summaryrefslogtreecommitdiffstats
path: root/llvm/lib/Target/ARM
diff options
context:
space:
mode:
Diffstat (limited to 'llvm/lib/Target/ARM')
-rw-r--r--llvm/lib/Target/ARM/ARM.h5
-rw-r--r--llvm/lib/Target/ARM/ARMCodeEmitter.cpp1910
-rw-r--r--llvm/lib/Target/ARM/ARMISelLowering.cpp1
-rw-r--r--llvm/lib/Target/ARM/ARMJITInfo.cpp344
-rw-r--r--llvm/lib/Target/ARM/ARMJITInfo.h177
-rw-r--r--llvm/lib/Target/ARM/ARMSubtarget.cpp3
-rw-r--r--llvm/lib/Target/ARM/ARMSubtarget.h4
-rw-r--r--llvm/lib/Target/ARM/ARMTargetMachine.cpp7
-rw-r--r--llvm/lib/Target/ARM/ARMTargetMachine.h2
-rw-r--r--llvm/lib/Target/ARM/CMakeLists.txt5
-rw-r--r--llvm/lib/Target/ARM/Makefile2
11 files changed, 2456 insertions, 4 deletions
diff --git a/llvm/lib/Target/ARM/ARM.h b/llvm/lib/Target/ARM/ARM.h
index aec283f8085..55df29c1499 100644
--- a/llvm/lib/Target/ARM/ARM.h
+++ b/llvm/lib/Target/ARM/ARM.h
@@ -23,6 +23,7 @@ class ARMAsmPrinter;
class ARMBaseTargetMachine;
class FunctionPass;
class ImmutablePass;
+class JITCodeEmitter;
class MachineInstr;
class MCInst;
class TargetLowering;
@@ -30,6 +31,10 @@ class TargetMachine;
FunctionPass *createARMISelDag(ARMBaseTargetMachine &TM,
CodeGenOpt::Level OptLevel);
+
+FunctionPass *createARMJITCodeEmitterPass(ARMBaseTargetMachine &TM,
+ JITCodeEmitter &JCE);
+
FunctionPass *createA15SDOptimizerPass();
FunctionPass *createARMLoadStoreOptimizationPass(bool PreAlloc = false);
FunctionPass *createARMExpandPseudoPass();
diff --git a/llvm/lib/Target/ARM/ARMCodeEmitter.cpp b/llvm/lib/Target/ARM/ARMCodeEmitter.cpp
new file mode 100644
index 00000000000..714497c1bd8
--- /dev/null
+++ b/llvm/lib/Target/ARM/ARMCodeEmitter.cpp
@@ -0,0 +1,1910 @@
+//===-- ARM/ARMCodeEmitter.cpp - Convert ARM code to machine code ---------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains the pass that transforms the ARM machine instructions into
+// relocatable machine code.
+//
+//===----------------------------------------------------------------------===//
+
+#include "ARM.h"
+#include "ARMBaseInstrInfo.h"
+#include "ARMConstantPoolValue.h"
+#include "ARMMachineFunctionInfo.h"
+#include "ARMRelocations.h"
+#include "ARMSubtarget.h"
+#include "ARMTargetMachine.h"
+#include "MCTargetDesc/ARMAddressingModes.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/CodeGen/JITCodeEmitter.h"
+#include "llvm/CodeGen/MachineConstantPool.h"
+#include "llvm/CodeGen/MachineFunctionPass.h"
+#include "llvm/CodeGen/MachineInstr.h"
+#include "llvm/CodeGen/MachineJumpTableInfo.h"
+#include "llvm/CodeGen/MachineModuleInfo.h"
+#include "llvm/CodeGen/Passes.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/DerivedTypes.h"
+#include "llvm/IR/Function.h"
+#include "llvm/PassManager.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/raw_ostream.h"
+#ifndef NDEBUG
+#include <iomanip>
+#endif
+using namespace llvm;
+
+#define DEBUG_TYPE "jit"
+
+STATISTIC(NumEmitted, "Number of machine instructions emitted");
+
+namespace {
+
+ class ARMCodeEmitter : public MachineFunctionPass {
+ ARMJITInfo *JTI;
+ const ARMBaseInstrInfo *II;
+ const DataLayout *TD;
+ const ARMSubtarget *Subtarget;
+ TargetMachine &TM;
+ JITCodeEmitter &MCE;
+ MachineModuleInfo *MMI;
+ const std::vector<MachineConstantPoolEntry> *MCPEs;
+ const std::vector<MachineJumpTableEntry> *MJTEs;
+ bool IsPIC;
+ bool IsThumb;
+
+ void getAnalysisUsage(AnalysisUsage &AU) const override {
+ AU.addRequired<MachineModuleInfo>();
+ MachineFunctionPass::getAnalysisUsage(AU);
+ }
+
+ static char ID;
+ public:
+ ARMCodeEmitter(TargetMachine &tm, JITCodeEmitter &mce)
+ : MachineFunctionPass(ID), JTI(nullptr),
+ II((const ARMBaseInstrInfo *)tm.getSubtargetImpl()->getInstrInfo()),
+ TD(tm.getSubtargetImpl()->getDataLayout()), TM(tm), MCE(mce),
+ MCPEs(nullptr), MJTEs(nullptr),
+ IsPIC(TM.getRelocationModel() == Reloc::PIC_), IsThumb(false) {}
+
+ /// getBinaryCodeForInstr - This function, generated by the
+ /// CodeEmitterGenerator using TableGen, produces the binary encoding for
+ /// machine instructions.
+ uint64_t getBinaryCodeForInstr(const MachineInstr &MI) const;
+
+ bool runOnMachineFunction(MachineFunction &MF) override;
+
+ const char *getPassName() const override {
+ return "ARM Machine Code Emitter";
+ }
+
+ void emitInstruction(const MachineInstr &MI);
+
+ private:
+
+ void emitWordLE(unsigned Binary);
+ void emitDWordLE(uint64_t Binary);
+ void emitConstPoolInstruction(const MachineInstr &MI);
+ void emitMOVi32immInstruction(const MachineInstr &MI);
+ void emitMOVi2piecesInstruction(const MachineInstr &MI);
+ void emitLEApcrelJTInstruction(const MachineInstr &MI);
+ void emitPseudoMoveInstruction(const MachineInstr &MI);
+ void addPCLabel(unsigned LabelID);
+ void emitPseudoInstruction(const MachineInstr &MI);
+ unsigned getMachineSoRegOpValue(const MachineInstr &MI,
+ const MCInstrDesc &MCID,
+ const MachineOperand &MO,
+ unsigned OpIdx);
+
+ unsigned getMachineSoImmOpValue(unsigned SoImm);
+ unsigned getAddrModeSBit(const MachineInstr &MI,
+ const MCInstrDesc &MCID) const;
+
+ void emitDataProcessingInstruction(const MachineInstr &MI,
+ unsigned ImplicitRd = 0,
+ unsigned ImplicitRn = 0);
+
+ void emitLoadStoreInstruction(const MachineInstr &MI,
+ unsigned ImplicitRd = 0,
+ unsigned ImplicitRn = 0);
+
+ void emitMiscLoadStoreInstruction(const MachineInstr &MI,
+ unsigned ImplicitRn = 0);
+
+ void emitLoadStoreMultipleInstruction(const MachineInstr &MI);
+
+ void emitMulFrmInstruction(const MachineInstr &MI);
+
+ void emitExtendInstruction(const MachineInstr &MI);
+
+ void emitMiscArithInstruction(const MachineInstr &MI);
+
+ void emitSaturateInstruction(const MachineInstr &MI);
+
+ void emitBranchInstruction(const MachineInstr &MI);
+
+ void emitInlineJumpTable(unsigned JTIndex);
+
+ void emitMiscBranchInstruction(const MachineInstr &MI);
+
+ void emitVFPArithInstruction(const MachineInstr &MI);
+
+ void emitVFPConversionInstruction(const MachineInstr &MI);
+
+ void emitVFPLoadStoreInstruction(const MachineInstr &MI);
+
+ void emitVFPLoadStoreMultipleInstruction(const MachineInstr &MI);
+
+ void emitNEONLaneInstruction(const MachineInstr &MI);
+ void emitNEONDupInstruction(const MachineInstr &MI);
+ void emitNEON1RegModImmInstruction(const MachineInstr &MI);
+ void emitNEON2RegInstruction(const MachineInstr &MI);
+ void emitNEON3RegInstruction(const MachineInstr &MI);
+
+ /// getMachineOpValue - Return binary encoding of operand. If the machine
+ /// operand requires relocation, record the relocation and return zero.
+ unsigned getMachineOpValue(const MachineInstr &MI,
+ const MachineOperand &MO) const;
+ unsigned getMachineOpValue(const MachineInstr &MI, unsigned OpIdx) const {
+ return getMachineOpValue(MI, MI.getOperand(OpIdx));
+ }
+
+ // FIXME: The legacy JIT ARMCodeEmitter doesn't rely on the the
+ // TableGen'erated getBinaryCodeForInstr() function to encode any
+ // operand values, instead querying getMachineOpValue() directly for
+ // each operand it needs to encode. Thus, any of the new encoder
+ // helper functions can simply return 0 as the values the return
+ // are already handled elsewhere. They are placeholders to allow this
+ // encoder to continue to function until the MC encoder is sufficiently
+ // far along that this one can be eliminated entirely.
+ unsigned NEONThumb2DataIPostEncoder(const MachineInstr &MI, unsigned Val)
+ const { return 0; }
+ unsigned NEONThumb2LoadStorePostEncoder(const MachineInstr &MI,unsigned Val)
+ const { return 0; }
+ unsigned NEONThumb2DupPostEncoder(const MachineInstr &MI,unsigned Val)
+ const { return 0; }
+ unsigned NEONThumb2V8PostEncoder(const MachineInstr &MI,unsigned Val)
+ const { return 0; }
+ unsigned VFPThumb2PostEncoder(const MachineInstr&MI, unsigned Val)
+ const { return 0; }
+ unsigned getAdrLabelOpValue(const MachineInstr &MI, unsigned Op)
+ const { return 0; }
+ unsigned getThumbAdrLabelOpValue(const MachineInstr &MI, unsigned Op)
+ const { return 0; }
+ unsigned getThumbBLTargetOpValue(const MachineInstr &MI, unsigned Op)
+ const { return 0; }
+ unsigned getThumbBLXTargetOpValue(const MachineInstr &MI, unsigned Op)
+ const { return 0; }
+ unsigned getThumbBRTargetOpValue(const MachineInstr &MI, unsigned Op)
+ const { return 0; }
+ unsigned getThumbBCCTargetOpValue(const MachineInstr &MI, unsigned Op)
+ const { return 0; }
+ unsigned getThumbCBTargetOpValue(const MachineInstr &MI, unsigned Op)
+ const { return 0; }
+ unsigned getBranchTargetOpValue(const MachineInstr &MI, unsigned Op)
+ const { return 0; }
+ unsigned getUnconditionalBranchTargetOpValue(const MachineInstr &MI,
+ unsigned Op) const { return 0; }
+ unsigned getARMBranchTargetOpValue(const MachineInstr &MI, unsigned Op)
+ const { return 0; }
+ unsigned getARMBLTargetOpValue(const MachineInstr &MI, unsigned Op)
+ const { return 0; }
+ unsigned getARMBLXTargetOpValue(const MachineInstr &MI, unsigned Op)
+ const { return 0; }
+ unsigned getCCOutOpValue(const MachineInstr &MI, unsigned Op)
+ const { return 0; }
+ unsigned getSOImmOpValue(const MachineInstr &MI, unsigned Op)
+ const { return 0; }
+ unsigned getT2SOImmOpValue(const MachineInstr &MI, unsigned Op)
+ const { return 0; }
+ unsigned getSORegRegOpValue(const MachineInstr &MI, unsigned Op)
+ const { return 0; }
+ unsigned getSORegImmOpValue(const MachineInstr &MI, unsigned Op)
+ const { return 0; }
+ unsigned getThumbAddrModeRegRegOpValue(const MachineInstr &MI, unsigned Op)
+ const { return 0; }
+ unsigned getT2AddrModeImm8OpValue(const MachineInstr &MI, unsigned Op)
+ const { return 0; }
+ unsigned getT2Imm8s4OpValue(const MachineInstr &MI, unsigned Op)
+ const { return 0; }
+ unsigned getT2AddrModeImm8s4OpValue(const MachineInstr &MI, unsigned Op)
+ const { return 0; }
+ unsigned getT2AddrModeImm0_1020s4OpValue(const MachineInstr &MI,unsigned Op)
+ const { return 0; }
+ unsigned getT2AddrModeImm8OffsetOpValue(const MachineInstr &MI, unsigned Op)
+ const { return 0; }
+ unsigned getT2AddrModeSORegOpValue(const MachineInstr &MI, unsigned Op)
+ const { return 0; }
+ unsigned getT2SORegOpValue(const MachineInstr &MI, unsigned Op)
+ const { return 0; }
+ unsigned getT2AdrLabelOpValue(const MachineInstr &MI, unsigned Op)
+ const { return 0; }
+ unsigned getAddrMode6AddressOpValue(const MachineInstr &MI, unsigned Op)
+ const { return 0; }
+ unsigned getAddrMode6OneLane32AddressOpValue(const MachineInstr &MI,
+ unsigned Op)
+ const { return 0; }
+ unsigned getAddrMode6DupAddressOpValue(const MachineInstr &MI, unsigned Op)
+ const { return 0; }
+ unsigned getAddrMode6OffsetOpValue(const MachineInstr &MI, unsigned Op)
+ const { return 0; }
+ unsigned getBitfieldInvertedMaskOpValue(const MachineInstr &MI,
+ unsigned Op) const { return 0; }
+ uint32_t getLdStSORegOpValue(const MachineInstr &MI, unsigned OpIdx)
+ const { return 0; }
+
+ unsigned getAddrModeImm12OpValue(const MachineInstr &MI, unsigned Op)
+ const {
+ // {17-13} = reg
+ // {12} = (U)nsigned (add == '1', sub == '0')
+ // {11-0} = imm12
+ const MachineOperand &MO = MI.getOperand(Op);
+ const MachineOperand &MO1 = MI.getOperand(Op + 1);
+ if (!MO.isReg()) {
+ emitConstPoolAddress(MO.getIndex(), ARM::reloc_arm_cp_entry);
+ return 0;
+ }
+ unsigned Reg = II->getRegisterInfo().getEncodingValue(MO.getReg());
+ int32_t Imm12 = MO1.getImm();
+ uint32_t Binary;
+ Binary = Imm12 & 0xfff;
+ if (Imm12 >= 0)
+ Binary |= (1 << 12);
+ Binary |= (Reg << 13);
+ return Binary;
+ }
+
+ unsigned getHiLo16ImmOpValue(const MachineInstr &MI, unsigned Op) const {
+ return 0;
+ }
+
+ uint32_t getAddrMode2OffsetOpValue(const MachineInstr &MI, unsigned OpIdx)
+ const { return 0;}
+ uint32_t getPostIdxRegOpValue(const MachineInstr &MI, unsigned OpIdx)
+ const { return 0;}
+ uint32_t getAddrMode3OffsetOpValue(const MachineInstr &MI, unsigned OpIdx)
+ const { return 0;}
+ uint32_t getAddrMode3OpValue(const MachineInstr &MI, unsigned Op)
+ const { return 0; }
+ uint32_t getAddrModeThumbSPOpValue(const MachineInstr &MI, unsigned Op)
+ const { return 0; }
+ uint32_t getAddrModeISOpValue(const MachineInstr &MI, unsigned Op)
+ const { return 0; }
+ uint32_t getAddrModePCOpValue(const MachineInstr &MI, unsigned Op)
+ const { return 0; }
+ uint32_t getAddrMode5OpValue(const MachineInstr &MI, unsigned Op) const {
+ // {17-13} = reg
+ // {12} = (U)nsigned (add == '1', sub == '0')
+ // {11-0} = imm12
+ const MachineOperand &MO = MI.getOperand(Op);
+ const MachineOperand &MO1 = MI.getOperand(Op + 1);
+ if (!MO.isReg()) {
+ emitConstPoolAddress(MO.getIndex(), ARM::reloc_arm_cp_entry);
+ return 0;
+ }
+ unsigned Reg = II->getRegisterInfo().getEncodingValue(MO.getReg());
+ int32_t Imm12 = MO1.getImm();
+
+ // Special value for #-0
+ if (Imm12 == INT32_MIN)
+ Imm12 = 0;
+
+ // Immediate is always encoded as positive. The 'U' bit controls add vs
+ // sub.
