summaryrefslogtreecommitdiffstats
path: root/llvm/lib/Target/PowerPC/PPCISelLowering.h
diff options
context:
space:
mode:
Diffstat (limited to 'llvm/lib/Target/PowerPC/PPCISelLowering.h')
-rw-r--r--llvm/lib/Target/PowerPC/PPCISelLowering.h923
1 files changed, 469 insertions, 454 deletions
diff --git a/llvm/lib/Target/PowerPC/PPCISelLowering.h b/llvm/lib/Target/PowerPC/PPCISelLowering.h
index 57db15f3f42..774cc353b91 100644
--- a/llvm/lib/Target/PowerPC/PPCISelLowering.h
+++ b/llvm/lib/Target/PowerPC/PPCISelLowering.h
@@ -43,460 +43,475 @@ namespace llvm {
// that come before it. For example, ADD or MUL should be placed before
// the ISD::FIRST_TARGET_MEMORY_OPCODE while a LOAD or STORE should come
// after it.
- enum NodeType : unsigned {
- // Start the numbering where the builtin ops and target ops leave off.
- FIRST_NUMBER = ISD::BUILTIN_OP_END,
-
- /// FSEL - Traditional three-operand fsel node.
- ///
- FSEL,
-
- /// XSMAXCDP, XSMINCDP - C-type min/max instructions.
- XSMAXCDP, XSMINCDP,
-
- /// FCFID - The FCFID instruction, taking an f64 operand and producing
- /// and f64 value containing the FP representation of the integer that
- /// was temporarily in the f64 operand.
- FCFID,
-
- /// Newer FCFID[US] integer-to-floating-point conversion instructions for
- /// unsigned integers and single-precision outputs.
- FCFIDU, FCFIDS, FCFIDUS,
-
- /// FCTI[D,W]Z - The FCTIDZ and FCTIWZ instructions, taking an f32 or f64
- /// operand, producing an f64 value containing the integer representation
- /// of that FP value.
- FCTIDZ, FCTIWZ,
-
- /// Newer FCTI[D,W]UZ floating-point-to-integer conversion instructions for
- /// unsigned integers with round toward zero.
- FCTIDUZ, FCTIWUZ,
-
- /// Floating-point-to-interger conversion instructions
- FP_TO_UINT_IN_VSR, FP_TO_SINT_IN_VSR,
-
- /// VEXTS, ByteWidth - takes an input in VSFRC and produces an output in
- /// VSFRC that is sign-extended from ByteWidth to a 64-byte integer.
- VEXTS,
-
- /// SExtVElems, takes an input vector of a smaller type and sign
- /// extends to an output vector of a larger type.
- SExtVElems,
-
- /// Reciprocal estimate instructions (unary FP ops).
- FRE, FRSQRTE,
-
- // VMADDFP, VNMSUBFP - The VMADDFP and VNMSUBFP instructions, taking
- // three v4f32 operands and producing a v4f32 result.
- VMADDFP, VNMSUBFP,
-
- /// VPERM - The PPC VPERM Instruction.
- ///
- VPERM,
-
- /// XXSPLT - The PPC VSX splat instructions
- ///
- XXSPLT,
-
- /// VECINSERT - The PPC vector insert instruction
- ///
- VECINSERT,
-
- /// VECSHL - The PPC vector shift left instruction
- ///
- VECSHL,
-
- /// XXPERMDI - The PPC XXPERMDI instruction
- ///
- XXPERMDI,
-
- /// The CMPB instruction (takes two operands of i32 or i64).
- CMPB,
-
- /// Hi/Lo - These represent the high and low 16-bit parts of a global
- /// address respectively. These nodes have two operands, the first of
- /// which must be a TargetGlobalAddress, and the second of which must be a
- /// Constant. Selected naively, these turn into 'lis G+C' and 'li G+C',
- /// though these are usually folded into other nodes.
- Hi, Lo,
-
- /// The following two target-specific nodes are used for calls through
- /// function pointers in the 64-bit SVR4 ABI.
-
- /// OPRC, CHAIN = DYNALLOC(CHAIN, NEGSIZE, FRAME_INDEX)
- /// This instruction is lowered in PPCRegisterInfo::eliminateFrameIndex to
- /// compute an allocation on the stack.
- DYNALLOC,
-
- /// This instruction is lowered in PPCRegisterInfo::eliminateFrameIndex to
- /// compute an offset from native SP to the address of the most recent
- /// dynamic alloca.
- DYNAREAOFFSET,
-
- /// GlobalBaseReg - On Darwin, this node represents the result of the mflr
- /// at function entry, used for PIC code.
- GlobalBaseReg,
-
- /// These nodes represent PPC shifts.
- ///
- /// For scalar types, only the last `n + 1` bits of the shift amounts
- /// are used, where n is log2(sizeof(element) * 8). See sld/slw, etc.
- /// for exact behaviors.
- ///
- /// For vector types, only the last n bits are used. See vsld.
- SRL, SRA, SHL,
-
- /// EXTSWSLI = The PPC extswsli instruction, which does an extend-sign
- /// word and shift left immediate.
- EXTSWSLI,
-
- /// The combination of sra[wd]i and addze used to implemented signed
- /// integer division by a power of 2. The first operand is the dividend,
- /// and the second is the constant shift amount (representing the
- /// divisor).
- SRA_ADDZE,
-
- /// CALL - A direct function call.
