instruction.)
- // Moving code out of delay slots is needed in 2 situations:
- // (1) If this is a branch and it needs instructions inserted after it,
- // move any existing instructions out of the delay slot so that the
- // instructions can go into the delay slot. This only supports the
- // case that #instrsAfter <= #delay slots.
- //
- // (2) If any instruction in the delay slot needs
- // instructions inserted, move it out of the delay slot and before the
- // branch because putting code before or after it would be VERY BAD!
- //
- // If the annul bit of the branch is set, neither of these is legal!
- // If so, we need to handle spill differently but annulling is not yet used.
- for (MachineBasicBlock::iterator MII = MBB.begin(); MII != MBB.end(); ++MII)
- if (unsigned delaySlots =
- TM.getInstrInfo().getNumDelaySlots(MII->getOpcode())) {
- MachineBasicBlock::iterator DelaySlotMI = next(MII);
- assert(DelaySlotMI != MBB.end() && "no instruction for delay slot");
-
- // Check the 2 conditions above:
- // (1) Does a branch need instructions added after it?
- // (2) O/w does delay slot instr. need instrns before or after?
- bool isBranch = (TM.getInstrInfo().isBranch(MII->getOpcode()) ||
- TM.getInstrInfo().isReturn(MII->getOpcode()));
- bool cond1 = (isBranch &&
- AddedInstrMap.count(MII) &&
- AddedInstrMap[MII].InstrnsAfter.size() > 0);
- bool cond2 = (AddedInstrMap.count(DelaySlotMI) &&
- (AddedInstrMap[DelaySlotMI].InstrnsBefore.size() > 0 ||
- AddedInstrMap[DelaySlotMI].InstrnsAfter.size() > 0));
-
- if (cond1 || cond2) {
- assert(delaySlots==1 &&
- "InsertBefore does not yet handle >1 delay slots!");
-
- if (DEBUG_RA) {
- std::cerr << "\nRegAlloc: Moved instr. with added code: "
- << *DelaySlotMI
- << " out of delay slots of instr: " << *MII;
- }
-
- // move instruction before branch
- MBB.insert(MII, MBB.remove(DelaySlotMI));
-
- // On cond1 we are done (we already moved the
- // instruction out of the delay slot). On cond2 we need
- // to insert a nop in place of the moved instruction
- if (cond2) {
- MBB.insert(MII, BuildMI(TM.getInstrInfo().getNOPOpCode(),1));
- }
- }
- else {
- // For non-branch instr with delay slots (probably a call), move
- // InstrAfter to the instr. in the last delay slot.
- MachineBasicBlock::iterator tmp = next(MII, delaySlots);
- move2DelayedInstr(MII, tmp);
- }
- }
-
- // Finally iterate over all instructions in BB and insert before/after
- for (MachineBasicBlock::iterator MII=MBB.begin(); MII != MBB.end(); ++MII) {
- MachineInstr *MInst = MII;
-
- // do not process Phis
- if (TM.getInstrInfo().isDummyPhiInstr(MInst->getOpcode()))
- continue;
-
- // if there are any added instructions...
- if (AddedInstrMap.count(MInst)) {
- AddedInstrns &CallAI = AddedInstrMap[MInst];
-
-#ifndef NDEBUG
- bool isBranch = (TM.getInstrInfo().isBranch(MInst->getOpcode()) ||
- TM.getInstrInfo().isReturn(MInst->getOpcode()));
- assert((!isBranch ||
- AddedInstrMap[MInst].InstrnsAfter.size() <=
- TM.getInstrInfo().getNumDelaySlots(MInst->getOpcode())) &&
- "Cannot put more than #delaySlots instrns after "
- "branch or return! Need to handle temps differently.");
-#endif
-
-#ifndef NDEBUG
- // Temporary sanity checking code to detect whether the same machine
- // instruction is ever inserted twice before/after a call.
- // I suspect this is happening but am not sure. --Vikram, 7/1/03.
- std::set<const MachineInstr*> instrsSeen;
- for (int i = 0, N = CallAI.InstrnsBefore.size(); i < N; ++i) {
- assert(instrsSeen.count(CallAI.InstrnsBefore[i]) == 0 &&
- "Duplicate machine instruction in InstrnsBefore!");
- instrsSeen.insert(CallAI.InstrnsBefore[i]);
- }
- for (int i = 0, N = CallAI.InstrnsAfter.size(); i < N; ++i) {
- assert(instrsSeen.count(CallAI.InstrnsAfter[i]) == 0 &&
- "Duplicate machine instruction in InstrnsBefore/After!");
- instrsSeen.insert(CallAI.InstrnsAfter[i]);
- }
-#endif
-
- // Now add the instructions before/after this MI.
