diff options
Diffstat (limited to 'llvm/lib/Target/ARM')
| -rw-r--r-- | llvm/lib/Target/ARM/ARM.h | 5 | ||||
| -rw-r--r-- | llvm/lib/Target/ARM/ARMCodeEmitter.cpp | 1910 | ||||
| -rw-r--r-- | llvm/lib/Target/ARM/ARMISelLowering.cpp | 1 | ||||
| -rw-r--r-- | llvm/lib/Target/ARM/ARMJITInfo.cpp | 344 | ||||
| -rw-r--r-- | llvm/lib/Target/ARM/ARMJITInfo.h | 177 | ||||
| -rw-r--r-- | llvm/lib/Target/ARM/ARMSubtarget.cpp | 3 | ||||
| -rw-r--r-- | llvm/lib/Target/ARM/ARMSubtarget.h | 4 | ||||
| -rw-r--r-- | llvm/lib/Target/ARM/ARMTargetMachine.cpp | 7 | ||||
| -rw-r--r-- | llvm/lib/Target/ARM/ARMTargetMachine.h | 2 | ||||
| -rw-r--r-- | llvm/lib/Target/ARM/CMakeLists.txt | 5 | ||||
| -rw-r--r-- | llvm/lib/Target/ARM/Makefile | 2 |
11 files changed, 2456 insertions, 4 deletions
diff --git a/llvm/lib/Target/ARM/ARM.h b/llvm/lib/Target/ARM/ARM.h index aec283f8085..55df29c1499 100644 --- a/llvm/lib/Target/ARM/ARM.h +++ b/llvm/lib/Target/ARM/ARM.h @@ -23,6 +23,7 @@ class ARMAsmPrinter; class ARMBaseTargetMachine; class FunctionPass; class ImmutablePass; +class JITCodeEmitter; class MachineInstr; class MCInst; class TargetLowering; @@ -30,6 +31,10 @@ class TargetMachine; FunctionPass *createARMISelDag(ARMBaseTargetMachine &TM, CodeGenOpt::Level OptLevel); + +FunctionPass *createARMJITCodeEmitterPass(ARMBaseTargetMachine &TM, + JITCodeEmitter &JCE); + FunctionPass *createA15SDOptimizerPass(); FunctionPass *createARMLoadStoreOptimizationPass(bool PreAlloc = false); FunctionPass *createARMExpandPseudoPass(); diff --git a/llvm/lib/Target/ARM/ARMCodeEmitter.cpp b/llvm/lib/Target/ARM/ARMCodeEmitter.cpp new file mode 100644 index 00000000000..714497c1bd8 --- /dev/null +++ b/llvm/lib/Target/ARM/ARMCodeEmitter.cpp @@ -0,0 +1,1910 @@ +//===-- ARM/ARMCodeEmitter.cpp - Convert ARM code to machine code ---------===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This file contains the pass that transforms the ARM machine instructions into +// relocatable machine code. +// +//===----------------------------------------------------------------------===// + +#include "ARM.h" +#include "ARMBaseInstrInfo.h" +#include "ARMConstantPoolValue.h" +#include "ARMMachineFunctionInfo.h" +#include "ARMRelocations.h" +#include "ARMSubtarget.h" +#include "ARMTargetMachine.h" +#include "MCTargetDesc/ARMAddressingModes.h" +#include "llvm/ADT/Statistic.h" +#include "llvm/CodeGen/JITCodeEmitter.h" +#include "llvm/CodeGen/MachineConstantPool.h" +#include "llvm/CodeGen/MachineFunctionPass.h" +#include "llvm/CodeGen/MachineInstr.h" +#include "llvm/CodeGen/MachineJumpTableInfo.h" +#include "llvm/CodeGen/MachineModuleInfo.h" +#include "llvm/CodeGen/Passes.h" +#include "llvm/IR/Constants.h" +#include "llvm/IR/DerivedTypes.h" +#include "llvm/IR/Function.h" +#include "llvm/PassManager.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/ErrorHandling.h" +#include "llvm/Support/raw_ostream.h" +#ifndef NDEBUG +#include <iomanip> +#endif +using namespace llvm; + +#define DEBUG_TYPE "jit" + +STATISTIC(NumEmitted, "Number of machine instructions emitted"); + +namespace { + + class ARMCodeEmitter : public MachineFunctionPass { + ARMJITInfo *JTI; + const ARMBaseInstrInfo *II; + const DataLayout *TD; + const ARMSubtarget *Subtarget; + TargetMachine &TM; + JITCodeEmitter &MCE; + MachineModuleInfo *MMI; + const std::vector<MachineConstantPoolEntry> *MCPEs; + const std::vector<MachineJumpTableEntry> *MJTEs; + bool IsPIC; + bool IsThumb; + + void getAnalysisUsage(AnalysisUsage &AU) const override { + AU.addRequired<MachineModuleInfo>(); + MachineFunctionPass::getAnalysisUsage(AU); + } + + static char ID; + public: + ARMCodeEmitter(TargetMachine &tm, JITCodeEmitter &mce) + : MachineFunctionPass(ID), JTI(nullptr), + II((const ARMBaseInstrInfo *)tm.getSubtargetImpl()->getInstrInfo()), + TD(tm.getSubtargetImpl()->getDataLayout()), TM(tm), MCE(mce), + MCPEs(nullptr), MJTEs(nullptr), + IsPIC(TM.getRelocationModel() == Reloc::PIC_), IsThumb(false) {} + + /// getBinaryCodeForInstr - This function, generated by the + /// CodeEmitterGenerator using TableGen, produces the binary encoding for + /// machine instructions. + uint64_t getBinaryCodeForInstr(const MachineInstr &MI) const; + + bool runOnMachineFunction(MachineFunction &MF) override; + + const char *getPassName() const override { + return "ARM Machine Code Emitter"; + } + + void emitInstruction(const MachineInstr &MI); + + private: + + void emitWordLE(unsigned Binary); + void emitDWordLE(uint64_t Binary); + void emitConstPoolInstruction(const MachineInstr &MI); + void emitMOVi32immInstruction(const MachineInstr &MI); + void emitMOVi2piecesInstruction(const MachineInstr &MI); + void emitLEApcrelJTInstruction(const MachineInstr &MI); + void emitPseudoMoveInstruction(const MachineInstr &MI); + void addPCLabel(unsigned LabelID); + void emitPseudoInstruction(const MachineInstr &MI); + unsigned getMachineSoRegOpValue(const MachineInstr &MI, + const MCInstrDesc &MCID, + const MachineOperand &MO, + unsigned OpIdx); + + unsigned getMachineSoImmOpValue(unsigned SoImm); + unsigned getAddrModeSBit(const MachineInstr &MI, + const MCInstrDesc &MCID) const; + + void emitDataProcessingInstruction(const MachineInstr &MI, + unsigned ImplicitRd = 0, + unsigned ImplicitRn = 0); + + void emitLoadStoreInstruction(const MachineInstr &MI, + unsigned ImplicitRd = 0, + unsigned ImplicitRn = 0); + + void emitMiscLoadStoreInstruction(const MachineInstr &MI, + unsigned ImplicitRn = 0); + + void emitLoadStoreMultipleInstruction(const MachineInstr &MI); + + void emitMulFrmInstruction(const MachineInstr &MI); + + void emitExtendInstruction(const MachineInstr &MI); + + void emitMiscArithInstruction(const MachineInstr &MI); + + void emitSaturateInstruction(const MachineInstr &MI); + + void emitBranchInstruction(const MachineInstr &MI); + + void emitInlineJumpTable(unsigned JTIndex); + + void emitMiscBranchInstruction(const MachineInstr &MI); + + void emitVFPArithInstruction(const MachineInstr &MI); + + void emitVFPConversionInstruction(const MachineInstr &MI); + + void emitVFPLoadStoreInstruction(const MachineInstr &MI); + + void emitVFPLoadStoreMultipleInstruction(const MachineInstr &MI); + + void emitNEONLaneInstruction(const MachineInstr &MI); + void emitNEONDupInstruction(const MachineInstr &MI); + void emitNEON1RegModImmInstruction(const MachineInstr &MI); + void emitNEON2RegInstruction(const MachineInstr &MI); + void emitNEON3RegInstruction(const MachineInstr &MI); + + /// getMachineOpValue - Return binary encoding of operand. If the machine + /// operand requires relocation, record the relocation and return zero. + unsigned getMachineOpValue(const MachineInstr &MI, + const MachineOperand &MO) const; + unsigned getMachineOpValue(const MachineInstr &MI, unsigned OpIdx) const { + return getMachineOpValue(MI, MI.getOperand(OpIdx)); + } + + // FIXME: The legacy JIT ARMCodeEmitter doesn't rely on the the + // TableGen'erated getBinaryCodeForInstr() function to encode any + // operand values, instead querying getMachineOpValue() directly for + // each operand it needs to encode. Thus, any of the new encoder + // helper functions can simply return 0 as the values the return + // are already handled elsewhere. They are placeholders to allow this + // encoder to continue to function until the MC encoder is sufficiently + // far along that this one can be eliminated entirely. + unsigned NEONThumb2DataIPostEncoder(const MachineInstr &MI, unsigned Val) + const { return 0; } + unsigned NEONThumb2LoadStorePostEncoder(const MachineInstr &MI,unsigned Val) + const { return 0; } + unsigned NEONThumb2DupPostEncoder(const MachineInstr &MI,unsigned Val) + const { return 0; } + unsigned NEONThumb2V8PostEncoder(const MachineInstr &MI,unsigned Val) + const { return 0; } + unsigned VFPThumb2PostEncoder(const MachineInstr&MI, unsigned Val) + const { return 0; } + unsigned getAdrLabelOpValue(const MachineInstr &MI, unsigned Op) + const { return 0; } + unsigned getThumbAdrLabelOpValue(const MachineInstr &MI, unsigned Op) + const { return 0; } + unsigned getThumbBLTargetOpValue(const MachineInstr &MI, unsigned Op) + const { return 0; } + unsigned getThumbBLXTargetOpValue(const MachineInstr &MI, unsigned Op) + const { return 0; } + unsigned getThumbBRTargetOpValue(const MachineInstr &MI, unsigned Op) + const { return 0; } + unsigned getThumbBCCTargetOpValue(const MachineInstr &MI, unsigned Op) + const { return 0; } + unsigned getThumbCBTargetOpValue(const MachineInstr &MI, unsigned Op) + const { return 0; } + unsigned getBranchTargetOpValue(const MachineInstr &MI, unsigned Op) + const { return 0; } + unsigned getUnconditionalBranchTargetOpValue(const MachineInstr &MI, + unsigned Op) const { return 0; } + unsigned getARMBranchTargetOpValue(const MachineInstr &MI, unsigned Op) + const { return 0; } + unsigned getARMBLTargetOpValue(const MachineInstr &MI, unsigned Op) + const { return 0; } + unsigned getARMBLXTargetOpValue(const MachineInstr &MI, unsigned Op) + const { return 0; } + unsigned getCCOutOpValue(const MachineInstr &MI, unsigned Op) + const { return 0; } + unsigned getSOImmOpValue(const MachineInstr &MI, unsigned Op) + const { return 0; } + unsigned getT2SOImmOpValue(const MachineInstr &MI, unsigned Op) + const { return 0; } + unsigned getSORegRegOpValue(const MachineInstr &MI, unsigned Op) + const { return 0; } + unsigned getSORegImmOpValue(const MachineInstr &MI, unsigned Op) + const { return 0; } + unsigned getThumbAddrModeRegRegOpValue(const MachineInstr &MI, unsigned Op) + const { return 0; } + unsigned getT2AddrModeImm8OpValue(const MachineInstr &MI, unsigned Op) + const { return 0; } + unsigned getT2Imm8s4OpValue(const MachineInstr &MI, unsigned Op) + const { return 0; } + unsigned getT2AddrModeImm8s4OpValue(const MachineInstr &MI, unsigned Op) + const { return 0; } + unsigned getT2AddrModeImm0_1020s4OpValue(const MachineInstr &MI,unsigned Op) + const { return 0; } + unsigned getT2AddrModeImm8OffsetOpValue(const MachineInstr &MI, unsigned Op) + const { return 0; } + unsigned getT2AddrModeSORegOpValue(const MachineInstr &MI, unsigned Op) + const { return 0; } + unsigned getT2SORegOpValue(const MachineInstr &MI, unsigned Op) + const { return 0; } + unsigned getT2AdrLabelOpValue(const MachineInstr &MI, unsigned Op) + const { return 0; } + unsigned getAddrMode6AddressOpValue(const MachineInstr &MI, unsigned Op) + const { return 0; } + unsigned getAddrMode6OneLane32AddressOpValue(const MachineInstr &MI, + unsigned Op) + const { return 0; } + unsigned getAddrMode6DupAddressOpValue(const MachineInstr &MI, unsigned Op) + const { return 0; } + unsigned getAddrMode6OffsetOpValue(const MachineInstr &MI, unsigned Op) + const { return 0; } + unsigned getBitfieldInvertedMaskOpValue(const MachineInstr &MI, + unsigned Op) const { return 0; } + uint32_t getLdStSORegOpValue(const MachineInstr &MI, unsigned OpIdx) + const { return 0; } + + unsigned getAddrModeImm12OpValue(const MachineInstr &MI, unsigned Op) + const { + // {17-13} = reg + // {12} = (U)nsigned (add == '1', sub == '0') + // {11-0} = imm12 + const