- /// CALL_NOP is a call with the special NOP which follows 64-bit
- /// SVR4 calls and 32-bit/64-bit AIX calls.
- CALL, CALL_NOP,
-
- /// CHAIN,FLAG = MTCTR(VAL, CHAIN[, INFLAG]) - Directly corresponds to a
- /// MTCTR instruction.
- MTCTR,
-
- /// CHAIN,FLAG = BCTRL(CHAIN, INFLAG) - Directly corresponds to a
- /// BCTRL instruction.
- BCTRL,
-
- /// CHAIN,FLAG = BCTRL(CHAIN, ADDR, INFLAG) - The combination of a bctrl
- /// instruction and the TOC reload required on 64-bit ELF, 32-bit AIX
- /// and 64-bit AIX.
- BCTRL_LOAD_TOC,
-
- /// Return with a flag operand, matched by 'blr'
- RET_FLAG,
-
- /// R32 = MFOCRF(CRREG, INFLAG) - Represents the MFOCRF instruction.
- /// This copies the bits corresponding to the specified CRREG into the
- /// resultant GPR. Bits corresponding to other CR regs are undefined.
- MFOCRF,
-
- /// Direct move from a VSX register to a GPR
- MFVSR,
-
- /// Direct move from a GPR to a VSX register (algebraic)
- MTVSRA,
-
- /// Direct move from a GPR to a VSX register (zero)
- MTVSRZ,
-
- /// Direct move of 2 consecutive GPR to a VSX register.
- BUILD_FP128,
-
- /// BUILD_SPE64 and EXTRACT_SPE are analogous to BUILD_PAIR and
- /// EXTRACT_ELEMENT but take f64 arguments instead of i64, as i64 is
- /// unsupported for this target.
- /// Merge 2 GPRs to a single SPE register.
- BUILD_SPE64,
-
- /// Extract SPE register component, second argument is high or low.
- EXTRACT_SPE,
-
- /// Extract a subvector from signed integer vector and convert to FP.
- /// It is primarily used to convert a (widened) illegal integer vector
- /// type to a legal floating point vector type.
- /// For example v2i32 -> widened to v4i32 -> v2f64
- SINT_VEC_TO_FP,
-
- /// Extract a subvector from unsigned integer vector and convert to FP.
- /// As with SINT_VEC_TO_FP, used for converting illegal types.
- UINT_VEC_TO_FP,
-
- // FIXME: Remove these once the ANDI glue bug is fixed:
- /// i1 = ANDIo_1_[EQ|GT]_BIT(i32 or i64 x) - Represents the result of the
- /// eq or gt bit of CR0 after executing andi. x, 1. This is used to
- /// implement truncation of i32 or i64 to i1.
- ANDIo_1_EQ_BIT, ANDIo_1_GT_BIT,
-
- // READ_TIME_BASE - A read of the 64-bit time-base register on a 32-bit
- // target (returns (Lo, Hi)). It takes a chain operand.
- READ_TIME_BASE,
-
- // EH_SJLJ_SETJMP - SjLj exception handling setjmp.
- EH_SJLJ_SETJMP,
-
- // EH_SJLJ_LONGJMP - SjLj exception handling longjmp.
- EH_SJLJ_LONGJMP,
-
- /// RESVEC = VCMP(LHS, RHS, OPC) - Represents one of the altivec VCMP*
- /// instructions. For lack of better number, we use the opcode number
- /// encoding for the OPC field to identify the compare. For example, 838
- /// is VCMPGTSH.
- VCMP,
-
- /// RESVEC, OUTFLAG = VCMPo(LHS, RHS, OPC) - Represents one of the
- /// altivec VCMP*o instructions. For lack of better number, we use the
- /// opcode number encoding for the OPC field to identify the compare. For
- /// example, 838 is VCMPGTSH.
- VCMPo,
-
- /// CHAIN = COND_BRANCH CHAIN, CRRC, OPC, DESTBB [, INFLAG] - This
- /// corresponds to the COND_BRANCH pseudo instruction. CRRC is the
- /// condition register to branch on, OPC is the branch opcode to use (e.g.
- /// PPC::BLE), DESTBB is the destination block to branch to, and INFLAG is
- /// an optional input flag argument.
- COND_BRANCH,
-
- /// CHAIN = BDNZ CHAIN, DESTBB - These are used to create counter-based
- /// loops.
- BDNZ, BDZ,
-
- /// F8RC = FADDRTZ F8RC, F8RC - This is an FADD done with rounding
- /// towards zero. Used only as part of the long double-to-int
- /// conversion sequence.
- FADDRTZ,
-
- /// F8RC = MFFS - This moves the FPSCR (not modeled) into the register.
- MFFS,
-
- /// TC_RETURN - A tail call return.
- /// operand #0 chain
- /// operand #1 callee (register or absolute)
- /// operand #2 stack adjustment
- /// operand #3 optional in flag
- TC_RETURN,
-
- /// ch, gl = CR6[UN]SET ch, inglue - Toggle CR bit 6 for SVR4 vararg calls
- CR6SET,
- CR6UNSET,
-
- /// GPRC = address of _GLOBAL_OFFSET_TABLE_. Used by initial-exec TLS
- /// for non-position independent code on PPC32.
- PPC32_GOT,
-
- /// GPRC = address of _GLOBAL_OFFSET_TABLE_. Used by general dynamic and
- /// local dynamic TLS and position indendepent code on PPC32.
