diff options
Diffstat (limited to 'llvm/lib/Target/Lanai/LanaiISelLowering.cpp')
-rw-r--r-- | llvm/lib/Target/Lanai/LanaiISelLowering.cpp | 1207 |
1 files changed, 1207 insertions, 0 deletions
diff --git a/llvm/lib/Target/Lanai/LanaiISelLowering.cpp b/llvm/lib/Target/Lanai/LanaiISelLowering.cpp new file mode 100644 index 00000000000..b18e04dc6a0 --- /dev/null +++ b/llvm/lib/Target/Lanai/LanaiISelLowering.cpp @@ -0,0 +1,1207 @@ +//===-- LanaiISelLowering.cpp - Lanai DAG Lowering Implementation ---------===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This file implements the LanaiTargetLowering class. +// +//===----------------------------------------------------------------------===// + +#include "LanaiISelLowering.h" + +#include "Lanai.h" +#include "LanaiMachineFunctionInfo.h" +#include "LanaiSubtarget.h" +#include "LanaiTargetMachine.h" +#include "LanaiTargetObjectFile.h" +#include "llvm/CodeGen/CallingConvLower.h" +#include "llvm/CodeGen/MachineFrameInfo.h" +#include "llvm/CodeGen/MachineFunction.h" +#include "llvm/CodeGen/MachineInstrBuilder.h" +#include "llvm/CodeGen/MachineRegisterInfo.h" +#include "llvm/CodeGen/SelectionDAGISel.h" +#include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" +#include "llvm/CodeGen/ValueTypes.h" +#include "llvm/IR/CallingConv.h" +#include "llvm/IR/DerivedTypes.h" +#include "llvm/IR/Function.h" +#include "llvm/IR/GlobalAlias.h" +#include "llvm/IR/GlobalVariable.h" +#include "llvm/IR/Intrinsics.h" +#include "llvm/Support/CommandLine.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/ErrorHandling.h" +#include "llvm/Support/raw_ostream.h" + +#define DEBUG_TYPE "lanai-lower" + +using namespace llvm; + +// Limit on number of instructions the lowered multiplication may have before a +// call to the library function should be generated instead. The threshold is +// currently set to 14 as this was the smallest threshold that resulted in all +// constant multiplications being lowered. A threshold of 5 covered all cases +// except for one multiplication which required 14. mulsi3 requires 16 +// instructions (including the prologue and epilogue but excluding instructions +// at call site). Until we can inline mulsi3, generating at most 14 instructions +// will be faster than invoking mulsi3. +static cl::opt<int> LanaiLowerConstantMulThreshold( + "lanai-constant-mul-threshold", cl::Hidden, + cl::desc("Maximum number of instruction to generate when lowering constant " + "multiplication instead of calling library function [default=14]"), + cl::init(14)); + +LanaiTargetLowering::LanaiTargetLowering(const TargetMachine &TM, + const LanaiSubtarget &STI) + : TargetLowering(TM) { + // Set up the register classes. + addRegisterClass(MVT::i32, &Lanai::GPRRegClass); + + // Compute derived properties from the register classes + TRI = STI.getRegisterInfo(); + computeRegisterProperties(TRI); + + setStackPointerRegisterToSaveRestore(Lanai::SP); + + setOperationAction(ISD::BR_CC, MVT::i32, Custom); + setOperationAction(ISD::BR_JT, MVT::Other, Expand); + setOperationAction(ISD::BRCOND, MVT::Other, Expand); + setOperationAction(ISD::SETCC, MVT::i32, Custom); + setOperationAction(ISD::SELECT, MVT::i32, Expand); + setOperationAction(ISD::SELECT_CC, MVT::i32, Custom); + + setOperationAction(ISD::GlobalAddress, MVT::i32, Custom); + setOperationAction(ISD::BlockAddress, MVT::i32, Custom); + setOperationAction(ISD::JumpTable, MVT::i32, Custom); + setOperationAction(ISD::ConstantPool, MVT::i32, Custom); + + setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom); + setOperationAction(ISD::STACKSAVE, MVT::Other, Expand); + setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand); + + setOperationAction(ISD::VASTART, MVT::Other, Custom); + setOperationAction(ISD::VAARG, MVT::Other, Expand); + setOperationAction(ISD::VACOPY, MVT::Other, Expand); + setOperationAction(ISD::VAEND, MVT::Other, Expand); + + setOperationAction(ISD::SDIV, MVT::i32, Expand); + setOperationAction(ISD::UDIV, MVT::i32, Expand); + setOperationAction(ISD::SDIVREM, MVT::i32, Expand); + setOperationAction(ISD::UDIVREM, MVT::i32, Expand); + setOperationAction(ISD::SREM, MVT::i32, Expand); + setOperationAction(ISD::UREM, MVT::i32, Expand); + + setOperationAction(ISD::MUL, MVT::i32, Custom); + setOperationAction(ISD::MULHU, MVT::i32, Expand); + setOperationAction(ISD::MULHS, MVT::i32, Expand); + setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand); + setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand); + + setOperationAction(ISD::ROTR, MVT::i32, Expand); + setOperationAction(ISD::ROTL, MVT::i32, Expand); + setOperationAction(ISD::SHL_PARTS, MVT::i32, Expand); + setOperationAction(ISD::SRL_PARTS, MVT::i32, Expand); + setOperationAction(ISD::SRA_PARTS, MVT::i32, Expand); + + setOperationAction(ISD::BSWAP, MVT::i32, Expand); + setOperationAction(ISD::CTPOP, MVT::i32, Legal); + setOperationAction(ISD::CTLZ, MVT::i32, Legal); + setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Legal); + setOperationAction(ISD::CTTZ, MVT::i32, Legal); + setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Legal); + + setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); + setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8, Expand); + setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand); + + // Extended load operations for i1 types must be promoted + for (MVT VT : MVT::integer_valuetypes()) { + setLoadExtAction(ISD::EXTLOAD, VT, MVT::i1, Promote); + setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote); + setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); + } + + // Function alignments (log2) + setMinFunctionAlignment(2); + setPrefFunctionAlignment(2); + + setJumpIsExpensive(true); + + // TODO: Setting the minimum jump table entries needed before a + // switch is transformed to a jump table to 100 to avoid creating jump tables + // as this was causing bad performance compared to a large group of if + // statements. Re-evaluate this on new benchmarks. + setMinimumJumpTableEntries(100); + + // Use fast calling convention for library functions. + for (int I = 0; I < RTLIB::UNKNOWN_LIBCALL; ++I) { + setLibcallCallingConv(static_cast<RTLIB::Libcall>(I), CallingConv::Fast); + } + + MaxStoresPerMemset = 16; // For @llvm.memset -> sequence of stores + MaxStoresPerMemsetOptSize = 8; + MaxStoresPerMemcpy = 16; // For @llvm.memcpy -> sequence of stores + MaxStoresPerMemcpyOptSize = 8; + MaxStoresPerMemmove = 16; // For @llvm.memmove -> sequence of stores + MaxStoresPerMemmoveOptSize = 8; +} + +SDValue LanaiTargetLowering::LowerOperation(SDValue Op, + SelectionDAG &DAG) const { + switch (Op.getOpcode()) { + case ISD::MUL: + return LowerMUL(Op, DAG); + case ISD::BR_CC: + return LowerBR_CC(Op, DAG); + case ISD::ConstantPool: + return LowerConstantPool(Op, DAG); + case ISD::GlobalAddress: + return LowerGlobalAddress(Op, DAG); + case ISD::BlockAddress: + return LowerBlockAddress(Op, DAG); + case ISD::JumpTable: + return LowerJumpTable(Op, DAG); + case ISD::SELECT_CC: + return LowerSELECT_CC(Op, DAG); + case ISD::SETCC: + return LowerSETCC(Op, DAG); + case ISD::VASTART: + return LowerVASTART(Op, DAG); + case ISD::DYNAMIC_STACKALLOC: + return LowerDYNAMIC_STACKALLOC(Op, DAG); + case ISD::RETURNADDR: + return LowerRETURNADDR(Op, DAG); + case ISD::FRAMEADDR: + return LowerFRAMEADDR(Op, DAG); + default: + llvm_unreachable("unimplemented operand"); + } +} +//===----------------------------------------------------------------------===// +// Lanai Inline Assembly Support +//===----------------------------------------------------------------------===// + +unsigned LanaiTargetLowering::getRegisterByName(const char *RegName, EVT VT, + SelectionDAG &DAG) const { + // Only unallocatable registers should be matched here. + unsigned Reg = StringSwitch<unsigned>(RegName) + .Case("pc", Lanai::PC) + .Case("sp", Lanai::SP) + .Case("fp", Lanai::FP) + .Case("rr1", Lanai::RR1) + .Case("r10", Lanai::R10) + .Case("rr2", Lanai::RR2) + .Case("r11", Lanai::R11) + .Case("rca", Lanai::RCA) + .Default(0); + + if (Reg) + return Reg; + report_fatal_error("Invalid register name global variable"); +} + +std::pair<unsigned, const TargetRegisterClass *> +LanaiTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, + StringRef Constraint, + MVT VT) const { + if (Constraint.size() == 1) + // GCC Constraint Letters + switch (Constraint[0]) { + case 'r': // GENERAL_REGS + return std::make_pair(0U, &Lanai::GPRRegClass); + default: + break; + } + + return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); +} + +// Examine constraint type and operand type and determine a weight value. +// This object must already have been set up with the operand type +// and the current alternative constraint selected. +TargetLowering::ConstraintWeight +LanaiTargetLowering::getSingleConstraintMatchWeight( + AsmOperandInfo &Info, const char *Constraint) const { + ConstraintWeight Weight = CW_Invalid; + Value *CallOperandVal = Info.CallOperandVal; + // If we don't have a value, we can't do a match, + // but allow it at the lowest weight. + if (CallOperandVal == NULL) + return CW_Default; + // Look at the constraint type. + switch (*Constraint) { + case 'I': // signed 16 bit immediate + case 'J': // integer zero + case 'K': // unsigned 16 bit immediate + case 'L': // immediate in the range 0 to 31 + case 'M': // signed 32 bit immediate where lower 16 bits are 0 + case 'N': // signed 26 bit immediate + case 'O': // integer zero + if (isa<ConstantInt>(CallOperandVal)) + Weight = CW_Constant; + break; + default: + Weight = TargetLowering::getSingleConstraintMatchWeight(Info, Constraint); + break; + } + return Weight; +} + +// LowerAsmOperandForConstraint - Lower the specified operand into the Ops +// vector. If it is invalid, don't add anything to Ops. +void LanaiTargetLowering::LowerAsmOperandForConstraint( + SDValue Op, std::string &Constraint, std::vector<SDValue> &Ops, + SelectionDAG &DAG) const { + SDValue Result(0, 0); + + // Only support length 1 constraints for now. + if (Constraint.length() > 1) + return; + + char ConstraintLetter = Constraint[0]; + switch (ConstraintLetter) { + case 'I': // Signed 16 bit constant + // If this fails, the parent routine will give an error + if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) { + if (isInt<16>(C->getSExtValue())) { + Result = DAG.getTargetConstant(C->getSExtValue(), SDLoc(C), + Op.getValueType()); + break; + } + } + return; + case 'J': // integer zero + case 'O': + if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) { + if (C->getZExtValue() == 0) { + Result = DAG.getTargetConstant(0, SDLoc(C), Op.getValueType()); + break; + } + } + return; + case 'K': // unsigned 16 bit immediate + if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) { + if (isUInt<16>(C->getZExtValue())) { + Result = DAG.getTargetConstant(C->getSExtValue(), SDLoc(C), + Op.getValueType()); + break; + } + } + return; + case 'L': // immediate in the range 0 to 31 + if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) { + if (C->getZExtValue() <= 31) { + Result = DAG.getTargetConstant(C->getZExtValue(), SDLoc(C), + Op.getValueType()); + break; + } + } + return; + case 'M': // signed 32 bit immediate where lower 16 bits are 0 + if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) { + int64_t Val = C->getSExtValue(); + if ((isInt<32>(Val)) && ((Val & 0xffff) == 0)) { + Result = DAG.getTargetConstant(Val, SDLoc(C), Op.getValueType()); + break; + } + } + return; + case 'N': // signed 26 bit immediate + if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) { + int64_t Val = C->getSExtValue(); + if ((Val >= -33554432) && (Val <= 33554431)) { + Result = DAG.getTargetConstant(Val, SDLoc(C), Op.getValueType()); + break; + } + } + return; + default: + break; // This will fall through to the generic implementation + } + + if (Result.getNode()) { + Ops.push_back(Result); + return; + } + + TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); +} + +//===----------------------------------------------------------------------===// +// Calling Convention Implementation +//===----------------------------------------------------------------------===// + +#include "LanaiGenCallingConv.inc" + +static unsigned NumFixedArgs; +static bool CC_Lanai32_VarArg(unsigned ValNo, MVT ValVT, MVT LocVT, + CCValAssign::LocInfo LocInfo, + ISD::ArgFlagsTy ArgFlags, CCState &State) { + // Handle fixed arguments with default CC. + // Note: Both the default and fast CC handle VarArg the same and hence the + // calling convention of the function is not considered here. + if (ValNo < NumFixedArgs) { + return CC_Lanai32(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State); + } + + // Promote i8/i16 args to i32 + if (LocVT == MVT::i8 || LocVT == MVT::i16) { + LocVT = MVT::i32; + if (ArgFlags.isSExt()) + LocInfo = CCValAssign::SExt; + else if (ArgFlags.isZExt()) + LocInfo = CCValAssign::ZExt; + else + LocInfo = CCValAssign::AExt; + } + + // VarArgs get passed on stack + unsigned Offset = State.AllocateStack(4, 4); + State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo)); + return false; +} + +SDValue LanaiTargetLowering::LowerFormalArguments( + SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, + const SmallVectorImpl<ISD::InputArg> &Ins, SDLoc DL, SelectionDAG &DAG, + SmallVectorImpl<SDValue> &InVals) const { + switch (CallConv) { + case CallingConv::C: + case CallingConv::Fast: + return LowerCCCArguments(Chain, CallConv, IsVarArg, Ins, DL, DAG, InVals); + default: + llvm_unreachable("Unsupported calling convention"); + } +} + +SDValue LanaiTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI, + SmallVectorImpl<SDValue> &InVals) const { + SelectionDAG &DAG = CLI.DAG; + SDLoc &DL = CLI.DL; + SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; + SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; + SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; + SDValue Chain = CLI.Chain; + SDValue Callee = CLI.Callee; + bool &IsTailCall = CLI.IsTailCall; + CallingConv::ID CallConv = CLI.CallConv; + bool IsVarArg = CLI.IsVarArg; + + // Lanai target does not yet support tail call optimization. + IsTailCall = false; + + switch (CallConv) { + case CallingConv::Fast: + case CallingConv::C: + return LowerCCCCallTo(Chain, Callee, CallConv, IsVarArg, IsTailCall, Outs, + OutVals, Ins, DL, DAG, InVals); + default: + llvm_unreachable("Unsupported calling convention"); + } +} + +// LowerCCCArguments - transform physical registers into virtual registers and +// generate load operations for arguments places on the stack. +SDValue LanaiTargetLowering::LowerCCCArguments( + SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, + const SmallVectorImpl<ISD::InputArg> &Ins, SDLoc DL, SelectionDAG &DAG, + SmallVectorImpl<SDValue> &InVals) const { + MachineFunction &MF = DAG.getMachineFunction(); + MachineFrameInfo *MFI = MF.getFrameInfo(); + MachineRegisterInfo &RegInfo = MF.getRegInfo(); + LanaiMachineFunctionInfo *LanaiMFI = MF.getInfo<LanaiMachineFunctionInfo>(); + + // Assign locations to all of the incoming arguments. + SmallVector<CCValAssign, 16> ArgLocs; + CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), ArgLocs, + *DAG.getContext()); + if (CallConv == CallingConv::Fast) { + CCInfo.AnalyzeFormalArguments(Ins, CC_Lanai32_Fast); + } else { + CCInfo.AnalyzeFormalArguments(Ins, CC_Lanai32); + } + + for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { + CCValAssign &VA = ArgLocs[i]; + if (VA.isRegLoc()) { + // Arguments passed in registers + EVT RegVT = VA.getLocVT(); + switch (RegVT.getSimpleVT().SimpleTy) { + case MVT::i32: { + unsigned VReg = RegInfo.createVirtualRegister(&Lanai::GPRRegClass); + RegInfo.addLiveIn(VA.getLocReg(), VReg); + SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, RegVT); + + // If this is an 8/16-bit value, it is really passed promoted to 32 + // bits. Insert an assert[sz]ext to capture this, then truncate to the + // right size. + if (VA.getLocInfo() == CCValAssign::SExt) + ArgValue = DAG.getNode(ISD::AssertSext, DL, RegVT, ArgValue, + DAG.getValueType(VA.getValVT())); + else if (VA.getLocInfo() == CCValAssign::ZExt) + ArgValue = DAG.getNode(ISD::AssertZext, DL, RegVT, ArgValue, + DAG.getValueType(VA.getValVT())); + + if (VA.getLocInfo() != CCValAssign::Full) + ArgValue = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), ArgValue); + + InVals.push_back(ArgValue); + break; + } + default: + DEBUG(dbgs() << "LowerFormalArguments Unhandled argument type: " + << RegVT.getSimpleVT().SimpleTy << "\n"); + llvm_unreachable("unhandled argument type"); + } + } else { + // Sanity check + assert(VA.isMemLoc()); + // Load the argument to a virtual register + unsigned ObjSize = VA.getLocVT().getSizeInBits() / 8; + // Check that the argument fits in stack slot + if (ObjSize > 4) { + errs() << "LowerFormalArguments Unhandled argument type: " + << EVT(VA.getLocVT()).getEVTString() << "\n"; + } + // Create the frame index object for this incoming parameter... + int FI = MFI->CreateFixedObject(ObjSize, VA.getLocMemOffset(), true); + + // Create the SelectionDAG nodes corresponding to a load + // from this parameter + SDValue FIN = DAG.getFrameIndex(FI, MVT::i32); + InVals.push_back(DAG.getLoad( + VA.getLocVT(), DL, Chain, FIN, + MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), + false, false, false, 0)); + } + } + + // The Lanai ABI for returning structs by value requires that we copy + // the sret argument into rv for the return. Save the argument into + // a virtual register so that we can access it from the return points. + if (MF.getFunction()->hasStructRetAttr()) { + unsigned Reg = LanaiMFI->getSRetReturnReg(); + if (!Reg) { + Reg = MF.getRegInfo().createVirtualRegister(getRegClassFor(MVT::i32)); + LanaiMFI->setSRetReturnReg(Reg); + } + SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), DL, Reg, InVals[0]); + Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Copy, Chain); + } + + if (IsVarArg) { + // Record the frame index of the first variable argument + // which is a value necessary to VASTART. + int FI = MFI->CreateFixedObject(4, CCInfo.getNextStackOffset(), true); + LanaiMFI->setVarArgsFrameIndex(FI); + } + + return Chain; +} + +SDValue +LanaiTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, + bool IsVarArg, + const SmallVectorImpl<ISD::OutputArg> &Outs, + const SmallVectorImpl<SDValue> &OutVals, + SDLoc DL, SelectionDAG &DAG) const { + // CCValAssign - represent the assignment of the return value to a location + SmallVector<CCValAssign, 16> RVLocs; + + // CCState - Info about the registers and stack slot. + CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs, + *DAG.getContext()); + + // Analize return values. + CCInfo.AnalyzeReturn(Outs, RetCC_Lanai32); + + SDValue Flag; + SmallVector<SDValue, 4> RetOps(1, Chain); + + // Copy the result values into the output registers. + for (unsigned i = 0; i != RVLocs.size(); ++i) { + CCValAssign &VA = RVLocs[i]; + assert(VA.isRegLoc() && "Can only return in registers!"); + + Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), OutVals[i], Flag); + + // Guarantee that all emitted copies are stuck together with flags. + Flag = Chain.getValue(1); + RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); + } + + // The Lanai ABI for returning structs by value requires that we copy + // the sret argument into rv for the return. We saved the argument into + // a virtual register in the entry block, so now we copy the value out + // and into rv. + if (DAG.getMachineFunction().getFunction()->hasStructRetAttr()) { + MachineFunction &MF = DAG.getMachineFunction(); + LanaiMachineFunctionInfo *LanaiMFI = MF.getInfo<LanaiMachineFunctionInfo>(); + unsigned Reg = LanaiMFI->getSRetReturnReg(); + assert(Reg && + "SRetReturnReg should have been set in LowerFormalArguments()."); + SDValue Val = + DAG.getCopyFromReg(Chain, DL, Reg, getPointerTy(DAG.getDataLayout())); + + Chain = DAG.getCopyToReg(Chain, DL, Lanai::RV, Val, Flag); + Flag = Chain.getValue(1); + RetOps.push_back( + DAG.getRegister(Lanai::RV, getPointerTy(DAG.getDataLayout()))); + } + + RetOps[0] = Chain; // Update chain + + unsigned Opc = LanaiISD::RET_FLAG; + if (Flag.getNode()) + RetOps.push_back(Flag); + + // Return Void + return DAG.getNode(Opc, DL, MVT::Other, + ArrayRef<SDValue>(&RetOps[0], RetOps.size())); +} + +// LowerCCCCallTo - functions arguments are copied from virtual regs to +// (physical regs)/(stack frame), CALLSEQ_START and CALLSEQ_END are emitted. +SDValue LanaiTargetLowering::LowerCCCCallTo( + SDValue Chain, SDValue Callee, CallingConv::ID CallConv, bool IsVarArg, + bool IsTailCall, const SmallVectorImpl<ISD::OutputArg> &Outs, + const SmallVectorImpl<SDValue> &OutVals, + const SmallVectorImpl<ISD::InputArg> &Ins, SDLoc DL, SelectionDAG &DAG, + SmallVectorImpl<SDValue> &InVals) const { + // Analyze operands of the call, assigning locations to each operand. + SmallVector<CCValAssign, 16> ArgLocs; + CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), ArgLocs, + *DAG.getContext()); + GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee); + MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo(); + + NumFixedArgs = 0; + if (IsVarArg && G) { + const Function *CalleeFn = dyn_cast<Function>(G->getGlobal()); + if (CalleeFn) + NumFixedArgs = CalleeFn->getFunctionType()->getNumParams(); + } + if (NumFixedArgs) + CCInfo.AnalyzeCallOperands(Outs, CC_Lanai32_VarArg); + else { + if (CallConv == CallingConv::Fast) + CCInfo.AnalyzeCallOperands(Outs, CC_Lanai32_Fast); + else + CCInfo.AnalyzeCallOperands(Outs, CC_Lanai32); + } + + // Get a count of how many bytes are to be pushed on the stack. + unsigned NumBytes = CCInfo.getNextStackOffset(); + + // Create local copies for byval args. + SmallVector<SDValue, 8> ByValArgs; + for (unsigned I = 0, E = Outs.size(); I != E; ++I) { + ISD::ArgFlagsTy Flags = Outs[I].Flags; + if (!Flags.isByVal()) + continue; + + SDValue Arg = OutVals[I]; + unsigned Size = Flags.getByValSize(); + unsigned Align = Flags.getByValAlign(); + + int FI = MFI->CreateStackObject(Size, Align, false); + SDValue FIPtr = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout())); + SDValue SizeNode = DAG.getConstant(Size, DL, MVT::i32); + + Chain = DAG.getMemcpy(Chain, DL, FIPtr, Arg, SizeNode, Align, + /*IsVolatile=*/false, + /*AlwaysInline=*/false, + /*IsTailCall=*/false, MachinePointerInfo(), + MachinePointerInfo()); + ByValArgs.push_back(FIPtr); + } + + Chain = DAG.getCALLSEQ_START( + Chain, + DAG.getConstant(NumBytes, DL, getPointerTy(DAG.getDataLayout()), true), + DL); + + SmallVector<std::pair<unsigned, SDValue>, 4> RegsToPass; + SmallVector<SDValue, 12> MemOpChains; + SDValue StackPtr; + + // Walk the register/memloc assignments, inserting copies/loads. + for (unsigned I = 0, J = 0, E = ArgLocs.size(); I != E; ++I) { + CCValAssign &VA = ArgLocs[I]; + SDValue Arg = OutVals[I]; + ISD::ArgFlagsTy Flags = Outs[I].Flags; + + // Promote the value if needed. + switch (VA.getLocInfo()) { + case CCValAssign::Full: + break; + case CCValAssign::SExt: + Arg = DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Arg); + break; + case CCValAssign::ZExt: + Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Arg); + break; + case CCValAssign::AExt: + Arg = DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Arg); + break; + default: + llvm_unreachable("Unknown loc info!"); + } + + // Use local copy if it is a byval arg. + if (Flags.isByVal()) + Arg = ByValArgs[J++]; + + // Arguments that can be passed on register must be kept at RegsToPass + // vector + if (VA.isRegLoc()) { + RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg)); + } else { + assert(VA.isMemLoc()); + + if (StackPtr.getNode() == 0) + StackPtr = DAG.getCopyFromReg(Chain, DL, Lanai::SP, + getPointerTy(DAG.getDataLayout())); + + SDValue PtrOff = + DAG.getNode(ISD::ADD, DL, getPointerTy(DAG.getDataLayout()), StackPtr, + DAG.getIntPtrConstant(VA.getLocMemOffset(), DL)); + + MemOpChains.push_back(DAG.getStore( + Chain, DL, Arg, PtrOff, MachinePointerInfo(), false, false, 0)); + } + } + + // Transform all store nodes into one single node because all store nodes are + // independent of each other. + if (!MemOpChains.empty()) + Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, + ArrayRef<SDValue>(&MemOpChains[0], MemOpChains.size())); + + SDValue InFlag; + + // Build a sequence of copy-to-reg nodes chained together with token chain and + // flag operands which copy the outgoing args into registers. The InFlag in + // necessary since all emitted instructions must be stuck together. + for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I) { + Chain = DAG.getCopyToReg(Chain, DL, RegsToPass[I].first, + RegsToPass[I].second, InFlag); + InFlag = Chain.getValue(1); + } + + // If the callee is a GlobalAddress node (quite common, every direct call is) + // turn it into a TargetGlobalAddress node so that legalize doesn't hack it. + // Likewise ExternalSymbol -> TargetExternalSymbol. + uint8_t OpFlag = LanaiII::MO_NO_FLAG; + if (G) { + Callee = DAG.getTargetGlobalAddress( + G->getGlobal(), DL, getPointerTy(DAG.getDataLayout()), 0, OpFlag); + } else if (ExternalSymbolSDNode *E = dyn_cast<ExternalSymbolSDNode>(Callee)) { + Callee = DAG.getTargetExternalSymbol( + E->getSymbol(), getPointerTy(DAG.getDataLayout()), OpFlag); + } + + // Returns a chain & a flag for retval copy to use. + SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); + SmallVector<SDValue, 8> Ops; + Ops.push_back(Chain); + Ops.push_back(Callee); + + // Add a register mask operand representing the call-preserved registers. + // TODO: Should return-twice functions be handled? + const uint32_t *Mask = + TRI->getCallPreservedMask(DAG.getMachineFunction(), CallConv); + assert(Mask && "Missing call preserved mask for calling convention"); + Ops.push_back(DAG.getRegisterMask(Mask)); + + // Add argument registers to the end of the list so that they are + // known live into the call. + for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I) + Ops.push_back(DAG.getRegister(RegsToPass[I].first, + RegsToPass[I].second.getValueType())); + + if (InFlag.getNode()) + Ops.push_back(InFlag); + + Chain = DAG.getNode(LanaiISD::CALL, DL, NodeTys, + ArrayRef<SDValue>(&Ops[0], Ops.size())); + InFlag = Chain.getValue(1); + + // Create the CALLSEQ_END node. + Chain = DAG.getCALLSEQ_END( + Chain, + DAG.getConstant(NumBytes, DL, getPointerTy(DAG.getDataLayout()), true), + DAG.getConstant(0, DL, getPointerTy(DAG.getDataLayout()), true), InFlag, + DL); + InFlag = Chain.getValue(1); + + // Handle result values, copying them out of physregs into vregs that we + // return. + return LowerCallResult(Chain, InFlag, CallConv, IsVarArg, Ins, DL, DAG, + InVals); +} + +// LowerCallResult - Lower the result values of a call into the +// appropriate copies out of appropriate physical registers. +SDValue LanaiTargetLowering::LowerCallResult( + SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool IsVarArg, + const SmallVectorImpl<ISD::InputArg> &Ins, SDLoc DL, SelectionDAG &DAG, + SmallVectorImpl<SDValue> &InVals) const { + // Assign locations to each value returned by this call. + SmallVector<CCValAssign, 16> RVLocs; + CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs, + *DAG.getContext()); + + CCInfo.AnalyzeCallResult(Ins, RetCC_Lanai32); + + // Copy all of the result registers out of their specified physreg. + for (unsigned I = 0; I != RVLocs.size(); ++I) { + Chain = DAG.getCopyFromReg(Chain, DL, RVLocs[I].getLocReg(), + RVLocs[I].getValVT(), InFlag) + .getValue(1); + InFlag = Chain.getValue(2); + InVals.push_back(Chain.getValue(0)); + } + + return Chain; +} + +//===----------------------------------------------------------------------===// +// Custom Lowerings +//===----------------------------------------------------------------------===// + +static LPCC::CondCode IntCondCCodeToICC(ISD::CondCode SetCCOpcode, SDLoc DL, + SDValue &LHS, SDValue &RHS, + SelectionDAG &DAG) { + // For integer, only the SETEQ, SETNE, SETLT, SETLE, SETGT, SETGE, SETULT, + // SETULE, SETUGT, and SETUGE opcodes are used (see CodeGen/ISDOpcodes.h) + // and Lanai only supports integer comparisons, so only provide definitions + // for them. + switch (SetCCOpcode) { + case ISD::SETEQ: + return LPCC::ICC_EQ; + case ISD::SETGT: + if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) + if (RHSC->getZExtValue() == 0xFFFFFFFF) { + // X > -1 -> X >= 0 -> is_plus(X) + RHS = DAG.getConstant(0, DL, RHS.getValueType()); + return LPCC::ICC_PL; + } + return LPCC::ICC_GT; + case ISD::SETUGT: + return LPCC::ICC_UGT; + case ISD::SETLT: + if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) + if (RHSC->getZExtValue() == 0) + // X < 0 -> is_minus(X) + return LPCC::ICC_MI; + return LPCC::ICC_LT; + case ISD::SETULT: + return LPCC::ICC_ULT; + case ISD::SETLE: + if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) + if (RHSC->getZExtValue() == 0xFFFFFFFF) { + // X <= -1 -> X < 0 -> is_minus(X) + RHS = DAG.getConstant(0, DL, RHS.getValueType()); + return LPCC::ICC_MI; + } + return LPCC::ICC_LE; + case ISD::SETULE: + return LPCC::ICC_ULE; + case ISD::SETGE: + if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) + if (RHSC->getZExtValue() == 0) + // X >= 0 -> is_plus(X) + return LPCC::ICC_PL; + return LPCC::ICC_GE; + case ISD::SETUGE: + return LPCC::ICC_UGE; + case ISD::SETNE: + return LPCC::ICC_NE; + case ISD::SETONE: + case ISD::SETUNE: + case ISD::SETOGE: + case ISD::SETOLE: + case ISD::SETOLT: + case ISD::SETOGT: + case ISD::SETOEQ: + case ISD::SETUEQ: + case ISD::SETO: + case ISD::SETUO: + llvm_unreachable("Unsupported comparison."); + default: + llvm_unreachable("Unknown integer condition code!"); + } +} + +SDValue LanaiTargetLowering::LowerBR_CC(SDValue Op, SelectionDAG &DAG) const { + SDValue Chain = Op.getOperand(0); + ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get(); + SDValue LHS = Op.getOperand(2); + SDValue RHS = Op.getOperand(3); + SDValue Dest = Op.getOperand(4); + SDLoc DL(Op); + + SDValue TargetCC = + DAG.getConstant(IntCondCCodeToICC(CC, DL, LHS, RHS, DAG), DL, MVT::i32); + SDValue Flag = + DAG.getNode(LanaiISD::SET_FLAG, DL, MVT::Glue, LHS, RHS, TargetCC); + + return DAG.getNode(LanaiISD::BR_CC, DL, Op.getValueType(), Chain, Dest, + TargetCC, Flag); +} + +SDValue LanaiTargetLowering::LowerMUL(SDValue Op, SelectionDAG &DAG) const { + EVT VT = Op->getValueType(0); + if (VT != MVT::i32) + return SDValue(); + + ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op->getOperand(1)); + if (!C) + return SDValue(); + + int64_t MulAmt = C->getSExtValue(); + int32_t HighestOne = -1; + uint32_t NonzeroEntries = 0; + int SignedDigit[32] = {0}; + + // Convert to non-adjacent form (NAF) signed-digit representation. + // NAF is a signed-digit form where no adjacent digits are non-zero. It is the + // minimal Hamming weight representation of a number (on average 1/3 of the + // digits will be non-zero vs 1/2 for regular binary representation). And as + // the non-zero digits will be the only digits contributing to the instruction + // count, this is desirable. The next loop converts it to NAF (following the + // approach in 'Guide to Elliptic Curve Cryptography' [ISBN: 038795273X]) by + // choosing the non-zero coefficients such that the resulting quotient is + // divisible by 2 which will cause the next coefficient to be zero. + int64_t E = std::abs(MulAmt); + int S = (MulAmt < 0 ? -1 : 1); + int I = 0; + while (E > 0) { + int ZI = 0; + if (E % 2 == 1) { + ZI = 2 - (E % 4); + if (ZI != 0) + ++NonzeroEntries; + } + SignedDigit[I] = S * ZI; + if (SignedDigit[I] == 1) + HighestOne = I; + E = (E - ZI) / 2; + ++I; + } + + // Compute number of instructions required. Due to differences in lowering + // between the different processors this count is not exact. + // Start by assuming a shift and a add/sub for every non-zero entry (hence + // every non-zero entry requires 1 shift and 1 add/sub except for the first + // entry). + int32_t InstrRequired = 2 * NonzeroEntries - 1; + // Correct possible over-adding due to shift by 0 (which is not emitted). + if (std::abs(MulAmt) % 2 == 1) + --InstrRequired; + // Return if the form generated would exceed the instruction threshold. + if (InstrRequired > LanaiLowerConstantMulThreshold) + return SDValue(); + + SDValue