+ bool isAdd = true;
+ if (Imm12 < 0) {
+ Imm12 = -Imm12;
+ isAdd = false;
+ }
+
+ uint32_t Binary = Imm12 & 0xfff;
+ if (isAdd)
+ Binary |= (1 << 12);
+ Binary |= (Reg << 13);
+ return Binary;
+ }
+ unsigned getNEONVcvtImm32OpValue(const MachineInstr &MI, unsigned Op)
+ const { return 0; }
+
+ unsigned getRegisterListOpValue(const MachineInstr &MI, unsigned Op)
+ const { return 0; }
+
+ unsigned getShiftRight8Imm(const MachineInstr &MI, unsigned Op)
+ const { return 0; }
+ unsigned getShiftRight16Imm(const MachineInstr &MI, unsigned Op)
+ const { return 0; }
+ unsigned getShiftRight32Imm(const MachineInstr &MI, unsigned Op)
+ const { return 0; }
+ unsigned getShiftRight64Imm(const MachineInstr &MI, unsigned Op)
+ const { return 0; }
+
+ /// getMovi32Value - Return binary encoding of operand for movw/movt. If the
+ /// machine operand requires relocation, record the relocation and return
+ /// zero.
+ unsigned getMovi32Value(const MachineInstr &MI,const MachineOperand &MO,
+ unsigned Reloc);
+
+ /// getShiftOp - Return the shift opcode (bit[6:5]) of the immediate value.
+ ///
+ unsigned getShiftOp(unsigned Imm) const ;
+
+ /// Routines that handle operands which add machine relocations which are
+ /// fixed up by the relocation stage.
+ void emitGlobalAddress(const GlobalValue *GV, unsigned Reloc,
+ bool MayNeedFarStub, bool Indirect,
+ intptr_t ACPV = 0) const;
+ void emitExternalSymbolAddress(const char *ES, unsigned Reloc) const;
+ void emitConstPoolAddress(unsigned CPI, unsigned Reloc) const;
+ void emitJumpTableAddress(unsigned JTIndex, unsigned Reloc) const;
+ void emitMachineBasicBlock(MachineBasicBlock *BB, unsigned Reloc,
+ intptr_t JTBase = 0) const;
+ unsigned encodeVFPRd(const MachineInstr &MI, unsigned OpIdx) const;
+ unsigned encodeVFPRn(const MachineInstr &MI, unsigned OpIdx) const;
+ unsigned encodeVFPRm(const MachineInstr &MI, unsigned OpIdx) const;
+ unsigned encodeNEONRd(const MachineInstr &MI, unsigned OpIdx) const;
+ unsigned encodeNEONRn(const MachineInstr &MI, unsigned OpIdx) const;
+ unsigned encodeNEONRm(const MachineInstr &MI, unsigned OpIdx) const;
+ };
+}
+
+char ARMCodeEmitter::ID = 0;
+
+/// createARMJITCodeEmitterPass - Return a pass that emits the collected ARM
+/// code to the specified MCE object.
+FunctionPass *llvm::createARMJITCodeEmitterPass(ARMBaseTargetMachine &TM,
+ JITCodeEmitter &JCE) {
+ return new ARMCodeEmitter(TM, JCE);
+}
+
+bool ARMCodeEmitter::runOnMachineFunction(MachineFunction &MF) {
+ TargetMachine &Target = const_cast<TargetMachine&>(MF.getTarget());
+
+ assert((Target.getRelocationModel() != Reloc::Default ||
+ Target.getRelocationModel() != Reloc::Static) &&
+ "JIT relocation model must be set to static or default!");
+ // Initialize the subtarget first so we can grab all of the
+ // subtarget dependent variables from there.
+ Subtarget = &TM.getSubtarget<ARMSubtarget>();
+ JTI = static_cast<ARMJITInfo *>(Target.getSubtargetImpl()->getJITInfo());
+ II = static_cast<const ARMBaseInstrInfo *>(Subtarget->getInstrInfo());
+ TD = Target.getSubtargetImpl()->getDataLayout();
+
+ MCPEs = &MF.getConstantPool()->getConstants();
+ MJTEs = nullptr;
+ if (MF.getJumpTableInfo()) MJTEs = &MF.getJumpTableInfo()->getJumpTables();
+ IsPIC = TM.getRelocationModel() == Reloc::PIC_;
+ IsThumb = MF.getInfo<ARMFunctionInfo>()->isThumbFunction();
+ JTI->Initialize(MF, IsPIC);
+ MMI = &getAnalysis<MachineModuleInfo>();
+ MCE.setModuleInfo(MMI);
+
+ do {
+ DEBUG(errs() << "JITTing function '"
+ << MF.getName() << "'\n");
+ MCE.startFunction(MF);
+ for (MachineFunction::iterator MBB = MF.begin(), E = MF.end();
+ MBB != E; ++MBB) {
+ MCE.StartMachineBasicBlock(MBB);
+ for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end();
+ I != E; ++I)
+ emitInstruction(*I);
+ }
+ } while (MCE.finishFunction(MF));
+
+ return false;
+}
+
+/// getShiftOp - Return the shift opcode (bit[6:5]) of the immediate value.
+///
+unsigned ARMCodeEmitter::getShiftOp(unsigned Imm) const {
+ switch (ARM_AM::getAM2ShiftOpc(Imm)) {
+ default: llvm_unreachable("Unknown shift opc!");
+ case ARM_AM::asr: return 2;
+ case ARM_AM::lsl: return 0;
+ case ARM_AM::lsr: return 1;
+ case ARM_AM::ror:
+ case ARM_AM::rrx: return 3;
+ }
+}
+
+/// getMovi32Value - Return binary encoding of operand for movw/movt. If the
+/// machine operand requires relocation, record the relocation and return zero.
+unsigned ARMCodeEmitter::getMovi32Value(const MachineInstr &MI,
+ const MachineOperand &MO,
+ unsigned Reloc) {
+ assert(((Reloc == ARM::reloc_arm_movt) || (Reloc == ARM::reloc_arm_movw))
+ && "Relocation to this function should be for movt or movw");
+
+ if (MO.isImm())
+ return static_cast<unsigned>(MO.getImm());
+ else if (MO.isGlobal())
+ emitGlobalAddress(MO.getGlobal(), Reloc, true, false);
+ else if (MO.isSymbol())
+ emitExternalSymbolAddress(MO.getSymbolName(), Reloc);
+ else if (MO.isMBB())
+ emitMachineBasicBlock(MO.getMBB(), Reloc);
+ else {
+#ifndef NDEBUG
+ errs() << MO;
+#endif
+ llvm_unreachable("Unsupported operand type for movw/movt");
+ }
+ return 0;
+}
+
+/// getMachineOpValue - Return binary encoding of operand. If the machine
+/// operand requires relocation, record the relocation and return zero.
+unsigned ARMCodeEmitter::getMachineOpValue(const MachineInstr &MI,
+ const MachineOperand &MO) const {
+ if (MO.isReg())
+ return II->getRegisterInfo().getEncodingValue(MO.getReg());
+ else if (MO.isImm())
+ return static_cast<unsigned>(MO.getImm());
+ else if (MO.isGlobal())
+ emitGlobalAddress(MO.getGlobal(), ARM::reloc_arm_branch, true, false);
+ else if (MO.isSymbol())
+ emitExternalSymbolAddress(MO.getSymbolName(), ARM::reloc_arm_branch);
+ else if (MO.isCPI()) {
+ const MCInstrDesc &MCID = MI.getDesc();
+ // For VFP load, the immediate offset is multiplied by 4.
+ unsigned Reloc = ((MCID.TSFlags & ARMII::FormMask) == ARMII::VFPLdStFrm)
+ ? ARM::reloc_arm_vfp_cp_entry : ARM::reloc_arm_cp_entry;
+ emitConstPoolAddress(MO.getIndex(), Reloc);
+ } else if (MO.isJTI())
+ emitJumpTableAddress(MO.getIndex(), ARM::reloc_arm_relative);
+ else if (MO.isMBB())
+ emitMachineBasicBlock(MO.getMBB(), ARM::reloc_arm_branch);
+ else
+ llvm_unreachable("Unable to encode MachineOperand!");
+ return 0;
+}
+
+/// emitGlobalAddress - Emit the specified address to the code stream.
+///
+void ARMCodeEmitter::emitGlobalAddress(const GlobalValue *GV, unsigned Reloc,
+ bool MayNeedFarStub, bool Indirect,
+ intptr_t ACPV) const {
+ MachineRelocation MR = Indirect
+ ? MachineRelocation::getIndirectSymbol(MCE.getCurrentPCOffset(), Reloc,
+ const_cast<GlobalValue *>(GV),
+ ACPV, MayNeedFarStub)
+ : MachineRelocation::getGV(MCE.getCurrentPCOffset(), Reloc,
+ const_cast<GlobalValue *>(GV), ACPV,
+ MayNeedFarStub);
+ MCE.addRelocation(MR);
+}
+
+/// emitExternalSymbolAddress - Arrange for the address of an external symbol to
+/// be emitted to the current location in the function, and allow it to be PC
+/// relative.
+void ARMCodeEmitter::
+emitExternalSymbolAddress(const char *ES, unsigned Reloc) const {
+ MCE.addRelocation(MachineRelocation::getExtSym(MCE.getCurrentPCOffset(),
+ Reloc, ES));
+}
+
+/// emitConstPoolAddress - Arrange for the address of an constant pool
+/// to be emitted to the current location in the function, and allow it to be PC
+/// relative.
+void ARMCodeEmitter::emitConstPoolAddress(unsigned CPI, unsigned Reloc) const {
+ // Tell JIT emitter we'll resolve the address.
+ MCE.addRelocation(MachineRelocation::getConstPool(MCE.getCurrentPCOffset(),
+ Reloc, CPI, 0, true));
+}
+
+/// emitJumpTableAddress - Arrange for the address of a jump table to
+/// be emitted to the current location in the function, and allow it to be PC
+/// relative.
+void ARMCodeEmitter::
+emitJumpTableAddress(unsigned JTIndex, unsigned Reloc) const {
+ MCE.addRelocation(MachineRelocation::getJumpTable(MCE.getCurrentPCOffset(),
+ Reloc, JTIndex, 0, true));
+}
+
+/// emitMachineBasicBlock - Emit the specified address basic block.
+void ARMCodeEmitter::emitMachineBasicBlock(MachineBasicBlock *BB,
+ unsigned Reloc,
+ intptr_t JTBase) const {
+ MCE.addRelocation(MachineRelocation::getBB(MCE.getCurrentPCOffset(),
+ Reloc, BB, JTBase));
+}
+
+void ARMCodeEmitter::emitWordLE(unsigned Binary) {
+ DEBUG(errs() << " 0x";
+ errs().write_hex(Binary) << "\n");
+ MCE.emitWordLE(Binary);
+}
+
+void ARMCodeEmitter::emitDWordLE(uint64_t Binary) {
+ DEBUG(errs() << " 0x";
+ errs().write_hex(Binary) << "\n");
+ MCE.emitDWordLE(Binary);
+}
+
+void ARMCodeEmitter::emitInstruction(const MachineInstr &MI) {
+ DEBUG(errs() << "JIT: " << (void*)MCE.getCurrentPCValue() << ":\t" << MI);
+
+ MCE.processDebugLoc(MI.getDebugLoc(), true);
+
+ ++NumEmitted; // Keep track of the # of mi's emitted
+ switch (MI.getDesc().TSFlags & ARMII::FormMask) {
+ default: {
+ llvm_unreachable("Unhandled instruction encoding format!");
+ }
+ case ARMII::MiscFrm:
+ if (MI.getOpcode() == ARM::LEApcrelJT) {
+ // Materialize jumptable address.
+ emitLEApcrelJTInstruction(MI);
+ break;
+ }
+ llvm_unreachable("Unhandled instruction encoding!");
+ case ARMII::Pseudo:
+ emitPseudoInstruction(MI);
+ break;
+ case ARMII::DPFrm:
+ case ARMII::DPSoRegFrm:
+ emitDataProcessingInstruction(MI);
+ break;
+ case ARMII::LdFrm:
+ case ARMII::StFrm:
+ emitLoadStoreInstruction(MI);
+ break;
+ case ARMII::LdMiscFrm:
+ case ARMII::StMiscFrm:
+ emitMiscLoadStoreInstruction(MI);
+ break;
+ case ARMII::LdStMulFrm:
+ emitLoadStoreMultipleInstruction(MI);
+ break;
+ case ARMII::MulFrm:
+ emitMulFrmInstruction(MI);
+ break;
+ case ARMII::ExtFrm:
+ emitExtendInstruction(MI);
+ break;
+ case ARMII::ArithMiscFrm:
+ emitMiscArithInstruction(MI);
+ break;
+ case ARMII::SatFrm:
+ emitSaturateInstruction(MI);
+ break;
+ case ARMII::BrFrm:
+ emitBranchInstruction(MI);
+ break;
+ case ARMII::BrMiscFrm:
+ emitMiscBranchInstruction(MI);
+ break;
+ // VFP instructions.