- PPC32_PICGOT,
-
- /// G8RC = ADDIS_GOT_TPREL_HA %x2, Symbol - Used by the initial-exec
- /// TLS model, produces an ADDIS8 instruction that adds the GOT
- /// base to sym\@got\@tprel\@ha.
- ADDIS_GOT_TPREL_HA,
-
- /// G8RC = LD_GOT_TPREL_L Symbol, G8RReg - Used by the initial-exec
- /// TLS model, produces a LD instruction with base register G8RReg
- /// and offset sym\@got\@tprel\@l. This completes the addition that
- /// finds the offset of "sym" relative to the thread pointer.
- LD_GOT_TPREL_L,
-
- /// G8RC = ADD_TLS G8RReg, Symbol - Used by the initial-exec TLS
- /// model, produces an ADD instruction that adds the contents of
- /// G8RReg to the thread pointer. Symbol contains a relocation
- /// sym\@tls which is to be replaced by the thread pointer and
- /// identifies to the linker that the instruction is part of a
- /// TLS sequence.
- ADD_TLS,
-
- /// G8RC = ADDIS_TLSGD_HA %x2, Symbol - For the general-dynamic TLS
- /// model, produces an ADDIS8 instruction that adds the GOT base
- /// register to sym\@got\@tlsgd\@ha.
- ADDIS_TLSGD_HA,
-
- /// %x3 = ADDI_TLSGD_L G8RReg, Symbol - For the general-dynamic TLS
- /// model, produces an ADDI8 instruction that adds G8RReg to
- /// sym\@got\@tlsgd\@l and stores the result in X3. Hidden by
- /// ADDIS_TLSGD_L_ADDR until after register assignment.
- ADDI_TLSGD_L,
-
- /// %x3 = GET_TLS_ADDR %x3, Symbol - For the general-dynamic TLS
- /// model, produces a call to __tls_get_addr(sym\@tlsgd). Hidden by
- /// ADDIS_TLSGD_L_ADDR until after register assignment.
- GET_TLS_ADDR,
-
- /// G8RC = ADDI_TLSGD_L_ADDR G8RReg, Symbol, Symbol - Op that
- /// combines ADDI_TLSGD_L and GET_TLS_ADDR until expansion following
- /// register assignment.
- ADDI_TLSGD_L_ADDR,
-
- /// G8RC = ADDIS_TLSLD_HA %x2, Symbol - For the local-dynamic TLS
- /// model, produces an ADDIS8 instruction that adds the GOT base
- /// register to sym\@got\@tlsld\@ha.
- ADDIS_TLSLD_HA,
-
- /// %x3 = ADDI_TLSLD_L G8RReg, Symbol - For the local-dynamic TLS
- /// model, produces an ADDI8 instruction that adds G8RReg to
- /// sym\@got\@tlsld\@l and stores the result in X3. Hidden by
- /// ADDIS_TLSLD_L_ADDR until after register assignment.
- ADDI_TLSLD_L,
-
- /// %x3 = GET_TLSLD_ADDR %x3, Symbol - For the local-dynamic TLS
- /// model, produces a call to __tls_get_addr(sym\@tlsld). Hidden by
- /// ADDIS_TLSLD_L_ADDR until after register assignment.
- GET_TLSLD_ADDR,
-
- /// G8RC = ADDI_TLSLD_L_ADDR G8RReg, Symbol, Symbol - Op that
- /// combines ADDI_TLSLD_L and GET_TLSLD_ADDR until expansion
- /// following register assignment.
- ADDI_TLSLD_L_ADDR,
-
- /// G8RC = ADDIS_DTPREL_HA %x3, Symbol - For the local-dynamic TLS
- /// model, produces an ADDIS8 instruction that adds X3 to
- /// sym\@dtprel\@ha.
- ADDIS_DTPREL_HA,
-
- /// G8RC = ADDI_DTPREL_L G8RReg, Symbol - For the local-dynamic TLS
- /// model, produces an ADDI8 instruction that adds G8RReg to
- /// sym\@got\@dtprel\@l.
- ADDI_DTPREL_L,
-
- /// VRRC = VADD_SPLAT Elt, EltSize - Temporary node to be expanded
- /// during instruction selection to optimize a BUILD_VECTOR into
- /// operations on splats. This is necessary to avoid losing these
- /// optimizations due to constant folding.
- VADD_SPLAT,
-
- /// CHAIN = SC CHAIN, Imm128 - System call. The 7-bit unsigned
- /// operand identifies the operating system entry point.
- SC,
-
- /// CHAIN = CLRBHRB CHAIN - Clear branch history rolling buffer.
- CLRBHRB,
-
- /// GPRC, CHAIN = MFBHRBE CHAIN, Entry, Dummy - Move from branch
- /// history rolling buffer entry.
- MFBHRBE,
-
- /// CHAIN = RFEBB CHAIN, State - Return from event-based branch.
- RFEBB,
-
- /// VSRC, CHAIN = XXSWAPD CHAIN, VSRC - Occurs only for little
- /// endian. Maps to an xxswapd instruction that corrects an lxvd2x
- /// or stxvd2x instruction. The chain is necessary because the
- /// sequence replaces a load and needs to provide the same number
- /// of outputs.
- XXSWAPD,
-
- /// An SDNode for swaps that are not associated with any loads/stores
- /// and thereby have no chain.
- SWAP_NO_CHAIN,
-
- /// An SDNode for Power9 vector absolute value difference.