- // We do this here to ensure that spill for an instruction is inserted
- // as close as possible to an instruction (see above insertCode4Spill)
- if (! CallAI.InstrnsBefore.empty())
- PrependInstructions(CallAI.InstrnsBefore, MBB, MII,"");
-
- if (! CallAI.InstrnsAfter.empty())
- AppendInstructions(CallAI.InstrnsAfter, MBB, MII,"");
-
- } // if there are any added instructions
- } // for each machine instruction
- }
-}
-
-
-/// Insert spill code for AN operand whose LR was spilled. May be called
-/// repeatedly for a single MachineInstr if it has many spilled operands. On
-/// each call, it finds a register which is not live at that instruction and
-/// also which is not used by other spilled operands of the same
-/// instruction. Then it uses this register temporarily to accommodate the
-/// spilled value.
-///
-void PhyRegAlloc::insertCode4SpilledLR(const LiveRange *LR,
- MachineBasicBlock::iterator& MII,
- MachineBasicBlock &MBB,
- const unsigned OpNum) {
- MachineInstr *MInst = MII;
- const BasicBlock *BB = MBB.getBasicBlock();
-
- assert((! TM.getInstrInfo().isCall(MInst->getOpcode()) || OpNum == 0) &&
- "Outgoing arg of a call must be handled elsewhere (func arg ok)");
- assert(! TM.getInstrInfo().isReturn(MInst->getOpcode()) &&
- "Return value of a ret must be handled elsewhere");
-
- MachineOperand& Op = MInst->getOperand(OpNum);
- bool isDef = Op.isDef();
- bool isUse = Op.isUse();
- unsigned RegType = MRI.getRegTypeForLR(LR);
- int SpillOff = LR->getSpillOffFromFP();
- RegClass *RC = LR->getRegClass();
-
- // Get the live-variable set to find registers free before this instr.
- const ValueSet &LVSetBef = LVI->getLiveVarSetBeforeMInst(MInst, BB);
-
-#ifndef NDEBUG
- // If this instr. is in the delay slot of a branch or return, we need to
- // include all live variables before that branch or return -- we don't want to
- // trample those! Verify that the set is included in the LV set before MInst.
- if (MII != MBB.begin()) {
- MachineBasicBlock::iterator PredMI = prior(MII);
- if (unsigned DS = TM.getInstrInfo().getNumDelaySlots(PredMI->getOpcode()))
- assert(set_difference(LVI->getLiveVarSetBeforeMInst(PredMI), LVSetBef)
- .empty() && "Live-var set before branch should be included in "
- "live-var set of each delay slot instruction!");
- }
-#endif
-
- MF->getInfo()->pushTempValue(MRI.getSpilledRegSize(RegType));
-
- std::vector<MachineInstr*> MIBef, MIAft;
- std::vector<MachineInstr*> AdIMid;
-
- // Choose a register to hold the spilled value, if one was not preallocated.
- // This may insert code before and after MInst to free up the value. If so,
- // this code should be first/last in the spill sequence before/after MInst.
- int TmpRegU=(LR->hasColor()
- ? MRI.getUnifiedRegNum(LR->getRegClassID(),LR->getColor())
- : getUsableUniRegAtMI(RegType, &LVSetBef, MInst, MIBef,MIAft));
-
- // Set the operand first so that it this register does not get used
- // as a scratch register for later calls to getUsableUniRegAtMI below
- MInst->SetRegForOperand(OpNum, TmpRegU);
-
- // get the added instructions for this instruction
- AddedInstrns &AI = AddedInstrMap[MInst];
-
- // We may need a scratch register to copy the spilled value to/from memory.
- // This may itself have to insert code to free up a scratch register.
- // Any such code should go before (after) the spill code for a load (store).
- // The scratch reg is not marked as used because it is only used
- // for the copy and not used across MInst.
- int scratchRegType = -1;
- int scratchReg = -1;
- if (MRI.regTypeNeedsScratchReg(RegType, scratchRegType)) {
- scratchReg = getUsableUniRegAtMI(scratchRegType, &LVSetBef,
- MInst, MIBef, MIAft);
- assert(scratchReg != MRI.getInvalidRegNum());
- }
-
- if (isUse) {
- // for a USE, we have to load the value of LR from stack to a TmpReg
- // and use the TmpReg as one operand of instruction
-
- // actual loading instruction(s)
- MRI.cpMem2RegMI(AdIMid, MRI.getFramePointer(), SpillOff, TmpRegU,
- RegType, scratchReg);
-
- // the actual load should be after the instructions to free up TmpRegU
- MIBef.insert(MIBef.end(), AdIMid.begin(), AdIMid.end());
- AdIMid.clear();
- }
-
- if (isDef) { // if this is a Def
- // for a DEF, we have to store the value produced by this instruction
- // on the stack position allocated for this LR
-
- // actual storing instruction(s)
- MRI.cpReg2MemMI(AdIMid, TmpRegU, MRI.getFramePointer(), SpillOff,
- RegType, scratchReg);
-
- MIAft.insert(MIAft.begin(), AdIMid.begin(), AdIMid.end());
- } // if !DEF
-
- // Finally, insert the entire spill code sequences before/after MInst
- AI.InstrnsBefore.insert(AI.InstrnsBefore.end(), MIBef.begin(), MIBef.end());
- AI.InstrnsAfter.insert(AI.InstrnsAfter.begin(), MIAft.begin(), MIAft.end());
-
- if (DEBUG_RA) {
- std::cerr << "\nFor Inst:\n " << *MInst;
- std::cerr << "SPILLED LR# " << LR->getUserIGNode()->getIndex();
- std::cerr << "; added Instructions:";
- for_each(MIBef.begin(), MIBef.end(), std::mem_fun(&MachineInstr::dump));
- for_each(MIAft.begin(), MIAft.end(), std::mem_fun(&MachineInstr::dump));
- }
-}
-
-
-/// Insert caller saving/restoring instructions before/after a call machine
-/// instruction (before or after any other instructions that were inserted for
-/// the call).