+ case ARMII::VFPUnaryFrm:
+ case ARMII::VFPBinaryFrm:
+ emitVFPArithInstruction(MI);
+ break;
+ case ARMII::VFPConv1Frm:
+ case ARMII::VFPConv2Frm:
+ case ARMII::VFPConv3Frm:
+ case ARMII::VFPConv4Frm:
+ case ARMII::VFPConv5Frm:
+ emitVFPConversionInstruction(MI);
+ break;
+ case ARMII::VFPLdStFrm:
+ emitVFPLoadStoreInstruction(MI);
+ break;
+ case ARMII::VFPLdStMulFrm:
+ emitVFPLoadStoreMultipleInstruction(MI);
+ break;
+
+ // NEON instructions.
+ case ARMII::NGetLnFrm:
+ case ARMII::NSetLnFrm:
+ emitNEONLaneInstruction(MI);
+ break;
+ case ARMII::NDupFrm:
+ emitNEONDupInstruction(MI);
+ break;
+ case ARMII::N1RegModImmFrm:
+ emitNEON1RegModImmInstruction(MI);
+ break;
+ case ARMII::N2RegFrm:
+ emitNEON2RegInstruction(MI);
+ break;
+ case ARMII::N3RegFrm:
+ emitNEON3RegInstruction(MI);
+ break;
+ }
+ MCE.processDebugLoc(MI.getDebugLoc(), false);
+}
+
+void ARMCodeEmitter::emitConstPoolInstruction(const MachineInstr &MI) {
+ unsigned CPI = MI.getOperand(0).getImm(); // CP instruction index.
+ unsigned CPIndex = MI.getOperand(1).getIndex(); // Actual cp entry index.
+ const MachineConstantPoolEntry &MCPE = (*MCPEs)[CPIndex];
+
+ // Remember the CONSTPOOL_ENTRY address for later relocation.
+ JTI->addConstantPoolEntryAddr(CPI, MCE.getCurrentPCValue());
+
+ // Emit constpool island entry. In most cases, the actual values will be
+ // resolved and relocated after code emission.
+ if (MCPE.isMachineConstantPoolEntry()) {
+ ARMConstantPoolValue *ACPV =
+ static_cast<ARMConstantPoolValue*>(MCPE.Val.MachineCPVal);
+
+ DEBUG(errs() << " ** ARM constant pool #" << CPI << " @ "
+ << (void*)MCE.getCurrentPCValue() << " " << *ACPV << '\n');
+
+ assert(ACPV->isGlobalValue() && "unsupported constant pool value");
+ const GlobalValue *GV = cast<ARMConstantPoolConstant>(ACPV)->getGV();
+ if (GV) {
+ Reloc::Model RelocM = TM.getRelocationModel();
+ emitGlobalAddress(GV, ARM::reloc_arm_machine_cp_entry,
+ isa<Function>(GV),
+ Subtarget->GVIsIndirectSymbol(GV, RelocM),
+ (intptr_t)ACPV);
+ } else {
+ const char *Sym = cast<ARMConstantPoolSymbol>(ACPV)->getSymbol();
+ emitExternalSymbolAddress(Sym, ARM::reloc_arm_absolute);
+ }
+ emitWordLE(0);
+ } else {
+ const Constant *CV = MCPE.Val.ConstVal;
+
+ DEBUG({
+ errs() << " ** Constant pool #" << CPI << " @ "
+ << (void*)MCE.getCurrentPCValue() << " ";
+ if (const Function *F = dyn_cast<Function>(CV))
+ errs() << F->getName();
+ else
+ errs() << *CV;
+ errs() << '\n';
+ });
+
+ if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV)) {
+ emitGlobalAddress(GV, ARM::reloc_arm_absolute, isa<Function>(GV), false);
+ emitWordLE(0);
+ } else if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
+ uint32_t Val = uint32_t(*CI->getValue().getRawData());
+ emitWordLE(Val);
+ } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) {
+ if (CFP->getType()->isFloatTy())
+ emitWordLE(CFP->getValueAPF().bitcastToAPInt().getZExtValue());
+ else if (CFP->getType()->isDoubleTy())
+ emitDWordLE(CFP->getValueAPF().bitcastToAPInt().getZExtValue());
+ else {
+ llvm_unreachable("Unable to handle this constantpool entry!");
+ }
+ } else {
+ llvm_unreachable("Unable to handle this constantpool entry!");
+ }
+ }
+}
+
+void ARMCodeEmitter::emitMOVi32immInstruction(const MachineInstr &MI) {
+ const MachineOperand &MO0 = MI.getOperand(0);
+ const MachineOperand &MO1 = MI.getOperand(1);
+
+ // Emit the 'movw' instruction.
+ unsigned Binary = 0x30 << 20; // mov: Insts{27-20} = 0b00110000
+
+ unsigned Lo16 = getMovi32Value(MI, MO1, ARM::reloc_arm_movw) & 0xFFFF;
+
+ // Set the conditional execution predicate.
+ Binary |= II->getPredicate(&MI) << ARMII::CondShift;
+
+ // Encode Rd.
+ Binary |= getMachineOpValue(MI, MO0) << ARMII::RegRdShift;
+
+ // Encode imm16 as imm4:imm12
+ Binary |= Lo16 & 0xFFF; // Insts{11-0} = imm12
+ Binary |= ((Lo16 >> 12) & 0xF) << 16; // Insts{19-16} = imm4
+ emitWordLE(Binary);
+
+ unsigned Hi16 = getMovi32Value(MI, MO1, ARM::reloc_arm_movt) >> 16;
+ // Emit the 'movt' instruction.
+ Binary = 0x34 << 20; // movt: Insts{27-20} = 0b00110100
+
+ // Set the conditional execution predicate.
+ Binary |= II->getPredicate(&MI) << ARMII::CondShift;
+
+ // Encode Rd.
+ Binary |= getMachineOpValue(MI, MO0) << ARMII::RegRdShift;
+
+ // Encode imm16 as imm4:imm1, same as movw above.
+ Binary |= Hi16 & 0xFFF;
+ Binary |= ((Hi16 >> 12) & 0xF) << 16;
+ emitWordLE(Binary);
+}
+
+void ARMCodeEmitter::emitMOVi2piecesInstruction(const MachineInstr &MI) {
+ const MachineOperand &MO0 = MI.getOperand(0);
+ const MachineOperand &MO1 = MI.getOperand(1);
+ assert(MO1.isImm() && ARM_AM::isSOImmTwoPartVal(MO1.getImm()) &&
+ "Not a valid so_imm value!");
+ unsigned V1 = ARM_AM::getSOImmTwoPartFirst(MO1.getImm());
+ unsigned V2 = ARM_AM::getSOImmTwoPartSecond(MO1.getImm());
+
+ // Emit the 'mov' instruction.
+ unsigned Binary = 0xd << 21; // mov: Insts{24-21} = 0b1101
+
+ // Set the conditional execution predicate.
+ Binary |= II->getPredicate(&MI) << ARMII::CondShift;
+
+ // Encode Rd.
+ Binary |= getMachineOpValue(MI, MO0) << ARMII::RegRdShift;
+
+ // Encode so_imm.
+ // Set bit I(25) to identify this is the immediate form of <shifter_op>
+ Binary |= 1 << ARMII::I_BitShift;
+ Binary |= getMachineSoImmOpValue(V1);
+ emitWordLE(Binary);
+
+ // Now the 'orr' instruction.
+ Binary = 0xc << 21; // orr: Insts{24-21} = 0b1100
+
+ // Set the conditional execution predicate.
+ Binary |= II->getPredicate(&MI) << ARMII::CondShift;
+
+ // Encode Rd.
+ Binary |= getMachineOpValue(MI, MO0) << ARMII::RegRdShift;
+
+ // Encode Rn.
+ Binary |= getMachineOpValue(MI, MO0) << ARMII::RegRnShift;
+
+ // Encode so_imm.
+ // Set bit I(25) to identify this is the immediate form of <shifter_op>
+ Binary |= 1 << ARMII::I_BitShift;
+ Binary |= getMachineSoImmOpValue(V2);
+ emitWordLE(Binary);
+}
+
+void ARMCodeEmitter::emitLEApcrelJTInstruction(const MachineInstr &MI) {
+ // It's basically add r, pc, (LJTI - $+8)
+
+ const MCInstrDesc &MCID = MI.getDesc();
+
+ // Emit the 'add' instruction.
+ unsigned Binary = 0x4 << 21; // add: Insts{24-21} = 0b0100
+
+ // Set the conditional execution predicate
+ Binary |= II->getPredicate(&MI) << ARMII::CondShift;
+
+ // Encode S bit if MI modifies CPSR.
+ Binary |= getAddrModeSBit(MI, MCID);
+
+ // Encode Rd.
+ Binary |= getMachineOpValue(MI, 0) << ARMII::RegRdShift;
+
+ // Encode Rn which is PC.
+ Binary |= II->getRegisterInfo().getEncodingValue(ARM::PC) << ARMII::RegRnShift;
+
+ // Encode the displacement.
+ Binary |= 1 << ARMII::I_BitShift;
+ emitJumpTableAddress(MI.getOperand(1).getIndex(), ARM::reloc_arm_jt_base);
+
+ emitWordLE(Binary);
+}
+
+void ARMCodeEmitter::emitPseudoMoveInstruction(const MachineInstr &MI) {
+ unsigned Opcode = MI.getDesc().Opcode;
+
+ // Part of binary is determined by TableGn.
+ unsigned Binary = getBinaryCodeForInstr(MI);
+
+ // Set the conditional execution predicate
+ Binary |= II->getPredicate(&MI) << ARMII::CondShift;
+
+ // Encode S bit if MI modifies CPSR.
+ if (Opcode == ARM::MOVsrl_flag || Opcode == ARM::MOVsra_flag)
+ Binary |= 1 << ARMII::S_BitShift;
+
+ // Encode register def if there is one.
+ Binary |= getMachineOpValue(MI, 0) << ARMII::RegRdShift;
+
+ // Encode the shift operation.
+ switch (Opcode) {
+ default: break;
+ case ARM::RRX:
+ // rrx
+ Binary |= 0x6 << 4;
+ break;
+ case ARM::MOVsrl_flag:
+ // lsr #1
+ Binary |= (0x2 << 4) | (1 << 7);
+ break;
+ case ARM::MOVsra_flag:
+ // asr #1
+ Binary |= (0x4 << 4) | (1 << 7);
+ break;
+ }
+
+ // Encode register Rm.
+ Binary |= getMachineOpValue(MI, 1);
+
+ emitWordLE(Binary);
+}
+
+void ARMCodeEmitter::addPCLabel(unsigned LabelID) {
+ DEBUG(errs() << " ** LPC" << LabelID << " @ "
+ << (void*)MCE.getCurrentPCValue() << '\n');
+ JTI->addPCLabelAddr(LabelID, MCE.getCurrentPCValue());
+}
+
+void ARMCodeEmitter::emitPseudoInstruction(const MachineInstr &MI) {
+ unsigned Opcode = MI.getDesc().Opcode;
+ switch (Opcode) {
+ default:
+ llvm_unreachable("ARMCodeEmitter::emitPseudoInstruction");
+ case ARM::BX_CALL:
+ case ARM::BMOVPCRX_CALL: {
+ // First emit mov lr, pc
+ unsigned Binary = 0x01a0e00f;
+ Binary |= II->getPredicate(&MI) << ARMII::CondShift;
+ emitWordLE(Binary);
+
+ // and then emit the branch.
+ emitMiscBranchInstruction(MI);
+ break;
+ }
+ case TargetOpcode::INLINEASM: {
+ // We allow inline assembler nodes with empty bodies - they can
+ // implicitly define registers, which is ok for JIT.
+ if (MI.getOperand(0).getSymbolName()[0]) {
+ report_fatal_error("JIT does not support inline asm!");
+ }
+ break;
+ }
+ case TargetOpcode::CFI_INSTRUCTION:
+ break;
+ case TargetOpcode::EH_LABEL:
+ MCE.emitLabel(MI.getOperand(0).getMCSymbol());
+ break;
+ case TargetOpcode::IMPLICIT_DEF:
+ case TargetOpcode::KILL:
+ // Do nothing.
+ break;
+ case ARM::CONSTPOOL_ENTRY:
+ emitConstPoolInstruction(MI);
+ break;
+ case ARM::PICADD: {
+ // Remember of the address of the PC label for relocation later.
+ addPCLabel(MI.getOperand(2).getImm());
+ // PICADD is just an add instruction that implicitly read pc.
+ emitDataProcessingInstruction(MI, 0, ARM::PC);
+ break;
+ }
+ case ARM::PICLDR:
+ case ARM::PICLDRB:
+ case ARM::PICSTR:
+ case ARM::PICSTRB: {
+ // Remember of the address of the PC label for relocation later.
+ addPCLabel(MI.getOperand(2).getImm());
+ // These are just load / store instructions that implicitly read pc.
+ emitLoadStoreInstruction(MI, 0, ARM::PC);
+ break;
+ }
+ case ARM::PICLDRH:
+ case ARM::PICLDRSH:
+ case ARM::PICLDRSB:
+ case ARM::PICSTRH: {
+ // Remember of the address of the PC label for relocation later.
+ addPCLabel(MI.getOperand(2).getImm());
+ // These are just load / store instructions that implicitly read pc.
+ emitMiscLoadStoreInstruction(MI, ARM::PC);
+ break;
+ }
+
+ case ARM::MOVi32imm:
+ // Two instructions to materialize a constant.
+ if (Subtarget->hasV6T2Ops())
+ emitMOVi32immInstruction(MI);
+ else
+ emitMOVi2piecesInstruction(MI);
+ break;
+
+ case ARM::LEApcrelJT:
+ // Materialize jumptable address.
+ emitLEApcrelJTInstruction(MI);
+ break;
+ case ARM::RRX:
+ case ARM::MOVsrl_flag:
+ case ARM::MOVsra_flag:
+ emitPseudoMoveInstruction(MI);
+ break;
+ }
+}
+
+unsigned ARMCodeEmitter::getMachineSoRegOpValue(const MachineInstr &MI,
+ const MCInstrDesc &MCID,
+ const MachineOperand &MO,
+ unsigned OpIdx) {
+ unsigned Binary = getMachineOpValue(MI, MO);
+
+ const MachineOperand &MO1 = MI.getOperand(OpIdx + 1);
+ const MachineOperand &MO2 = MI.getOperand(OpIdx + 2);
+ ARM_AM::ShiftOpc SOpc = ARM_AM::getSORegShOp(MO2.getImm());
+
+ // Encode the shift opcode.
+ unsigned SBits = 0;
+ unsigned Rs = MO1.getReg();
+ if (Rs) {
+ // Set shift operand (bit[7:4]).
+ // LSL - 0001
+ // LSR - 0011
+ // ASR - 0101
+ // ROR - 0111
+ // RRX - 0110 and bit[11:8] clear.