- /// operand #0 vector
- /// operand #1 vector
- /// operand #2 constant i32 0 or 1, to indicate whether needs to patch
- /// the most significant bit for signed i32
- ///
- /// Power9 VABSD* instructions are designed to support unsigned integer
- /// vectors (byte/halfword/word), if we want to make use of them for signed
- /// integer vectors, we have to flip their sign bits first. To flip sign bit
- /// for byte/halfword integer vector would become inefficient, but for word
- /// integer vector, we can leverage XVNEGSP to make it efficiently. eg:
- /// abs(sub(a,b)) => VABSDUW(a+0x80000000, b+0x80000000)
- /// => VABSDUW((XVNEGSP a), (XVNEGSP b))
- VABSD,
-
- /// QVFPERM = This corresponds to the QPX qvfperm instruction.
- QVFPERM,
-
- /// QVGPCI = This corresponds to the QPX qvgpci instruction.
- QVGPCI,
-
- /// QVALIGNI = This corresponds to the QPX qvaligni instruction.
- QVALIGNI,
-
- /// QVESPLATI = This corresponds to the QPX qvesplati instruction.
- QVESPLATI,
-
- /// QBFLT = Access the underlying QPX floating-point boolean
- /// representation.
- QBFLT,
-
- /// FP_EXTEND_HALF(VECTOR, IDX) - Custom extend upper (IDX=0) half or
- /// lower (IDX=1) half of v4f32 to v2f64.
- FP_EXTEND_HALF,
-
- /// CHAIN = STBRX CHAIN, GPRC, Ptr, Type - This is a
- /// byte-swapping store instruction. It byte-swaps the low "Type" bits of
- /// the GPRC input, then stores it through Ptr. Type can be either i16 or
- /// i32.
- STBRX = ISD::FIRST_TARGET_MEMORY_OPCODE,
-
- /// GPRC, CHAIN = LBRX CHAIN, Ptr, Type - This is a
- /// byte-swapping load instruction. It loads "Type" bits, byte swaps it,
- /// then puts it in the bottom bits of the GPRC. TYPE can be either i16
- /// or i32.
- LBRX,
-
- /// STFIWX - The STFIWX instruction. The first operand is an input token
- /// chain, then an f64 value to store, then an address to store it to.
- STFIWX,
-
- /// GPRC, CHAIN = LFIWAX CHAIN, Ptr - This is a floating-point
- /// load which sign-extends from a 32-bit integer value into the
- /// destination 64-bit register.
- LFIWAX,
-
- /// GPRC, CHAIN = LFIWZX CHAIN, Ptr - This is a floating-point
- /// load which zero-extends from a 32-bit integer value into the
- /// destination 64-bit register.
- LFIWZX,
-
- /// GPRC, CHAIN = LXSIZX, CHAIN, Ptr, ByteWidth - This is a load of an
- /// integer smaller than 64 bits into a VSR. The integer is zero-extended.
- /// This can be used for converting loaded integers to floating point.
- LXSIZX,
-
- /// STXSIX - The STXSI[bh]X instruction. The first operand is an input
- /// chain, then an f64 value to store, then an address to store it to,
- /// followed by a byte-width for the store.
- STXSIX,
-
- /// VSRC, CHAIN = LXVD2X_LE CHAIN, Ptr - Occurs only for little endian.
- /// Maps directly to an lxvd2x instruction that will be followed by
- /// an xxswapd.
- LXVD2X,
-
- /// VSRC, CHAIN = LOAD_VEC_BE CHAIN, Ptr - Occurs only for little endian.
- /// Maps directly to one of lxvd2x/lxvw4x/lxvh8x/lxvb16x depending on
- /// the vector type to load vector in big-endian element order.
- LOAD_VEC_BE,
-
- /// VSRC, CHAIN = LD_VSX_LH CHAIN, Ptr - This is a floating-point load of a
- /// v2f32 value into the lower half of a VSR register.
- LD_VSX_LH,
-
- /// VSRC, CHAIN = LD_SPLAT, CHAIN, Ptr - a splatting load memory
- /// instructions such as LXVDSX, LXVWSX.
- LD_SPLAT,
-
- /// CHAIN = STXVD2X CHAIN, VSRC, Ptr - Occurs only for little endian.
- /// Maps directly to an stxvd2x instruction that will be preceded by
- /// an xxswapd.
- STXVD2X,
-
- /// CHAIN = STORE_VEC_BE CHAIN, VSRC, Ptr - Occurs only for little endian.
- /// Maps directly to one of stxvd2x/stxvw4x/stxvh8x/stxvb16x depending on
- /// the vector type to store vector in big-endian element order.
- STORE_VEC_BE,
-
- /// Store scalar integers from VSR.
- ST_VSR_SCAL_INT,
-
- /// QBRC, CHAIN = QVLFSb CHAIN, Ptr
- /// The 4xf32 load used for v4i1 constants.
- QVLFSb,
-
- /// ATOMIC_CMP_SWAP - the exact same as the target-independent nodes
- /// except they ensure that the compare input is zero-extended for
- /// sub-word versions because the atomic loads zero-extend.
- ATOMIC_CMP_SWAP_8, ATOMIC_CMP_SWAP_16,
-
- /// GPRC = TOC_ENTRY GA, TOC
- /// Loads the entry for GA from the TOC, where the TOC base is given by
- /// the last operand.
- TOC_ENTRY
- };
+ enum NodeType : unsigned {
+ // Start the numbering where the builtin ops and target ops leave off.