MachineOperand &MO = MI.getOperand(Op); + const MachineOperand &MO1 = MI.getOperand(Op + 1); + if (!MO.isReg()) { + emitConstPoolAddress(MO.getIndex(), ARM::reloc_arm_cp_entry); + return 0; + } + unsigned Reg = II->getRegisterInfo().getEncodingValue(MO.getReg()); + int32_t Imm12 = MO1.getImm(); + uint32_t Binary; + Binary = Imm12 & 0xfff; + if (Imm12 >= 0) + Binary |= (1 << 12); + Binary |= (Reg << 13); + return Binary; + } + + unsigned getHiLo16ImmOpValue(const MachineInstr &MI, unsigned Op) const { + return 0; + } + + uint32_t getAddrMode2OffsetOpValue(const MachineInstr &MI, unsigned OpIdx) + const { return 0;} + uint32_t getPostIdxRegOpValue(const MachineInstr &MI, unsigned OpIdx) + const { return 0;} + uint32_t getAddrMode3OffsetOpValue(const MachineInstr &MI, unsigned OpIdx) + const { return 0;} + uint32_t getAddrMode3OpValue(const MachineInstr &MI, unsigned Op) + const { return 0; } + uint32_t getAddrModeThumbSPOpValue(const MachineInstr &MI, unsigned Op) + const { return 0; } + uint32_t getAddrModeISOpValue(const MachineInstr &MI, unsigned Op) + const { return 0; } + uint32_t getAddrModePCOpValue(const MachineInstr &MI, unsigned Op) + const { return 0; } + uint32_t getAddrMode5OpValue(const MachineInstr &MI, unsigned Op) const { + // {17-13} = reg + // {12} = (U)nsigned (add == '1', sub == '0') + // {11-0} = imm12 + const MachineOperand &MO = MI.getOperand(Op); + const MachineOperand &MO1 = MI.getOperand(Op + 1); + if (!MO.isReg()) { + emitConstPoolAddress(MO.getIndex(), ARM::reloc_arm_cp_entry); + return 0; + } + unsigned Reg = II->getRegisterInfo().getEncodingValue(MO.getReg()); + int32_t Imm12 = MO1.getImm(); + + // Special value for #-0 + if (Imm12 == INT32_MIN) + Imm12 = 0; + + // Immediate is always encoded as positive. The 'U' bit controls add vs + // sub. + bool isAdd = true; + if (Imm12 < 0) { + Imm12 = -Imm12; + isAdd = false; + } + + uint32_t Binary = Imm12 & 0xfff; + if (isAdd) + Binary |= (1 << 12); + Binary |= (Reg << 13); + return Binary; + } + unsigned getNEONVcvtImm32OpValue(const MachineInstr &MI, unsigned Op) + const { return 0; } + + unsigned getRegisterListOpValue(const MachineInstr &MI, unsigned Op) + const { return 0; } + + unsigned getShiftRight8Imm(const MachineInstr &MI, unsigned Op) + const { return 0; } + unsigned getShiftRight16Imm(const MachineInstr &MI, unsigned Op) + const { return 0; } + unsigned getShiftRight32Imm(const MachineInstr &MI, unsigned Op) + const { return 0; } + unsigned getShiftRight64Imm(const MachineInstr &MI, unsigned Op) + const { return 0; } + + /// getMovi32Value - Return binary encoding of operand for movw/movt. If the + /// machine operand requires relocation, record the relocation and return + /// zero. + unsigned getMovi32Value(const MachineInstr &MI,const MachineOperand &MO, + unsigned Reloc); + + /// getShiftOp - Return the shift opcode (bit[6:5]) of the immediate value. + /// + unsigned getShiftOp(unsigned Imm) const ; + + /// Routines that handle operands which add machine relocations which are + /// fixed up by the relocation stage. + void emitGlobalAddress(const GlobalValue *GV, unsigned Reloc, + bool MayNeedFarStub, bool Indirect, + intptr_t ACPV = 0) const; + void emitExternalSymbolAddress(const char *ES, unsigned Reloc) const; + void emitConstPoolAddress(unsigned CPI, unsigned Reloc) const; + void emitJumpTableAddress(unsigned JTIndex, unsigned Reloc) const; + void emitMachineBasicBlock(MachineBasicBlock *BB, unsigned Reloc, + intptr_t JTBase = 0) const; + unsigned encodeVFPRd(const MachineInstr &MI, unsigned OpIdx) const; + unsigned encodeVFPRn(const MachineInstr &MI, unsigned OpIdx) const; + unsigned encodeVFPRm(const MachineInstr &MI, unsigned OpIdx) const; + unsigned encodeNEONRd(const MachineInstr &MI, unsigned OpIdx) const; + unsigned encodeNEONRn(const MachineInstr &MI, unsigned OpIdx) const; + unsigned encodeNEONRm(const MachineInstr &MI, unsigned OpIdx) const; + }; +} + +char ARMCodeEmitter::ID = 0; + +/// createARMJITCodeEmitterPass - Return a pass that emits the collected ARM +/// code to the specified MCE object. +FunctionPass *llvm::createARMJITCodeEmitterPass(ARMBaseTargetMachine &TM, + JITCodeEmitter &JCE) { + return new ARMCodeEmitter(TM, JCE); +} + +bool ARMCodeEmitter::runOnMachineFunction(MachineFunction &MF) { + TargetMachine &Target = const_cast<TargetMachine&>(MF.getTarget()); + + assert((Target.getRelocationModel() != Reloc::Default || + Target.getRelocationModel() != Reloc::Static) && + "JIT relocation model must be set to static or default!"); + // Initialize the subtarget first so we can grab all of the + // subtarget dependent variables from there. + Subtarget = &TM.getSubtarget<ARMSubtarget>(); + JTI = static_cast<ARMJITInfo *>(Target.getSubtargetImpl()->getJITInfo()); + II = static_cast<const ARMBaseInstrInfo *>(Subtarget->getInstrInfo()); + TD = Target.getSubtargetImpl()->getDataLayout(); + + MCPEs = &MF.getConstantPool()->getConstants(); + MJTEs = nullptr; + if (MF.getJumpTableInfo()) MJTEs = &MF.getJumpTableInfo()->getJumpTables(); + IsPIC = TM.getRelocationModel() == Reloc::PIC_; + IsThumb = MF.getInfo<ARMFunctionInfo>()->isThumbFunction(); + JTI->Initialize(MF, IsPIC); + MMI = &getAnalysis<MachineModuleInfo>(); + MCE.setModuleInfo(MMI); + + do { + DEBUG(errs() << "JITTing function '" + << MF.getName() << "'\n"); + MCE.startFunction(MF); + for (MachineFunction::iterator MBB = MF.begin(), E = MF.end(); + MBB != E; ++MBB) { + MCE.StartMachineBasicBlock(MBB); + for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end(); + I != E; ++I) + emitInstruction(*I); + } + } while (MCE.finishFunction(MF)); + + return false; +} + +/// getShiftOp - Return the shift opcode (bit[6:5]) of the immediate value. +/// +unsigned ARMCodeEmitter::getShiftOp(unsigned Imm) const { + switch (ARM_AM::getAM2ShiftOpc(Imm)) { + default: llvm_unreachable("Unknown shift opc!"); + case ARM_AM::asr: return 2; + case ARM_AM::lsl: return 0; + case ARM_AM::lsr: return 1; + case ARM_AM::ror: + case ARM_AM::rrx: return 3; + } +} + +/// getMovi32Value - Return binary encoding of operand for movw/movt. If the +/// machine operand requires relocation, record the relocation and return zero. +unsigned ARMCodeEmitter::getMovi32Value(const MachineInstr &MI, + const MachineOperand &MO, + unsigned Reloc) { + assert(((Reloc == ARM::reloc_arm_movt) || (Reloc == ARM::reloc_arm_movw)) + && "Relocation to this function should be for movt or movw"); + + if (MO.isImm()) + return static_cast<unsigned>(MO.getImm()); + else if (MO.isGlobal()) + emitGlobalAddress(MO.getGlobal(), Reloc, true, false); + else if (MO.isSymbol()) + emitExternalSymbolAddress(MO.getSymbolName(), Reloc); + else if (MO.isMBB()) + emitMachineBasicBlock(MO.getMBB(), Reloc); + else { +#ifndef NDEBUG + errs() << MO; +#endif + llvm_unreachable("Unsupported operand type for movw/movt"); + } + return 0; +} + +/// getMachineOpValue - Return binary encoding of operand. If the machine +/// operand requires relocation, record the relocation and return zero. +unsigned ARMCodeEmitter::getMachineOpValue(const MachineInstr &MI, + const MachineOperand &MO) const { + if (MO.isReg()) + return II->getRegisterInfo().getEncodingValue(MO.getReg()); + else if (MO.isImm()) + return static_cast<unsigned>(MO.getImm()); + else if (MO.isGlobal()) + emitGlobalAddress(MO.getGlobal(), ARM::reloc_arm_branch, true, false); + else if (MO.isSymbol()) + emitExternalSymbolAddress(MO.getSymbolName(), ARM::reloc_arm_branch); + else if (MO.isCPI()) { + const MCInstrDesc &MCID = MI.getDesc(); + // For VFP load, the immediate offset is multiplied by 4. + unsigned Reloc = ((MCID.TSFlags & ARMII::FormMask) == ARMII::VFPLdStFrm) + ? ARM::reloc_arm_vfp_cp_entry : ARM::reloc_arm_cp_entry; + emitConstPoolAddress(MO.getIndex(), Reloc); + } else if (MO.isJTI()) + emitJumpTableAddress(MO.getIndex(), ARM::reloc_arm_relative); + else if (MO.isMBB()) + emitMachineBasicBlock(MO.getMBB(), ARM::reloc_arm_branch); + else + llvm_unreachable("Unable to encode MachineOperand!"); + return 0; +} + +/// emitGlobalAddress - Emit the specified address to the code stream. +/// +void ARMCodeEmitter::emitGlobalAddress(const GlobalValue *GV, unsigned Reloc, + bool MayNeedFarStub, bool Indirect, + intptr_t ACPV) const { + MachineRelocation MR = Indirect + ? MachineRelocation::getIndirectSymbol(MCE.getCurrentPCOffset(), Reloc, + const_cast<GlobalValue *>(GV), + ACPV, MayNeedFarStub) + : MachineRelocation::getGV(MCE.getCurrentPCOffset(), Reloc, + const_cast<GlobalValue *>(GV), ACPV, + MayNeedFarStub); + MCE.addRelocation(MR); +} + +/// emitExternalSymbolAddress - Arrange for the address of an external symbol to +/// be emitted to the current location in the function, and allow it to be PC +/// relative. +void ARMCodeEmitter:: +emitExternalSymbolAddress(const char *ES, unsigned Reloc) const { + MCE.addRelocation(MachineRelocation::getExtSym(MCE.getCurrentPCOffset(), + Reloc, ES)); +} + +/// emitConstPoolAddress - Arrange for the address of an constant pool +/// to be emitted to the current location in the function, and allow it to be PC +/// relative. +void ARMCodeEmitter::emitConstPoolAddress(unsigned CPI, unsigned Reloc) const { + // Tell JIT emitter we'll resolve the address. + MCE.addRelocation(MachineRelocation::getConstPool(MCE.getCurrentPCOffset(), + Reloc, CPI, 0, true)); +} + +/// emitJumpTableAddress - Arrange for the address of a jump table to +/// be emitted to the current location in the function, and allow it to be PC +/// relative. +void ARMCodeEmitter:: +emitJumpTableAddress(unsigned JTIndex, unsigned Reloc) const { + MCE.addRelocation(MachineRelocation::getJumpTable(MCE.getCurrentPCOffset(), + Reloc, JTIndex, 0, true)); +} + +/// emitMachineBasicBlock - Emit the specified address basic block. +void ARMCodeEmitter::emitMachineBasicBlock(MachineBasicBlock *BB, + unsigned Reloc, + intptr_t JTBase) const { + MCE.addRelocation(MachineRelocation::getBB(MCE.getCurrentPCOffset(), + Reloc, BB, JTBase)); +} + +void ARMCodeEmitter::emitWordLE(unsigned Binary) { + DEBUG(errs() << " 0x"; + errs().write_hex(Binary) << "\n"); + MCE.emitWordLE(Binary); +} + +void ARMCodeEmitter::emitDWordLE(uint64_t Binary) { + DEBUG(errs() << " 0x"; + errs().write_hex(Binary) << "\n"); + MCE.emitDWordLE(Binary); +} + +void ARMCodeEmitter::emitInstruction(const MachineInstr &MI) { + DEBUG(errs() << "JIT: " << (void*)MCE.getCurrentPCValue() << ":\t" << MI); + + MCE.processDebugLoc(MI.getDebugLoc(), true); + + ++NumEmitted; // Keep track of the # of mi's emitted + switch (MI.getDesc().TSFlags & ARMII::FormMask) { + default: { + llvm_unreachable("Unhandled instruction encoding format!"); + } + case ARMII::MiscFrm: + if (MI.getOpcode() == ARM::LEApcrelJT) { + // Materialize jumptable address. + emitLEApcrelJTInstruction(MI); + break; + } + llvm_unreachable("Unhandled instruction encoding!"); + case ARMII::Pseudo: + emitPseudoInstruction(MI); + break; + case ARMII::DPFrm: + case ARMII::DPSoRegFrm: + emitDataProcessingInstruction(MI); + break; + case ARMII::LdFrm: + case ARMII::StFrm: + emitLoadStoreInstruction(MI); + break; + case