+ switch (SOpc) {
+ default: llvm_unreachable("Unknown shift opc!");
+ case ARM_AM::lsl: SBits = 0x1; break;
+ case ARM_AM::lsr: SBits = 0x3; break;
+ case ARM_AM::asr: SBits = 0x5; break;
+ case ARM_AM::ror: SBits = 0x7; break;
+ case ARM_AM::rrx: SBits = 0x6; break;
+ }
+ } else {
+ // Set shift operand (bit[6:4]).
+ // LSL - 000
+ // LSR - 010
+ // ASR - 100
+ // ROR - 110
+ switch (SOpc) {
+ default: llvm_unreachable("Unknown shift opc!");
+ case ARM_AM::lsl: SBits = 0x0; break;
+ case ARM_AM::lsr: SBits = 0x2; break;
+ case ARM_AM::asr: SBits = 0x4; break;
+ case ARM_AM::ror: SBits = 0x6; break;
+ }
+ }
+ Binary |= SBits << 4;
+ if (SOpc == ARM_AM::rrx)
+ return Binary;
+
+ // Encode the shift operation Rs or shift_imm (except rrx).
+ if (Rs) {
+ // Encode Rs bit[11:8].
+ assert(ARM_AM::getSORegOffset(MO2.getImm()) == 0);
+ return Binary | (II->getRegisterInfo().getEncodingValue(Rs) << ARMII::RegRsShift);
+ }
+
+ // Encode shift_imm bit[11:7].
+ return Binary | ARM_AM::getSORegOffset(MO2.getImm()) << 7;
+}
+
+unsigned ARMCodeEmitter::getMachineSoImmOpValue(unsigned SoImm) {
+ int SoImmVal = ARM_AM::getSOImmVal(SoImm);
+ assert(SoImmVal != -1 && "Not a valid so_imm value!");
+
+ // Encode rotate_imm.
+ unsigned Binary = (ARM_AM::getSOImmValRot((unsigned)SoImmVal) >> 1)
+ << ARMII::SoRotImmShift;
+
+ // Encode immed_8.
+ Binary |= ARM_AM::getSOImmValImm((unsigned)SoImmVal);
+ return Binary;
+}
+
+unsigned ARMCodeEmitter::getAddrModeSBit(const MachineInstr &MI,
+ const MCInstrDesc &MCID) const {
+ for (unsigned i = MI.getNumOperands(), e = MCID.getNumOperands(); i >= e;--i){
+ const MachineOperand &MO = MI.getOperand(i-1);
+ if (MO.isReg() && MO.isDef() && MO.getReg() == ARM::CPSR)
+ return 1 << ARMII::S_BitShift;
+ }
+ return 0;
+}
+
+void ARMCodeEmitter::emitDataProcessingInstruction(const MachineInstr &MI,
+ unsigned ImplicitRd,
+ unsigned ImplicitRn) {
+ const MCInstrDesc &MCID = MI.getDesc();
+
+ // Part of binary is determined by TableGn.
+ unsigned Binary = getBinaryCodeForInstr(MI);
+
+ // Set the conditional execution predicate
+ Binary |= II->getPredicate(&MI) << ARMII::CondShift;
+
+ // Encode S bit if MI modifies CPSR.
+ Binary |= getAddrModeSBit(MI, MCID);
+
+ // Encode register def if there is one.
+ unsigned NumDefs = MCID.getNumDefs();
+ unsigned OpIdx = 0;
+ if (NumDefs)
+ Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRdShift;
+ else if (ImplicitRd)
+ // Special handling for implicit use (e.g. PC).
+ Binary |= (II->getRegisterInfo().getEncodingValue(ImplicitRd) << ARMII::RegRdShift);
+
+ if (MCID.Opcode == ARM::MOVi16) {
+ // Get immediate from MI.
+ unsigned Lo16 = getMovi32Value(MI, MI.getOperand(OpIdx),
+ ARM::reloc_arm_movw);
+ // Encode imm which is the same as in emitMOVi32immInstruction().
+ Binary |= Lo16 & 0xFFF;
+ Binary |= ((Lo16 >> 12) & 0xF) << 16;
+ emitWordLE(Binary);
+ return;
+ } else if(MCID.Opcode == ARM::MOVTi16) {
+ unsigned Hi16 = (getMovi32Value(MI, MI.getOperand(OpIdx),
+ ARM::reloc_arm_movt) >> 16);
+ Binary |= Hi16 & 0xFFF;
+ Binary |= ((Hi16 >> 12) & 0xF) << 16;
+ emitWordLE(Binary);
+ return;
+ } else if ((MCID.Opcode == ARM::BFC) || (MCID.Opcode == ARM::BFI)) {
+ uint32_t v = ~MI.getOperand(2).getImm();
+ int32_t lsb = countTrailingZeros(v);
+ int32_t msb = (32 - countLeadingZeros(v)) - 1;
+ // Instr{20-16} = msb, Instr{11-7} = lsb
+ Binary |= (msb & 0x1F) << 16;
+ Binary |= (lsb & 0x1F) << 7;
+ emitWordLE(Binary);
+ return;
+ } else if ((MCID.Opcode == ARM::UBFX) || (MCID.Opcode == ARM::SBFX)) {
+ // Encode Rn in Instr{0-3}
+ Binary |= getMachineOpValue(MI, OpIdx++);
+
+ uint32_t lsb = MI.getOperand(OpIdx++).getImm();
+ uint32_t widthm1 = MI.getOperand(OpIdx++).getImm() - 1;
+
+ // Instr{20-16} = widthm1, Instr{11-7} = lsb
+ Binary |= (widthm1 & 0x1F) << 16;
+ Binary |= (lsb & 0x1F) << 7;
+ emitWordLE(Binary);
+ return;
+ }
+
+ // If this is a two-address operand, skip it. e.g. MOVCCr operand 1.
+ if (MCID.getOperandConstraint(OpIdx, MCOI::TIED_TO) != -1)
+ ++OpIdx;
+
+ // Encode first non-shifter register operand if there is one.
+ bool isUnary = MCID.TSFlags & ARMII::UnaryDP;
+ if (!isUnary) {
+ if (ImplicitRn)
+ // Special handling for implicit use (e.g. PC).
+ Binary |= (II->getRegisterInfo().getEncodingValue(ImplicitRn) << ARMII::RegRnShift);
+ else {
+ Binary |= getMachineOpValue(MI, OpIdx) << ARMII::RegRnShift;
+ ++OpIdx;
+ }
+ }
+
+ // Encode shifter operand.
+ const MachineOperand &MO = MI.getOperand(OpIdx);
+ if ((MCID.TSFlags & ARMII::FormMask) == ARMII::DPSoRegFrm) {
+ // Encode SoReg.
+ emitWordLE(Binary | getMachineSoRegOpValue(MI, MCID, MO, OpIdx));
+ return;
+ }
+
+ if (MO.isReg()) {
+ // Encode register Rm.
+ emitWordLE(Binary | II->getRegisterInfo().getEncodingValue(MO.getReg()));
+ return;
+ }
+
+ // Encode so_imm.
+ Binary |= getMachineSoImmOpValue((unsigned)MO.getImm());
+
+ emitWordLE(Binary);
+}
+
+void ARMCodeEmitter::emitLoadStoreInstruction(const MachineInstr &MI,
+ unsigned ImplicitRd,
+ unsigned ImplicitRn) {
+ const MCInstrDesc &MCID = MI.getDesc();
+ unsigned Form = MCID.TSFlags & ARMII::FormMask;
+ bool IsPrePost = (MCID.TSFlags & ARMII::IndexModeMask) != 0;
+
+ // Part of binary is determined by TableGn.
+ unsigned Binary = getBinaryCodeForInstr(MI);
+
+ // If this is an LDRi12, STRi12 or LDRcp, nothing more needs be done.
+ if (MI.getOpcode() == ARM::LDRi12 || MI.getOpcode() == ARM::LDRcp ||
+ MI.getOpcode() == ARM::STRi12) {
+ emitWordLE(Binary);
+ return;
+ }
+
+ // Set the conditional execution predicate
+ Binary |= II->getPredicate(&MI) << ARMII::CondShift;
+
+ unsigned OpIdx = 0;
+
+ // Operand 0 of a pre- and post-indexed store is the address base
+ // writeback. Skip it.
+ bool Skipped = false;
+ if (IsPrePost && Form == ARMII::StFrm) {
+ ++OpIdx;
+ Skipped = true;
+ }
+
+ // Set first operand
+ if (ImplicitRd)
+ // Special handling for implicit use (e.g. PC).
+ Binary |= (II->getRegisterInfo().getEncodingValue(ImplicitRd) << ARMII::RegRdShift);
+ else
+ Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRdShift;
+
+ // Set second operand
+ if (ImplicitRn)
+ // Special handling for implicit use (e.g. PC).
+ Binary |= (II->getRegisterInfo().getEncodingValue(ImplicitRn) << ARMII::RegRnShift);
+ else
+ Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRnShift;
+
+ // If this is a two-address operand, skip it. e.g. LDR_PRE.
+ if (!Skipped && MCID.getOperandConstraint(OpIdx, MCOI::TIED_TO) != -1)
+ ++OpIdx;
+
+ const MachineOperand &MO2 = MI.getOperand(OpIdx);
+ unsigned AM2Opc = (ImplicitRn == ARM::PC)
+ ? 0 : MI.getOperand(OpIdx+1).getImm();
+
+ // Set bit U(23) according to sign of immed value (positive or negative).
+ Binary |= ((ARM_AM::getAM2Op(AM2Opc) == ARM_AM::add ? 1 : 0) <<
+ ARMII::U_BitShift);
+ if (!MO2.getReg()) { // is immediate
+ if (ARM_AM::getAM2Offset(AM2Opc))
+ // Set the value of offset_12 field
+ Binary |= ARM_AM::getAM2Offset(AM2Opc);
+ emitWordLE(Binary);
+ return;
+ }
+
+ // Set bit I(25), because this is not in immediate encoding.
+ Binary |= 1 << ARMII::I_BitShift;
+ assert(TargetRegisterInfo::isPhysicalRegister(MO2.getReg()));
+ // Set bit[3:0] to the corresponding Rm register
+ Binary |= II->getRegisterInfo().getEncodingValue(MO2.getReg());
+
+ // If this instr is in scaled register offset/index instruction, set
+ // shift_immed(bit[11:7]) and shift(bit[6:5]) fields.
+ if (unsigned ShImm = ARM_AM::getAM2Offset(AM2Opc)) {
+ Binary |= getShiftOp(AM2Opc) << ARMII::ShiftImmShift; // shift
+ Binary |= ShImm << ARMII::ShiftShift; // shift_immed
+ }
+
+ emitWordLE(Binary);
+}
+
+void ARMCodeEmitter::emitMiscLoadStoreInstruction(const MachineInstr &MI,
+ unsigned ImplicitRn) {
+ const MCInstrDesc &MCID = MI.getDesc();
+ unsigned Form = MCID.TSFlags & ARMII::FormMask;
+ bool IsPrePost = (MCID.TSFlags & ARMII::IndexModeMask) != 0;
+
+ // Part of binary is determined by TableGn.
+ unsigned Binary = getBinaryCodeForInstr(MI);
+
+ // Set the conditional execution predicate
+ Binary |= II->getPredicate(&MI) << ARMII::CondShift;
+
+ unsigned OpIdx = 0;
+
+ // Operand 0 of a pre- and post-indexed store is the address base
+ // writeback. Skip it.
+ bool Skipped = false;
+ if (IsPrePost && Form == ARMII::StMiscFrm) {
+ ++OpIdx;
+ Skipped = true;
+ }
+
+ // Set first operand
+ Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRdShift;
+
+ // Skip LDRD and STRD's second operand.
+ if (MCID.Opcode == ARM::LDRD || MCID.Opcode == ARM::STRD)
+ ++OpIdx;
+
+ // Set second operand
+ if (ImplicitRn)
+ // Special handling for implicit use (e.g. PC).
+ Binary |= (II->getRegisterInfo().getEncodingValue(ImplicitRn) << ARMII::RegRnShift);
+ else
+ Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRnShift;
+
+ // If this is a two-address operand, skip it. e.g. LDRH_POST.
+ if (!Skipped && MCID.getOperandConstraint(OpIdx, MCOI::TIED_TO) != -1)
+ ++OpIdx;
+
+ const MachineOperand &MO2 = MI.getOperand(OpIdx);
+ unsigned AM3Opc = (ImplicitRn == ARM::PC)
+ ? 0 : MI.getOperand(OpIdx+1).getImm();
+
+ // Set bit U(23) according to sign of immed value (positive or negative)
+ Binary |= ((ARM_AM::getAM3Op(AM3Opc) == ARM_AM::add ? 1 : 0) <<
+ ARMII::U_BitShift);
+
+ // If this instr is in register offset/index encoding, set bit[3:0]
+ // to the corresponding Rm register.
+ if (MO2.getReg()) {
+ Binary |= II->getRegisterInfo().getEncodingValue(MO2.getReg());
+ emitWordLE(Binary);
+ return;
+ }
+
+ // This instr is in immediate offset/index encoding, set bit 22 to 1.
+ Binary |= 1 << ARMII::AM3_I_BitShift;
+ if (unsigned ImmOffs = ARM_AM::getAM3Offset(AM3Opc)) {
+ // Set operands
+ Binary |= (ImmOffs >> 4) << ARMII::ImmHiShift; // immedH
+ Binary |= (ImmOffs & 0xF); // immedL
+ }
+
+ emitWordLE(Binary);
+}
+
+static unsigned getAddrModeUPBits(unsigned Mode) {
+ unsigned Binary = 0;
+
+ // Set addressing mode by modifying bits U(23) and P(24)
+ // IA - Increment after - bit U = 1 and bit P = 0
+ // IB - Increment before - bit U = 1 and bit P = 1
+ // DA - Decrement after - bit U = 0 and bit P = 0
+ // DB - Decrement before - bit U = 0 and bit P = 1
+ switch (Mode) {
+ default: llvm_unreachable("Unknown addressing sub-mode!");
+ case ARM_AM::da: break;
+ case ARM_AM::db: Binary |= 0x1 << ARMII::P_BitShift; break;
+ case ARM_AM::ia: Binary |= 0x1 << ARMII::U_BitShift; break;
+ case ARM_AM::ib: Binary |= 0x3 << ARMII::U_BitShift; break;
+ }
+
+ return Binary;
+}
+
+void ARMCodeEmitter::emitLoadStoreMultipleInstruction(const MachineInstr &MI) {
+ const MCInstrDesc &MCID = MI.getDesc();
+ bool IsUpdating = (MCID.TSFlags & ARMII::IndexModeMask) != 0;
+
+ // Part of binary is determined by TableGn.
+ unsigned Binary = getBinaryCodeForInstr(MI);
+
+ // Set the conditional execution predicate
+ Binary |= II->getPredicate(&MI) << ARMII::CondShift;
+
+ // Skip operand 0 of an instruction with base register update.