+ FIRST_NUMBER = ISD::BUILTIN_OP_END,
+
+ /// FSEL - Traditional three-operand fsel node.
+ ///
+ FSEL,
+
+ /// XSMAXCDP, XSMINCDP - C-type min/max instructions.
+ XSMAXCDP,
+ XSMINCDP,
+
+ /// FCFID - The FCFID instruction, taking an f64 operand and producing
+ /// and f64 value containing the FP representation of the integer that
+ /// was temporarily in the f64 operand.
+ FCFID,
+
+ /// Newer FCFID[US] integer-to-floating-point conversion instructions for
+ /// unsigned integers and single-precision outputs.
+ FCFIDU,
+ FCFIDS,
+ FCFIDUS,
+
+ /// FCTI[D,W]Z - The FCTIDZ and FCTIWZ instructions, taking an f32 or f64
+ /// operand, producing an f64 value containing the integer representation
+ /// of that FP value.
+ FCTIDZ,
+ FCTIWZ,
+
+ /// Newer FCTI[D,W]UZ floating-point-to-integer conversion instructions for
+ /// unsigned integers with round toward zero.
+ FCTIDUZ,
+ FCTIWUZ,
+
+ /// Floating-point-to-interger conversion instructions
+ FP_TO_UINT_IN_VSR,
+ FP_TO_SINT_IN_VSR,
+
+ /// VEXTS, ByteWidth - takes an input in VSFRC and produces an output in
+ /// VSFRC that is sign-extended from ByteWidth to a 64-byte integer.
+ VEXTS,
+
+ /// SExtVElems, takes an input vector of a smaller type and sign
+ /// extends to an output vector of a larger type.
+ SExtVElems,
+
+ /// Reciprocal estimate instructions (unary FP ops).
+ FRE,
+ FRSQRTE,
+
+ // VMADDFP, VNMSUBFP - The VMADDFP and VNMSUBFP instructions, taking
+ // three v4f32 operands and producing a v4f32 result.
+ VMADDFP,
+ VNMSUBFP,
+
+ /// VPERM - The PPC VPERM Instruction.
+ ///
+ VPERM,
+
+ /// XXSPLT - The PPC VSX splat instructions
+ ///
+ XXSPLT,
+
+ /// VECINSERT - The PPC vector insert instruction
+ ///
+ VECINSERT,
+
+ /// VECSHL - The PPC vector shift left instruction
+ ///
+ VECSHL,
+
+ /// XXPERMDI - The PPC XXPERMDI instruction
+ ///
+ XXPERMDI,
+
+ /// The CMPB instruction (takes two operands of i32 or i64).
+ CMPB,
+
+ /// Hi/Lo - These represent the high and low 16-bit parts of a global
+ /// address respectively. These nodes have two operands, the first of
+ /// which must be a TargetGlobalAddress, and the second of which must be a
+ /// Constant. Selected naively, these turn into 'lis G+C' and 'li G+C',
+ /// though these are usually folded into other nodes.
+ Hi,
+ Lo,
+
+ /// The following two target-specific nodes are used for calls through
+ /// function pointers in the 64-bit SVR4 ABI.
+
+ /// OPRC, CHAIN = DYNALLOC(CHAIN, NEGSIZE, FRAME_INDEX)
+ /// This instruction is lowered in PPCRegisterInfo::eliminateFrameIndex to
+ /// compute an allocation on the stack.
+ DYNALLOC,
+
+ /// This instruction is lowered in PPCRegisterInfo::eliminateFrameIndex to
+ /// compute an offset from native SP to the address of the most recent
+ /// dynamic alloca.
+ DYNAREAOFFSET,
+
+ /// GlobalBaseReg - On Darwin, this node represents the result of the mflr
+ /// at function entry, used for PIC code.
+ GlobalBaseReg,
+
+ /// These nodes represent PPC shifts.
+ ///
+ /// For scalar types, only the last `n + 1` bits of the shift amounts
+ /// are used, where n is log2(sizeof(element) * 8). See sld/slw, etc.
+ /// for exact behaviors.
+ ///
+ /// For vector types, only the last n bits are used. See vsld.
+ SRL,
+ SRA,
+ SHL,
+
+ /// EXTSWSLI = The PPC extswsli instruction, which does an extend-sign
+ /// word and shift left immediate.
+ EXTSWSLI,
+
+ /// The combination of sra[wd]i and addze used to implemented signed
+ /// integer division by a power of 2. The first operand is the dividend,
+ /// and the second is the constant shift amount (representing the
+ /// divisor).
+ SRA_ADDZE,
+
+ /// CALL - A direct function call.
+ /// CALL_NOP is a call with the special NOP which follows 64-bit
+ /// SVR4 calls and 32-bit/64-bit AIX calls.
+ CALL,
+ CALL_NOP,
+
+ /// CHAIN,FLAG = MTCTR(VAL, CHAIN[, INFLAG]) - Directly corresponds to a
+ /// MTCTR instruction.
+ MTCTR,
+
+ /// CHAIN,FLAG = BCTRL(CHAIN, INFLAG) - Directly corresponds to a
+ /// BCTRL instruction.
+ BCTRL,
+
+ /// CHAIN,FLAG = BCTRL(CHAIN, ADDR, INFLAG) - The combination of a bctrl
+ /// instruction and the TOC reload required on 64-bit ELF, 32-bit AIX
+ /// and 64-bit AIX.