ARMII::LdMiscFrm: + case ARMII::StMiscFrm: + emitMiscLoadStoreInstruction(MI); + break; + case ARMII::LdStMulFrm: + emitLoadStoreMultipleInstruction(MI); + break; + case ARMII::MulFrm: + emitMulFrmInstruction(MI); + break; + case ARMII::ExtFrm: + emitExtendInstruction(MI); + break; + case ARMII::ArithMiscFrm: + emitMiscArithInstruction(MI); + break; + case ARMII::SatFrm: + emitSaturateInstruction(MI); + break; + case ARMII::BrFrm: + emitBranchInstruction(MI); + break; + case ARMII::BrMiscFrm: + emitMiscBranchInstruction(MI); + break; + // VFP instructions. + case ARMII::VFPUnaryFrm: + case ARMII::VFPBinaryFrm: + emitVFPArithInstruction(MI); + break; + case ARMII::VFPConv1Frm: + case ARMII::VFPConv2Frm: + case ARMII::VFPConv3Frm: + case ARMII::VFPConv4Frm: + case ARMII::VFPConv5Frm: + emitVFPConversionInstruction(MI); + break; + case ARMII::VFPLdStFrm: + emitVFPLoadStoreInstruction(MI); + break; + case ARMII::VFPLdStMulFrm: + emitVFPLoadStoreMultipleInstruction(MI); + break; + + // NEON instructions. + case ARMII::NGetLnFrm: + case ARMII::NSetLnFrm: + emitNEONLaneInstruction(MI); + break; + case ARMII::NDupFrm: + emitNEONDupInstruction(MI); + break; + case ARMII::N1RegModImmFrm: + emitNEON1RegModImmInstruction(MI); + break; + case ARMII::N2RegFrm: + emitNEON2RegInstruction(MI); + break; + case ARMII::N3RegFrm: + emitNEON3RegInstruction(MI); + break; + } + MCE.processDebugLoc(MI.getDebugLoc(), false); +} + +void ARMCodeEmitter::emitConstPoolInstruction(const MachineInstr &MI) { + unsigned CPI = MI.getOperand(0).getImm(); // CP instruction index. + unsigned CPIndex = MI.getOperand(1).getIndex(); // Actual cp entry index. + const MachineConstantPoolEntry &MCPE = (*MCPEs)[CPIndex]; + + // Remember the CONSTPOOL_ENTRY address for later relocation. + JTI->addConstantPoolEntryAddr(CPI, MCE.getCurrentPCValue()); + + // Emit constpool island entry. In most cases, the actual values will be + // resolved and relocated after code emission. + if (MCPE.isMachineConstantPoolEntry()) { + ARMConstantPoolValue *ACPV = + static_cast<ARMConstantPoolValue*>(MCPE.Val.MachineCPVal); + + DEBUG(errs() << " ** ARM constant pool #" << CPI << " @ " + << (void*)MCE.getCurrentPCValue() << " " << *ACPV << '\n'); + + assert(ACPV->isGlobalValue() && "unsupported constant pool value"); + const GlobalValue *GV = cast<ARMConstantPoolConstant>(ACPV)->getGV(); + if (GV) { + Reloc::Model RelocM = TM.getRelocationModel(); + emitGlobalAddress(GV, ARM::reloc_arm_machine_cp_entry, + isa<Function>(GV), + Subtarget->GVIsIndirectSymbol(GV, RelocM), + (intptr_t)ACPV); + } else { + const char *Sym = cast<ARMConstantPoolSymbol>(ACPV)->getSymbol(); + emitExternalSymbolAddress(Sym, ARM::reloc_arm_absolute); + } + emitWordLE(0); + } else { + const Constant *CV = MCPE.Val.ConstVal; + + DEBUG({ + errs() << " ** Constant pool #" << CPI << " @ " + << (void*)MCE.getCurrentPCValue() << " "; + if (const Function *F = dyn_cast<Function>(CV)) + errs() << F->getName(); + else + errs() << *CV; + errs() << '\n'; + }); + + if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV)) { + emitGlobalAddress(GV, ARM::reloc_arm_absolute, isa<Function>(GV), false); + emitWordLE(0); + } else if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) { + uint32_t Val = uint32_t(*CI->getValue().getRawData()); + emitWordLE(Val); + } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) { + if (CFP->getType()->isFloatTy()) + emitWordLE(CFP->getValueAPF().bitcastToAPInt().getZExtValue()); + else if (CFP->getType()->isDoubleTy()) + emitDWordLE(CFP->getValueAPF().bitcastToAPInt().getZExtValue()); + else { + llvm_unreachable("Unable to handle this constantpool entry!"); + } + } else { + llvm_unreachable("Unable to handle this constantpool entry!"); + } + } +} + +void ARMCodeEmitter::emitMOVi32immInstruction(const MachineInstr &MI) { + const MachineOperand &MO0 = MI.getOperand(0); + const MachineOperand &MO1 = MI.getOperand(1); + + // Emit the 'movw' instruction. + unsigned Binary = 0x30 << 20; // mov: Insts{27-20} = 0b00110000 + + unsigned Lo16 = getMovi32Value(MI, MO1, ARM::reloc_arm_movw) & 0xFFFF; + + // Set the conditional execution predicate. + Binary |= II->getPredicate(&MI) << ARMII::CondShift; + + // Encode Rd. + Binary |= getMachineOpValue(MI, MO0) << ARMII::RegRdShift; + + // Encode imm16 as imm4:imm12 + Binary |= Lo16 & 0xFFF; // Insts{11-0} = imm12 + Binary |= ((Lo16 >> 12) & 0xF) << 16; // Insts{19-16} = imm4 + emitWordLE(Binary); + + unsigned Hi16 = getMovi32Value(MI, MO1, ARM::reloc_arm_movt) >> 16; + // Emit the 'movt' instruction. + Binary = 0x34 << 20; // movt: Insts{27-20} = 0b00110100 + + // Set the conditional execution predicate. + Binary |= II->getPredicate(&MI) << ARMII::CondShift; + + // Encode Rd. + Binary |= getMachineOpValue(MI, MO0) << ARMII::RegRdShift; + + // Encode imm16 as imm4:imm1, same as movw above. + Binary |= Hi16 & 0xFFF; + Binary |= ((Hi16 >> 12) & 0xF) << 16; + emitWordLE(Binary); +} + +void ARMCodeEmitter::emitMOVi2piecesInstruction(const MachineInstr &MI) { + const MachineOperand &MO0 = MI.getOperand(0); + const MachineOperand &MO1 = MI.getOperand(1); + assert(MO1.isImm() && ARM_AM::isSOImmTwoPartVal(MO1.getImm()) && + "Not a valid so_imm value!"); + unsigned V1 = ARM_AM::getSOImmTwoPartFirst(MO1.getImm()); + unsigned V2 = ARM_AM::getSOImmTwoPartSecond(MO1.getImm()); + + // Emit the 'mov' instruction. + unsigned Binary = 0xd << 21; // mov: Insts{24-21} = 0b1101 + + // Set the conditional execution predicate. + Binary |= II->getPredicate(&MI) << ARMII::CondShift; + + // Encode Rd. + Binary |= getMachineOpValue(MI, MO0) << ARMII::RegRdShift; + + // Encode so_imm. + // Set bit I(25) to identify this is the immediate form of <shifter_op> + Binary |= 1 << ARMII::I_BitShift; + Binary |= getMachineSoImmOpValue(V1); + emitWordLE(Binary); + + // Now the 'orr' instruction. + Binary = 0xc << 21; // orr: Insts{24-21} = 0b1100 + + // Set the conditional execution predicate. + Binary |= II->getPredicate(&MI) << ARMII::CondShift; + + // Encode Rd. + Binary |= getMachineOpValue(MI, MO0) << ARMII::RegRdShift; + + // Encode Rn. + Binary |= getMachineOpValue(MI, MO0) << ARMII::RegRnShift; + + // Encode so_imm. + // Set bit I(25) to identify this is the immediate form of <shifter_op> + Binary |= 1 << ARMII::I_BitShift; + Binary |= getMachineSoImmOpValue(V2); + emitWordLE(Binary); +} + +void ARMCodeEmitter::emitLEApcrelJTInstruction(const MachineInstr &MI) { + // It's basically add r, pc, (LJTI - $+8) + + const MCInstrDesc &MCID = MI.getDesc(); + + // Emit the 'add' instruction. + unsigned Binary = 0x4 << 21; // add: Insts{24-21} = 0b0100 + + // Set the conditional execution predicate + Binary |= II->getPredicate(&MI) << ARMII::CondShift; + + // Encode S bit if MI modifies CPSR. + Binary |= getAddrModeSBit(MI, MCID); + + // Encode Rd. + Binary |= getMachineOpValue(MI, 0) << ARMII::RegRdShift; + + // Encode Rn which is PC. + Binary |= II->getRegisterInfo().getEncodingValue(ARM::PC) << ARMII::RegRnShift; + + // Encode the displacement. + Binary |= 1 << ARMII::I_BitShift; + emitJumpTableAddress(MI.getOperand(1).getIndex(), ARM::reloc_arm_jt_base); + + emitWordLE(Binary); +} + +void ARMCodeEmitter::emitPseudoMoveInstruction(const MachineInstr &MI) { + unsigned Opcode = MI.getDesc().Opcode; + + // Part of binary is determined by TableGn. + unsigned Binary = getBinaryCodeForInstr(MI); + + // Set the conditional execution predicate + Binary |= II->getPredicate(&MI) << ARMII::CondShift; + + // Encode S bit if MI modifies CPSR. + if (Opcode == ARM::MOVsrl_flag || Opcode == ARM::MOVsra_flag) + Binary |= 1 << ARMII::S_BitShift; + + // Encode register def if there is one. + Binary |= getMachineOpValue(MI, 0) << ARMII::RegRdShift; + + // Encode the shift operation. + switch (Opcode) { + default: break; + case ARM::RRX: + // rrx + Binary |= 0x6 << 4; + break; + case ARM::MOVsrl_flag: + // lsr #1 + Binary |= (0x2 << 4) | (1 << 7); + break; + case ARM::MOVsra_flag: + // asr #1 + Binary |= (0x4 << 4) | (1 << 7); + break; + } + + // Encode register Rm. + Binary |= getMachineOpValue(MI, 1); + + emitWordLE(Binary); +} + +void ARMCodeEmitter::addPCLabel(unsigned LabelID) { + DEBUG(errs() << " ** LPC" << LabelID << " @ " + << (void*)MCE.getCurrentPCValue() << '\n'); + JTI->addPCLabelAddr(LabelID, MCE.getCurrentPCValue()); +} + +void ARMCodeEmitter::emitPseudoInstruction(const MachineInstr &MI) { + unsigned Opcode = MI.getDesc().Opcode; + switch (Opcode) { + default: + llvm_unreachable("ARMCodeEmitter::emitPseudoInstruction"); + case ARM::BX_CALL: + case ARM::BMOVPCRX_CALL: { + // First emit mov lr, pc + unsigned Binary = 0x01a0e00f; + Binary |= II->getPredicate(&MI) << ARMII::CondShift; + emitWordLE(Binary); + + // and then emit the branch. + emitMiscBranchInstruction(MI); + break; + } + case TargetOpcode::INLINEASM: { + // We allow inline assembler nodes with empty bodies - they can + // implicitly define registers, which is ok for JIT. + if (MI.getOperand(0).getSymbolName()[0]) { + report_fatal_error("JIT does not support inline asm!"); + } + break; + } + case TargetOpcode::CFI_INSTRUCTION: + break; + case TargetOpcode::EH_LABEL: + MCE.emitLabel(MI.getOperand(0).getMCSymbol()); + break; + case TargetOpcode::IMPLICIT_DEF: + case TargetOpcode::KILL: + // Do nothing. + break; + case ARM::CONSTPOOL_ENTRY: + emitConstPoolInstruction(MI); + break; + case ARM::PICADD: { + // Remember of the address of the PC label for relocation later. + addPCLabel(MI.getOperand(2).getImm()); + // PICADD is just an add instruction that implicitly read pc. + emitDataProcessingInstruction(MI, 0, ARM::PC); + break; + } + case ARM::PICLDR: + case ARM::PICLDRB: + case ARM::PICSTR: + case ARM::PICSTRB: { + // Remember of the address of the PC label for relocation later. + addPCLabel(MI.getOperand(2).getImm()); + // These are just load / store instructions that implicitly read pc. + emitLoadStoreInstruction(MI, 0, ARM::PC); + break; + } + case ARM::PICLDRH: + case ARM::PICLDRSH: + case ARM::PICLDRSB: + case ARM::PICSTRH: { + // Remember of the address of the PC label for relocation later. + addPCLabel(MI.getOperand(2).getImm()); + // These are just load / store instructions that implicitly read pc. + emitMiscLoadStoreInstruction(MI, ARM::PC); + break; + } + + case ARM::MOVi32imm: + // Two instructions to materialize a constant. + if (Subtarget->hasV6T2Ops()) + emitMOVi32immInstruction(MI); + else + emitMOVi2piecesInstruction(MI); + break; + + case ARM::LEApcrelJT: + // Materialize jumptable address. + emitLEApcrelJTInstruction(MI); + break; + case ARM::RRX: + case ARM::MOVsrl_flag: + case ARM::MOVsra_flag: + emitPseudoMoveInstruction(MI); + break; + } +} + +unsigned ARMCodeEmitter::getMachineSoRegOpValue(const MachineInstr &MI, + const MCInstrDesc &MCID, + const MachineOperand &MO, + unsigned OpIdx) { + unsigned Binary = getMachineOpValue(MI, MO); + + const MachineOperand &MO1 = MI.getOperand(OpIdx + 1); + const MachineOperand &MO2 = MI.getOperand(OpIdx + 2); + ARM_AM::ShiftOpc SOpc = ARM_AM::getSORegShOp(MO2.getImm()); + + // Encode the