+ unsigned OpIdx = 0;
+ if (IsUpdating)
+ ++OpIdx;
+
+ // Set base address operand
+ Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRnShift;
+
+ // Set addressing mode by modifying bits U(23) and P(24)
+ ARM_AM::AMSubMode Mode = ARM_AM::getLoadStoreMultipleSubMode(MI.getOpcode());
+ Binary |= getAddrModeUPBits(ARM_AM::getAM4SubMode(Mode));
+
+ // Set bit W(21)
+ if (IsUpdating)
+ Binary |= 0x1 << ARMII::W_BitShift;
+
+ // Set registers
+ for (unsigned i = OpIdx+2, e = MI.getNumOperands(); i != e; ++i) {
+ const MachineOperand &MO = MI.getOperand(i);
+ if (!MO.isReg() || MO.isImplicit())
+ break;
+ unsigned RegNum = II->getRegisterInfo().getEncodingValue(MO.getReg());
+ assert(TargetRegisterInfo::isPhysicalRegister(MO.getReg()) &&
+ RegNum < 16);
+ Binary |= 0x1 << RegNum;
+ }
+
+ emitWordLE(Binary);
+}
+
+void ARMCodeEmitter::emitMulFrmInstruction(const MachineInstr &MI) {
+ const MCInstrDesc &MCID = MI.getDesc();
+
+ // Part of binary is determined by TableGn.
+ unsigned Binary = getBinaryCodeForInstr(MI);
+
+ // Set the conditional execution predicate
+ Binary |= II->getPredicate(&MI) << ARMII::CondShift;
+
+ // Encode S bit if MI modifies CPSR.
+ Binary |= getAddrModeSBit(MI, MCID);
+
+ // 32x32->64bit operations have two destination registers. The number
+ // of register definitions will tell us if that's what we're dealing with.
+ unsigned OpIdx = 0;
+ if (MCID.getNumDefs() == 2)
+ Binary |= getMachineOpValue (MI, OpIdx++) << ARMII::RegRdLoShift;
+
+ // Encode Rd
+ Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRdHiShift;
+
+ // Encode Rm
+ Binary |= getMachineOpValue(MI, OpIdx++);
+
+ // Encode Rs
+ Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRsShift;
+
+ // Many multiple instructions (e.g. MLA) have three src operands. Encode
+ // it as Rn (for multiply, that's in the same offset as RdLo.
+ if (MCID.getNumOperands() > OpIdx &&
+ !MCID.OpInfo[OpIdx].isPredicate() &&
+ !MCID.OpInfo[OpIdx].isOptionalDef())
+ Binary |= getMachineOpValue(MI, OpIdx) << ARMII::RegRdLoShift;
+
+ emitWordLE(Binary);
+}
+
+void ARMCodeEmitter::emitExtendInstruction(const MachineInstr &MI) {
+ const MCInstrDesc &MCID = MI.getDesc();
+
+ // Part of binary is determined by TableGn.
+ unsigned Binary = getBinaryCodeForInstr(MI);
+
+ // Set the conditional execution predicate
+ Binary |= II->getPredicate(&MI) << ARMII::CondShift;
+
+ unsigned OpIdx = 0;
+
+ // Encode Rd
+ Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRdShift;
+
+ const MachineOperand &MO1 = MI.getOperand(OpIdx++);
+ const MachineOperand &MO2 = MI.getOperand(OpIdx);
+ if (MO2.isReg()) {
+ // Two register operand form.
+ // Encode Rn.
+ Binary |= getMachineOpValue(MI, MO1) << ARMII::RegRnShift;
+
+ // Encode Rm.
+ Binary |= getMachineOpValue(MI, MO2);
+ ++OpIdx;
+ } else {
+ Binary |= getMachineOpValue(MI, MO1);
+ }
+
+ // Encode rot imm (0, 8, 16, or 24) if it has a rotate immediate operand.
+ if (MI.getOperand(OpIdx).isImm() &&
+ !MCID.OpInfo[OpIdx].isPredicate() &&
+ !MCID.OpInfo[OpIdx].isOptionalDef())
+ Binary |= (getMachineOpValue(MI, OpIdx) / 8) << ARMII::ExtRotImmShift;
+
+ emitWordLE(Binary);
+}
+
+void ARMCodeEmitter::emitMiscArithInstruction(const MachineInstr &MI) {
+ const MCInstrDesc &MCID = MI.getDesc();
+
+ // Part of binary is determined by TableGn.
+ unsigned Binary = getBinaryCodeForInstr(MI);
+
+ // Set the conditional execution predicate
+ Binary |= II->getPredicate(&MI) << ARMII::CondShift;
+
+ // PKH instructions are finished at this point
+ if (MCID.Opcode == ARM::PKHBT || MCID.Opcode == ARM::PKHTB) {
+ emitWordLE(Binary);
+ return;
+ }
+
+ unsigned OpIdx = 0;
+
+ // Encode Rd
+ Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRdShift;
+
+ const MachineOperand &MO = MI.getOperand(OpIdx++);
+ if (OpIdx == MCID.getNumOperands() ||
+ MCID.OpInfo[OpIdx].isPredicate() ||
+ MCID.OpInfo[OpIdx].isOptionalDef()) {
+ // Encode Rm and it's done.
+ Binary |= getMachineOpValue(MI, MO);
+ emitWordLE(Binary);
+ return;
+ }
+
+ // Encode Rn.
+ Binary |= getMachineOpValue(MI, MO) << ARMII::RegRnShift;
+
+ // Encode Rm.
+ Binary |= getMachineOpValue(MI, OpIdx++);
+
+ // Encode shift_imm.
+ unsigned ShiftAmt = MI.getOperand(OpIdx).getImm();
+ if (MCID.Opcode == ARM::PKHTB) {
+ assert(ShiftAmt != 0 && "PKHTB shift_imm is 0!");
+ if (ShiftAmt == 32)
+ ShiftAmt = 0;
+ }
+ assert(ShiftAmt < 32 && "shift_imm range is 0 to 31!");
+ Binary |= ShiftAmt << ARMII::ShiftShift;
+
+ emitWordLE(Binary);
+}
+
+void ARMCodeEmitter::emitSaturateInstruction(const MachineInstr &MI) {
+ const MCInstrDesc &MCID = MI.getDesc();
+
+ // Part of binary is determined by TableGen.
+ unsigned Binary = getBinaryCodeForInstr(MI);
+
+ // Set the conditional execution predicate
+ Binary |= II->getPredicate(&MI) << ARMII::CondShift;
+
+ // Encode Rd
+ Binary |= getMachineOpValue(MI, 0) << ARMII::RegRdShift;
+
+ // Encode saturate bit position.
+ unsigned Pos = MI.getOperand(1).getImm();
+ if (MCID.Opcode == ARM::SSAT || MCID.Opcode == ARM::SSAT16)
+ Pos -= 1;
+ assert((Pos < 16 || (Pos < 32 &&
+ MCID.Opcode != ARM::SSAT16 &&
+ MCID.Opcode != ARM::USAT16)) &&
+ "saturate bit position out of range");
+ Binary |= Pos << 16;
+
+ // Encode Rm
+ Binary |= getMachineOpValue(MI, 2);
+
+ // Encode shift_imm.
+ if (MCID.getNumOperands() == 4) {
+ unsigned ShiftOp = MI.getOperand(3).getImm();
+ ARM_AM::ShiftOpc Opc = ARM_AM::getSORegShOp(ShiftOp);
+ if (Opc == ARM_AM::asr)
+ Binary |= (1 << 6);
+ unsigned ShiftAmt = MI.getOperand(3).getImm();
+ if (ShiftAmt == 32 && Opc == ARM_AM::asr)
+ ShiftAmt = 0;
+ assert(ShiftAmt < 32 && "shift_imm range is 0 to 31!");
+ Binary |= ShiftAmt << ARMII::ShiftShift;
+ }
+
+ emitWordLE(Binary);
+}
+
+void ARMCodeEmitter::emitBranchInstruction(const MachineInstr &MI) {
+ const MCInstrDesc &MCID = MI.getDesc();
+
+ if (MCID.Opcode == ARM::TPsoft) {
+ llvm_unreachable("ARM::TPsoft FIXME"); // FIXME
+ }
+
+ // Part of binary is determined by TableGn.
+ unsigned Binary = getBinaryCodeForInstr(MI);
+
+ // Set the conditional execution predicate
+ Binary |= II->getPredicate(&MI) << ARMII::CondShift;
+
+ // Set signed_immed_24 field
+ Binary |= getMachineOpValue(MI, 0);
+
+ emitWordLE(Binary);
+}
+
+void ARMCodeEmitter::emitInlineJumpTable(unsigned JTIndex) {
+ // Remember the base address of the inline jump table.
+ uintptr_t JTBase = MCE.getCurrentPCValue();
+ JTI->addJumpTableBaseAddr(JTIndex, JTBase);
+ DEBUG(errs() << " ** Jump Table #" << JTIndex << " @ " << (void*)JTBase
+ << '\n');
+
+ // Now emit the jump table entries.
+ const std::vector<MachineBasicBlock*> &MBBs = (*MJTEs)[JTIndex].MBBs;
+ for (unsigned i = 0, e = MBBs.size(); i != e; ++i) {
+ if (IsPIC)
+ // DestBB address - JT base.
+ emitMachineBasicBlock(MBBs[i], ARM::reloc_arm_pic_jt, JTBase);
+ else
+ // Absolute DestBB address.
+ emitMachineBasicBlock(MBBs[i], ARM::reloc_arm_absolute);
+ emitWordLE(0);
+ }
+}
+
+void ARMCodeEmitter::emitMiscBranchInstruction(const MachineInstr &MI) {
+ const MCInstrDesc &MCID = MI.getDesc();
+
+ // Handle jump tables.
+ if (MCID.Opcode == ARM::BR_JTr || MCID.Opcode == ARM::BR_JTadd) {
+ // First emit a ldr pc, [] instruction.
+ emitDataProcessingInstruction(MI, ARM::PC);
+
+ // Then emit the inline jump table.
+ unsigned JTIndex =
+ (MCID.Opcode == ARM::BR_JTr)
+ ? MI.getOperand(1).getIndex() : MI.getOperand(2).getIndex();
+ emitInlineJumpTable(JTIndex);
+ return;
+ } else if (MCID.Opcode == ARM::BR_JTm) {
+ // First emit a ldr pc, [] instruction.
+ emitLoadStoreInstruction(MI, ARM::PC);
+
+ // Then emit the inline jump table.
+ emitInlineJumpTable(MI.getOperand(3).getIndex());
+ return;
+ }
+
+ // Part of binary is determined by TableGn.
+ unsigned Binary = getBinaryCodeForInstr(MI);
+
+ // Set the conditional execution predicate
+ Binary |= II->getPredicate(&MI) << ARMII::CondShift;
+
+ if (MCID.Opcode == ARM::BX_RET || MCID.Opcode == ARM::MOVPCLR)
+ // The return register is LR.
+ Binary |= II->getRegisterInfo().getEncodingValue(ARM::LR);
+ else
+ // otherwise, set the return register
+ Binary |= getMachineOpValue(MI, 0);
+
+ emitWordLE(Binary);
+}
+
+unsigned ARMCodeEmitter::encodeVFPRd(const MachineInstr &MI,
+ unsigned OpIdx) const {
+ unsigned RegD = MI.getOperand(OpIdx).getReg();
+ unsigned Binary = 0;
+ bool isSPVFP = ARM::SPRRegClass.contains(RegD);
+ RegD = II->getRegisterInfo().getEncodingValue(RegD);
+ if (!isSPVFP)
+ Binary |= RegD << ARMII::RegRdShift;
+ else {
+ Binary |= ((RegD & 0x1E) >> 1) << ARMII::RegRdShift;
+ Binary |= (RegD & 0x01) << ARMII::D_BitShift;
+ }
+ return Binary;
+}
+
+unsigned ARMCodeEmitter::encodeVFPRn(const MachineInstr &MI,
+ unsigned OpIdx) const {
+ unsigned RegN = MI.getOperand(OpIdx).getReg();
+ unsigned Binary = 0;
+ bool isSPVFP = ARM::SPRRegClass.contains(RegN);
+ RegN = II->getRegisterInfo().getEncodingValue(RegN);
+ if (!isSPVFP)
+ Binary |= RegN << ARMII::RegRnShift;
+ else {
+ Binary |= ((RegN & 0x1E) >> 1) << ARMII::RegRnShift;
+ Binary |= (RegN & 0x01) << ARMII::N_BitShift;
+ }
+ return Binary;
+}
+
+unsigned ARMCodeEmitter::encodeVFPRm(const MachineInstr &MI,
+ unsigned OpIdx) const {
+ unsigned RegM = MI.getOperand(OpIdx).getReg();
+ unsigned Binary = 0;
+ bool isSPVFP = ARM::SPRRegClass.contains(RegM);
+ RegM = II->getRegisterInfo().getEncodingValue(RegM);
+ if (!isSPVFP)
+ Binary |= RegM;
+ else {
+ Binary |= ((RegM & 0x1E) >> 1);
+ Binary |= (RegM & 0x01) << ARMII::M_BitShift;
+ }
+ return Binary;
+}
+
+void ARMCodeEmitter::emitVFPArithInstruction(const MachineInstr &MI) {
+ const MCInstrDesc &MCID = MI.getDesc();
+
+ // Part of binary is determined by TableGn.
+ unsigned Binary = getBinaryCodeForInstr(MI);
+
+ // Set the conditional execution predicate
+ Binary |= II->getPredicate(&MI) << ARMII::CondShift;
+
+ unsigned OpIdx = 0;
+ assert((Binary & ARMII::D_BitShift) == 0 &&
+ (Binary & ARMII::N_BitShift) == 0 &&
+ (Binary & ARMII::M_BitShift) == 0 && "VFP encoding bug!");
+
+ // Encode Dd / Sd.
+ Binary |= encodeVFPRd(MI, OpIdx++);
+
+ // If this is a two-address operand, skip it, e.g. FMACD.
+ if (MCID.getOperandConstraint(OpIdx, MCOI::TIED_TO) != -1)
+ ++OpIdx;
+
+ // Encode Dn / Sn.
+ if ((MCID.TSFlags & ARMII::FormMask) == ARMII::VFPBinaryFrm)
+ Binary |= encodeVFPRn(MI, OpIdx++);
+
+ if (OpIdx == MCID.getNumOperands() ||
+ MCID.OpInfo[OpIdx].isPredicate() ||
+ MCID.OpInfo[OpIdx].isOptionalDef()) {
+ // FCMPEZD etc. has only one operand.
+ emitWordLE(Binary);
+ return;
+ }
+
+ // Encode Dm / Sm.