+ BCTRL_LOAD_TOC,
+
+ /// Return with a flag operand, matched by 'blr'
+ RET_FLAG,
+
+ /// R32 = MFOCRF(CRREG, INFLAG) - Represents the MFOCRF instruction.
+ /// This copies the bits corresponding to the specified CRREG into the
+ /// resultant GPR. Bits corresponding to other CR regs are undefined.
+ MFOCRF,
+
+ /// Direct move from a VSX register to a GPR
+ MFVSR,
+
+ /// Direct move from a GPR to a VSX register (algebraic)
+ MTVSRA,
+
+ /// Direct move from a GPR to a VSX register (zero)
+ MTVSRZ,
+
+ /// Direct move of 2 consecutive GPR to a VSX register.
+ BUILD_FP128,
+
+ /// BUILD_SPE64 and EXTRACT_SPE are analogous to BUILD_PAIR and
+ /// EXTRACT_ELEMENT but take f64 arguments instead of i64, as i64 is
+ /// unsupported for this target.
+ /// Merge 2 GPRs to a single SPE register.
+ BUILD_SPE64,
+
+ /// Extract SPE register component, second argument is high or low.
+ EXTRACT_SPE,
+
+ /// Extract a subvector from signed integer vector and convert to FP.
+ /// It is primarily used to convert a (widened) illegal integer vector
+ /// type to a legal floating point vector type.
+ /// For example v2i32 -> widened to v4i32 -> v2f64
+ SINT_VEC_TO_FP,
+
+ /// Extract a subvector from unsigned integer vector and convert to FP.
+ /// As with SINT_VEC_TO_FP, used for converting illegal types.
+ UINT_VEC_TO_FP,
+
+ // FIXME: Remove these once the ANDI glue bug is fixed:
+ /// i1 = ANDI_rec_1_[EQ|GT]_BIT(i32 or i64 x) - Represents the result of the
+ /// eq or gt bit of CR0 after executing andi. x, 1. This is used to
+ /// implement truncation of i32 or i64 to i1.
+ ANDI_rec_1_EQ_BIT,
+ ANDI_rec_1_GT_BIT,
+
+ // READ_TIME_BASE - A read of the 64-bit time-base register on a 32-bit
+ // target (returns (Lo, Hi)). It takes a chain operand.
+ READ_TIME_BASE,
+
+ // EH_SJLJ_SETJMP - SjLj exception handling setjmp.
+ EH_SJLJ_SETJMP,
+
+ // EH_SJLJ_LONGJMP - SjLj exception handling longjmp.
+ EH_SJLJ_LONGJMP,
+
+ /// RESVEC = VCMP(LHS, RHS, OPC) - Represents one of the altivec VCMP*
+ /// instructions. For lack of better number, we use the opcode number
+ /// encoding for the OPC field to identify the compare. For example, 838
+ /// is VCMPGTSH.
+ VCMP,
+
+ /// RESVEC, OUTFLAG = VCMPo(LHS, RHS, OPC) - Represents one of the
+ /// altivec VCMP*o instructions. For lack of better number, we use the
+ /// opcode number encoding for the OPC field to identify the compare. For
+ /// example, 838 is VCMPGTSH.
+ VCMPo,
+
+ /// CHAIN = COND_BRANCH CHAIN, CRRC, OPC, DESTBB [, INFLAG] - This
+ /// corresponds to the COND_BRANCH pseudo instruction. CRRC is the
+ /// condition register to branch on, OPC is the branch opcode to use (e.g.
+ /// PPC::BLE), DESTBB is the destination block to branch to, and INFLAG is
+ /// an optional input flag argument.
+ COND_BRANCH,
+
+ /// CHAIN = BDNZ CHAIN, DESTBB - These are used to create counter-based
+ /// loops.
+ BDNZ,
+ BDZ,
+
+ /// F8RC = FADDRTZ F8RC, F8RC - This is an FADD done with rounding
+ /// towards zero. Used only as part of the long double-to-int
+ /// conversion sequence.
+ FADDRTZ,
+
+ /// F8RC = MFFS - This moves the FPSCR (not modeled) into the register.
+ MFFS,
+
+ /// TC_RETURN - A tail call return.
+ /// operand #0 chain
+ /// operand #1 callee (register or absolute)
+ /// operand #2 stack adjustment
+ /// operand #3 optional in flag
+ TC_RETURN,
+
+ /// ch, gl = CR6[UN]SET ch, inglue - Toggle CR bit 6 for SVR4 vararg calls
+ CR6SET,
+ CR6UNSET,
+
+ /// GPRC = address of _GLOBAL_OFFSET_TABLE_. Used by initial-exec TLS
+ /// for non-position independent code on PPC32.
+ PPC32_GOT,
+
+ /// GPRC = address of _GLOBAL_OFFSET_TABLE_. Used by general dynamic and
+ /// local dynamic TLS and position indendepent code on PPC32.
+ PPC32_PICGOT,
+
+ /// G8RC = ADDIS_GOT_TPREL_HA %x2, Symbol - Used by the initial-exec
+ /// TLS model, produces an ADDIS8 instruction that adds the GOT
+ /// base to sym\@got\@tprel\@ha.
+ ADDIS_GOT_TPREL_HA,
+
+ /// G8RC = LD_GOT_TPREL_L Symbol, G8RReg - Used by the initial-exec
+ /// TLS model, produces a LD instruction with base register G8RReg
+ /// and offset sym\@got\@tprel\@l. This completes the addition that
+ /// finds the offset of "sym" relative to the thread pointer.