shift opcode. + unsigned SBits = 0; + unsigned Rs = MO1.getReg(); + if (Rs) { + // Set shift operand (bit[7:4]). + // LSL - 0001 + // LSR - 0011 + // ASR - 0101 + // ROR - 0111 + // RRX - 0110 and bit[11:8] clear. + switch (SOpc) { + default: llvm_unreachable("Unknown shift opc!"); + case ARM_AM::lsl: SBits = 0x1; break; + case ARM_AM::lsr: SBits = 0x3; break; + case ARM_AM::asr: SBits = 0x5; break; + case ARM_AM::ror: SBits = 0x7; break; + case ARM_AM::rrx: SBits = 0x6; break; + } + } else { + // Set shift operand (bit[6:4]). + // LSL - 000 + // LSR - 010 + // ASR - 100 + // ROR - 110 + switch (SOpc) { + default: llvm_unreachable("Unknown shift opc!"); + case ARM_AM::lsl: SBits = 0x0; break; + case ARM_AM::lsr: SBits = 0x2; break; + case ARM_AM::asr: SBits = 0x4; break; + case ARM_AM::ror: SBits = 0x6; break; + } + } + Binary |= SBits << 4; + if (SOpc == ARM_AM::rrx) + return Binary; + + // Encode the shift operation Rs or shift_imm (except rrx). + if (Rs) { + // Encode Rs bit[11:8]. + assert(ARM_AM::getSORegOffset(MO2.getImm()) == 0); + return Binary | (II->getRegisterInfo().getEncodingValue(Rs) << ARMII::RegRsShift); + } + + // Encode shift_imm bit[11:7]. + return Binary | ARM_AM::getSORegOffset(MO2.getImm()) << 7; +} + +unsigned ARMCodeEmitter::getMachineSoImmOpValue(unsigned SoImm) { + int SoImmVal = ARM_AM::getSOImmVal(SoImm); + assert(SoImmVal != -1 && "Not a valid so_imm value!"); + + // Encode rotate_imm. + unsigned Binary = (ARM_AM::getSOImmValRot((unsigned)SoImmVal) >> 1) + << ARMII::SoRotImmShift; + + // Encode immed_8. + Binary |= ARM_AM::getSOImmValImm((unsigned)SoImmVal); + return Binary; +} + +unsigned ARMCodeEmitter::getAddrModeSBit(const MachineInstr &MI, + const MCInstrDesc &MCID) const { + for (unsigned i = MI.getNumOperands(), e = MCID.getNumOperands(); i >= e;--i){ + const MachineOperand &MO = MI.getOperand(i-1); + if (MO.isReg() && MO.isDef() && MO.getReg() == ARM::CPSR) + return 1 << ARMII::S_BitShift; + } + return 0; +} + +void ARMCodeEmitter::emitDataProcessingInstruction(const MachineInstr &MI, + unsigned ImplicitRd, + unsigned ImplicitRn) { + const MCInstrDesc &MCID = MI.getDesc(); + + // Part of binary is determined by TableGn. + unsigned Binary = getBinaryCodeForInstr(MI); + + // Set the conditional execution predicate + Binary |= II->getPredicate(&MI) << ARMII::CondShift; + + // Encode S bit if MI modifies CPSR. + Binary |= getAddrModeSBit(MI, MCID); + + // Encode register def if there is one. + unsigned NumDefs = MCID.getNumDefs(); + unsigned OpIdx = 0; + if (NumDefs) + Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRdShift; + else if (ImplicitRd) + // Special handling for implicit use (e.g. PC). + Binary |= (II->getRegisterInfo().getEncodingValue(ImplicitRd) << ARMII::RegRdShift); + + if (MCID.Opcode == ARM::MOVi16) { + // Get immediate from MI. + unsigned Lo16 = getMovi32Value(MI, MI.getOperand(OpIdx), + ARM::reloc_arm_movw); + // Encode imm which is the same as in emitMOVi32immInstruction(). + Binary |= Lo16 & 0xFFF; + Binary |= ((Lo16 >> 12) & 0xF) << 16; + emitWordLE(Binary); + return; + } else if(MCID.Opcode == ARM::MOVTi16) { + unsigned Hi16 = (getMovi32Value(MI, MI.getOperand(OpIdx), + ARM::reloc_arm_movt) >> 16); + Binary |= Hi16 & 0xFFF; + Binary |= ((Hi16 >> 12) & 0xF) << 16; + emitWordLE(Binary); + return; + } else if ((MCID.Opcode == ARM::BFC) || (MCID.Opcode == ARM::BFI)) { + uint32_t v = ~MI.getOperand(2).getImm(); + int32_t lsb = countTrailingZeros(v); + int32_t msb = (32 - countLeadingZeros(v)) - 1; + // Instr{20-16} = msb, Instr{11-7} = lsb + Binary |= (msb & 0x1F) << 16; + Binary |= (lsb & 0x1F) << 7; + emitWordLE(Binary); + return; + } else if ((MCID.Opcode == ARM::UBFX) || (MCID.Opcode == ARM::SBFX)) { + // Encode Rn in Instr{0-3} + Binary |= getMachineOpValue(MI, OpIdx++); + + uint32_t lsb = MI.getOperand(OpIdx++).getImm(); + uint32_t widthm1 = MI.getOperand(OpIdx++).getImm() - 1; + + // Instr{20-16} = widthm1, Instr{11-7} = lsb + Binary |= (widthm1 & 0x1F) << 16; + Binary |= (lsb & 0x1F) << 7; + emitWordLE(Binary); + return; + } + + // If this is a two-address operand, skip it. e.g. MOVCCr operand 1. + if (MCID.getOperandConstraint(OpIdx, MCOI::TIED_TO) != -1) + ++OpIdx; + + // Encode first non-shifter register operand if there is one. + bool isUnary = MCID.TSFlags & ARMII::UnaryDP; + if (!isUnary) { + if (ImplicitRn) + // Special handling for implicit use (e.g. PC). + Binary |= (II->getRegisterInfo().getEncodingValue(ImplicitRn) << ARMII::RegRnShift); + else { + Binary |= getMachineOpValue(MI, OpIdx) << ARMII::RegRnShift; + ++OpIdx; + } + } + + // Encode shifter operand. + const MachineOperand &MO = MI.getOperand(OpIdx); + if ((MCID.TSFlags & ARMII::FormMask) == ARMII::DPSoRegFrm) { + // Encode SoReg. + emitWordLE(Binary | getMachineSoRegOpValue(MI, MCID, MO, OpIdx)); + return; + } + + if (MO.isReg()) { + // Encode register Rm. + emitWordLE(Binary | II->getRegisterInfo().getEncodingValue(MO.getReg())); + return; + } + + // Encode so_imm. + Binary |= getMachineSoImmOpValue((unsigned)MO.getImm()); + + emitWordLE(Binary); +} + +void ARMCodeEmitter::emitLoadStoreInstruction(const MachineInstr &MI, + unsigned ImplicitRd, + unsigned ImplicitRn) { + const MCInstrDesc &MCID = MI.getDesc(); + unsigned Form = MCID.TSFlags & ARMII::FormMask; + bool IsPrePost = (MCID.TSFlags & ARMII::IndexModeMask) != 0; + + // Part of binary is determined by TableGn. + unsigned Binary = getBinaryCodeForInstr(MI); + + // If this is an LDRi12, STRi12 or LDRcp, nothing more needs be done. + if (MI.getOpcode() == ARM::LDRi12 || MI.getOpcode() == ARM::LDRcp || + MI.getOpcode() == ARM::STRi12) { + emitWordLE(Binary); + return; + } + + // Set the conditional execution predicate + Binary |= II->getPredicate(&MI) << ARMII::CondShift; + + unsigned OpIdx = 0; + + // Operand 0 of a pre- and post-indexed store is the address base + // writeback. Skip it. + bool Skipped = false; + if (IsPrePost && Form == ARMII::StFrm) { + ++OpIdx; + Skipped = true; + } + + // Set first operand + if (ImplicitRd) + // Special handling for implicit use (e.g. PC). + Binary |= (II->getRegisterInfo().getEncodingValue(ImplicitRd) << ARMII::RegRdShift); + else + Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRdShift; + + // Set second operand + if (ImplicitRn) + // Special handling for implicit use (e.g. PC). + Binary |= (II->getRegisterInfo().getEncodingValue(ImplicitRn) << ARMII::RegRnShift); + else + Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRnShift; + + // If this is a two-address operand, skip it. e.g. LDR_PRE. + if (!Skipped && MCID.getOperandConstraint(OpIdx, MCOI::TIED_TO) != -1) + ++OpIdx; + + const MachineOperand &MO2 = MI.getOperand(OpIdx); + unsigned AM2Opc = (ImplicitRn == ARM::PC) + ? 0 : MI.getOperand(OpIdx+1).getImm(); + + // Set bit U(23) according to sign of immed value (positive or negative). + Binary |= ((ARM_AM::getAM2Op(AM2Opc) == ARM_AM::add ? 1 : 0) << + ARMII::U_BitShift); + if (!MO2.getReg()) { // is immediate + if (ARM_AM::getAM2Offset(AM2Opc)) + // Set the value of offset_12 field + Binary |= ARM_AM::getAM2Offset(AM2Opc); + emitWordLE(Binary); + return; + } + + // Set bit I(25), because this is not in immediate encoding. + Binary |= 1 << ARMII::I_BitShift; + assert(TargetRegisterInfo::isPhysicalRegister(MO2.getReg())); + // Set bit[3:0] to the corresponding Rm register + Binary |= II->getRegisterInfo().getEncodingValue(MO2.getReg()); + + // If this instr is in scaled register offset/index instruction, set + // shift_immed(bit[11:7]) and shift(bit[6:5]) fields. + if (unsigned ShImm = ARM_AM::getAM2Offset(AM2Opc)) { + Binary |= getShiftOp(AM2Opc) << ARMII::ShiftImmShift; // shift + Binary |= ShImm << ARMII::ShiftShift; // shift_immed + } + + emitWordLE(Binary); +} + +void ARMCodeEmitter::emitMiscLoadStoreInstruction(const MachineInstr &MI, + unsigned ImplicitRn) { + const MCInstrDesc &MCID = MI.getDesc(); + unsigned Form = MCID.TSFlags & ARMII::FormMask; + bool IsPrePost = (MCID.TSFlags & ARMII::IndexModeMask) != 0; + + // Part of binary is determined by TableGn. + unsigned Binary = getBinaryCodeForInstr(MI); + + // Set the conditional execution predicate + Binary |= II->getPredicate(&MI) << ARMII::CondShift; + + unsigned OpIdx = 0; + + // Operand 0 of a pre- and post-indexed store is the address base + // writeback. Skip it. + bool Skipped = false; + if (IsPrePost && Form == ARMII::StMiscFrm) { + ++OpIdx; + Skipped = true; + } + + // Set first operand + Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRdShift; + + // Skip LDRD and STRD's second operand. + if (MCID.Opcode == ARM::LDRD || MCID.Opcode == ARM::STRD) + ++OpIdx; + + // Set second operand + if (ImplicitRn) + // Special handling for implicit use (e.g. PC). + Binary |= (II->getRegisterInfo().getEncodingValue(ImplicitRn) << ARMII::RegRnShift); + else + Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRnShift; + + // If this is a two-address operand, skip it. e.g. LDRH_POST. + if (!Skipped && MCID.getOperandConstraint(OpIdx, MCOI::TIED_TO) != -1) + ++OpIdx; + + const MachineOperand &MO2 = MI.getOperand(OpIdx); + unsigned AM3Opc = (ImplicitRn == ARM::PC) + ? 0 : MI.getOperand(OpIdx+1).getImm(); + + // Set bit U(23) according to sign of immed value (positive or negative) + Binary |= ((ARM_AM::getAM3Op(AM3Opc) == ARM_AM::add ? 1 : 0) << + ARMII::U_BitShift); + + // If this instr is in register offset/index encoding, set bit[3:0] + // to the corresponding Rm register. + if (MO2.getReg()) { + Binary |= II->getRegisterInfo().getEncodingValue(MO2.getReg()); + emitWordLE(Binary); + return; + } + + // This instr is in immediate offset/index encoding, set bit 22 to 1. + Binary |= 1 << ARMII::AM3_I_BitShift; + if (unsigned ImmOffs = ARM_AM::getAM3Offset(AM3Opc)) { + // Set operands + Binary |= (ImmOffs >> 4) << ARMII::ImmHiShift; // immedH + Binary |= (ImmOffs & 0xF); // immedL + } + + emitWordLE(Binary); +} + +static unsigned getAddrModeUPBits(unsigned Mode) { + unsigned Binary = 0; + + // Set addressing mode by modifying bits U(23) and P(24) + // IA - Increment after - bit U = 1 and bit P = 0 + // IB - Increment before - bit U = 1 and bit P = 1 + // DA - Decrement after - bit U = 0 and bit P = 0 + // DB - Decrement before - bit U = 0 and bit P = 1 + switch (Mode) { + default: llvm_unreachable("Unknown addressing sub-mode!"); + case ARM_AM::da: break; + case ARM_AM::db: Binary |= 0x1 << ARMII::P_BitShift; break; + case ARM_AM::ia: Binary |= 0x1 << ARMII::U_BitShift; break; + case ARM_AM::ib: Binary |= 0x3 << ARMII::U_BitShift; break; + } + + return Binary; +} + +void ARMCodeEmitter::emitLoadStoreMultipleInstruction(const MachineInstr &MI) { + const MCInstrDesc &MCID = MI.getDesc(); + bool IsUpdating = (MCID.TSFlags & ARMII::IndexModeMask) != 0; + + // Part of binary is determined by TableGn. + unsigned Binary = getBinaryCodeForInstr(MI); + + // Set the conditional execution predicate + Binary |= II->getPredicate(&MI) << ARMII::CondShift; + + // Skip operand 0 of an instruction with base register update. + unsigned OpIdx = 0; + if (IsUpdating) + ++OpIdx; + + // Set