+ Binary |= encodeVFPRm(MI, OpIdx);
+
+ emitWordLE(Binary);
+}
+
+void ARMCodeEmitter::emitVFPConversionInstruction(const MachineInstr &MI) {
+ const MCInstrDesc &MCID = MI.getDesc();
+ unsigned Form = MCID.TSFlags & ARMII::FormMask;
+
+ // Part of binary is determined by TableGn.
+ unsigned Binary = getBinaryCodeForInstr(MI);
+
+ // Set the conditional execution predicate
+ Binary |= II->getPredicate(&MI) << ARMII::CondShift;
+
+ switch (Form) {
+ default: break;
+ case ARMII::VFPConv1Frm:
+ case ARMII::VFPConv2Frm:
+ case ARMII::VFPConv3Frm:
+ // Encode Dd / Sd.
+ Binary |= encodeVFPRd(MI, 0);
+ break;
+ case ARMII::VFPConv4Frm:
+ // Encode Dn / Sn.
+ Binary |= encodeVFPRn(MI, 0);
+ break;
+ case ARMII::VFPConv5Frm:
+ // Encode Dm / Sm.
+ Binary |= encodeVFPRm(MI, 0);
+ break;
+ }
+
+ switch (Form) {
+ default: break;
+ case ARMII::VFPConv1Frm:
+ // Encode Dm / Sm.
+ Binary |= encodeVFPRm(MI, 1);
+ break;
+ case ARMII::VFPConv2Frm:
+ case ARMII::VFPConv3Frm:
+ // Encode Dn / Sn.
+ Binary |= encodeVFPRn(MI, 1);
+ break;
+ case ARMII::VFPConv4Frm:
+ case ARMII::VFPConv5Frm:
+ // Encode Dd / Sd.
+ Binary |= encodeVFPRd(MI, 1);
+ break;
+ }
+
+ if (Form == ARMII::VFPConv5Frm)
+ // Encode Dn / Sn.
+ Binary |= encodeVFPRn(MI, 2);
+ else if (Form == ARMII::VFPConv3Frm)
+ // Encode Dm / Sm.
+ Binary |= encodeVFPRm(MI, 2);
+
+ emitWordLE(Binary);
+}
+
+void ARMCodeEmitter::emitVFPLoadStoreInstruction(const MachineInstr &MI) {
+ // Part of binary is determined by TableGn.
+ unsigned Binary = getBinaryCodeForInstr(MI);
+
+ // Set the conditional execution predicate
+ Binary |= II->getPredicate(&MI) << ARMII::CondShift;
+
+ unsigned OpIdx = 0;
+
+ // Encode Dd / Sd.
+ Binary |= encodeVFPRd(MI, OpIdx++);
+
+ // Encode address base.
+ const MachineOperand &Base = MI.getOperand(OpIdx++);
+ Binary |= getMachineOpValue(MI, Base) << ARMII::RegRnShift;
+
+ // If there is a non-zero immediate offset, encode it.
+ if (Base.isReg()) {
+ const MachineOperand &Offset = MI.getOperand(OpIdx);
+ if (unsigned ImmOffs = ARM_AM::getAM5Offset(Offset.getImm())) {
+ if (ARM_AM::getAM5Op(Offset.getImm()) == ARM_AM::add)
+ Binary |= 1 << ARMII::U_BitShift;
+ Binary |= ImmOffs;
+ emitWordLE(Binary);
+ return;
+ }
+ }
+
+ // If immediate offset is omitted, default to +0.
+ Binary |= 1 << ARMII::U_BitShift;
+
+ emitWordLE(Binary);
+}
+
+void
+ARMCodeEmitter::emitVFPLoadStoreMultipleInstruction(const MachineInstr &MI) {
+ const MCInstrDesc &MCID = MI.getDesc();
+ bool IsUpdating = (MCID.TSFlags & ARMII::IndexModeMask) != 0;
+
+ // Part of binary is determined by TableGn.
+ unsigned Binary = getBinaryCodeForInstr(MI);
+
+ // Set the conditional execution predicate
+ Binary |= II->getPredicate(&MI) << ARMII::CondShift;
+
+ // Skip operand 0 of an instruction with base register update.
+ unsigned OpIdx = 0;
+ if (IsUpdating)
+ ++OpIdx;
+
+ // Set base address operand
+ Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRnShift;
+
+ // Set addressing mode by modifying bits U(23) and P(24)
+ ARM_AM::AMSubMode Mode = ARM_AM::getLoadStoreMultipleSubMode(MI.getOpcode());
+ Binary |= getAddrModeUPBits(ARM_AM::getAM4SubMode(Mode));
+
+ // Set bit W(21)
+ if (IsUpdating)
+ Binary |= 0x1 << ARMII::W_BitShift;
+
+ // First register is encoded in Dd.
+ Binary |= encodeVFPRd(MI, OpIdx+2);
+
+ // Count the number of registers.
+ unsigned NumRegs = 1;
+ for (unsigned i = OpIdx+3, e = MI.getNumOperands(); i != e; ++i) {
+ const MachineOperand &MO = MI.getOperand(i);
+ if (!MO.isReg() || MO.isImplicit())
+ break;
+ ++NumRegs;
+ }
+ // Bit 8 will be set if <list> is consecutive 64-bit registers (e.g., D0)
+ // Otherwise, it will be 0, in the case of 32-bit registers.
+ if(Binary & 0x100)
+ Binary |= NumRegs * 2;
+ else
+ Binary |= NumRegs;
+
+ emitWordLE(Binary);
+}
+
+unsigned ARMCodeEmitter::encodeNEONRd(const MachineInstr &MI,
+ unsigned OpIdx) const {
+ unsigned RegD = MI.getOperand(OpIdx).getReg();
+ unsigned Binary = 0;
+ RegD = II->getRegisterInfo().getEncodingValue(RegD);
+ Binary |= (RegD & 0xf) << ARMII::RegRdShift;
+ Binary |= ((RegD >> 4) & 1) << ARMII::D_BitShift;
+ return Binary;
+}
+
+unsigned ARMCodeEmitter::encodeNEONRn(const MachineInstr &MI,
+ unsigned OpIdx) const {
+ unsigned RegN = MI.getOperand(OpIdx).getReg();
+ unsigned Binary = 0;
+ RegN = II->getRegisterInfo().getEncodingValue(RegN);
+ Binary |= (RegN & 0xf) << ARMII::RegRnShift;
+ Binary |= ((RegN >> 4) & 1) << ARMII::N_BitShift;
+ return Binary;
+}
+
+unsigned ARMCodeEmitter::encodeNEONRm(const MachineInstr &MI,
+ unsigned OpIdx) const {
+ unsigned RegM = MI.getOperand(OpIdx).getReg();
+ unsigned Binary = 0;
+ RegM = II->getRegisterInfo().getEncodingValue(RegM);
+ Binary |= (RegM & 0xf);
+ Binary |= ((RegM >> 4) & 1) << ARMII::M_BitShift;
+ return Binary;
+}
+
+/// convertNEONDataProcToThumb - Convert the ARM mode encoding for a NEON
+/// data-processing instruction to the corresponding Thumb encoding.
+static unsigned convertNEONDataProcToThumb(unsigned Binary) {
+ assert((Binary & 0xfe000000) == 0xf2000000 &&
+ "not an ARM NEON data-processing instruction");
+ unsigned UBit = (Binary >> 24) & 1;
+ return 0xef000000 | (UBit << 28) | (Binary & 0xffffff);
+}
+
+void ARMCodeEmitter::emitNEONLaneInstruction(const MachineInstr &MI) {
+ unsigned Binary = getBinaryCodeForInstr(MI);
+
+ unsigned RegTOpIdx, RegNOpIdx, LnOpIdx;
+ const MCInstrDesc &MCID = MI.getDesc();
+ if ((MCID.TSFlags & ARMII::FormMask) == ARMII::NGetLnFrm) {
+ RegTOpIdx = 0;
+ RegNOpIdx = 1;
+ LnOpIdx = 2;
+ } else { // ARMII::NSetLnFrm
+ RegTOpIdx = 2;
+ RegNOpIdx = 0;
+ LnOpIdx = 3;
+ }
+
+ // Set the conditional execution predicate
+ Binary |= (IsThumb ? ARMCC::AL : II->getPredicate(&MI)) << ARMII::CondShift;
+
+ unsigned RegT = MI.getOperand(RegTOpIdx).getReg();
+ RegT = II->getRegisterInfo().getEncodingValue(RegT);
+ Binary |= (RegT << ARMII::RegRdShift);
+ Binary |= encodeNEONRn(MI, RegNOpIdx);
+
+ unsigned LaneShift;
+ if ((Binary & (1 << 22)) != 0)
+ LaneShift = 0; // 8-bit elements
+ else if ((Binary & (1 << 5)) != 0)
+ LaneShift = 1; // 16-bit elements
+ else
+ LaneShift = 2; // 32-bit elements
+
+ unsigned Lane = MI.getOperand(LnOpIdx).getImm() << LaneShift;
+ unsigned Opc1 = Lane >> 2;
+ unsigned Opc2 = Lane & 3;
+ assert((Opc1 & 3) == 0 && "out-of-range lane number operand");
+ Binary |= (Opc1 << 21);
+ Binary |= (Opc2 << 5);
+
+ emitWordLE(Binary);
+}
+
+void ARMCodeEmitter::emitNEONDupInstruction(const MachineInstr &MI) {
+ unsigned Binary = getBinaryCodeForInstr(MI);
+
+ // Set the conditional execution predicate
+ Binary |= (IsThumb ? ARMCC::AL : II->getPredicate(&MI)) << ARMII::CondShift;
+
+ unsigned RegT = MI.getOperand(1).getReg();
+ RegT = II->getRegisterInfo().getEncodingValue(RegT);
+ Binary |= (RegT << ARMII::RegRdShift);
+ Binary |= encodeNEONRn(MI, 0);
+ emitWordLE(Binary);
+}
+
+void ARMCodeEmitter::emitNEON1RegModImmInstruction(const MachineInstr &MI) {
+ unsigned Binary = getBinaryCodeForInstr(MI);
+ // Destination register is encoded in Dd.
+ Binary |= encodeNEONRd(MI, 0);
+ // Immediate fields: Op, Cmode, I, Imm3, Imm4
+ unsigned Imm = MI.getOperand(1).getImm();
+ unsigned Op = (Imm >> 12) & 1;
+ unsigned Cmode = (Imm >> 8) & 0xf;
+ unsigned I = (Imm >> 7) & 1;
+ unsigned Imm3 = (Imm >> 4) & 0x7;
+ unsigned Imm4 = Imm & 0xf;
+ Binary |= (I << 24) | (Imm3 << 16) | (Cmode << 8) | (Op << 5) | Imm4;
+ if (IsThumb)
+ Binary = convertNEONDataProcToThumb(Binary);
+ emitWordLE(Binary);
+}
+
+void ARMCodeEmitter::emitNEON2RegInstruction(const MachineInstr &MI) {
+ const MCInstrDesc &MCID = MI.getDesc();
+ unsigned Binary = getBinaryCodeForInstr(MI);
+ // Destination register is encoded in Dd; source register in Dm.
+ unsigned OpIdx = 0;
+ Binary |= encodeNEONRd(MI, OpIdx++);
+ if (MCID.getOperandConstraint(OpIdx, MCOI::TIED_TO) != -1)
+ ++OpIdx;
+ Binary |= encodeNEONRm(MI, OpIdx);
+ if (IsThumb)
+ Binary = convertNEONDataProcToThumb(Binary);
+ // FIXME: This does not handle VDUPfdf or VDUPfqf.
+ emitWordLE(Binary);
+}
+
+void ARMCodeEmitter::emitNEON3RegInstruction(const MachineInstr &MI) {
+ const MCInstrDesc &MCID = MI.getDesc();
+ unsigned Binary = getBinaryCodeForInstr(MI);
+ // Destination register is encoded in Dd; source registers in Dn and Dm.
+ unsigned OpIdx = 0;
+ Binary |= encodeNEONRd(MI, OpIdx++);
+ if (MCID.getOperandConstraint(OpIdx, MCOI::TIED_TO) != -1)
+ ++OpIdx;
+ Binary |= encodeNEONRn(MI, OpIdx++);
+ if (MCID.getOperandConstraint(OpIdx, MCOI::TIED_TO) != -1)
+ ++OpIdx;
+ Binary |= encodeNEONRm(MI, OpIdx);
+ if (IsThumb)
+ Binary = convertNEONDataProcToThumb(Binary);
+ // FIXME: This does not handle VMOVDneon or VMOVQ.
+ emitWordLE(Binary);
+}
+
+#include "ARMGenCodeEmitter.inc"
diff --git a/llvm/lib/Target/ARM/ARMISelLowering.cpp b/llvm/lib/Target/ARM/ARMISelLowering.cpp
index a7cd6ed9ea4..3a4f788c848 100644
--- a/llvm/lib/Target/ARM/ARMISelLowering.cpp
+++ b/llvm/lib/Target/ARM/ARMISelLowering.cpp
@@ -29,7 +29,6 @@
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
-#include "llvm/CodeGen/MachineJumpTableInfo.h"
#include "llvm/CodeGen/MachineModuleInfo.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/SelectionDAG.h"
diff --git a/llvm/lib/Target/ARM/ARMJITInfo.cpp b/llvm/lib/Target/ARM/ARMJITInfo.cpp
new file mode 100644
index 00000000000..6d1114d51aa
--- /dev/null
+++ b/llvm/lib/Target/ARM/ARMJITInfo.cpp
@@ -0,0 +1,344 @@
+//===-- ARMJITInfo.cpp - Implement the JIT interfaces for the ARM target --===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the JIT interfaces for the ARM target.
+//
+//===----------------------------------------------------------------------===//
+
+#include "ARMJITInfo.h"
+#include "ARMConstantPoolValue.h"
+#include "ARMMachineFunctionInfo.h"
+#include "ARMRelocations.h"
+#include "MCTargetDesc/ARMBaseInfo.h"
+#include "llvm/CodeGen/JITCodeEmitter.h"
+#include "llvm/IR/Function.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/Memory.h"
+#include "llvm/Support/raw_ostream.h"
+#include <cstdlib>
+using namespace llvm;
+
+#define DEBUG_TYPE "jit"
+
+void ARMJITInfo::replaceMachineCodeForFunction(void *Old, void *New) {
+ report_fatal_error("ARMJITInfo::replaceMachineCodeForFunction");
+}
+
+/// JITCompilerFunction - This contains the address of the JIT function used to
+/// compile a function lazily.
+static TargetJITInfo::JITCompilerFn JITCompilerFunction;
+
+// Get the ASMPREFIX for the current host. This is often '_'.