+ LD_GOT_TPREL_L,
+
+ /// G8RC = ADD_TLS G8RReg, Symbol - Used by the initial-exec TLS
+ /// model, produces an ADD instruction that adds the contents of
+ /// G8RReg to the thread pointer. Symbol contains a relocation
+ /// sym\@tls which is to be replaced by the thread pointer and
+ /// identifies to the linker that the instruction is part of a
+ /// TLS sequence.
+ ADD_TLS,
+
+ /// G8RC = ADDIS_TLSGD_HA %x2, Symbol - For the general-dynamic TLS
+ /// model, produces an ADDIS8 instruction that adds the GOT base
+ /// register to sym\@got\@tlsgd\@ha.
+ ADDIS_TLSGD_HA,
+
+ /// %x3 = ADDI_TLSGD_L G8RReg, Symbol - For the general-dynamic TLS
+ /// model, produces an ADDI8 instruction that adds G8RReg to
+ /// sym\@got\@tlsgd\@l and stores the result in X3. Hidden by
+ /// ADDIS_TLSGD_L_ADDR until after register assignment.
+ ADDI_TLSGD_L,
+
+ /// %x3 = GET_TLS_ADDR %x3, Symbol - For the general-dynamic TLS
+ /// model, produces a call to __tls_get_addr(sym\@tlsgd). Hidden by
+ /// ADDIS_TLSGD_L_ADDR until after register assignment.
+ GET_TLS_ADDR,
+
+ /// G8RC = ADDI_TLSGD_L_ADDR G8RReg, Symbol, Symbol - Op that
+ /// combines ADDI_TLSGD_L and GET_TLS_ADDR until expansion following
+ /// register assignment.
+ ADDI_TLSGD_L_ADDR,
+
+ /// G8RC = ADDIS_TLSLD_HA %x2, Symbol - For the local-dynamic TLS
+ /// model, produces an ADDIS8 instruction that adds the GOT base
+ /// register to sym\@got\@tlsld\@ha.
+ ADDIS_TLSLD_HA,
+
+ /// %x3 = ADDI_TLSLD_L G8RReg, Symbol - For the local-dynamic TLS
+ /// model, produces an ADDI8 instruction that adds G8RReg to
+ /// sym\@got\@tlsld\@l and stores the result in X3. Hidden by
+ /// ADDIS_TLSLD_L_ADDR until after register assignment.
+ ADDI_TLSLD_L,
+
+ /// %x3 = GET_TLSLD_ADDR %x3, Symbol - For the local-dynamic TLS
+ /// model, produces a call to __tls_get_addr(sym\@tlsld). Hidden by
+ /// ADDIS_TLSLD_L_ADDR until after register assignment.
+ GET_TLSLD_ADDR,
+
+ /// G8RC = ADDI_TLSLD_L_ADDR G8RReg, Symbol, Symbol - Op that
+ /// combines ADDI_TLSLD_L and GET_TLSLD_ADDR until expansion
+ /// following register assignment.
+ ADDI_TLSLD_L_ADDR,
+
+ /// G8RC = ADDIS_DTPREL_HA %x3, Symbol - For the local-dynamic TLS
+ /// model, produces an ADDIS8 instruction that adds X3 to
+ /// sym\@dtprel\@ha.
+ ADDIS_DTPREL_HA,
+
+ /// G8RC = ADDI_DTPREL_L G8RReg, Symbol - For the local-dynamic TLS
+ /// model, produces an ADDI8 instruction that adds G8RReg to
+ /// sym\@got\@dtprel\@l.
+ ADDI_DTPREL_L,
+
+ /// VRRC = VADD_SPLAT Elt, EltSize - Temporary node to be expanded
+ /// during instruction selection to optimize a BUILD_VECTOR into
+ /// operations on splats. This is necessary to avoid losing these
+ /// optimizations due to constant folding.
+ VADD_SPLAT,
+
+ /// CHAIN = SC CHAIN, Imm128 - System call. The 7-bit unsigned
+ /// operand identifies the operating system entry point.
+ SC,
+
+ /// CHAIN = CLRBHRB CHAIN - Clear branch history rolling buffer.
+ CLRBHRB,
+
+ /// GPRC, CHAIN = MFBHRBE CHAIN, Entry, Dummy - Move from branch
+ /// history rolling buffer entry.
+ MFBHRBE,
+
+ /// CHAIN = RFEBB CHAIN, State - Return from event-based branch.
+ RFEBB,
+
+ /// VSRC, CHAIN = XXSWAPD CHAIN, VSRC - Occurs only for little
+ /// endian. Maps to an xxswapd instruction that corrects an lxvd2x
+ /// or stxvd2x instruction. The chain is necessary because the
+ /// sequence replaces a load and needs to provide the same number
+ /// of outputs.
+ XXSWAPD,
+
+ /// An SDNode for swaps that are not associated with any loads/stores
+ /// and thereby have no chain.
+ SWAP_NO_CHAIN,
+
+ /// An SDNode for Power9 vector absolute value difference.