base address operand + Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRnShift; + + // Set addressing mode by modifying bits U(23) and P(24) + ARM_AM::AMSubMode Mode = ARM_AM::getLoadStoreMultipleSubMode(MI.getOpcode()); + Binary |= getAddrModeUPBits(ARM_AM::getAM4SubMode(Mode)); + + // Set bit W(21) + if (IsUpdating) + Binary |= 0x1 << ARMII::W_BitShift; + + // Set registers + for (unsigned i = OpIdx+2, e = MI.getNumOperands(); i != e; ++i) { + const MachineOperand &MO = MI.getOperand(i); + if (!MO.isReg() || MO.isImplicit()) + break; + unsigned RegNum = II->getRegisterInfo().getEncodingValue(MO.getReg()); + assert(TargetRegisterInfo::isPhysicalRegister(MO.getReg()) && + RegNum < 16); + Binary |= 0x1 << RegNum; + } + + emitWordLE(Binary); +} + +void ARMCodeEmitter::emitMulFrmInstruction(const MachineInstr &MI) { + const MCInstrDesc &MCID = MI.getDesc(); + + // Part of binary is determined by TableGn. + unsigned Binary = getBinaryCodeForInstr(MI); + + // Set the conditional execution predicate + Binary |= II->getPredicate(&MI) << ARMII::CondShift; + + // Encode S bit if MI modifies CPSR. + Binary |= getAddrModeSBit(MI, MCID); + + // 32x32->64bit operations have two destination registers. The number + // of register definitions will tell us if that's what we're dealing with. + unsigned OpIdx = 0; + if (MCID.getNumDefs() == 2) + Binary |= getMachineOpValue (MI, OpIdx++) << ARMII::RegRdLoShift; + + // Encode Rd + Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRdHiShift; + + // Encode Rm + Binary |= getMachineOpValue(MI, OpIdx++); + + // Encode Rs + Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRsShift; + + // Many multiple instructions (e.g. MLA) have three src operands. Encode + // it as Rn (for multiply, that's in the same offset as RdLo. + if (MCID.getNumOperands() > OpIdx && + !MCID.OpInfo[OpIdx].isPredicate() && + !MCID.OpInfo[OpIdx].isOptionalDef()) + Binary |= getMachineOpValue(MI, OpIdx) << ARMII::RegRdLoShift; + + emitWordLE(Binary); +} + +void ARMCodeEmitter::emitExtendInstruction(const MachineInstr &MI) { + const MCInstrDesc &MCID = MI.getDesc(); + + // Part of binary is determined by TableGn. + unsigned Binary = getBinaryCodeForInstr(MI); + + // Set the conditional execution predicate + Binary |= II->getPredicate(&MI) << ARMII::CondShift; + + unsigned OpIdx = 0; + + // Encode Rd + Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRdShift; + + const MachineOperand &MO1 = MI.getOperand(OpIdx++); + const MachineOperand &MO2 = MI.getOperand(OpIdx); + if (MO2.isReg()) { + // Two register operand form. + // Encode Rn. + Binary |= getMachineOpValue(MI, MO1) << ARMII::RegRnShift; + + // Encode Rm. + Binary |= getMachineOpValue(MI, MO2); + ++OpIdx; + } else { + Binary |= getMachineOpValue(MI, MO1); + } + + // Encode rot imm (0, 8, 16, or 24) if it has a rotate immediate operand. + if (MI.getOperand(OpIdx).isImm() && + !MCID.OpInfo[OpIdx].isPredicate() && + !MCID.OpInfo[OpIdx].isOptionalDef()) + Binary |= (getMachineOpValue(MI, OpIdx) / 8) << ARMII::ExtRotImmShift; + + emitWordLE(Binary); +} + +void ARMCodeEmitter::emitMiscArithInstruction(const MachineInstr &MI) { + const MCInstrDesc &MCID = MI.getDesc(); + + // Part of binary is determined by TableGn. + unsigned Binary = getBinaryCodeForInstr(MI); + + // Set the conditional execution predicate + Binary |= II->getPredicate(&MI) << ARMII::CondShift; + + // PKH instructions are finished at this point + if (MCID.Opcode == ARM::PKHBT || MCID.Opcode == ARM::PKHTB) { + emitWordLE(Binary); + return; + } + + unsigned OpIdx = 0; + + // Encode Rd + Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRdShift; + + const MachineOperand &MO = MI.getOperand(OpIdx++); + if (OpIdx == MCID.getNumOperands() || + MCID.OpInfo[OpIdx].isPredicate() || + MCID.OpInfo[OpIdx].isOptionalDef()) { + // Encode Rm and it's done. + Binary |= getMachineOpValue(MI, MO); + emitWordLE(Binary); + return; + } + + // Encode Rn. + Binary |= getMachineOpValue(MI, MO) << ARMII::RegRnShift; + + // Encode Rm. + Binary |= getMachineOpValue(MI, OpIdx++); + + // Encode shift_imm. + unsigned ShiftAmt = MI.getOperand(OpIdx).getImm(); + if (MCID.Opcode == ARM::PKHTB) { + assert(ShiftAmt != 0 && "PKHTB shift_imm is 0!"); + if (ShiftAmt == 32) + ShiftAmt = 0; + } + assert(ShiftAmt < 32 && "shift_imm range is 0 to 31!"); + Binary |= ShiftAmt << ARMII::ShiftShift; + + emitWordLE(Binary); +} + +void ARMCodeEmitter::emitSaturateInstruction(const MachineInstr &MI) { + const MCInstrDesc &MCID = MI.getDesc(); + + // Part of binary is determined by TableGen. + unsigned Binary = getBinaryCodeForInstr(MI); + + // Set the conditional execution predicate + Binary |= II->getPredicate(&MI) << ARMII::CondShift; + + // Encode Rd + Binary |= getMachineOpValue(MI, 0) << ARMII::RegRdShift; + + // Encode saturate bit position. + unsigned Pos = MI.getOperand(1).getImm(); + if (MCID.Opcode == ARM::SSAT || MCID.Opcode == ARM::SSAT16) + Pos -= 1; + assert((Pos < 16 || (Pos < 32 && + MCID.Opcode != ARM::SSAT16 && + MCID.Opcode != ARM::USAT16)) && + "saturate bit position out of range"); + Binary |= Pos << 16; + + // Encode Rm + Binary |= getMachineOpValue(MI, 2); + + // Encode shift_imm. + if (MCID.getNumOperands() == 4) { + unsigned ShiftOp = MI.getOperand(3).getImm(); + ARM_AM::ShiftOpc Opc = ARM_AM::getSORegShOp(ShiftOp); + if (Opc == ARM_AM::asr) + Binary |= (1 << 6); + unsigned ShiftAmt = MI.getOperand(3).getImm(); + if (ShiftAmt == 32 && Opc == ARM_AM::asr) + ShiftAmt = 0; + assert(ShiftAmt < 32 && "shift_imm range is 0 to 31!"); + Binary |= ShiftAmt << ARMII::ShiftShift; + } + + emitWordLE(Binary); +} + +void ARMCodeEmitter::emitBranchInstruction(const MachineInstr &MI) { + const MCInstrDesc &MCID = MI.getDesc(); + + if (MCID.Opcode == ARM::TPsoft) { + llvm_unreachable("ARM::TPsoft FIXME"); // FIXME + } + + // Part of binary is determined by TableGn. + unsigned Binary = getBinaryCodeForInstr(MI); + + // Set the conditional execution predicate + Binary |= II->getPredicate(&MI) << ARMII::CondShift; + + // Set signed_immed_24 field + Binary |= getMachineOpValue(MI, 0); + + emitWordLE(Binary); +} + +void ARMCodeEmitter::emitInlineJumpTable(unsigned JTIndex) { + // Remember the base address of the inline jump table. + uintptr_t JTBase = MCE.getCurrentPCValue(); + JTI->addJumpTableBaseAddr(JTIndex, JTBase); + DEBUG(errs() << " ** Jump Table #" << JTIndex << " @ " << (void*)JTBase + << '\n'); + + // Now emit the jump table entries. + const std::vector<MachineBasicBlock*> &MBBs = (*MJTEs)[JTIndex].MBBs; + for (unsigned i = 0, e = MBBs.size(); i != e; ++i) { + if (IsPIC) + // DestBB address - JT base. + emitMachineBasicBlock(MBBs[i], ARM::reloc_arm_pic_jt, JTBase); + else + // Absolute DestBB address. + emitMachineBasicBlock(MBBs[i], ARM::reloc_arm_absolute); + emitWordLE(0); + } +} + +void ARMCodeEmitter::emitMiscBranchInstruction(const MachineInstr &MI) { + const MCInstrDesc &MCID = MI.getDesc(); + + // Handle jump tables. + if (MCID.Opcode == ARM::BR_JTr || MCID.Opcode == ARM::BR_JTadd) { + // First emit a ldr pc, [] instruction. + emitDataProcessingInstruction(MI, ARM::PC); + + // Then emit the inline jump table. + unsigned JTIndex = + (MCID.Opcode == ARM::BR_JTr) + ? MI.getOperand(1).getIndex() : MI.getOperand(2).getIndex(); + emitInlineJumpTable(JTIndex); + return; + } else if (MCID.Opcode == ARM::BR_JTm) { + // First emit a ldr pc, [] instruction. + emitLoadStoreInstruction(MI, ARM::PC); + + // Then emit the inline jump table. + emitInlineJumpTable(MI.getOperand(3).getIndex()); + return; + } + + // Part of binary is determined by TableGn. + unsigned Binary = getBinaryCodeForInstr(MI); + + // Set the conditional execution predicate + Binary |= II->getPredicate(&MI) << ARMII::CondShift; + + if (MCID.Opcode == ARM::BX_RET || MCID.Opcode == ARM::MOVPCLR) + // The return register is LR. + Binary |= II->getRegisterInfo().getEncodingValue(ARM::LR); + else + // otherwise, set the return register + Binary |= getMachineOpValue(MI, 0); + + emitWordLE(Binary); +} + +unsigned ARMCodeEmitter::encodeVFPRd(const MachineInstr &MI, + unsigned OpIdx) const { + unsigned RegD = MI.getOperand(OpIdx).getReg(); + unsigned Binary = 0; + bool isSPVFP = ARM::SPRRegClass.contains(RegD); + RegD = II->getRegisterInfo().getEncodingValue(RegD); + if (!isSPVFP) + Binary |= RegD << ARMII::RegRdShift; + else { + Binary |= ((RegD & 0x1E) >> 1) << ARMII::RegRdShift; + Binary |= (RegD & 0x01) << ARMII::D_BitShift; + } + return Binary; +} + +unsigned ARMCodeEmitter::encodeVFPRn(const MachineInstr &MI, + unsigned OpIdx) const { + unsigned RegN = MI.getOperand(OpIdx).getReg(); + unsigned Binary = 0; + bool isSPVFP = ARM::SPRRegClass.contains(RegN); + RegN = II->getRegisterInfo().getEncodingValue(RegN); + if (!isSPVFP) + Binary |= RegN << ARMII::RegRnShift; + else { + Binary |= ((RegN & 0x1E) >> 1) << ARMII::RegRnShift; + Binary |= (RegN & 0x01) << ARMII::N_BitShift; + } + return Binary; +} + +unsigned ARMCodeEmitter::encodeVFPRm(const MachineInstr &MI, + unsigned OpIdx) const { + unsigned RegM = MI.getOperand(OpIdx).getReg(); + unsigned Binary = 0; + bool isSPVFP = ARM::SPRRegClass.contains(RegM); + RegM = II->getRegisterInfo().getEncodingValue(RegM); + if (!isSPVFP) + Binary |= RegM; + else { + Binary |= ((RegM & 0x1E) >> 1); + Binary |= (RegM & 0x01) << ARMII::M_BitShift; + } + return Binary; +} + +void ARMCodeEmitter::emitVFPArithInstruction(const MachineInstr &MI) { + const MCInstrDesc &MCID = MI.getDesc(); + + // Part of binary is determined by TableGn. + unsigned Binary = getBinaryCodeForInstr(MI); + + // Set the conditional execution predicate + Binary |= II->getPredicate(&MI) << ARMII::CondShift; + + unsigned OpIdx = 0; + assert((Binary & ARMII::D_BitShift) == 0 && + (Binary & ARMII::N_BitShift) == 0 && + (Binary & ARMII::M_BitShift) == 0 && "VFP encoding bug!"); + + // Encode Dd / Sd. + Binary |= encodeVFPRd(MI, OpIdx++); + + // If this is a two-address operand, skip it, e.g. FMACD. + if (MCID.getOperandConstraint(OpIdx, MCOI::TIED_TO) != -1) + ++OpIdx; + + // Encode Dn / Sn. + if ((MCID.TSFlags & ARMII::FormMask) == ARMII::VFPBinaryFrm) + Binary |= encodeVFPRn(MI, OpIdx++); + + if (OpIdx == MCID.getNumOperands() || + MCID.OpInfo[OpIdx].isPredicate() || + MCID.OpInfo[OpIdx].isOptionalDef()) { + // FCMPEZD etc. has only one operand. + emitWordLE(Binary); + return; + } + + // Encode Dm / Sm. + Binary |= encodeVFPRm(MI, OpIdx); + + emitWordLE(Binary); +} + +void ARMCodeEmitter::emitVFPConversionInstruction(const MachineInstr &MI) { + const MCInstrDesc &MCID = MI.getDesc(); + unsigned Form = MCID.TSFlags & ARMII::FormMask; + + // Part of binary is determined by TableGn. + unsigned Binary = getBinaryCodeForInstr(MI); + + // Set the conditional execution predicate + Binary |= II->getPredicate(&MI) << ARMII::CondShift; + + switch (Form) { + default: break; + case ARMII::VFPConv1Frm: + case ARMII::VFPConv2Frm: + case ARMII::VFPConv3Frm: + // Encode Dd / Sd. + Binary |= encodeVFPRd(MI, 0); + break; + case ARMII::VFPConv4Frm: + // Encode Dn / Sn. + Binary |= encodeVFPRn(MI, 