+#ifndef __USER_LABEL_PREFIX__
+#define __USER_LABEL_PREFIX__
+#endif
+#define GETASMPREFIX2(X) #X
+#define GETASMPREFIX(X) GETASMPREFIX2(X)
+#define ASMPREFIX GETASMPREFIX(__USER_LABEL_PREFIX__)
+
+// CompilationCallback stub - We can't use a C function with inline assembly in
+// it, because the prolog/epilog inserted by GCC won't work for us. (We need
+// to preserve more context and manipulate the stack directly). Instead,
+// write our own wrapper, which does things our way, so we have complete
+// control over register saving and restoring.
+extern "C" {
+#if defined(__arm__)
+ void ARMCompilationCallback();
+ asm(
+ ".text\n"
+ ".align 2\n"
+ ".globl " ASMPREFIX "ARMCompilationCallback\n"
+ ASMPREFIX "ARMCompilationCallback:\n"
+ // Save caller saved registers since they may contain stuff
+ // for the real target function right now. We have to act as if this
+ // whole compilation callback doesn't exist as far as the caller is
+ // concerned, so we can't just preserve the callee saved regs.
+ "stmdb sp!, {r0, r1, r2, r3, lr}\n"
+#if (defined(__VFP_FP__) && !defined(__SOFTFP__))
+ "vstmdb sp!, {d0, d1, d2, d3, d4, d5, d6, d7}\n"
+#endif
+ // The LR contains the address of the stub function on entry.
+ // pass it as the argument to the C part of the callback
+ "mov r0, lr\n"
+ "sub sp, sp, #4\n"
+ // Call the C portion of the callback
+ "bl " ASMPREFIX "ARMCompilationCallbackC\n"
+ "add sp, sp, #4\n"
+ // Restoring the LR to the return address of the function that invoked
+ // the stub and de-allocating the stack space for it requires us to
+ // swap the two saved LR values on the stack, as they're backwards
+ // for what we need since the pop instruction has a pre-determined
+ // order for the registers.
+ // +--------+
+ // 0 | LR | Original return address
+ // +--------+
+ // 1 | LR | Stub address (start of stub)
+ // 2-5 | R3..R0 | Saved registers (we need to preserve all regs)
+ // 6-20 | D0..D7 | Saved VFP registers
+ // +--------+
+ //
+#if (defined(__VFP_FP__) && !defined(__SOFTFP__))
+ // Restore VFP caller-saved registers.
+ "vldmia sp!, {d0, d1, d2, d3, d4, d5, d6, d7}\n"
+#endif
+ //
+ // We need to exchange the values in slots 0 and 1 so we can
+ // return to the address in slot 1 with the address in slot 0
+ // restored to the LR.
+ "ldr r0, [sp,#20]\n"
+ "ldr r1, [sp,#16]\n"
+ "str r1, [sp,#20]\n"
+ "str r0, [sp,#16]\n"
+ // Return to the (newly modified) stub to invoke the real function.
+ // The above twiddling of the saved return addresses allows us to
+ // deallocate everything, including the LR the stub saved, with two
+ // updating load instructions.
+ "ldmia sp!, {r0, r1, r2, r3, lr}\n"
+ "ldr pc, [sp], #4\n"
+ );
+#else // Not an ARM host
+ void ARMCompilationCallback() {
+ llvm_unreachable("Cannot call ARMCompilationCallback() on a non-ARM arch!");
+ }
+#endif
+}
+
+/// ARMCompilationCallbackC - This is the target-specific function invoked
+/// by the function stub when we did not know the real target of a call.
+/// This function must locate the start of the stub or call site and pass
+/// it into the JIT compiler function.
+extern "C" void ARMCompilationCallbackC(intptr_t StubAddr) {
+ // Get the address of the compiled code for this function.
+ intptr_t NewVal = (intptr_t)JITCompilerFunction((void*)StubAddr);
+
+ // Rewrite the call target... so that we don't end up here every time we
+ // execute the call. We're replacing the first two instructions of the
+ // stub with:
+ // ldr pc, [pc,#-4]
+ // <addr>
+ if (!sys::Memory::setRangeWritable((void*)StubAddr, 8)) {
+ llvm_unreachable("ERROR: Unable to mark stub writable");
+ }
+ *(intptr_t *)StubAddr = 0xe51ff004; // ldr pc, [pc, #-4]
+ *(intptr_t *)(StubAddr+4) = NewVal;
+ if (!sys::Memory::setRangeExecutable((void*)StubAddr, 8)) {
+ llvm_unreachable("ERROR: Unable to mark stub executable");
+ }
+}
+
+TargetJITInfo::LazyResolverFn
+ARMJITInfo::getLazyResolverFunction(JITCompilerFn F) {
+ JITCompilerFunction = F;
+ return ARMCompilationCallback;
+}
+
+void *ARMJITInfo::emitGlobalValueIndirectSym(const GlobalValue *GV, void *Ptr,
+ JITCodeEmitter &JCE) {
+ uint8_t Buffer[4];
+ uint8_t *Cur = Buffer;
+ MachineCodeEmitter::emitWordLEInto(Cur, (intptr_t)Ptr);
+ void *PtrAddr = JCE.allocIndirectGV(
+ GV, Buffer, sizeof(Buffer), /*Alignment=*/4);
+ addIndirectSymAddr(Ptr, (intptr_t)PtrAddr);
+ return PtrAddr;
+}
+
+TargetJITInfo::StubLayout ARMJITInfo::getStubLayout() {
+ // The stub contains up to 3 4-byte instructions, aligned at 4 bytes, and a
+ // 4-byte address. See emitFunctionStub for details.
+ StubLayout Result = {16, 4};
+ return Result;
+}
+
+void *ARMJITInfo::emitFunctionStub(const Function* F, void *Fn,
+ JITCodeEmitter &JCE) {
+ void *Addr;
+ // If this is just a call to an external function, emit a branch instead of a
+ // call. The code is the same except for one bit of the last instruction.
+ if (Fn != (void*)(intptr_t)ARMCompilationCallback) {
+ // Branch to the corresponding function addr.
+ if (IsPIC) {
+ // The stub is 16-byte size and 4-aligned.
+ intptr_t LazyPtr = getIndirectSymAddr(Fn);
+ if (!LazyPtr) {
+ // In PIC mode, the function stub is loading a lazy-ptr.
+ LazyPtr= (intptr_t)emitGlobalValueIndirectSym((const GlobalValue*)F, Fn, JCE);
+ DEBUG(if (F)
+ errs() << "JIT: Indirect symbol emitted at [" << LazyPtr
+ << "] for GV '" << F->getName() << "'\n";
+ else
+ errs() << "JIT: Stub emitted at [" << LazyPtr
+ << "] for external function at '" << Fn << "'\n");
+ }
+ JCE.emitAlignment(4);
+ Addr = (void*)JCE.getCurrentPCValue();
+ if (!sys::Memory::setRangeWritable(Addr, 16)) {
+ llvm_unreachable("ERROR: Unable to mark stub writable");
+ }
+ JCE.emitWordLE(0xe59fc004); // ldr ip, [pc, #+4]
+ JCE.emitWordLE(0xe08fc00c); // L_func$scv: add ip, pc, ip
+ JCE.emitWordLE(0xe59cf000); // ldr pc, [ip]
+ JCE.emitWordLE(LazyPtr - (intptr_t(Addr)+4+8)); // func - (L_func$scv+8)
+ sys::Memory::InvalidateInstructionCache(Addr, 16);
+ if (!sys::Memory::setRangeExecutable(Addr, 16)) {
+ llvm_unreachable("ERROR: Unable to mark stub executable");
+ }
+ } else {
+ // The stub is 8-byte size and 4-aligned.
+ JCE.emitAlignment(4);
+ Addr = (void*)JCE.getCurrentPCValue();
+ if (!sys::Memory::setRangeWritable(Addr, 8)) {
+ llvm_unreachable("ERROR: Unable to mark stub writable");
+ }
+ JCE.emitWordLE(0xe51ff004); // ldr pc, [pc, #-4]
+ JCE.emitWordLE((intptr_t)Fn); // addr of function
+ sys::Memory::InvalidateInstructionCache(Addr, 8);
+ if (!sys::Memory::setRangeExecutable(Addr, 8)) {
+ llvm_unreachable("ERROR: Unable to mark stub executable");
+ }
+ }
+ } else {
+ // The compilation callback will overwrite the first two words of this
+ // stub with indirect branch instructions targeting the compiled code.
+ // This stub sets the return address to restart the stub, so that
+ // the new branch will be invoked when we come back.
+ //
+ // Branch and link to the compilation callback.
+ // The stub is 16-byte size and 4-byte aligned.
+ JCE.emitAlignment(4);
+ Addr = (void*)JCE.getCurrentPCValue();
+ if (!sys::Memory::setRangeWritable(Addr, 16)) {
+ llvm_unreachable("ERROR: Unable to mark stub writable");
+ }
+ // Save LR so the callback can determine which stub called it.
+ // The compilation callback is responsible for popping this prior
+ // to returning.
+ JCE.emitWordLE(0xe92d4000); // push {lr}
+ // Set the return address to go back to the start of this stub.
+ JCE.emitWordLE(0xe24fe00c); // sub lr, pc, #12
+ // Invoke the compilation callback.
+ JCE.emitWordLE(0xe51ff004); // ldr pc, [pc, #-4]
+ // The address of the compilation callback.
+ JCE.emitWordLE((intptr_t)ARMCompilationCallback);
+ sys::Memory::InvalidateInstructionCache(Addr, 16);
+ if (!sys::Memory::setRangeExecutable(Addr, 16)) {
+ llvm_unreachable("ERROR: Unable to mark stub executable");
+ }
+ }
+
+ return Addr;
+}
+
+intptr_t ARMJITInfo::resolveRelocDestAddr(MachineRelocation *MR) const {
+ ARM::RelocationType RT = (ARM::RelocationType)MR->getRelocationType();
+ switch (RT) {
+ default:
+ return (intptr_t)(MR->getResultPointer());
+ case ARM::reloc_arm_pic_jt:
+ // Destination address - jump table base.
+ return (intptr_t)(MR->getResultPointer()) - MR->getConstantVal();
+ case ARM::reloc_arm_jt_base:
+ // Jump table base address.
+ return getJumpTableBaseAddr(MR->getJumpTableIndex());
+ case ARM::reloc_arm_cp_entry:
+ case ARM::reloc_arm_vfp_cp_entry:
+ // Constant pool entry address.
+ return getConstantPoolEntryAddr(MR->getConstantPoolIndex());
+ case ARM::reloc_arm_machine_cp_entry: {
+ ARMConstantPoolValue *ACPV = (ARMConstantPoolValue*)MR->getConstantVal();
+ assert((!ACPV->hasModifier() && !ACPV->mustAddCurrentAddress()) &&
+ "Can't handle this machine constant pool entry yet!");
+ intptr_t Addr = (intptr_t)(MR->getResultPointer());
+ Addr -= getPCLabelAddr(ACPV->getLabelId()) + ACPV->getPCAdjustment();
+ return Addr;
+ }
+ }
+}
+
+/// relocate - Before the JIT can run a block of code that has been emitted,
+/// it must rewrite the code to contain the actual addresses of any
+/// referenced global symbols.
+void ARMJITInfo::relocate(void *Function, MachineRelocation *MR,
+ unsigned NumRelocs, unsigned char* GOTBase) {
+ for (unsigned i = 0; i != NumRelocs; ++i, ++MR) {
+ void *RelocPos = (char*)Function + MR->getMachineCodeOffset();
+ intptr_t ResultPtr = resolveRelocDestAddr(MR);
+ switch ((ARM::RelocationType)MR->getRelocationType()) {
+ case ARM::reloc_arm_cp_entry:
+ case ARM::reloc_arm_vfp_cp_entry:
+ case ARM::reloc_arm_relative: {
+ // It is necessary to calculate the correct PC relative value. We
+ // subtract the base addr from the target addr to form a byte offset.
+ ResultPtr = ResultPtr - (intptr_t)RelocPos - 8;
+ // If the result is positive, set bit U(23) to 1.
+ if (ResultPtr >= 0)
+ *((intptr_t*)RelocPos) |= 1 << ARMII::U_BitShift;
+ else {
+ // Otherwise, obtain the absolute value and set bit U(23) to 0.
+ *((intptr_t*)RelocPos) &= ~(1 << ARMII::U_BitShift);
+ ResultPtr = - ResultPtr;
+ }
+ // Set the immed value calculated.
+ // VFP immediate offset is multiplied by 4.
+ if (MR->getRelocationType() == ARM::reloc_arm_vfp_cp_entry)
+ ResultPtr = ResultPtr >> 2;
+ *((intptr_t*)RelocPos) |= ResultPtr;
+ // Set register Rn to PC (which is register 15 on all architectures).
+ // FIXME: This avoids the need for register info in the JIT class.
+ *((intptr_t*)RelocPos) |= 15 << ARMII::RegRnShift;
+ break;
+ }
+ case ARM::reloc_arm_pic_jt:
+ case ARM::reloc_arm_machine_cp_entry:
+ case ARM::reloc_arm_absolute: {
+ // These addresses have already been resolved.
+ *((intptr_t*)RelocPos) |= (intptr_t)ResultPtr;
+ break;
+ }
+ case ARM::reloc_arm_branch: {
+ // It is necessary to calculate the correct value of signed_immed_24
+ // field. We subtract the base addr from the target addr to form a
+ // byte offset, which must be inside the range -33554432 and +33554428.
+ // Then, we set the signed_immed_24 field of the instruction to bits
+ // [25:2] of the byte offset. More details ARM-ARM p. A4-11.
+ ResultPtr = ResultPtr - (intptr_t)RelocPos - 8;
+ ResultPtr = (ResultPtr & 0x03FFFFFC) >> 2;
+ assert(ResultPtr >= -33554432 && ResultPtr <= 33554428);
+ *((intptr_t*)RelocPos) |= ResultPtr;
+ break;
+ }
+ case ARM::reloc_arm_jt_base: {
+ // JT base - (instruction addr + 8)
+ ResultPtr = ResultPtr - (intptr_t)RelocPos - 8;
+ *((intptr_t*)RelocPos) |= ResultPtr;
+ break;
+ }
+ case ARM::reloc_arm_movw: {
+ ResultPtr = ResultPtr & 0xFFFF;
+ *((intptr_t*)RelocPos) |= ResultPtr & 0xFFF;
+ *((intptr_t*)RelocPos) |= ((ResultPtr >> 12) & 0xF) << 16;
+ break;
+ }
+ case ARM::reloc_arm_movt: {
+ ResultPtr = (ResultPtr >> 16) & 0xFFFF;
+ *((intptr_t*)RelocPos) |= ResultPtr & 0xFFF;
+ *((intptr_t*)RelocPos) |= ((ResultPtr >> 12) & 0xF) << 16;
+ break;
+ }
+ }
+ }
+}
+
+void ARMJITInfo::Initialize(const MachineFunction &MF, bool isPIC) {
+ const ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
+ ConstPoolId2AddrMap.resize(AFI->getNumPICLabels());
+ JumpTableId2AddrMap.resize(AFI->getNumJumpTables());
+ IsPIC = isPIC;
+}
diff --git a/llvm/lib/Target/ARM/ARMJITInfo.h b/llvm/lib/Target/ARM/ARMJITInfo.h
new file mode 100644
index 00000000000..27e2a201340
--- /dev/null
+++ b/llvm/lib/Target/ARM/ARMJITInfo.h
@@ -0,0 +1,177 @@
+//===-- ARMJITInfo.h - ARM implementation of the JIT interface -*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains the declaration of the ARMJITInfo class.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef ARMJITINFO_H
+#define ARMJITINFO_H
+
+#include "llvm/ADT/DenseMap.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/CodeGen/MachineConstantPool.h"
+#include "llvm/CodeGen/MachineFunction.h"
+#include "llvm/CodeGen/MachineJumpTableInfo.h"
+#include "llvm/Target/TargetJITInfo.h"
+
+namespace llvm {
+ class ARMTargetMachine;
+
+ class ARMJITInfo : public TargetJITInfo {
+ // ConstPoolId2AddrMap - A map from constant pool ids to the corresponding
+ // CONSTPOOL_ENTRY addresses.