-///
-void
-PhyRegAlloc::insertCallerSavingCode(std::vector<MachineInstr*> &instrnsBefore,
- std::vector<MachineInstr*> &instrnsAfter,
- MachineInstr *CallMI,
- const BasicBlock *BB) {
- assert(TM.getInstrInfo().isCall(CallMI->getOpcode()));
-
- // hash set to record which registers were saved/restored
- hash_set<unsigned> PushedRegSet;
-
- CallArgsDescriptor* argDesc = CallArgsDescriptor::get(CallMI);
-
- // if the call is to a instrumentation function, do not insert save and
- // restore instructions the instrumentation function takes care of save
- // restore for volatile regs.
- //
- // FIXME: this should be made general, not specific to the reoptimizer!
- const Function *Callee = argDesc->getCallInst()->getCalledFunction();
- bool isLLVMFirstTrigger = Callee && Callee->getName() == "llvm_first_trigger";
-
- // Now check if the call has a return value (using argDesc) and if so,
- // find the LR of the TmpInstruction representing the return value register.
- // (using the last or second-last *implicit operand* of the call MI).
- // Insert it to to the PushedRegSet since we must not save that register
- // and restore it after the call.
- // We do this because, we look at the LV set *after* the instruction
- // to determine, which LRs must be saved across calls. The return value
- // of the call is live in this set - but we must not save/restore it.
- if (const Value *origRetVal = argDesc->getReturnValue()) {
- unsigned retValRefNum = (CallMI->getNumImplicitRefs() -
- (argDesc->getIndirectFuncPtr()? 1 : 2));
- const TmpInstruction* tmpRetVal =
- cast<TmpInstruction>(CallMI->getImplicitRef(retValRefNum));
- assert(tmpRetVal->getOperand(0) == origRetVal &&
- tmpRetVal->getType() == origRetVal->getType() &&
- "Wrong implicit ref?");
- LiveRange *RetValLR = LRI->getLiveRangeForValue(tmpRetVal);
- assert(RetValLR && "No LR for RetValue of call");
-
- if (! RetValLR->isMarkedForSpill())
- PushedRegSet.insert(MRI.getUnifiedRegNum(RetValLR->getRegClassID(),
- RetValLR->getColor()));
- }
-
- const ValueSet &LVSetAft = LVI->getLiveVarSetAfterMInst(CallMI, BB);
- ValueSet::const_iterator LIt = LVSetAft.begin();
-
- // for each live var in live variable set after machine inst
- for( ; LIt != LVSetAft.end(); ++LIt) {
- // get the live range corresponding to live var
- LiveRange *const LR = LRI->getLiveRangeForValue(*LIt);
-
- // LR can be null if it is a const since a const
- // doesn't have a dominating def - see Assumptions above
- if (LR) {
- if (! LR->isMarkedForSpill()) {
- assert(LR->hasColor() && "LR is neither spilled nor colored?");
- unsigned RCID = LR->getRegClassID();
- unsigned Color = LR->getColor();
-
- if (MRI.isRegVolatile(RCID, Color) ) {
- // if this is a call to the first-level reoptimizer
- // instrumentation entry point, and the register is not
- // modified by call, don't save and restore it.
- if (isLLVMFirstTrigger && !MRI.modifiedByCall(RCID, Color))
- continue;
-
- // if the value is in both LV sets (i.e., live before and after
- // the call machine instruction)
- unsigned Reg = MRI.getUnifiedRegNum(RCID, Color);
-
- // if we haven't already pushed this register...
- if( PushedRegSet.find(Reg) == PushedRegSet.end() ) {
- unsigned RegType = MRI.getRegTypeForLR(LR);
-
- // Now get two instructions - to push on stack and pop from stack
- // and add them to InstrnsBefore and InstrnsAfter of the
- // call instruction
- int StackOff =
- MF->getInfo()->pushTempValue(MRI.getSpilledRegSize(RegType));
-
- //---- Insert code for pushing the reg on stack ----------
-
- std::vector<MachineInstr*> AdIBef, AdIAft;
-
- // We may need a scratch register to copy the saved value
- // to/from memory. This may itself have to insert code to
- // free up a scratch register. Any such code should go before
- // the save code. The scratch register, if any, is by default
- // temporary and not "used" by the instruction unless the
- // copy code itself decides to keep the value in the scratch reg.