0); + break; + case ARMII::VFPConv5Frm: + // Encode Dm / Sm. + Binary |= encodeVFPRm(MI, 0); + break; + } + + switch (Form) { + default: break; + case ARMII::VFPConv1Frm: + // Encode Dm / Sm. + Binary |= encodeVFPRm(MI, 1); + break; + case ARMII::VFPConv2Frm: + case ARMII::VFPConv3Frm: + // Encode Dn / Sn. + Binary |= encodeVFPRn(MI, 1); + break; + case ARMII::VFPConv4Frm: + case ARMII::VFPConv5Frm: + // Encode Dd / Sd. + Binary |= encodeVFPRd(MI, 1); + break; + } + + if (Form == ARMII::VFPConv5Frm) + // Encode Dn / Sn. + Binary |= encodeVFPRn(MI, 2); + else if (Form == ARMII::VFPConv3Frm) + // Encode Dm / Sm. + Binary |= encodeVFPRm(MI, 2); + + emitWordLE(Binary); +} + +void ARMCodeEmitter::emitVFPLoadStoreInstruction(const MachineInstr &MI) { + // Part of binary is determined by TableGn. + unsigned Binary = getBinaryCodeForInstr(MI); + + // Set the conditional execution predicate + Binary |= II->getPredicate(&MI) << ARMII::CondShift; + + unsigned OpIdx = 0; + + // Encode Dd / Sd. + Binary |= encodeVFPRd(MI, OpIdx++); + + // Encode address base. + const MachineOperand &Base = MI.getOperand(OpIdx++); + Binary |= getMachineOpValue(MI, Base) << ARMII::RegRnShift; + + // If there is a non-zero immediate offset, encode it. + if (Base.isReg()) { + const MachineOperand &Offset = MI.getOperand(OpIdx); + if (unsigned ImmOffs = ARM_AM::getAM5Offset(Offset.getImm())) { + if (ARM_AM::getAM5Op(Offset.getImm()) == ARM_AM::add) + Binary |= 1 << ARMII::U_BitShift; + Binary |= ImmOffs; + emitWordLE(Binary); + return; + } + } + + // If immediate offset is omitted, default to +0. + Binary |= 1 << ARMII::U_BitShift; + + emitWordLE(Binary); +} + +void +ARMCodeEmitter::emitVFPLoadStoreMultipleInstruction(const MachineInstr &MI) { + const MCInstrDesc &MCID = MI.getDesc(); + bool IsUpdating = (MCID.TSFlags & ARMII::IndexModeMask) != 0; + + // Part of binary is determined by TableGn. + unsigned Binary = getBinaryCodeForInstr(MI); + + // Set the conditional execution predicate + Binary |= II->getPredicate(&MI) << ARMII::CondShift; + + // Skip operand 0 of an instruction with base register update. + unsigned OpIdx = 0; + if (IsUpdating) + ++OpIdx; + + // Set base address operand + Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRnShift; + + // Set addressing mode by modifying bits U(23) and P(24) + ARM_AM::AMSubMode Mode = ARM_AM::getLoadStoreMultipleSubMode(MI.getOpcode()); + Binary |= getAddrModeUPBits(ARM_AM::getAM4SubMode(Mode)); + + // Set bit W(21) + if (IsUpdating) + Binary |= 0x1 << ARMII::W_BitShift; + + // First register is encoded in Dd. + Binary |= encodeVFPRd(MI, OpIdx+2); + + // Count the number of registers. + unsigned NumRegs = 1; + for (unsigned i = OpIdx+3, e = MI.getNumOperands(); i != e; ++i) { + const MachineOperand &MO = MI.getOperand(i); + if (!MO.isReg() || MO.isImplicit()) + break; + ++NumRegs; + } + // Bit 8 will be set if <list> is consecutive 64-bit registers (e.g., D0) + // Otherwise, it will be 0, in the case of 32-bit registers. + if(Binary & 0x100) + Binary |= NumRegs * 2; + else + Binary |= NumRegs; + + emitWordLE(Binary); +} + +unsigned ARMCodeEmitter::encodeNEONRd(const MachineInstr &MI, + unsigned OpIdx) const { + unsigned RegD = MI.getOperand(OpIdx).getReg(); + unsigned Binary = 0; + RegD = II->getRegisterInfo().getEncodingValue(RegD); + Binary |= (RegD & 0xf) << ARMII::RegRdShift; + Binary |= ((RegD >> 4) & 1) << ARMII::D_BitShift; + return Binary; +} + +unsigned ARMCodeEmitter::encodeNEONRn(const MachineInstr &MI, + unsigned OpIdx) const { + unsigned RegN = MI.getOperand(OpIdx).getReg(); + unsigned Binary = 0; + RegN = II->getRegisterInfo().getEncodingValue(RegN); + Binary |= (RegN & 0xf) << ARMII::RegRnShift; + Binary |= ((RegN >> 4) & 1) << ARMII::N_BitShift; + return Binary; +} + +unsigned ARMCodeEmitter::encodeNEONRm(const MachineInstr &MI, + unsigned OpIdx) const { + unsigned RegM = MI.getOperand(OpIdx).getReg(); + unsigned Binary = 0; + RegM = II->getRegisterInfo().getEncodingValue(RegM); + Binary |= (RegM & 0xf); + Binary |= ((RegM >> 4) & 1) << ARMII::M_BitShift; + return Binary; +} + +/// convertNEONDataProcToThumb - Convert the ARM mode encoding for a NEON +/// data-processing instruction to the corresponding Thumb encoding. +static unsigned convertNEONDataProcToThumb(unsigned Binary) { + assert((Binary & 0xfe000000) == 0xf2000000 && + "not an ARM NEON data-processing instruction"); + unsigned UBit = (Binary >> 24) & 1; + return 0xef000000 | (UBit << 28) | (Binary & 0xffffff); +} + +void ARMCodeEmitter::emitNEONLaneInstruction(const MachineInstr &MI) { + unsigned Binary = getBinaryCodeForInstr(MI); + + unsigned RegTOpIdx, RegNOpIdx, LnOpIdx; + const MCInstrDesc &MCID = MI.getDesc(); + if ((MCID.TSFlags & ARMII::FormMask) == ARMII::NGetLnFrm) { + RegTOpIdx = 0; + RegNOpIdx = 1; + LnOpIdx = 2; + } else { // ARMII::NSetLnFrm + RegTOpIdx = 2; + RegNOpIdx = 0; + LnOpIdx = 3; + } + + // Set the conditional execution predicate + Binary |= (IsThumb ? ARMCC::AL : II->getPredicate(&MI)) << ARMII::CondShift; + + unsigned RegT = MI.getOperand(RegTOpIdx).getReg(); + RegT = II->getRegisterInfo().getEncodingValue(RegT); + Binary |= (RegT << ARMII::RegRdShift); + Binary |= encodeNEONRn(MI, RegNOpIdx); + + unsigned LaneShift; + if ((Binary & (1 << 22)) != 0) + LaneShift = 0; // 8-bit elements + else if ((Binary & (1 << 5)) != 0) + LaneShift = 1; // 16-bit elements + else + LaneShift = 2; // 32-bit elements + + unsigned Lane = MI.getOperand(LnOpIdx).getImm() << LaneShift; + unsigned Opc1 = Lane >> 2; + unsigned Opc2 = Lane & 3; + assert((Opc1 & 3) == 0 && "out-of-range lane number operand"); + Binary |= (Opc1 << 21); + Binary |= (Opc2 << 5); + + emitWordLE(Binary); +} + +void ARMCodeEmitter::emitNEONDupInstruction(const MachineInstr &MI) { + unsigned Binary = getBinaryCodeForInstr(MI); + + // Set the conditional execution predicate + Binary |= (IsThumb ? ARMCC::AL : II->getPredicate(&MI)) << ARMII::CondShift; + + unsigned RegT = MI.getOperand(1).getReg(); + RegT = II->getRegisterInfo().getEncodingValue(RegT); + Binary |= (RegT << ARMII::RegRdShift); + Binary |= encodeNEONRn(MI, 0); + emitWordLE(Binary); +} + +void ARMCodeEmitter::emitNEON1RegModImmInstruction(const MachineInstr &MI) { + unsigned Binary = getBinaryCodeForInstr(MI); + // Destination register is encoded in Dd. + Binary |= encodeNEONRd(MI, 0); + // Immediate fields: Op, Cmode, I, Imm3, Imm4 + unsigned Imm = MI.getOperand(1).getImm(); + unsigned Op = (Imm >> 12) & 1; + unsigned Cmode = (Imm >> 8) & 0xf; + unsigned I = (Imm >> 7) & 1; + unsigned Imm3 = (Imm >> 4) & 0x7; + unsigned Imm4 = Imm & 0xf; + Binary |= (I << 24) | (Imm3 << 16) | (Cmode << 8) | (Op << 5) | Imm4; + if (IsThumb) + Binary = convertNEONDataProcToThumb(Binary); + emitWordLE(Binary); +} + +void ARMCodeEmitter::emitNEON2RegInstruction(const MachineInstr &MI) { + const MCInstrDesc &MCID = MI.getDesc(); + unsigned Binary = getBinaryCodeForInstr(MI); + // Destination register is encoded in Dd; source register in Dm. + unsigned OpIdx = 0; + Binary |= encodeNEONRd(MI, OpIdx++); + if (MCID.getOperandConstraint(OpIdx, MCOI::TIED_TO) != -1) + ++OpIdx; + Binary |= encodeNEONRm(MI, OpIdx); + if (IsThumb) + Binary = convertNEONDataProcToThumb(Binary); + // FIXME: This does not handle VDUPfdf or VDUPfqf. + emitWordLE(Binary); +} + +void ARMCodeEmitter::emitNEON3RegInstruction(const MachineInstr &MI) { + const MCInstrDesc &MCID = MI.getDesc(); + unsigned Binary = getBinaryCodeForInstr(MI); + // Destination register is encoded in Dd; source registers in Dn and Dm. + unsigned OpIdx = 0; + Binary |= encodeNEONRd(MI, OpIdx++); + if (MCID.getOperandConstraint(OpIdx, MCOI::TIED_TO) != -1) + ++OpIdx; + Binary |= encodeNEONRn(MI, OpIdx++); + if (MCID.getOperandConstraint(OpIdx, MCOI::TIED_TO) != -1) + ++OpIdx; + Binary |= encodeNEONRm(MI, OpIdx); + if (IsThumb) + Binary = convertNEONDataProcToThumb(Binary); + // FIXME: This does not handle VMOVDneon or VMOVQ. + emitWordLE(Binary); +} + +#include "ARMGenCodeEmitter.inc" diff --git a/llvm/lib/Target/ARM/ARMISelLowering.cpp b/llvm/lib/Target/ARM/ARMISelLowering.cpp index a7cd6ed9ea4..3a4f788c848 100644 --- a/llvm/lib/Target/ARM/ARMISelLowering.cpp +++ b/llvm/lib/Target/ARM/ARMISelLowering.cpp @@ -29,7 +29,6 @@ #include "llvm/CodeGen/MachineFrameInfo.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/MachineInstrBuilder.h" -#include "llvm/CodeGen/MachineJumpTableInfo.h" #include "llvm/CodeGen/MachineModuleInfo.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/CodeGen/SelectionDAG.h" diff --git a/llvm/lib/Target/ARM/ARMJITInfo.cpp b/llvm/lib/Target/ARM/ARMJITInfo.cpp new file mode 100644 index 00000000000..6d1114d51aa --- /dev/null +++ b/llvm/lib/Target/ARM/ARMJITInfo.cpp @@ -0,0 +1,344 @@ +//===-- ARMJITInfo.cpp - Implement the JIT interfaces for the ARM target --===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This file implements the JIT interfaces for the ARM target. +// +//===----------------------------------------------------------------------===// + +#include "ARMJITInfo.h" +#include "ARMConstantPoolValue.h" +#include "ARMMachineFunctionInfo.h" +#include "ARMRelocations.h" +#include "MCTargetDesc/ARMBaseInfo.h" +#include "llvm/CodeGen/JITCodeEmitter.h" +#include "llvm/IR/Function.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/ErrorHandling.h" +#include "llvm/Support/Memory.h" +#include "llvm/Support/raw_ostream.h" +#include <cstdlib> +using namespace llvm; + +#define DEBUG_TYPE "jit" + +void ARMJITInfo::replaceMachineCodeForFunction(void *Old, void *New) { + report_fatal_error("ARMJITInfo::replaceMachineCodeForFunction"); +} + +/// JITCompilerFunction - This contains the address of the JIT function used to +/// compile a function lazily. +static TargetJITInfo::JITCompilerFn JITCompilerFunction; + +// Get the ASMPREFIX for the current host. This is often '_'. +#ifndef __USER_LABEL_PREFIX__ +#define __USER_LABEL_PREFIX__ +#endif +#define GETASMPREFIX2(X) #X +#define GETASMPREFIX(X) GETASMPREFIX2(X) +#define ASMPREFIX GETASMPREFIX(__USER_LABEL_PREFIX__) + +// CompilationCallback stub - We can't use a C function with inline assembly in +// it, because the prolog/epilog inserted by GCC won't work for us. (We need +// to preserve more context and manipulate the stack directly). Instead, +// write our own wrapper, which does things our way, so we have complete +// control over register saving and restoring. +extern "C" { +#if defined(__arm__) + void ARMCompilationCallback(); + asm( + ".text\n" + ".align 2\n" + ".globl " ASMPREFIX "ARMCompilationCallback\n" + ASMPREFIX "ARMCompilationCallback:\n" + // Save caller saved registers since they may contain stuff + // for the real target function right now. We have to act as if this + // whole compilation callback doesn't exist as far as the caller is + // concerned, so we can't just preserve the callee saved regs. + "stmdb sp!, {r0, r1, r2, r3, lr}\n" +#if (defined(__VFP_FP__) && !defined(__SOFTFP__)) + "vstmdb sp!, {d0, d1, d2, d3, d4, d5, d6, d7}\n" +#endif + // The LR contains the address of the stub function on