+ SmallVector<intptr_t, 16> ConstPoolId2AddrMap;
+
+ // JumpTableId2AddrMap - A map from inline jumptable ids to the
+ // corresponding inline jump table bases.
+ SmallVector<intptr_t, 16> JumpTableId2AddrMap;
+
+ // PCLabelMap - A map from PC labels to addresses.
+ DenseMap<unsigned, intptr_t> PCLabelMap;
+
+ // Sym2IndirectSymMap - A map from symbol (GlobalValue and ExternalSymbol)
+ // addresses to their indirect symbol addresses.
+ DenseMap<void*, intptr_t> Sym2IndirectSymMap;
+
+ // IsPIC - True if the relocation model is PIC. This is used to determine
+ // how to codegen function stubs.
+ bool IsPIC;
+
+ public:
+ explicit ARMJITInfo() : IsPIC(false) { useGOT = false; }
+
+ /// replaceMachineCodeForFunction - Make it so that calling the function
+ /// whose machine code is at OLD turns into a call to NEW, perhaps by
+ /// overwriting OLD with a branch to NEW. This is used for self-modifying
+ /// code.
+ ///
+ void replaceMachineCodeForFunction(void *Old, void *New) override;
+
+ /// emitGlobalValueIndirectSym - Use the specified JITCodeEmitter object
+ /// to emit an indirect symbol which contains the address of the specified
+ /// ptr.
+ void *emitGlobalValueIndirectSym(const GlobalValue* GV, void *ptr,
+ JITCodeEmitter &JCE) override;
+
+ // getStubLayout - Returns the size and alignment of the largest call stub
+ // on ARM.
+ StubLayout getStubLayout() override;
+
+ /// emitFunctionStub - Use the specified JITCodeEmitter object to emit a
+ /// small native function that simply calls the function at the specified
+ /// address.
+ void *emitFunctionStub(const Function* F, void *Fn,
+ JITCodeEmitter &JCE) override;
+
+ /// getLazyResolverFunction - Expose the lazy resolver to the JIT.
+ LazyResolverFn getLazyResolverFunction(JITCompilerFn) override;
+
+ /// relocate - Before the JIT can run a block of code that has been emitted,
+ /// it must rewrite the code to contain the actual addresses of any
+ /// referenced global symbols.
+ void relocate(void *Function, MachineRelocation *MR,
+ unsigned NumRelocs, unsigned char* GOTBase) override;
+
+ /// hasCustomConstantPool - Allows a target to specify that constant
+ /// pool address resolution is handled by the target.
+ bool hasCustomConstantPool() const override { return true; }
+
+ /// hasCustomJumpTables - Allows a target to specify that jumptables
+ /// are emitted by the target.
+ bool hasCustomJumpTables() const override { return true; }
+
+ /// allocateSeparateGVMemory - If true, globals should be placed in
+ /// separately allocated heap memory rather than in the same
+ /// code memory allocated by JITCodeEmitter.
+ bool allocateSeparateGVMemory() const override {
+#ifdef __APPLE__
+ return true;
+#else
+ return false;
+#endif
+ }
+
+ /// Initialize - Initialize internal stage for the function being JITted.
+ /// Resize constant pool ids to CONSTPOOL_ENTRY addresses map; resize
+ /// jump table ids to jump table bases map; remember if codegen relocation
+ /// model is PIC.
+ void Initialize(const MachineFunction &MF, bool isPIC);
+
+ /// getConstantPoolEntryAddr - The ARM target puts all constant
+ /// pool entries into constant islands. This returns the address of the
+ /// constant pool entry of the specified index.
+ intptr_t getConstantPoolEntryAddr(unsigned CPI) const {
+ assert(CPI < ConstPoolId2AddrMap.size());
+ return ConstPoolId2AddrMap[CPI];
+ }
+
+ /// addConstantPoolEntryAddr - Map a Constant Pool Index to the address
+ /// where its associated value is stored. When relocations are processed,
+ /// this value will be used to resolve references to the constant.
+ void addConstantPoolEntryAddr(unsigned CPI, intptr_t Addr) {
+ assert(CPI < ConstPoolId2AddrMap.size());
+ ConstPoolId2AddrMap[CPI] = Addr;
+ }
+
+ /// getJumpTableBaseAddr - The ARM target inline all jump tables within
+ /// text section of the function. This returns the address of the base of
+ /// the jump table of the specified index.
+ intptr_t getJumpTableBaseAddr(unsigned JTI) const {
+ assert(JTI < JumpTableId2AddrMap.size());
+ return JumpTableId2AddrMap[JTI];
+ }
+
+ /// addJumpTableBaseAddr - Map a jump table index to the address where
+ /// the corresponding inline jump table is emitted. When relocations are
+ /// processed, this value will be used to resolve references to the
+ /// jump table.
+ void addJumpTableBaseAddr(unsigned JTI, intptr_t Addr) {
+ assert(JTI < JumpTableId2AddrMap.size());
+ JumpTableId2AddrMap[JTI] = Addr;
+ }
+
+ /// getPCLabelAddr - Retrieve the address of the PC label of the
+ /// specified id.
+ intptr_t getPCLabelAddr(unsigned Id) const {
+ DenseMap<unsigned, intptr_t>::const_iterator I = PCLabelMap.find(Id);
+ assert(I != PCLabelMap.end());
+ return I->second;
+ }
+
+ /// addPCLabelAddr - Remember the address of the specified PC label.
+ void addPCLabelAddr(unsigned Id, intptr_t Addr) {
+ PCLabelMap.insert(std::make_pair(Id, Addr));
+ }
+
+ /// getIndirectSymAddr - Retrieve the address of the indirect symbol of the
+ /// specified symbol located at address. Returns 0 if the indirect symbol
+ /// has not been emitted.
+ intptr_t getIndirectSymAddr(void *Addr) const {
+ DenseMap<void*,intptr_t>::const_iterator I= Sym2IndirectSymMap.find(Addr);
+ if (I != Sym2IndirectSymMap.end())
+ return I->second;
+ return 0;
+ }
+
+ /// addIndirectSymAddr - Add a mapping from address of an emitted symbol to
+ /// its indirect symbol address.
+ void addIndirectSymAddr(void *SymAddr, intptr_t IndSymAddr) {
+ Sym2IndirectSymMap.insert(std::make_pair(SymAddr, IndSymAddr));
+ }
+
+ private:
+ /// resolveRelocDestAddr - Resolve the resulting address of the relocation
+ /// if it's not already solved. Constantpool entries must be resolved by
+ /// ARM target.
+ intptr_t resolveRelocDestAddr(MachineRelocation *MR) const;
+ };
+}
+
+#endif
diff --git a/llvm/lib/Target/ARM/ARMSubtarget.cpp b/llvm/lib/Target/ARM/ARMSubtarget.cpp
index 2ce083ca2b6..c1b4562f411 100644
--- a/llvm/lib/Target/ARM/ARMSubtarget.cpp
+++ b/llvm/lib/Target/ARM/ARMSubtarget.cpp
@@ -15,6 +15,7 @@
#include "ARMFrameLowering.h"
#include "ARMISelLowering.h"
#include "ARMInstrInfo.h"
+#include "ARMJITInfo.h"
#include "ARMSelectionDAGInfo.h"
#include "ARMSubtarget.h"
#include "ARMMachineFunctionInfo.h"
@@ -157,7 +158,7 @@ ARMSubtarget::ARMSubtarget(const std::string &TT, const std::string &CPU,
ARMProcClass(None), stackAlignment(4), CPUString(CPU), IsLittle(IsLittle),
TargetTriple(TT), Options(Options), TargetABI(ARM_ABI_UNKNOWN),
DL(computeDataLayout(initializeSubtargetDependencies(CPU, FS))),
- TSInfo(DL),
+ TSInfo(DL), JITInfo(),
InstrInfo(isThumb1Only()
? (ARMBaseInstrInfo *)new Thumb1InstrInfo(*this)
: !isThumb()
diff --git a/llvm/lib/Target/ARM/ARMSubtarget.h b/llvm/lib/Target/ARM/ARMSubtarget.h
index 10c61ccf02a..f79b69199fb 100644
--- a/llvm/lib/Target/ARM/ARMSubtarget.h
+++ b/llvm/lib/Target/ARM/ARMSubtarget.h
@@ -18,11 +18,13 @@
#include "ARMFrameLowering.h"
#include "ARMISelLowering.h"
#include "ARMInstrInfo.h"
+#include "ARMJITInfo.h"
#include "ARMSelectionDAGInfo.h"
#include "ARMSubtarget.h"
#include "Thumb1FrameLowering.h"
#include "Thumb1InstrInfo.h"
#include "Thumb2InstrInfo.h"
+#include "ARMJITInfo.h"
#include "MCTargetDesc/ARMMCTargetDesc.h"
#include "llvm/ADT/Triple.h"
#include "llvm/IR/DataLayout.h"
@@ -259,6 +261,7 @@ protected:
const ARMSelectionDAGInfo *getSelectionDAGInfo() const override {
return &TSInfo;
}
+ ARMJITInfo *getJITInfo() override { return &JITInfo; }
const ARMBaseInstrInfo *getInstrInfo() const override {
return InstrInfo.get();
}
@@ -275,6 +278,7 @@ protected:
private:
const DataLayout DL;
ARMSelectionDAGInfo TSInfo;
+ ARMJITInfo JITInfo;
// Either Thumb1InstrInfo or Thumb2InstrInfo.
std::unique_ptr<ARMBaseInstrInfo> InstrInfo;
ARMTargetLowering TLInfo;
diff --git a/llvm/lib/Target/ARM/ARMTargetMachine.cpp b/llvm/lib/Target/ARM/ARMTargetMachine.cpp
index 20e2624c830..d85194b75ec 100644
--- a/llvm/lib/Target/ARM/ARMTargetMachine.cpp
+++ b/llvm/lib/Target/ARM/ARMTargetMachine.cpp
@@ -244,3 +244,10 @@ bool ARMPassConfig::addPreEmitPass() {
return true;
}
+
+bool ARMBaseTargetMachine::addCodeEmitter(PassManagerBase &PM,
+ JITCodeEmitter &JCE) {
+ // Machine code emitter pass for ARM.
+ PM.add(createARMJITCodeEmitterPass(*this, JCE));
+ return false;
+}
diff --git a/llvm/lib/Target/ARM/ARMTargetMachine.h b/llvm/lib/Target/ARM/ARMTargetMachine.h
index d26d817ba7b..8b559682211 100644
--- a/llvm/lib/Target/ARM/ARMTargetMachine.h
+++ b/llvm/lib/Target/ARM/ARMTargetMachine.h
@@ -39,6 +39,8 @@ public:
// Pass Pipeline Configuration
TargetPassConfig *createPassConfig(PassManagerBase &PM) override;
+
+ bool addCodeEmitter(PassManagerBase &PM, JITCodeEmitter &MCE) override;
};
/// ARMTargetMachine - ARM target machine.
diff --git a/llvm/lib/Target/ARM/CMakeLists.txt b/llvm/lib/Target/ARM/CMakeLists.txt
index 2530640139a..9b5fa75fe2a 100644
--- a/llvm/lib/Target/ARM/CMakeLists.txt
+++ b/llvm/lib/Target/ARM/CMakeLists.txt
@@ -2,7 +2,8 @@ set(LLVM_TARGET_DEFINITIONS ARM.td)
tablegen(LLVM ARMGenRegisterInfo.inc -gen-register-info)
tablegen(LLVM ARMGenInstrInfo.inc -gen-instr-info)
-tablegen(LLVM ARMGenMCCodeEmitter.inc -gen-emitter)
+tablegen(LLVM ARMGenCodeEmitter.inc -gen-emitter)
+tablegen(LLVM ARMGenMCCodeEmitter.inc -gen-emitter -mc-emitter)
tablegen(LLVM ARMGenMCPseudoLowering.inc -gen-pseudo-lowering)
tablegen(LLVM ARMGenAsmWriter.inc -gen-asm-writer)
tablegen(LLVM ARMGenAsmMatcher.inc -gen-asm-matcher)
@@ -18,6 +19,7 @@ add_llvm_target(ARMCodeGen
ARMAsmPrinter.cpp
ARMBaseInstrInfo.cpp
ARMBaseRegisterInfo.cpp
+ ARMCodeEmitter.cpp
ARMConstantIslandPass.cpp
ARMConstantPoolValue.cpp
ARMExpandPseudoInsts.cpp
@@ -27,6 +29,7 @@ add_llvm_target(ARMCodeGen
ARMISelDAGToDAG.cpp
ARMISelLowering.cpp
ARMInstrInfo.cpp
+ ARMJITInfo.cpp
ARMLoadStoreOptimizer.cpp
ARMMCInstLower.cpp
ARMMachineFunctionInfo.cpp
diff --git a/llvm/lib/Target/ARM/Makefile b/llvm/lib/Target/ARM/Makefile
index c1601a3f29d..f069535ff3c 100644
--- a/llvm/lib/Target/ARM/Makefile
+++ b/llvm/lib/Target/ARM/Makefile
@@ -15,7 +15,7 @@ TARGET = ARM
BUILT_SOURCES = ARMGenRegisterInfo.inc ARMGenInstrInfo.inc \
ARMGenAsmWriter.inc ARMGenAsmMatcher.inc \
ARMGenDAGISel.inc ARMGenSubtargetInfo.inc \
- ARMGenCallingConv.inc \
+ ARMGenCodeEmitter.inc ARMGenCallingConv.inc \
ARMGenFastISel.inc ARMGenMCCodeEmitter.inc \
ARMGenMCPseudoLowering.inc ARMGenDisassemblerTables.inc
OpenPOWER on IntegriCloud