diff options
Diffstat (limited to 'llvm/lib/Target/Hexagon/HexagonBlockRanges.cpp')
-rw-r--r-- | llvm/lib/Target/Hexagon/HexagonBlockRanges.cpp | 484 |
1 files changed, 484 insertions, 0 deletions
diff --git a/llvm/lib/Target/Hexagon/HexagonBlockRanges.cpp b/llvm/lib/Target/Hexagon/HexagonBlockRanges.cpp new file mode 100644 index 00000000000..ac5449afdc6 --- /dev/null +++ b/llvm/lib/Target/Hexagon/HexagonBlockRanges.cpp @@ -0,0 +1,484 @@ +//===--- HexagonBlockRanges.cpp -------------------------------------------===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// + +#define DEBUG_TYPE "hbr" + +#include "HexagonBlockRanges.h" +#include "HexagonInstrInfo.h" +#include "HexagonSubtarget.h" + +#include "llvm/ADT/BitVector.h" +#include "llvm/ADT/DenseSet.h" +#include "llvm/CodeGen/MachineBasicBlock.h" +#include "llvm/CodeGen/MachineInstr.h" +#include "llvm/CodeGen/MachineRegisterInfo.h" +#include "llvm/Target/TargetInstrInfo.h" +#include "llvm/Target/TargetRegisterInfo.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/raw_ostream.h" + +#include <map> +#include <vector> + +using namespace llvm; + +bool HexagonBlockRanges::IndexRange::overlaps(const IndexRange &A) const { + // If A contains start(), or "this" contains A.start(), then overlap. + IndexType S = start(), E = end(), AS = A.start(), AE = A.end(); + if (AS == S) + return true; + bool SbAE = (S < AE) || (S == AE && A.TiedEnd); // S-before-AE. + bool ASbE = (AS < E) || (AS == E && TiedEnd); // AS-before-E. + if ((AS < S && SbAE) || (S < AS && ASbE)) + return true; + // Otherwise no overlap. + return false; +} + + +bool HexagonBlockRanges::IndexRange::contains(const IndexRange &A) const { + if (start() <= A.start()) { + // Treat "None" in the range end as equal to the range start. + IndexType E = (end() != IndexType::None) ? end() : start(); + IndexType AE = (A.end() != IndexType::None) ? A.end() : A.start(); + if (AE <= E) + return true; + } + return false; +} + + +void HexagonBlockRanges::IndexRange::merge(const IndexRange &A) { + // Allow merging adjacent ranges. + assert(end() == A.start() || overlaps(A)); + IndexType AS = A.start(), AE = A.end(); + if (AS < start() || start() == IndexType::None) + setStart(AS); + if (end() < AE || end() == IndexType::None) { + setEnd(AE); + TiedEnd = A.TiedEnd; + } else { + if (end() == AE) + TiedEnd |= A.TiedEnd; + } + if (A.Fixed) + Fixed = true; +} + + +void HexagonBlockRanges::RangeList::include(const RangeList &RL) { + for (auto &R : RL) + if (std::find(begin(), end(), R) == end()) + push_back(R); +} + + +// Merge all overlapping ranges in the list, so that all that remains +// is a list of disjoint ranges. +void HexagonBlockRanges::RangeList::unionize(bool MergeAdjacent) { + if (empty()) + return; + + std::sort(begin(), end()); + iterator Iter = begin(); + + while (Iter != end()-1) { + iterator Next = std::next(Iter); + // If MergeAdjacent is true, merge ranges A and B, where A.end == B.start. + // This allows merging dead ranges, but is not valid for live ranges. + bool Merge = MergeAdjacent && (Iter->end() == Next->start()); + if (Merge || Iter->overlaps(*Next)) { + Iter->merge(*Next); + erase(Next); + continue; + } + ++Iter; + } +} + + +// Compute a range A-B and add it to the list. +void HexagonBlockRanges::RangeList::addsub(const IndexRange &A, + const IndexRange &B) { + // Exclusion of non-overlapping