- int scratchRegType = -1;
- int scratchReg = -1;
- if (MRI.regTypeNeedsScratchReg(RegType, scratchRegType))
- { // Find a register not live in the LVSet before CallMI
- const ValueSet &LVSetBef =
- LVI->getLiveVarSetBeforeMInst(CallMI, BB);
- scratchReg = getUsableUniRegAtMI(scratchRegType, &LVSetBef,
- CallMI, AdIBef, AdIAft);
- assert(scratchReg != MRI.getInvalidRegNum());
- }
-
- if (AdIBef.size() > 0)
- instrnsBefore.insert(instrnsBefore.end(),
- AdIBef.begin(), AdIBef.end());
-
- MRI.cpReg2MemMI(instrnsBefore, Reg, MRI.getFramePointer(),
- StackOff, RegType, scratchReg);
-
- if (AdIAft.size() > 0)
- instrnsBefore.insert(instrnsBefore.end(),
- AdIAft.begin(), AdIAft.end());
-
- //---- Insert code for popping the reg from the stack ----------
- AdIBef.clear();
- AdIAft.clear();
-
- // We may need a scratch register to copy the saved value
- // from memory. This may itself have to insert code to
- // free up a scratch register. Any such code should go
- // after the save code. As above, scratch is not marked "used".
- scratchRegType = -1;
- scratchReg = -1;
- if (MRI.regTypeNeedsScratchReg(RegType, scratchRegType))
- { // Find a register not live in the LVSet after CallMI
- scratchReg = getUsableUniRegAtMI(scratchRegType, &LVSetAft,
- CallMI, AdIBef, AdIAft);
- assert(scratchReg != MRI.getInvalidRegNum());
- }
-
- if (AdIBef.size() > 0)
- instrnsAfter.insert(instrnsAfter.end(),
- AdIBef.begin(), AdIBef.end());
-
- MRI.cpMem2RegMI(instrnsAfter, MRI.getFramePointer(), StackOff,
- Reg, RegType, scratchReg);
-
- if (AdIAft.size() > 0)
- instrnsAfter.insert(instrnsAfter.end(),
- AdIAft.begin(), AdIAft.end());
-
- PushedRegSet.insert(Reg);
-
- if(DEBUG_RA) {
- std::cerr << "\nFor call inst:" << *CallMI;
- std::cerr << " -inserted caller saving instrs: Before:\n\t ";
- for_each(instrnsBefore.begin(), instrnsBefore.end(),
- std::mem_fun(&MachineInstr::dump));
- std::cerr << " -and After:\n\t ";
- for_each(instrnsAfter.begin(), instrnsAfter.end(),
- std::mem_fun(&MachineInstr::dump));
- }
- } // if not already pushed
- } // if LR has a volatile color
- } // if LR has color
- } // if there is a LR for Var
- } // for each value in the LV set after instruction
-}
-
-
-/// Returns the unified register number of a temporary register to be used
-/// BEFORE MInst. If no register is available, it will pick one and modify
-/// MIBef and MIAft to contain instructions used to free up this returned
-/// register.
-///
-int PhyRegAlloc::getUsableUniRegAtMI(const int RegType,
- const ValueSet *LVSetBef,
- MachineInstr *MInst,
- std::vector<MachineInstr*>& MIBef,
- std::vector<MachineInstr*>& MIAft) {
- RegClass* RC = getRegClassByID(MRI.getRegClassIDOfRegType(RegType));
-
- int RegU = getUnusedUniRegAtMI(RC, RegType, MInst, LVSetBef);
-
- if (RegU == -1) {
- // we couldn't find an unused register. Generate code to free up a reg by
- // saving it on stack and restoring after the instruction
-
- int TmpOff = MF->getInfo()->pushTempValue(MRI.getSpilledRegSize(RegType));
-
- RegU = getUniRegNotUsedByThisInst(RC, RegType, MInst);
-
- // Check if we need a scratch register to copy this register to memory.
- int scratchRegType = -1;
- if (MRI.regTypeNeedsScratchReg(RegType, scratchRegType)) {
- int scratchReg = getUsableUniRegAtMI(scratchRegType, LVSetBef,
- MInst, MIBef, MIAft);
- assert(scratchReg != MRI.getInvalidRegNum());
-
- // We may as well hold the value in the scratch register instead
- // of copying it to memory and back. But we have to mark the
- // register as used by this instruction, so it does not get used
- // as a scratch reg. by another operand or anyone else.