entry. + // pass it as the argument to the C part of the callback + "mov r0, lr\n" + "sub sp, sp, #4\n" + // Call the C portion of the callback + "bl " ASMPREFIX "ARMCompilationCallbackC\n" + "add sp, sp, #4\n" + // Restoring the LR to the return address of the function that invoked + // the stub and de-allocating the stack space for it requires us to + // swap the two saved LR values on the stack, as they're backwards + // for what we need since the pop instruction has a pre-determined + // order for the registers. + // +--------+ + // 0 | LR | Original return address + // +--------+ + // 1 | LR | Stub address (start of stub) + // 2-5 | R3..R0 | Saved registers (we need to preserve all regs) + // 6-20 | D0..D7 | Saved VFP registers + // +--------+ + // +#if (defined(__VFP_FP__) && !defined(__SOFTFP__)) + // Restore VFP caller-saved registers. + "vldmia sp!, {d0, d1, d2, d3, d4, d5, d6, d7}\n" +#endif + // + // We need to exchange the values in slots 0 and 1 so we can + // return to the address in slot 1 with the address in slot 0 + // restored to the LR. + "ldr r0, [sp,#20]\n" + "ldr r1, [sp,#16]\n" + "str r1, [sp,#20]\n" + "str r0, [sp,#16]\n" + // Return to the (newly modified) stub to invoke the real function. + // The above twiddling of the saved return addresses allows us to + // deallocate everything, including the LR the stub saved, with two + // updating load instructions. + "ldmia sp!, {r0, r1, r2, r3, lr}\n" + "ldr pc, [sp], #4\n" + ); +#else // Not an ARM host + void ARMCompilationCallback() { + llvm_unreachable("Cannot call ARMCompilationCallback() on a non-ARM arch!"); + } +#endif +} + +/// ARMCompilationCallbackC - This is the target-specific function invoked +/// by the function stub when we did not know the real target of a call. +/// This function must locate the start of the stub or call site and pass +/// it into the JIT compiler function. +extern "C" void ARMCompilationCallbackC(intptr_t StubAddr) { + // Get the address of the compiled code for this function. + intptr_t NewVal = (intptr_t)JITCompilerFunction((void*)StubAddr); + + // Rewrite the call target... so that we don't end up here every time we + // execute the call. We're replacing the first two instructions of the + // stub with: + // ldr pc, [pc,#-4] + // <addr> + if (!sys::Memory::setRangeWritable((void*)StubAddr, 8)) { + llvm_unreachable("ERROR: Unable to mark stub writable"); + } + *(intptr_t *)StubAddr = 0xe51ff004; // ldr pc, [pc, #-4] + *(intptr_t *)(StubAddr+4) = NewVal; + if (!sys::Memory::setRangeExecutable((void*)StubAddr, 8)) { + llvm_unreachable("ERROR: Unable to mark stub executable"); + } +} + +TargetJITInfo::LazyResolverFn +ARMJITInfo::getLazyResolverFunction(JITCompilerFn F) { + JITCompilerFunction = F; + return ARMCompilationCallback; +} + +void *ARMJITInfo::emitGlobalValueIndirectSym(const GlobalValue *GV, void *Ptr, + JITCodeEmitter &JCE) { + uint8_t Buffer[4]; + uint8_t *Cur = Buffer; + MachineCodeEmitter::emitWordLEInto(Cur, (intptr_t)Ptr); + void *PtrAddr = JCE.allocIndirectGV( + GV, Buffer, sizeof(Buffer), /*Alignment=*/4); + addIndirectSymAddr(Ptr, (intptr_t)PtrAddr); + return PtrAddr; +} + +TargetJITInfo::StubLayout ARMJITInfo::getStubLayout() { + // The stub contains up to 3 4-byte instructions, aligned at 4 bytes, and a + // 4-byte address. See emitFunctionStub for details. + StubLayout Result = {16, 4}; + return Result; +} + +void *ARMJITInfo::emitFunctionStub(const Function* F, void *Fn, + JITCodeEmitter &JCE) { + void *Addr; + // If this is just a call to an external function, emit a branch instead of a + // call. The code is the same except for one bit of the last instruction. + if (Fn != (void*)(intptr_t)ARMCompilationCallback) { + // Branch to the corresponding function addr. + if (IsPIC) { + // The stub is 16-byte size and 4-aligned. + intptr_t LazyPtr = getIndirectSymAddr(Fn); + if (!LazyPtr) { + // In PIC mode, the function stub is loading a lazy-ptr. + LazyPtr= (intptr_t)emitGlobalValueIndirectSym((const GlobalValue*)F, Fn, JCE); + DEBUG(if (F) + errs() << "JIT: Indirect symbol emitted at [" << LazyPtr + << "] for GV '" << F->getName() << "'\n"; + else + errs() << "JIT: Stub emitted at [" << LazyPtr + << "] for external function at '" << Fn << "'\n"); + } + JCE.emitAlignment(4); + Addr = (void*)JCE.getCurrentPCValue(); + if (!sys::Memory::setRangeWritable(Addr, 16)) { + llvm_unreachable("ERROR: Unable to mark stub writable"); + } + JCE.emitWordLE(0xe59fc004); // ldr ip, [pc, #+4] + JCE.emitWordLE(0xe08fc00c); // L_func$scv: add ip, pc, ip + JCE.emitWordLE(0xe59cf000); // ldr pc, [ip] + JCE.emitWordLE(LazyPtr - (intptr_t(Addr)+4+8)); // func - (L_func$scv+8) + sys::Memory::InvalidateInstructionCache(Addr, 16); + if (!sys::Memory::setRangeExecutable(Addr, 16)) { + llvm_unreachable("ERROR: Unable to mark stub executable"); + } + } else { + // The stub is 8-byte size and 4-aligned. + JCE.emitAlignment(4); + Addr = (void*)JCE.getCurrentPCValue(); + if (!sys::Memory::setRangeWritable(Addr, 8)) { + llvm_unreachable("ERROR: Unable to mark stub writable"); + } + JCE.emitWordLE(0xe51ff004); // ldr pc, [pc, #-4] + JCE.emitWordLE((intptr_t)Fn); // addr of function + sys::Memory::InvalidateInstructionCache(Addr, 8); + if (!sys::Memory::setRangeExecutable(Addr, 8)) { + llvm_unreachable("ERROR: Unable to mark stub executable"); + } + } + } else { + // The compilation callback will overwrite the first two words of this + // stub with indirect branch instructions targeting the compiled code. + // This stub sets the return address to restart the stub, so that + // the new branch will be invoked when we come back. + // + // Branch and link to the compilation callback. + // The stub is 16-byte size and 4-byte aligned. + JCE.emitAlignment(4); + Addr = (void*)JCE.getCurrentPCValue(); + if (!sys::Memory::setRangeWritable(Addr, 16)) { + llvm_unreachable("ERROR: Unable to mark stub writable"); + } + // Save LR so the callback can determine which stub called it. + // The compilation callback is responsible for popping this prior + // to returning. + JCE.emitWordLE(0xe92d4000); // push {lr} + // Set the return address to go back to the start of this stub. + JCE.emitWordLE(0xe24fe00c); // sub lr, pc, #12 + // Invoke the compilation callback. + JCE.emitWordLE(0xe51ff004); // ldr pc, [pc, #-4] + // The address of the compilation callback. + JCE.emitWordLE((intptr_t)ARMCompilationCallback); + sys::Memory::InvalidateInstructionCache(Addr, 16); + if (!sys::Memory::setRangeExecutable(Addr, 16)) { + llvm_unreachable("ERROR: Unable to mark stub executable"); + } + } + + return Addr; +} + +intptr_t ARMJITInfo::resolveRelocDestAddr(MachineRelocation *MR) const { + ARM::RelocationType RT = (ARM::RelocationType)MR->getRelocationType(); + switch (RT) { + default: + return (intptr_t)(MR->getResultPointer()); + case ARM::reloc_arm_pic_jt: + // Destination address - jump table base. + return (intptr_t)(MR->getResultPointer()) - MR->getConstantVal(); + case ARM::reloc_arm_jt_base: + // Jump table base address. + return getJumpTableBaseAddr(MR->getJumpTableIndex()); + case ARM::reloc_arm_cp_entry: + case ARM::reloc_arm_vfp_cp_entry: + // Constant pool entry address. + return getConstantPoolEntryAddr(MR->getConstantPoolIndex()); + case ARM::reloc_arm_machine_cp_entry: { + ARMConstantPoolValue *ACPV = (ARMConstantPoolValue*)MR->getConstantVal(); + assert((!ACPV->hasModifier() && !ACPV->mustAddCurrentAddress()) && + "Can't handle this machine constant pool entry yet!"); + intptr_t Addr = (intptr_t)(MR->getResultPointer()); + Addr -= getPCLabelAddr(ACPV->getLabelId()) + ACPV->getPCAdjustment(); + return Addr; + } + } +} + +/// relocate - Before the JIT can run a block of code that has been emitted, +/// it must rewrite the code to contain the actual addresses of any +/// referenced global symbols. +void ARMJITInfo::relocate(void *Function, MachineRelocation *MR, + unsigned NumRelocs, unsigned char* GOTBase) { + for (unsigned i = 0; i != NumRelocs; ++i, ++MR) { + void *RelocPos = (char*)Function + MR->getMachineCodeOffset(); + intptr_t ResultPtr = resolveRelocDestAddr(MR); + switch ((ARM::RelocationType)MR->getRelocationType()) { + case ARM::reloc_arm_cp_entry: + case ARM::reloc_arm_vfp_cp_entry: + case ARM::reloc_arm_relative: { + // It is necessary to calculate the correct PC relative value. We + // subtract the base addr from the target addr to form a byte offset. + ResultPtr = ResultPtr - (intptr_t)RelocPos - 8; + // If the result is positive, set bit U(23) to 1. + if (ResultPtr >= 0) + *((intptr_t*)RelocPos) |= 1 << ARMII::U_BitShift; + else { + // Otherwise, obtain the absolute value and set bit U(23) to 0. + *((intptr_t*)RelocPos) &= ~(1 << ARMII::U_BitShift); + ResultPtr = - ResultPtr; + } + // Set the immed value calculated. + // VFP immediate offset is multiplied by 4. + if (MR->getRelocationType() == ARM::reloc_arm_vfp_cp_entry) + ResultPtr = ResultPtr >> 2; + *((intptr_t*)RelocPos) |= ResultPtr; + // Set register Rn to PC (which is register 15 on all architectures). + // FIXME: This avoids the need for register info in the JIT class. + *((intptr_t*)RelocPos) |= 15 << ARMII::RegRnShift; + break; + } + case ARM::reloc_arm_pic_jt: + case ARM::reloc_arm_machine_cp_entry: + case ARM::reloc_arm_absolute: { + // These addresses have already been resolved. + *((intptr_t*)RelocPos) |= (intptr_t)ResultPtr; + break; + } + case ARM::reloc_arm_branch: { + // It is necessary to calculate the correct value of signed_immed_24 + // field. We subtract the base addr from the target addr to form a + // byte offset, which must be inside the range -33554432 and +33554428. + // Then, we set the signed_immed_24 field of the instruction to bits + // [25:2] of the byte offset. More details ARM-ARM p. A4-11. + ResultPtr = ResultPtr - (intptr_t)RelocPos - 8; + ResultPtr = (ResultPtr & 0x03FFFFFC) >> 2; + assert(ResultPtr >= -33554432 && ResultPtr <= 33554428); + *((intptr_t*)RelocPos) |= ResultPtr; + break; + } + case ARM::reloc_arm_jt_base: { + // JT base - (instruction addr + 8) + ResultPtr = ResultPtr - (intptr_t)RelocPos - 8; + *((intptr_t*)RelocPos) |= ResultPtr; + break; + } + case ARM::reloc_arm_movw: { + ResultPtr = ResultPtr & 0xFFFF; + *((intptr_t*)RelocPos) |= ResultPtr & 0xFFF; + *((intptr_t*)RelocPos) |= ((ResultPtr >> 12) & 0xF) << 16; + break; + } + case ARM::reloc_arm_movt: { + ResultPtr = (ResultPtr >> 16) & 0xFFFF; + *((intptr_t*)RelocPos) |= ResultPtr & 0xFFF; + *((intptr_t*)RelocPos) |= ((ResultPtr >> 12) & 0xF) << 16; + break; + } + } + } +} + +void ARMJITInfo::Initialize(const MachineFunction &MF, bool isPIC) { + const ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); + ConstPoolId2AddrMap.resize(AFI->getNumPICLabels()); + JumpTableId2AddrMap.resize(AFI->getNumJumpTables()); + IsPIC = isPIC; +} diff --git a/llvm/lib/Target/ARM/ARMJITInfo.h b/llvm/lib/Target/ARM/ARMJITInfo.h new file mode 100644 index 00000000000..27e2a201340 --- /dev/null +++ b/llvm/lib/Target/ARM/ARMJITInfo.h @@ -0,0 +1,177 @@ +//===-- ARMJITInfo.h - ARM implementation of the JIT interface -*- C++ -*-===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This file contains the declaration of the ARMJITInfo class. +// +//===----------------------------------------------------------------------===// + +#ifndef ARMJITINFO_H +#define ARMJITINFO_H + +#include "llvm/ADT/DenseMap.h" +#include "llvm/ADT/SmallVector.h" +#include "llvm/CodeGen/MachineConstantPool.h" +#include "llvm/CodeGen/MachineFunction.h" +#include "llvm/CodeGen/MachineJumpTableInfo.h" +#include "llvm/Target/TargetJITInfo.h" + +namespace llvm { + class ARMTargetMachine; + + class ARMJITInfo : public TargetJITInfo { + // ConstPoolId2AddrMap - A map from constant pool ids to the corresponding + // CONSTPOOL_ENTRY addresses. + SmallVector<intptr_t, 16> ConstPoolId2AddrMap; + + // JumpTableId2AddrMap - A map from inline jumptable ids to the + // corresponding inline jump table bases. + SmallVector<intptr_t, 16> JumpTableId2AddrMap; + + // PCLabelMap - A map from PC labels to addresses. + DenseMap<unsigned, intptr_t> PCLabelMap; + + // Sym2IndirectSymMap - A map from symbol (GlobalValue and ExternalSymbol) + // addresses to their indirect symbol addresses. + DenseMap<void*, intptr_t> Sym2IndirectSymMap; + + // IsPIC - True if the relocation model is PIC. This is used to determine + // how to codegen function stubs. + bool IsPIC; + + public: + explicit ARMJITInfo() : IsPIC(false) { useGOT = false; } + + /// replaceMachineCodeForFunction - Make it so that calling the function + /// whose machine code is at OLD turns into a call to NEW, perhaps by + /// overwriting OLD with a branch to NEW. This is used for self-modifying + /// code. + /// + void replaceMachineCodeForFunction(void *Old, void *New) override; + + /// emitGlobalValueIndirectSym - Use the specified JITCodeEmitter object + /// to emit an indirect symbol which contains the address of the specified + /// ptr. + void *emitGlobalValueIndirectSym(const GlobalValue* GV, void *ptr, + JITCodeEmitter &JCE) override; + + // getStubLayout - Returns the size and alignment of the largest call stub + // on ARM. + StubLayout getStubLayout() override; + + /// emitFunctionStub - Use the specified JITCodeEmitter object to emit a + /// small native function that simply calls the function at the specified + /// address. + void *emitFunctionStub(const Function* F, void *Fn, + JITCodeEmitter &JCE) override; + + /// getLazyResolverFunction - Expose the lazy resolver to the JIT. + LazyResolverFn getLazyResolverFunction(JITCompilerFn) override; + + /// relocate - Before the JIT can run a block of code that has been emitted, + /// it must rewrite the code to contain the actual addresses of any + /// referenced global symbols. + void relocate(void *Function, MachineRelocation *MR, + unsigned NumRelocs, unsigned char* GOTBase) override; + + /// hasCustomConstantPool - Allows a target to specify that constant + /// pool address resolution is handled by the target. + bool hasCustomConstantPool() const override { return true; } + + /// hasCustomJumpTables - Allows a target to specify that jumptables + /// are emitted by the target. + bool hasCustomJumpTables() const override { return true; } + + /// allocateSeparateGVMemory - If true, globals should be placed in + /// separately allocated heap memory rather than in the same + /// code memory allocated by JITCodeEmitter. + bool allocateSeparateGVMemory() const override { +#ifdef __APPLE__ + return true; +#else + return false; +#endif + } + + /// Initialize - Initialize internal stage for the function being JITted. + /// Resize constant pool ids to CONSTPOOL_ENTRY addresses map; resize + /// jump table ids to jump table bases map; remember if codegen relocation + /// model is PIC. + void Initialize(const MachineFunction &MF, bool isPIC); + + /// getConstantPoolEntryAddr - The ARM target puts all constant + /// pool entries into constant islands. This returns the address of the + /// constant pool entry of the specified index. + intptr_t getConstantPoolEntryAddr(unsigned CPI) const { + assert(CPI < ConstPoolId2AddrMap.size()); + return ConstPoolId2AddrMap[CPI]; + } + + /// addConstantPoolEntryAddr - Map a Constant Pool Index to the address + /// where its associated value is stored. When relocations are processed, + /// this value will be used to resolve references to the constant. + void addConstantPoolEntryAddr(unsigned CPI, intptr_t Addr) { + assert(CPI < ConstPoolId2AddrMap.size()); + ConstPoolId2AddrMap[CPI] = Addr; + } + + /// getJumpTableBaseAddr - The ARM target inline all jump tables within + /// text section of the function. This returns the address of the base of + /// the jump table of the specified index. + intptr_t getJumpTableBaseAddr(unsigned JTI) const { + assert(JTI < JumpTableId2AddrMap.size()); + return JumpTableId2AddrMap[JTI]; + } + + /// addJumpTableBaseAddr - Map a jump table index to the address where + /// the corresponding inline jump table is emitted. When relocations are + /// processed, this value will be used to resolve references to the + /// jump table. + void addJumpTableBaseAddr(unsigned JTI, intptr_t Addr) { + assert(JTI < JumpTableId2AddrMap.size()); + JumpTableId2AddrMap[JTI] = Addr; + } + + /// getPCLabelAddr - Retrieve the address of the PC label of the + /// specified id. + intptr_t getPCLabelAddr(unsigned Id) const { + DenseMap<unsigned, intptr_t>::const_iterator I = PCLabelMap.find(Id); + assert(I != PCLabelMap.end()); + return I->second; + } + + /// addPCLabelAddr - Remember the address of the specified PC label. + void addPCLabelAddr(unsigned Id, intptr_t Addr) { + PCLabelMap.insert(std::make_pair(Id, Addr)); + } + + /// getIndirectSymAddr - Retrieve the address of the indirect symbol of the + /// specified symbol located at address. Returns 0 if the indirect symbol + /// has not been emitted. + intptr_t getIndirectSymAddr(void *Addr) const { + DenseMap<void*,intptr_t>::const_iterator I= Sym2IndirectSymMap.find(Addr); + if (I != Sym2IndirectSymMap.end()) + return I->second; + return 0; + } + + /// addIndirectSymAddr - Add a mapping from address of an emitted symbol to + /// its indirect symbol address. + void addIndirectSymAddr(void *SymAddr, intptr_t IndSymAddr) { + Sym2IndirectSymMap.insert(std::make_pair(SymAddr, IndSymAddr)); + } + + private: + /// resolveRelocDestAddr - Resolve the resulting address of the relocation + /// if it's not already solved. Constantpool entries must be resolved by + /// ARM target. + intptr_t resolveRelocDestAddr(MachineRelocation *MR) const; + }; +} + +#endif diff --git a/llvm/lib/Target/ARM/ARMSubtarget.cpp b/llvm/lib/Target/ARM/ARMSubtarget.cpp index 2ce083ca2b6..c1b4562f411 100644 --- a/llvm/lib/Target/ARM/ARMSubtarget.cpp +++ b/llvm/lib/Target/ARM/ARMSubtarget.cpp @@ -15,6 +15,7 @@ #include "ARMFrameLowering.h" #include "ARMISelLowering.h" #include "ARMInstrInfo.h" +#include "ARMJITInfo.h" #include "ARMSelectionDAGInfo.h" #include "ARMSubtarget.h" #include "ARMMachineFunctionInfo.h" @@ -157,7 +158,7 @@ ARMSubtarget::ARMSubtarget(const std::string &TT, const std::string &CPU, ARMProcClass(None), stackAlignment(4), CPUString(CPU), IsLittle(IsLittle), TargetTriple(TT), Options(Options), TargetABI(ARM_ABI_UNKNOWN), DL(computeDataLayout(initializeSubtargetDependencies(CPU, FS))), - TSInfo(DL), + TSInfo(DL), JITInfo(), InstrInfo(isThumb1Only() ? (ARMBaseInstrInfo *)new Thumb1InstrInfo(*this) : !isThumb() diff --git a/llvm/lib/Target/ARM/ARMSubtarget.h b/llvm/lib/Target/ARM/ARMSubtarget.h index 10c61ccf02a..f79b69199fb 100644 --- a/llvm/lib/Target/ARM/ARMSubtarget.h +++ b/llvm/lib/Target/ARM/ARMSubtarget.h @@ -18,11 +18,13 @@ #include "ARMFrameLowering.h" #include "ARMISelLowering.h" #include "ARMInstrInfo.h" +#include "ARMJITInfo.h" #include "ARMSelectionDAGInfo.h" #include "ARMSubtarget.h" #include "Thumb1FrameLowering.h" #include "Thumb1InstrInfo.h" #include "Thumb2InstrInfo.h" +#include "ARMJITInfo.h" #include "MCTargetDesc/ARMMCTargetDesc.h" #include "llvm/ADT/Triple.h" #include "llvm/IR/DataLayout.h" @@ -259,6 +261,7 @@ protected: const ARMSelectionDAGInfo *getSelectionDAGInfo() const override { return &TSInfo; } + ARMJITInfo *getJITInfo() override { return &JITInfo; } const ARMBaseInstrInfo *getInstrInfo() const override { return InstrInfo.get(); } @@ -275,6 +278,7 @@ protected: private: const DataLayout DL; ARMSelectionDAGInfo TSInfo; + ARMJITInfo JITInfo; // Either Thumb1InstrInfo or Thumb2InstrInfo. std::unique_ptr<ARMBaseInstrInfo> InstrInfo; ARMTargetLowering TLInfo; diff --git a/llvm/lib/Target/ARM/ARMTargetMachine.cpp b/llvm/lib/Target/ARM/ARMTargetMachine.cpp index 20e2624c830..d85194b75ec 100644 --- a/llvm/lib/Target/ARM/ARMTargetMachine.cpp +++ b/llvm/lib/Target/ARM/ARMTargetMachine.cpp @@ -244,3 +244,10 @@ bool ARMPassConfig::addPreEmitPass() { return true; } + +bool ARMBaseTargetMachine::addCodeEmitter(PassManagerBase &PM, + JITCodeEmitter &JCE) { + // Machine code emitter pass for ARM. + PM.add(createARMJITCodeEmitterPass(*this, JCE)); + return false; +} diff --git a/llvm/lib/Target/ARM/ARMTargetMachine.h b/llvm/lib/Target/ARM/ARMTargetMachine.h index d26d817ba7b..8b559682211 100644 --- a/llvm/lib/Target/ARM/ARMTargetMachine.h +++ b/llvm/lib/Target/ARM/ARMTargetMachine.h @@ -39,6 +39,8 @@ public: // Pass Pipeline Configuration TargetPassConfig *createPassConfig(PassManagerBase &PM) override; + + bool addCodeEmitter(PassManagerBase &PM, JITCodeEmitter &MCE) override; }; /// ARMTargetMachine - ARM target machine. diff --git a/llvm/lib/Target/ARM/CMakeLists.txt b/llvm/lib/Target/ARM/CMakeLists.txt index 2530640139a..9b5fa75fe2a 100644 --- a/llvm/lib/Target/ARM/CMakeLists.txt +++ b/llvm/lib/Target/ARM/CMakeLists.txt @@ -2,7 +2,8 @@ set(LLVM_TARGET_DEFINITIONS ARM.td) tablegen(LLVM ARMGenRegisterInfo.inc -gen-register-info) tablegen(LLVM ARMGenInstrInfo.inc -gen-instr-info) -tablegen(LLVM ARMGenMCCodeEmitter.inc -gen-emitter) +tablegen(LLVM ARMGenCodeEmitter.inc -gen-emitter) +tablegen(LLVM ARMGenMCCodeEmitter.inc -gen-emitter -mc-emitter) tablegen(LLVM ARMGenMCPseudoLowering.inc -gen-pseudo-lowering) tablegen(LLVM ARMGenAsmWriter.inc -gen-asm-writer) tablegen(LLVM ARMGenAsmMatcher.inc -gen-asm-matcher) @@ -18,6 +19,7 @@ add_llvm_target(ARMCodeGen ARMAsmPrinter.cpp ARMBaseInstrInfo.cpp ARMBaseRegisterInfo.cpp + ARMCodeEmitter.cpp ARMConstantIslandPass.cpp ARMConstantPoolValue.cpp ARMExpandPseudoInsts.cpp @@ -27,6 +29,7 @@ add_llvm_target(ARMCodeGen ARMISelDAGToDAG.cpp ARMISelLowering.cpp ARMInstrInfo.cpp + ARMJITInfo.cpp ARMLoadStoreOptimizer.cpp ARMMCInstLower.cpp ARMMachineFunctionInfo.cpp diff --git a/llvm/lib/Target/ARM/Makefile b/llvm/lib/Target/ARM/Makefile index c1601a3f29d..f069535ff3c 100644 --- a/llvm/lib/Target/ARM/Makefile +++ b/llvm/lib/Target/ARM/Makefile @@ -15,7 +15,7 @@ TARGET = ARM BUILT_SOURCES = ARMGenRegisterInfo.inc ARMGenInstrInfo.inc \ ARMGenAsmWriter.inc ARMGenAsmMatcher.inc \ ARMGenDAGISel.inc ARMGenSubtargetInfo.inc \ - ARMGenCallingConv.inc \ + ARMGenCodeEmitter.inc ARMGenCallingConv.inc \ ARMGenFastISel.inc ARMGenMCCodeEmitter.inc \ ARMGenMCPseudoLowering.inc ARMGenDisassemblerTables.inc |