+ /// operand #0 vector
+ /// operand #1 vector
+ /// operand #2 constant i32 0 or 1, to indicate whether needs to patch
+ /// the most significant bit for signed i32
+ ///
+ /// Power9 VABSD* instructions are designed to support unsigned integer
+ /// vectors (byte/halfword/word), if we want to make use of them for signed
+ /// integer vectors, we have to flip their sign bits first. To flip sign bit
+ /// for byte/halfword integer vector would become inefficient, but for word
+ /// integer vector, we can leverage XVNEGSP to make it efficiently. eg:
+ /// abs(sub(a,b)) => VABSDUW(a+0x80000000, b+0x80000000)
+ /// => VABSDUW((XVNEGSP a), (XVNEGSP b))
+ VABSD,
+
+ /// QVFPERM = This corresponds to the QPX qvfperm instruction.
+ QVFPERM,
+
+ /// QVGPCI = This corresponds to the QPX qvgpci instruction.
+ QVGPCI,
+
+ /// QVALIGNI = This corresponds to the QPX qvaligni instruction.
+ QVALIGNI,
+
+ /// QVESPLATI = This corresponds to the QPX qvesplati instruction.
+ QVESPLATI,
+
+ /// QBFLT = Access the underlying QPX floating-point boolean
+ /// representation.
+ QBFLT,
+
+ /// FP_EXTEND_HALF(VECTOR, IDX) - Custom extend upper (IDX=0) half or
+ /// lower (IDX=1) half of v4f32 to v2f64.
+ FP_EXTEND_HALF,
+
+ /// CHAIN = STBRX CHAIN, GPRC, Ptr, Type - This is a
+ /// byte-swapping store instruction. It byte-swaps the low "Type" bits of
+ /// the GPRC input, then stores it through Ptr. Type can be either i16 or
+ /// i32.
+ STBRX = ISD::FIRST_TARGET_MEMORY_OPCODE,
+
+ /// GPRC, CHAIN = LBRX CHAIN, Ptr, Type - This is a
+ /// byte-swapping load instruction. It loads "Type" bits, byte swaps it,
+ /// then puts it in the bottom bits of the GPRC. TYPE can be either i16
+ /// or i32.
+ LBRX,
+
+ /// STFIWX - The STFIWX instruction. The first operand is an input token
+ /// chain, then an f64 value to store, then an address to store it to.
+ STFIWX,
+
+ /// GPRC, CHAIN = LFIWAX CHAIN, Ptr - This is a floating-point
+ /// load which sign-extends from a 32-bit integer value into the
+ /// destination 64-bit register.
+ LFIWAX,
+
+ /// GPRC, CHAIN = LFIWZX CHAIN, Ptr - This is a floating-point
+ /// load which zero-extends from a 32-bit integer value into the
+ /// destination 64-bit register.
+ LFIWZX,
+
+ /// GPRC, CHAIN = LXSIZX, CHAIN, Ptr, ByteWidth - This is a load of an
+ /// integer smaller than 64 bits into a VSR. The integer is zero-extended.
+ /// This can be used for converting loaded integers to floating point.
+ LXSIZX,
+
+ /// STXSIX - The STXSI[bh]X instruction. The first operand is an input
+ /// chain, then an f64 value to store, then an address to store it to,
+ /// followed by a byte-width for the store.
+ STXSIX,
+
+ /// VSRC, CHAIN = LXVD2X_LE CHAIN, Ptr - Occurs only for little endian.
+ /// Maps directly to an lxvd2x instruction that will be followed by
+ /// an xxswapd.
+ LXVD2X,
+
+ /// VSRC, CHAIN = LOAD_VEC_BE CHAIN, Ptr - Occurs only for little endian.
+ /// Maps directly to one of lxvd2x/lxvw4x/lxvh8x/lxvb16x depending on
+ /// the vector type to load vector in big-endian element order.
+ LOAD_VEC_BE,
+
+ /// VSRC, CHAIN = LD_VSX_LH CHAIN, Ptr - This is a floating-point load of a
+ /// v2f32 value into the lower half of a VSR register.
+ LD_VSX_LH,
+
+ /// VSRC, CHAIN = LD_SPLAT, CHAIN, Ptr - a splatting load memory
+ /// instructions such as LXVDSX, LXVWSX.
+ LD_SPLAT,
+
+ /// CHAIN = STXVD2X CHAIN, VSRC, Ptr - Occurs only for little endian.
+ /// Maps directly to an stxvd2x instruction that will be preceded by
+ /// an xxswapd.
+ STXVD2X,
+
+ /// CHAIN = STORE_VEC_BE CHAIN, VSRC, Ptr - Occurs only for little endian.
+ /// Maps directly to one of stxvd2x/stxvw4x/stxvh8x/stxvb16x depending on
+ /// the vector type to store vector in big-endian element order.
+ STORE_VEC_BE,
+
+ /// Store scalar integers from VSR.
+ ST_VSR_SCAL_INT,
+
+ /// QBRC, CHAIN = QVLFSb CHAIN, Ptr
+ /// The 4xf32 load used for v4i1 constants.
+ QVLFSb,
+
+ /// ATOMIC_CMP_SWAP - the exact same as the target-independent nodes
+ /// except they ensure that the compare input is zero-extended for
+ /// sub-word versions because the atomic loads zero-extend.
+ ATOMIC_CMP_SWAP_8,
+ ATOMIC_CMP_SWAP_16,
+
+ /// GPRC = TOC_ENTRY GA, TOC
+ /// Loads the entry for GA from the TOC, where the TOC base is given by
+ /// the last operand.
+ TOC_ENTRY
+ };
} // end namespace PPCISD
OpenPOWER on IntegriCloud