- ScratchRegsUsed.insert(std::make_pair(MInst, scratchReg));
- MRI.cpReg2RegMI(MIBef, RegU, scratchReg, RegType);
- MRI.cpReg2RegMI(MIAft, scratchReg, RegU, RegType);
- } else { // the register can be copied directly to/from memory so do it.
- MRI.cpReg2MemMI(MIBef, RegU, MRI.getFramePointer(), TmpOff, RegType);
- MRI.cpMem2RegMI(MIAft, MRI.getFramePointer(), TmpOff, RegU, RegType);
- }
- }
-
- return RegU;
-}
-
-
-/// Returns the register-class register number of a new unused register that
-/// can be used to accommodate a temporary value. May be called repeatedly
-/// for a single MachineInstr. On each call, it finds a register which is not
-/// live at that instruction and which is not used by any spilled operands of
-/// that instruction.
-///
-int PhyRegAlloc::getUnusedUniRegAtMI(RegClass *RC, const int RegType,
- const MachineInstr *MInst,
- const ValueSet* LVSetBef) {
- RC->clearColorsUsed(); // Reset array
-
- if (LVSetBef == NULL) {
- LVSetBef = &LVI->getLiveVarSetBeforeMInst(MInst);
- assert(LVSetBef != NULL && "Unable to get live-var set before MInst?");
- }
-
- ValueSet::const_iterator LIt = LVSetBef->begin();
-
- // for each live var in live variable set after machine inst
- for ( ; LIt != LVSetBef->end(); ++LIt) {
- // Get the live range corresponding to live var, and its RegClass
- LiveRange *const LRofLV = LRI->getLiveRangeForValue(*LIt );
-
- // LR can be null if it is a const since a const
- // doesn't have a dominating def - see Assumptions above
- if (LRofLV && LRofLV->getRegClass() == RC && LRofLV->hasColor())
- RC->markColorsUsed(LRofLV->getColor(),
- MRI.getRegTypeForLR(LRofLV), RegType);
- }
-
- // It is possible that one operand of this MInst was already spilled
- // and it received some register temporarily. If that's the case,
- // it is recorded in machine operand. We must skip such registers.
- setRelRegsUsedByThisInst(RC, RegType, MInst);
-
- int unusedReg = RC->getUnusedColor(RegType); // find first unused color
- if (unusedReg >= 0)
- return MRI.getUnifiedRegNum(RC->getID(), unusedReg);
-
- return -1;
-}
-
-
-/// Return the unified register number of a register in class RC which is not
-/// used by any operands of MInst.
-///
-int PhyRegAlloc::getUniRegNotUsedByThisInst(RegClass *RC,
- const int RegType,
- const MachineInstr *MInst) {
- RC->clearColorsUsed();
-
- setRelRegsUsedByThisInst(RC, RegType, MInst);
-
- // find the first unused color
- int unusedReg = RC->getUnusedColor(RegType);
- assert(unusedReg >= 0 &&
- "FATAL: No free register could be found in reg class!!");
-
- return MRI.getUnifiedRegNum(RC->getID(), unusedReg);
-}
-
-
-/// Modify the IsColorUsedArr of register class RC, by setting the bits
-/// corresponding to register RegNo. This is a helper method of
-/// setRelRegsUsedByThisInst().
-///
-static void markRegisterUsed(int RegNo, RegClass *RC, int RegType,
- const TargetRegInfo &TRI) {
- unsigned classId = 0;
- int classRegNum = TRI.getClassRegNum(RegNo, classId);
- if (RC->getID() == classId)
- RC->markColorsUsed(classRegNum, RegType, RegType);
-}
-
-void PhyRegAlloc::setRelRegsUsedByThisInst(RegClass *RC, int RegType,
- const MachineInstr *MI) {
- assert(OperandsColoredMap[MI] == true &&
- "Illegal to call setRelRegsUsedByThisInst() until colored operands "
- "are marked for an instruction.");
-
- // Add the registers already marked as used by the instruction. Both
- // explicit and implicit operands are set.
- for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i)
- if (MI->getOperand(i).hasAllocatedReg())
- markRegisterUsed(MI->getOperand(i).getReg(), RC, RegType,MRI);
-
- for (unsigned i = 0, e = MI->getNumImplicitRefs(); i != e; ++i)
- if (MI->getImplicitOp(i).hasAllocatedReg())
- markRegisterUsed(MI->getImplicitOp(i).getReg(), RC, RegType,MRI);
-
- // Add all of the scratch registers that are used to save values across the
- // instruction (e.g., for saving state register values).