Res; + SDLoc DL(Op); + SDValue V = Op->getOperand(0); + + // Initialize the running sum. Set the running sum to the maximal shifted + // positive value (i.e., largest i such that zi == 1 and MulAmt has V<<i as a + // term NAF). + if (HighestOne == -1) + Res = DAG.getConstant(0, DL, MVT::i32); + else { + Res = DAG.getNode(ISD::SHL, DL, VT, V, + DAG.getConstant(HighestOne, DL, MVT::i32)); + SignedDigit[HighestOne] = 0; + } + + // Assemble multiplication from shift, add, sub using NAF form and running + // sum. + for (unsigned int I = 0; I < sizeof(SignedDigit) / sizeof(SignedDigit[0]); + ++I) { + if (SignedDigit[I] == 0) + continue; + + // Shifted multiplicand (v<<i). + SDValue Op = + DAG.getNode(ISD::SHL, DL, VT, V, DAG.getConstant(I, DL, MVT::i32)); + if (SignedDigit[I] == 1) + Res = DAG.getNode(ISD::ADD, DL, VT, Res, Op); + else if (SignedDigit[I] == -1) + Res = DAG.getNode(ISD::SUB, DL, VT, Res, Op); + } + return Res; +} + +SDValue LanaiTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const { + SDValue LHS = Op.getOperand(0); + SDValue RHS = Op.getOperand(1); + ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); + SDLoc DL(Op); + + SDValue TargetCC = + DAG.getConstant(IntCondCCodeToICC(CC, DL, LHS, RHS, DAG), DL, MVT::i32); + SDValue Flag = + DAG.getNode(LanaiISD::SET_FLAG, DL, MVT::Glue, LHS, RHS, TargetCC); + + return DAG.getNode(LanaiISD::SETCC, DL, Op.getValueType(), TargetCC, Flag); +} + +SDValue LanaiTargetLowering::LowerSELECT_CC(SDValue Op, + SelectionDAG &DAG) const { + SDValue LHS = Op.getOperand(0); + SDValue RHS = Op.getOperand(1); + SDValue TrueV = Op.getOperand(2); + SDValue FalseV = Op.getOperand(3); + ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get(); + SDLoc DL(Op); + + SDValue TargetCC = + DAG.getConstant(IntCondCCodeToICC(CC, DL, LHS, RHS, DAG), DL, MVT::i32); + SDValue Flag = + DAG.getNode(LanaiISD::SET_FLAG, DL, MVT::Glue, LHS, RHS, TargetCC); + + SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue); + return DAG.getNode(LanaiISD::SELECT_CC, DL, VTs, TrueV, FalseV, TargetCC, + Flag); +} + +SDValue LanaiTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const { + MachineFunction &MF = DAG.getMachineFunction(); + LanaiMachineFunctionInfo *FuncInfo = MF.getInfo<LanaiMachineFunctionInfo>(); + + SDLoc DL(Op); + SDValue FI = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), + getPointerTy(DAG.getDataLayout())); + + // vastart just stores the address of the VarArgsFrameIndex slot into the + // memory location argument. + const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); + return DAG.getStore(Op.getOperand(0), DL, FI, Op.getOperand(1), + MachinePointerInfo(SV), false, false, 0); +} + +SDValue LanaiTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op, + SelectionDAG &DAG) const { + SDValue Chain = Op.getOperand(0); + SDValue Size = Op.getOperand(1); + SDLoc DL(Op); + + unsigned SPReg = getStackPointerRegisterToSaveRestore(); + + // Get a reference to the stack pointer. + SDValue StackPointer = DAG.getCopyFromReg(Chain, DL, SPReg, MVT::i32); + + // Subtract the dynamic size from the actual stack size to + // obtain the new stack size. + SDValue Sub = DAG.getNode(ISD::SUB, DL, MVT::i32, StackPointer, Size); + + // For Lanai, the outgoing memory arguments area should be on top of the + // alloca area on the stack i.e., the outgoing memory arguments should be + // at a lower address than the alloca area. Move the alloca area down the + // stack by adding back the space reserved for outgoing arguments to SP + // here. + // + // We do not know what the size of the outgoing args is at this point. + // So, we add a pseudo instruction ADJDYNALLOC that will adjust the + // stack pointer. We replace this instruction with on that has the correct, + // known offset in emitPrologue(). + SDValue ArgAdjust = DAG.getNode(LanaiISD::ADJDYNALLOC, DL, MVT::i32, Sub); + + // The Sub result contains the new stack start address, so it + // must be placed in the stack pointer register. + SDValue CopyChain = DAG.getCopyToReg(Chain, DL, SPReg, Sub); + + SDValue Ops[2] = {ArgAdjust, CopyChain}; + return DAG.getMergeValues(Ops, DL); +} + +SDValue LanaiTargetLowering::LowerRETURNADDR(SDValue Op, + SelectionDAG &DAG) const { + MachineFunction &MF = DAG.getMachineFunction(); + MachineFrameInfo *MFI = MF.getFrameInfo(); + MFI->setReturnAddressIsTaken(true); + + EVT VT = Op.getValueType(); + SDLoc DL(Op); + unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); + if (Depth) { + SDValue FrameAddr = LowerFRAMEADDR(Op, DAG); + const unsigned Offset = -4; + SDValue Ptr = DAG.getNode(ISD::ADD, DL, VT, FrameAddr, + DAG.getIntPtrConstant(Offset, DL)); + return DAG.getLoad(VT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo(), + false, false, false, 0); + } + + // Return the link register, which contains the return address. + // Mark it an implicit live-in. + unsigned Reg = MF.addLiveIn(TRI->getRARegister(), getRegClassFor(MVT::i32)); + return DAG.getCopyFromReg(DAG.getEntryNode(), DL, Reg, VT); +} + +SDValue LanaiTargetLowering::LowerFRAMEADDR(SDValue Op, + SelectionDAG &DAG) const { + MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo(); + MFI->setFrameAddressIsTaken(true); + + EVT VT = Op.getValueType(); + SDLoc DL(Op); + SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), DL, Lanai::FP, VT); + unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); + while (Depth--) { + const unsigned Offset = -8; + SDValue Ptr = DAG.getNode(ISD::ADD, DL, VT, FrameAddr, + DAG.getIntPtrConstant(Offset, DL)); + FrameAddr = DAG.getLoad(VT, DL, DAG.getEntryNode(), Ptr, + MachinePointerInfo(), false, false, false, 0); + } + return FrameAddr; +} + +const char *LanaiTargetLowering::getTargetNodeName(unsigned Opcode) const { + switch (Opcode) { + case LanaiISD::ADJDYNALLOC: + return "LanaiISD::ADJDYNALLOC"; + case LanaiISD::RET_FLAG: + return "LanaiISD::RET_FLAG"; + case LanaiISD::CALL: + return "LanaiISD::CALL"; + case LanaiISD::SELECT_CC: + return "LanaiISD::SELECT_CC"; + case LanaiISD::SETCC: + return "LanaiISD::SETCC"; + case LanaiISD::SET_FLAG: + return "LanaiISD::SET_FLAG"; + case LanaiISD::BR_CC: + return "LanaiISD::BR_CC"; + case LanaiISD::Wrapper: + return "LanaiISD::Wrapper"; + case LanaiISD::HI: + return "LanaiISD::HI"; + case LanaiISD::LO: + return "LanaiISD::LO"; + case LanaiISD::SMALL: + return "LanaiISD::SMALL"; + default: + return NULL; + } +} + +SDValue LanaiTargetLowering::LowerConstantPool(SDValue Op, + SelectionDAG &DAG) const { + SDLoc DL(Op); + ConstantPoolSDNode *N = cast<ConstantPoolSDNode>(Op); + const Constant *C = N->getConstVal(); + const LanaiTargetObjectFile *TLOF = + static_cast<const LanaiTargetObjectFile *>( + getTargetMachine().getObjFileLowering()); + + // If the code model is small or constant will be placed in the small section, + // then assume address will fit in 21-bits. + if (getTargetMachine().getCodeModel() == CodeModel::Small || + TLOF->isConstantInSmallSection(DAG.getDataLayout(), C)) { + SDValue Small = DAG.getTargetConstantPool( + C, MVT::i32, N->getAlignment(), N->getOffset(), LanaiII::MO_NO_FLAG); + return DAG.getNode(ISD::OR, DL, MVT::i32, + DAG.getRegister(Lanai::R0, MVT::i32), + DAG.getNode(LanaiISD::SMALL, DL, MVT::i32, Small)); + } else { + uint8_t OpFlagHi = LanaiII::MO_ABS_HI; + uint8_t OpFlagLo = LanaiII::MO_ABS_LO; + + SDValue Hi = DAG.getTargetConstantPool(C, MVT::i32, N->getAlignment(), + N->getOffset(), OpFlagHi); + SDValue Lo = DAG.getTargetConstantPool(C, MVT::i32, N->getAlignment(), + N->getOffset(), OpFlagLo); + Hi = DAG.getNode(LanaiISD::HI, DL, MVT::i32, Hi); + Lo = DAG.getNode(LanaiISD::LO, DL, MVT::i32, Lo); + SDValue Result = DAG.getNode(ISD::OR, DL, MVT::i32, Hi, Lo); + return Result; + } +} + +SDValue LanaiTargetLowering::LowerGlobalAddress(SDValue Op, + SelectionDAG &DAG) const { + SDLoc DL(Op); + const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal(); + int64_t Offset = cast<GlobalAddressSDNode>(Op)->getOffset(); + + const LanaiTargetObjectFile *TLOF = + static_cast<const LanaiTargetObjectFile *>( + getTargetMachine().getObjFileLowering()); + + // If the code model is small or global variable will be placed in the small + // section, then assume address will fit in 21-bits. + if (getTargetMachine().getCodeModel() == CodeModel::Small || + TLOF->isGlobalInSmallSection(GV, getTargetMachine())) { + SDValue Small = DAG.getTargetGlobalAddress( + GV, DL, getPointerTy(DAG.getDataLayout()), Offset, LanaiII::MO_NO_FLAG); + return DAG.getNode(ISD::OR, DL, MVT::i32, + DAG.getRegister(Lanai::R0, MVT::i32), + DAG.getNode(LanaiISD::SMALL, DL, MVT::i32, Small)); + } else { + uint8_t OpFlagHi = LanaiII::MO_ABS_HI; + uint8_t OpFlagLo = LanaiII::MO_ABS_LO; + + // Create the TargetGlobalAddress node, folding in the constant offset. + SDValue Hi = DAG.getTargetGlobalAddress( + GV, DL, getPointerTy(DAG.getDataLayout()), Offset, OpFlagHi); + SDValue Lo = DAG.getTargetGlobalAddress( + GV, DL, getPointerTy(DAG.getDataLayout()), Offset, OpFlagLo); + Hi = DAG.getNode(LanaiISD::HI, DL, MVT::i32, Hi); + Lo = DAG.getNode(LanaiISD::LO, DL, MVT::i32, Lo); + return DAG.getNode(ISD::OR, DL, MVT::i32, Hi, Lo); + } +} + +SDValue LanaiTargetLowering::LowerBlockAddress(SDValue Op, + SelectionDAG &DAG) const { + SDLoc DL(Op); + const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress(); + + uint8_t OpFlagHi = LanaiII::MO_ABS_HI; + uint8_t OpFlagLo = LanaiII::MO_ABS_LO; + + SDValue Hi = DAG.getBlockAddress(BA, MVT::i32, true, OpFlagHi); + SDValue Lo = DAG.getBlockAddress(BA, MVT::i32, true, OpFlagLo); + Hi = DAG.getNode(LanaiISD::HI, DL, MVT::i32, Hi); + Lo = DAG.getNode(LanaiISD::LO, DL, MVT::i32, Lo); + SDValue Result = DAG.getNode(ISD::OR, DL, MVT::i32, Hi, Lo); + return Result; +} + +SDValue LanaiTargetLowering::LowerJumpTable(SDValue Op, + SelectionDAG &DAG) const { + SDLoc DL(Op); + JumpTableSDNode *JT = cast<JumpTableSDNode>(Op); + + // If the code model is small assume address will fit in 21-bits. + if (getTargetMachine().getCodeModel() == CodeModel::Small) { + SDValue Small = DAG.getTargetJumpTable( + JT->getIndex(), getPointerTy(DAG.getDataLayout()), LanaiII::MO_NO_FLAG); + return DAG.getNode(ISD::OR, DL, MVT::i32, + DAG.getRegister(Lanai::R0, MVT::i32), + DAG.getNode(LanaiISD::SMALL, DL, MVT::i32, Small)); + } else { + uint8_t OpFlagHi = LanaiII::MO_ABS_HI; + uint8_t OpFlagLo = LanaiII::MO_ABS_LO; + + SDValue Hi = DAG.getTargetJumpTable( + JT->getIndex(), getPointerTy(DAG.getDataLayout()), OpFlagHi); + SDValue Lo = DAG.getTargetJumpTable( + JT->getIndex(), getPointerTy(DAG.getDataLayout()), OpFlagLo); + Hi = DAG.getNode(LanaiISD::HI, DL, MVT::i32, Hi); + Lo = DAG.getNode(LanaiISD::LO, DL, MVT::i32, Lo); + SDValue Result = DAG.getNode(ISD::OR, DL, MVT::i32, Hi, Lo); + return Result; + } +} |