ranges makes some checks simpler + // later in this function. + if (!A.overlaps(B)) { + // A - B = A. + add(A); + return; + } + + IndexType AS = A.start(), AE = A.end(); + IndexType BS = B.start(), BE = B.end(); + + // If AE is None, then A is included in B, since A and B overlap. + // The result of subtraction if empty, so just return. + if (AE == IndexType::None) + return; + + if (AS < BS) { + // A starts before B. + // AE cannot be None since A and B overlap. + assert(AE != IndexType::None); + // Add the part of A that extends on the "less" side of B. + add(AS, BS, A.Fixed, false); + } + + if (BE < AE) { + // BE cannot be Exit here. + if (BE == IndexType::None) + add(BS, AE, A.Fixed, false); + else + add(BE, AE, A.Fixed, false); + } +} + + +// Subtract a given range from each element in the list. +void HexagonBlockRanges::RangeList::subtract(const IndexRange &Range) { + // Cannot assume that the list is unionized (i.e. contains only non- + // overlapping ranges. + RangeList T; + for (iterator Next, I = begin(); I != end(); I = Next) { + IndexRange &Rg = *I; + if (Rg.overlaps(Range)) { + T.addsub(Rg, Range); + Next = this->erase(I); + } else { + Next = std::next(I); + } + } + include(T); +} + + +HexagonBlockRanges::InstrIndexMap::InstrIndexMap(MachineBasicBlock &B) + : Block(B) { + IndexType Idx = IndexType::First; + First = Idx; + for (auto &In : B) { + if (In.isDebugValue()) + continue; + assert(getIndex(&In) == IndexType::None && "Instruction already in map"); + Map.insert(std::make_pair(Idx, &In)); + ++Idx; + } + Last = B.empty() ? IndexType::None : unsigned(Idx)-1; +} + + +MachineInstr *HexagonBlockRanges::InstrIndexMap::getInstr(IndexType Idx) const { + auto F = Map.find(Idx); + return (F != Map.end()) ? F->second : 0; +} + + +HexagonBlockRanges::IndexType HexagonBlockRanges::InstrIndexMap::getIndex( + MachineInstr *MI) const { + for (auto &I : Map) + if (I.second == MI) + return I.first; + return IndexType::None; +} + + +HexagonBlockRanges::IndexType HexagonBlockRanges::InstrIndexMap::getPrevIndex( + IndexType Idx) const { + assert (Idx != IndexType::None); + if (Idx == IndexType::Entry) + return IndexType::None; + if (Idx == IndexType::Exit) + return Last; + if (Idx == First) + return IndexType::Entry; + return unsigned(Idx)-1; +} + + +HexagonBlockRanges::IndexType HexagonBlockRanges::InstrIndexMap::getNextIndex( + IndexType Idx) const { + assert (Idx != IndexType::None); + if (Idx == IndexType::Entry) + return IndexType::First; + if (Idx == IndexType::Exit || Idx == Last) + return IndexType::None; + return unsigned(Idx)+1; +} + + +void HexagonBlockRanges::InstrIndexMap::replaceInstr(MachineInstr *OldMI, + MachineInstr *NewMI) { + for (auto &I : Map) { + if (I.second != OldMI) + continue; + if (NewMI != nullptr) + I.second = NewMI; + else + Map.erase(I.first); + break; + } +} + + +HexagonBlockRanges::HexagonBlockRanges(MachineFunction &mf) + : MF(mf), HST(mf.getSubtarget<HexagonSubtarget>()), + TII(*HST.getInstrInfo()), TRI(*HST.getRegisterInfo()), + Reserved(TRI.getReservedRegs(mf)) { + // Consider all non-allocatable registers as reserved. + for (auto I = TRI.regclass_begin(), E = TRI.regclass_end(); I != E; ++I) { + auto *RC = *I; + if (RC->isAllocatable()) + continue; + for (unsigned R : *RC) + Reserved[R] = true; + } +} + + +HexagonBlockRanges::RegisterSet HexagonBlockRanges::getLiveIns( + const