- std::pair<ScratchRegsUsedTy::iterator, ScratchRegsUsedTy::iterator>
- IR = ScratchRegsUsed.equal_range(MI);
- for (ScratchRegsUsedTy::iterator I = IR.first; I != IR.second; ++I)
- markRegisterUsed(I->second, RC, RegType, MRI);
-
- // If there are implicit references, mark their allocated regs as well
- for (unsigned z=0; z < MI->getNumImplicitRefs(); z++)
- if (const LiveRange*
- LRofImpRef = LRI->getLiveRangeForValue(MI->getImplicitRef(z)))
- if (LRofImpRef->hasColor())
- // this implicit reference is in a LR that received a color
- RC->markColorsUsed(LRofImpRef->getColor(),
- MRI.getRegTypeForLR(LRofImpRef), RegType);
-}
-
-
-/// If there are delay slots for an instruction, the instructions added after
-/// it must really go after the delayed instruction(s). So, we Move the
-/// InstrAfter of that instruction to the corresponding delayed instruction
-/// using the following method.
-///
-void PhyRegAlloc::move2DelayedInstr(const MachineInstr *OrigMI,
- const MachineInstr *DelayedMI)
-{
- // "added after" instructions of the original instr
- std::vector<MachineInstr *> &OrigAft = AddedInstrMap[OrigMI].InstrnsAfter;
-
- if (DEBUG_RA && OrigAft.size() > 0) {
- std::cerr << "\nRegAlloc: Moved InstrnsAfter for: " << *OrigMI;
- std::cerr << " to last delay slot instrn: " << *DelayedMI;
- }
-
- // "added after" instructions of the delayed instr
- std::vector<MachineInstr *> &DelayedAft=AddedInstrMap[DelayedMI].InstrnsAfter;
-
- // go thru all the "added after instructions" of the original instruction
- // and append them to the "added after instructions" of the delayed
- // instructions
- DelayedAft.insert(DelayedAft.end(), OrigAft.begin(), OrigAft.end());
-
- // empty the "added after instructions" of the original instruction
- OrigAft.clear();
-}
-
-
-void PhyRegAlloc::colorIncomingArgs()
-{
- MRI.colorMethodArgs(Fn, *LRI, AddedInstrAtEntry.InstrnsBefore,
- AddedInstrAtEntry.InstrnsAfter);
-}
-
-
-/// Determine whether the suggested color of each live range is really usable,
-/// and then call its setSuggestedColorUsable() method to record the answer. A
-/// suggested color is NOT usable when the suggested color is volatile AND
-/// when there are call interferences.
-///
-void PhyRegAlloc::markUnusableSugColors()
-{
- LiveRangeMapType::const_iterator HMI = (LRI->getLiveRangeMap())->begin();
- LiveRangeMapType::const_iterator HMIEnd = (LRI->getLiveRangeMap())->end();
-
- for (; HMI != HMIEnd ; ++HMI ) {
- if (HMI->first) {
- LiveRange *L = HMI->second; // get the LiveRange
- if (L && L->hasSuggestedColor ())
- L->setSuggestedColorUsable
- (!(MRI.isRegVolatile (L->getRegClassID (), L->getSuggestedColor ())
- && L->isCallInterference ()));
- }
- } // for all LR's in hash map
-}
-
-
-/// For each live range that is spilled, allocates a new spill position on the
-/// stack, and set the stack offsets of the live range that will be spilled to
-/// that position. This must be called just after coloring the LRs.
-///
-void PhyRegAlloc::allocateStackSpace4SpilledLRs() {
- if (DEBUG_RA) std::cerr << "\nSetting LR stack offsets for spills...\n";
-
- LiveRangeMapType::const_iterator HMI = LRI->getLiveRangeMap()->begin();
- LiveRangeMapType::const_iterator HMIEnd = LRI->getLiveRangeMap()->end();
-
- for ( ; HMI != HMIEnd ; ++HMI) {
- if (HMI->first && HMI->second) {
- LiveRange *L = HMI->second; // get the LiveRange
- if (L->isMarkedForSpill()) { // NOTE: allocating size of long Type **
- int stackOffset = MF->getInfo()->allocateSpilledValue(Type::LongTy);
- L->setSpillOffFromFP(stackOffset);
- if (DEBUG_RA)
- std::cerr << " LR# " << L->getUserIGNode()->getIndex()
- << ": stack-offset = " << stackOffset << "\n";
- }
- }
- } // for all LR's in hash map
-}
-
-
-void PhyRegAlloc::saveStateForValue (std::vector<AllocInfo> &state,
- const Value *V, unsigned Insn, int Opnd) {
- LiveRangeMapType::const_iterator HMI = LRI->getLiveRangeMap ()->find (V);
- LiveRangeMapType::const_iterator HMIEnd = LRI->getLiveRangeMap ()->end ();
- AllocInfo::AllocStateTy AllocState = AllocInfo::NotAllocated;
- int Placement = -1;
- if ((HMI != HMIEnd) && HMI->second) {
- LiveRange *L = HMI->second;
- assert ((L->hasColor () || L->isMarkedForSpill ())
- && "Live range exists but not colored or spilled");
- if (L->hasColor ()) {
- AllocState = AllocInfo::Allocated;
- Placement = MRI.getUnifiedRegNum (L->getRegClassID (),
- L->getColor ());
- } else if (L->isMarkedForSpill ()) {
- AllocState = AllocInfo::Spilled;
- assert (L->hasSpillOffset ()
- && "Live range marked for spill but has no spill offset");
- Placement = L->getSpillOffFromFP ();
- }
- }
- state.push_back (AllocInfo (Insn, Opnd, AllocState, Placement));
-}
-
-
-/// Save the global register allocation decisions made by the register
-/// allocator so that they can be accessed later (sort of like "poor man's
-/// debug info").