MachineBasicBlock &B) { + RegisterSet LiveIns; + for (auto I : B.liveins()) + if (!Reserved[I.PhysReg]) + LiveIns.insert({I.PhysReg, 0}); + return LiveIns; +} + + +HexagonBlockRanges::RegisterSet HexagonBlockRanges::expandToSubRegs( + RegisterRef R, const MachineRegisterInfo &MRI, + const TargetRegisterInfo &TRI) { + RegisterSet SRs; + + if (R.Sub != 0) { + SRs.insert(R); + return SRs; + } + + if (TargetRegisterInfo::isPhysicalRegister(R.Reg)) { + MCSubRegIterator I(R.Reg, &TRI); + if (!I.isValid()) + SRs.insert({R.Reg, 0}); + for (; I.isValid(); ++I) + SRs.insert({*I, 0}); + } else { + assert(TargetRegisterInfo::isVirtualRegister(R.Reg)); + auto &RC = *MRI.getRegClass(R.Reg); + unsigned PReg = *RC.begin(); + MCSubRegIndexIterator I(PReg, &TRI); + if (!I.isValid()) + SRs.insert({R.Reg, 0}); + for (; I.isValid(); ++I) + SRs.insert({R.Reg, I.getSubRegIndex()}); + } + return SRs; +} + + +void HexagonBlockRanges::computeInitialLiveRanges(InstrIndexMap &IndexMap, + RegToRangeMap &LiveMap) { + std::map<RegisterRef,IndexType> LastDef, LastUse; + RegisterSet LiveOnEntry; + MachineBasicBlock &B = IndexMap.getBlock(); + MachineRegisterInfo &MRI = B.getParent()->getRegInfo(); + + for (auto R : getLiveIns(B)) + for (auto S : expandToSubRegs(R, MRI, TRI)) + LiveOnEntry.insert(S); + + for (auto R : LiveOnEntry) + LastDef[R] = IndexType::Entry; + + auto closeRange = [&LastUse,&LastDef,&LiveMap] (RegisterRef R) -> void { + auto LD = LastDef[R], LU = LastUse[R]; + if (LD == IndexType::None) + LD = IndexType::Entry; + if (LU == IndexType::None) + LU = IndexType::Exit; + LiveMap[R].add(LD, LU, false, false); + LastUse[R] = LastDef[R] = IndexType::None; + }; + + for (auto &In : B) { + if (In.isDebugValue()) + continue; + IndexType Index = IndexMap.getIndex(&In); + // Process uses first. + for (auto &Op : In.operands()) { + if (!Op.isReg() || !Op.isUse() || Op.isUndef()) + continue; + RegisterRef R = { Op.getReg(), Op.getSubReg() }; + if (TargetRegisterInfo::isPhysicalRegister(R.Reg) && Reserved[R.Reg]) + continue; + bool IsKill = Op.isKill(); + for (auto S : expandToSubRegs(R, MRI, TRI)) { + LastUse[S] = Index; + if (IsKill) + closeRange(S); + } + } + // Process defs. + for (auto &Op : In.operands()) { + if (!Op.isReg() || !Op.isDef() || Op.isUndef()) + continue; + RegisterRef R = { Op.getReg(), Op.getSubReg() }; + if (TargetRegisterInfo::isPhysicalRegister(R.Reg) && Reserved[R.Reg]) + continue; + for (auto S : expandToSubRegs(R, MRI, TRI)) { + if (LastDef[S] != IndexType::None) + closeRange(S); + LastDef[S] = Index; + } + } + } + + // Collect live-on-exit. + RegisterSet LiveOnExit; + for (auto *SB : B.successors()) + for (auto R : getLiveIns(*SB)) + for (auto S : expandToSubRegs(R, MRI, TRI)) + LiveOnExit.insert(S); + + for (auto R : LiveOnExit) + LastUse[R] = IndexType::Exit; + + // Process remaining registers. + RegisterSet Left; + for (auto &I : LastUse) + if (I.second != IndexType::None) + Left.insert(I.first); + for (auto &I : LastDef) + if (I.second != IndexType::None) + Left.insert(I.first); + for (auto R : Left) + closeRange(R); + + // Finalize the live ranges. + for (auto &P : LiveMap) + P.second.unionize(); +} + + +HexagonBlockRanges::RegToRangeMap HexagonBlockRanges::computeLiveMap( + InstrIndexMap &IndexMap) { + RegToRangeMap LiveMap; + DEBUG(dbgs() << __func__ << ": index map\n" << IndexMap << '\n'); + computeInitialLiveRanges(IndexMap, LiveMap); + DEBUG(dbgs() << __func__ << ": live map\n" + << PrintRangeMap(LiveMap, TRI) << '\n'); + return LiveMap; +} + + +HexagonBlockRanges::RegToRangeMap HexagonBlockRanges::computeDeadMap( + InstrIndexMap &IndexMap, RegToRangeMap &LiveMap) { + RegToRangeMap DeadMap; + + auto addDeadRanges = [&IndexMap,&LiveMap,&DeadMap] (RegisterRef R) -> void { + auto F = LiveMap.find(R); + if (F == LiveMap.end() || F->second.empty()) { + DeadMap[R].add(IndexType::Entry, IndexType::Exit, false, false); + return; + } + + RangeList &RL = F->second; + RangeList::iterator A = RL.begin(), Z = RL.end()-1; + + // Try to create the initial range. + if (A->start() != IndexType::Entry) { + IndexType DE = IndexMap.getPrevIndex(A->start()); + if (DE != IndexType::Entry) + DeadMap[R].add(IndexType::Entry, DE, false, false); + } + + while (A != Z) { + // Creating a dead range that follows A. Pay attention to empty + // ranges (i.e. those ending with "None"). + IndexType AE = (A->end() == IndexType::None) ? A->start() : A->end(); + IndexType DS = IndexMap.getNextIndex(AE); + ++A; + IndexType DE = IndexMap.getPrevIndex(A->start()); + if (DS < DE) + DeadMap[R].add(DS, DE, false, false); + } + + // Try to create the final range. + if (Z->end() != IndexType::Exit) { + IndexType ZE = (Z->end() == IndexType::None) ? Z->start() : Z->end(); + IndexType DS = IndexMap.getNextIndex(ZE); + if (DS < IndexType::Exit) + DeadMap[R].add(DS, IndexType::Exit, false, false); + } + }; + + MachineFunction &MF = *IndexMap.getBlock().getParent(); + auto &MRI = MF.getRegInfo(); + unsigned NumRegs = TRI.getNumRegs(); + BitVector Visited(NumRegs); + for (unsigned R = 1; R < NumRegs; ++R) { + for (auto S : expandToSubRegs({R,0}, MRI, TRI)) { + if (Reserved[S.Reg] || Visited[S.Reg]) + continue; + addDeadRanges(S); + Visited[S.Reg] = true; + } + } + for (auto &P : LiveMap) + if (TargetRegisterInfo::isVirtualRegister(P.first.Reg)) + addDeadRanges(P.first); + + DEBUG(dbgs() << __func__ << ": dead map\n" + << PrintRangeMap(DeadMap, TRI) << '\n'); + return DeadMap; +} + + +raw_ostream &operator<< (raw_ostream &OS, HexagonBlockRanges::IndexType Idx) { + if (Idx == HexagonBlockRanges::IndexType::None) + return OS << '-'; + if (Idx == HexagonBlockRanges::IndexType::Entry) + return OS << 'n'; + if (Idx == HexagonBlockRanges::IndexType::Exit) + return OS << 'x'; + return OS << unsigned(Idx)-HexagonBlockRanges::IndexType::First+1; +} + +// A mapping to translate between instructions and their indices. +raw_ostream &operator<< (raw_ostream &OS, + const HexagonBlockRanges::IndexRange &IR) { + OS << '[' << IR.start() << ':' << IR.end() << (IR.TiedEnd ? '}' : ']'); + if (IR.Fixed) + OS << '!'; + return OS; +} + +raw_ostream &operator<< (raw_ostream &OS, + const HexagonBlockRanges::RangeList &RL) { + for (auto &R : RL) + OS << R << " "; + return OS; +} + +raw_ostream &operator<< (raw_ostream &OS, + const HexagonBlockRanges::InstrIndexMap &M) { + for (auto &In : M.Block) { + HexagonBlockRanges::IndexType Idx = M.getIndex(&In); + OS << Idx << (Idx == M.Last ? ". " : " ") << In; + } + return OS; +} + +raw_ostream &operator<< (raw_ostream &OS, + const HexagonBlockRanges::PrintRangeMap &P) { + for (auto &I : P.Map) { + const HexagonBlockRanges::RangeList &RL = I.second; + OS << PrintReg(I.first.Reg, &P.TRI, I.first.Sub) << " -> " << RL << "\n"; + } + return OS; +} |