-///
-void PhyRegAlloc::saveState () {
- std::vector<AllocInfo> &state = FnAllocState[Fn];
- unsigned Insn = 0;
- for (const_inst_iterator II=inst_begin (Fn), IE=inst_end (Fn); II!=IE; ++II){
- saveStateForValue (state, (*II), Insn, -1);
- for (unsigned i = 0; i < (*II)->getNumOperands (); ++i) {
- const Value *V = (*II)->getOperand (i);
- // Don't worry about it unless it's something whose reg. we'll need.
- if (!isa<Argument> (V) && !isa<Instruction> (V))
- continue;
- saveStateForValue (state, V, Insn, i);
- }
- ++Insn;
- }
-}
-
-
-/// Check the saved state filled in by saveState(), and abort if it looks
-/// wrong. Only used when debugging. FIXME: Currently it just prints out
-/// the state, which isn't quite as useful.
-///
-void PhyRegAlloc::verifySavedState () {
- std::vector<AllocInfo> &state = FnAllocState[Fn];
- unsigned Insn = 0;
- for (const_inst_iterator II=inst_begin (Fn), IE=inst_end (Fn); II!=IE; ++II) {
- const Instruction *I = *II;
- MachineCodeForInstruction &Instrs = MachineCodeForInstruction::get (I);
- std::cerr << "Instruction:\n" << " " << *I << "\n"
- << "MachineCodeForInstruction:\n";
- for (unsigned i = 0, n = Instrs.size (); i != n; ++i)
- std::cerr << " " << *Instrs[i] << "\n";
- std::cerr << "FnAllocState:\n";
- for (unsigned i = 0; i < state.size (); ++i) {
- AllocInfo &S = state[i];
- if (Insn == S.Instruction)
- std::cerr << " " << S << "\n";
- }
- std::cerr << "----------\n";
- ++Insn;
- }
-}
-
-
-/// Finish the job of saveState(), by collapsing FnAllocState into an LLVM
-/// Constant and stuffing it inside the Module. (NOTE: Soon, there will be
-/// other, better ways of storing the saved state; this one is cumbersome and
-/// does not work well with the JIT.)
-///
-bool PhyRegAlloc::doFinalization (Module &M) {
- if (!SaveRegAllocState)
- return false; // Nothing to do here, unless we're saving state.
-
- // If saving state into the module, just copy new elements to the
- // correct global.
- if (!SaveStateToModule) {
- ExportedFnAllocState = FnAllocState;
- // FIXME: should ONLY copy new elements in FnAllocState
- return false;
- }
-
- // Convert FnAllocState to a single Constant array and add it
- // to the Module.
- ArrayType *AT = ArrayType::get (AllocInfo::getConstantType (), 0);
- std::vector<const Type *> TV;
- TV.push_back (Type::UIntTy);
- TV.push_back (AT);
- PointerType *PT = PointerType::get (StructType::get (TV));
-
- std::vector<Constant *> allstate;
- for (Module::iterator I = M.begin (), E = M.end (); I != E; ++I) {
- Function *F = I;
- if (F->isExternal ()) continue;
- if (FnAllocState.find (F) == FnAllocState.end ()) {
- allstate.push_back (ConstantPointerNull::get (PT));
- } else {
- std::vector<AllocInfo> &state = FnAllocState[F];
-
- // Convert state into an LLVM ConstantArray, and put it in a
- // ConstantStruct (named S) along with its size.
- std::vector<Constant *> stateConstants;
- for (unsigned i = 0, s = state.size (); i != s; ++i)
- stateConstants.push_back (state[i].toConstant ());
- unsigned Size = stateConstants.size ();
- ArrayType *AT = ArrayType::get (AllocInfo::getConstantType (), Size);
- std::vector<const Type *> TV;
- TV.push_back (Type::UIntTy);
- TV.push_back (AT);
- StructType *ST = StructType::get (TV);
- std::vector<Constant *> CV;
- CV.push_back (ConstantUInt::get (Type::UIntTy, Size));
- CV.push_back (ConstantArray::get (AT, stateConstants));
- Constant *S = ConstantStruct::get (ST, CV);
-
- GlobalVariable *GV =
- new GlobalVariable (ST, true,
- GlobalValue::InternalLinkage, S,
- F->getName () + ".regAllocState", &M);
-
- // Have: { uint, [Size x { uint, int, uint, int }] } *
- // Cast it to: { uint, [0 x { uint, int, uint, int }] } *
- Constant *CE = ConstantExpr::getCast (ConstantPointerRef::get (GV), PT);
- allstate.push_back (CE);
- }
- }
-
- unsigned Size = allstate.size ();
- // Final structure type is:
- // { uint, [Size x { uint, [0 x { uint, int, uint, int }] } *] }
- std::vector<const Type *> TV2;
- TV2.push_back (Type::UIntTy);
- ArrayType *AT2 = ArrayType::get (PT, Size);
- TV2.push_back (AT2);
- StructType *ST2 = StructType::get (TV2);
- std::vector<Constant *> CV2;
- CV2.push_back (ConstantUInt::get (Type::UIntTy, Size));
- CV2.push_back (ConstantArray::get (AT2, allstate));
- new GlobalVariable (ST2, true, GlobalValue::ExternalLinkage,
- ConstantStruct::get (ST2, CV2), "_llvm_regAllocState",
- &M);
- return false; // No error.
-}
-
-
-/// Allocate registers for the machine code previously generated for F using
-/// the graph-coloring algorithm.
-///
-bool PhyRegAlloc::runOnFunction (Function &F) {
- if (DEBUG_RA)
- std::cerr << "\n********* Function "<< F.getName () << " ***********\n";
-
- Fn = &F;
- MF = &MachineFunction::get (Fn);
- LVI = &getAnalysis<FunctionLiveVarInfo> ();
- LRI = new LiveRangeInfo (Fn, TM, RegClassList);
- LoopDepthCalc = &getAnalysis<LoopInfo> ();
-
- // Create each RegClass for the target machine and add it to the
- // RegClassList. This must be done before calling constructLiveRanges().
- for (unsigned rc = 0; rc != NumOfRegClasses; ++rc)
- RegClassList.push_back (new RegClass (Fn, &TM.getRegInfo (),
- MRI.getMachineRegClass (rc)));
-
- LRI->constructLiveRanges(); // create LR info
- if (DEBUG_RA >= RA_DEBUG_LiveRanges)
- LRI->printLiveRanges();
-
- createIGNodeListsAndIGs(); // create IGNode list and IGs
-
- buildInterferenceGraphs(); // build IGs in all reg classes
-
- if (DEBUG_RA >= RA_DEBUG_LiveRanges) {
- // print all LRs in all reg classes
- for ( unsigned rc=0; rc < NumOfRegClasses ; rc++)
- RegClassList[rc]->printIGNodeList();
-
- // print IGs in all register classes
- for ( unsigned rc=0; rc < NumOfRegClasses ; rc++)
- RegClassList[rc]->printIG();
- }
-
- LRI->coalesceLRs(); // coalesce all live ranges
-
- if (DEBUG_RA >= RA_DEBUG_LiveRanges) {
- // print all LRs in all reg classes
- for (unsigned rc=0; rc < NumOfRegClasses; rc++)
- RegClassList[rc]->printIGNodeList();
-
- // print IGs in all register classes
- for (unsigned rc=0; rc < NumOfRegClasses; rc++)
- RegClassList[rc]->printIG();
- }
-
- // mark un-usable suggested color before graph coloring algorithm.
- // When this is done, the graph coloring algo will not reserve
- // suggested color unnecessarily - they can be used by another LR
- markUnusableSugColors();
-
- // color all register classes using the graph coloring algo
- for (unsigned rc=0; rc < NumOfRegClasses ; rc++)
- RegClassList[rc]->colorAllRegs();
-
- // After graph coloring, if some LRs did not receive a color (i.e, spilled)
- // a position for such spilled LRs
- allocateStackSpace4SpilledLRs();
-
- // Reset the temp. area on the stack before use by the first instruction.
- // This will also happen after updating each instruction.
- MF->getInfo()->popAllTempValues();
-
- // color incoming args - if the correct color was not received
- // insert code to copy to the correct register
- colorIncomingArgs();
-
- // Save register allocation state for this function in a Constant.
- if (SaveRegAllocState)
- saveState();
- if (DEBUG_RA) { // Check our work.
- verifySavedState ();
- }
-
- // Now update the machine code with register names and add any additional
- // code inserted by the register allocator to the instruction stream.
- updateMachineCode();
-
- if (DEBUG_RA) {
- std::cerr << "\n**** Machine Code After Register Allocation:\n\n";
- MF->dump();
- }
-
- // Tear down temporary data structures
- for (unsigned rc = 0; rc < NumOfRegClasses; ++rc)
- delete RegClassList[rc];
- RegClassList.clear ();
- AddedInstrMap.clear ();
- OperandsColoredMap.clear ();
- ScratchRegsUsed.clear ();
- AddedInstrAtEntry.clear ();
- delete LRI;
-
- if (DEBUG_RA) std::cerr << "\nRegister allocation complete!\n";
- return false; // Function was not modified
-}
-
-} // End llvm namespace
OpenPOWER on IntegriCloud