diff options
Diffstat (limited to 'llvm/lib/Target/AMDGPU/AMDGPURewriteOutArguments.cpp')
-rw-r--r-- | llvm/lib/Target/AMDGPU/AMDGPURewriteOutArguments.cpp | 375 |
1 files changed, 375 insertions, 0 deletions
diff --git a/llvm/lib/Target/AMDGPU/AMDGPURewriteOutArguments.cpp b/llvm/lib/Target/AMDGPU/AMDGPURewriteOutArguments.cpp new file mode 100644 index 00000000000..4d030409253 --- /dev/null +++ b/llvm/lib/Target/AMDGPU/AMDGPURewriteOutArguments.cpp @@ -0,0 +1,375 @@ +//===-- AMDGPURewriteOutArgumentsPass.cpp - Create struct returns ---------===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +/// \file This pass attempts to replace out argument usage with a return of a +/// struct. +/// +/// We can support returning a lot of values directly in registers, but +/// idiomatic C code frequently uses a pointer argument to return a second value +/// rather than returning a struct by value. GPU stack access is also quite +/// painful, so we want to avoid that if possible. Passing a stack object +/// pointer to a function also requires an additional address expansion code +/// sequence to convert the pointer to be relative to the kernel's scratch wave +/// offset register since the callee doesn't know what stack frame the incoming +/// pointer is relative to. +/// +/// The goal is to try rewriting code that looks like this: +/// +/// int foo(int a, int b, int* out) { +/// *out = bar(); +/// return a + b; +/// } +/// +/// into something like this: +/// +/// std::pair<int, int> foo(int a, int b) { +/// return std::make_pair(a + b, bar()); +/// } +/// +/// Typically the incoming pointer is a simple alloca for a temporary variable +/// to use the API, which if replaced with a struct return will be easily SROA'd +/// out when the stub function we create is inlined +/// +/// This pass introduces the struct return, but leaves the unused pointer +/// arguments and introduces a new stub function calling the struct returning +/// body. DeadArgumentElimination should be run after this to clean these up. +// +//===----------------------------------------------------------------------===// + +#include "AMDGPU.h" +#include "Utils/AMDGPUBaseInfo.h" + +#include "llvm/Analysis/MemoryDependenceAnalysis.h" +#include "llvm/ADT/BitVector.h" +#include "llvm/ADT/SetVector.h" +#include "llvm/ADT/Statistic.h" +#include "llvm/IR/IRBuilder.h" +#include "llvm/IR/Module.h" +#include "llvm/Transforms/Utils/Cloning.h" +#include "llvm/Support/Debug.h" + +#define DEBUG_TYPE "amdgpu-rewrite-out-arguments" + +using namespace llvm; + +namespace { + +static cl::opt<bool> AnyAddressSpace( + "amdgpu-any-address-space-out-arguments", + cl::desc("Replace pointer out arguments with " + "struct returns for non-private address space"), + cl::Hidden, + cl::init(false)); + +static cl::opt<unsigned> MaxNumRetRegs( + "amdgpu-max-return-arg-num-regs", + cl::desc("Approximately limit number of return registers for replacing out arguments"), + cl::Hidden, + cl::init(16)); + +STATISTIC(NumOutArgumentsReplaced, + "Number out arguments moved to struct return values"); +STATISTIC(NumOutArgumentFunctionsReplaced, + "Number of functions with out arguments moved to struct return values"); + +class AMDGPURewriteOutArguments : public FunctionPass { +private: + const DataLayout *DL = nullptr; + MemoryDependenceResults *MDA = nullptr; + + bool isOutArgumentCandidate(Argument &Arg) const; + +public: + static char ID; + + AMDGPURewriteOutArguments() : + FunctionPass(ID) {} + + void getAnalysisUsage(AnalysisUsage &AU) const override { + AU.addRequired<MemoryDependenceWrapperPass>(); + FunctionPass::getAnalysisUsage(AU); + } + + bool doInitialization(Module &M) override; + bool runOnFunction(Function &M) override; +}; + +} // End anonymous namespace + +INITIALIZE_PASS_BEGIN(AMDGPURewriteOutArguments, DEBUG_TYPE, + "AMDGPU Rewrite Out Arguments", false, false) +INITIALIZE_PASS_DEPENDENCY(MemoryDependenceWrapperPass) +INITIALIZE_PASS_END(AMDGPURewriteOutArguments, DEBUG_TYPE, + "AMDGPU Rewrite Out Arguments", false, false) + +char AMDGPURewriteOutArguments::ID = 0; + +bool AMDGPURewriteOutArguments::isOutArgumentCandidate(Argument &Arg) const { + const int MaxUses = 10; + const unsigned MaxOutArgSizeBytes = 4 * MaxNumRetRegs; + int UseCount = 0; + + PointerType *ArgTy = dyn_cast<PointerType>(Arg.getType()); + + // TODO: It might be useful for any out arguments, not just privates. + if (!ArgTy || (ArgTy->getAddressSpace() != DL->getAllocaAddrSpace() && + !AnyAddressSpace) || + Arg.hasByValAttr() || Arg.hasStructRetAttr() || + DL->getTypeStoreSize(ArgTy->getPointerElementType()) > MaxOutArgSizeBytes) { + return false; + } + + for (Use &U : Arg.uses()) { + StoreInst *SI = dyn_cast<StoreInst>(U.getUser()); + if (UseCount > MaxUses) + return false; + + if (!SI || !SI->isSimple() || + U.getOperandNo() != StoreInst::getPointerOperandIndex()) + return false; + + ++UseCount; + } + + // Skip unused arguments. + return UseCount > 0; +} + +bool AMDGPURewriteOutArguments::doInitialization(Module &M) { + DL = &M.getDataLayout(); + return false; +} + +bool AMDGPURewriteOutArguments::runOnFunction(Function &F) { + if (skipFunction(F)) + return false; + + // TODO: Could probably handle variadic functions. + if (F.isVarArg() || F.hasStructRetAttr() || + AMDGPU::isEntryFunctionCC(F.getCallingConv())) + return false; + + MDA = &getAnalysis<MemoryDependenceWrapperPass>().getMemDep(); + + unsigned ReturnNumRegs = 0; + SmallSet<int, 4> OutArgIndexes; + SmallVector<Type *, 4> ReturnTypes; + Type *RetTy = F.getReturnType(); + if (!RetTy->isVoidTy()) { + ReturnNumRegs = DL->getTypeStoreSize(RetTy) / 4; + + if (ReturnNumRegs >= MaxNumRetRegs) + return false; + + ReturnTypes.push_back(RetTy); + } + + SmallVector<Argument *, 4> OutArgs; + for (Argument &Arg : F.args()) { + if (isOutArgumentCandidate(Arg)) { + DEBUG(dbgs() << "Found possible out argument " << Arg + << " in function " << F.getName() << '\n'); + OutArgs.push_back(&Arg); + } + } + + if (OutArgs.empty()) + return false; + + typedef SmallVector<std::pair<Argument *, Value *>, 4> ReplacementVec; + DenseMap<ReturnInst *, ReplacementVec> Replacements; + + SmallVector<ReturnInst *, 4> Returns; + for (BasicBlock &BB : F) { + if (ReturnInst *RI = dyn_cast<ReturnInst>(&BB.back())) + Returns.push_back(RI); + } + + if (Returns.empty()) + return false; + + bool Changing; + + do { + Changing = false; + + // Keep retrying if we are able to successfully eliminate an argument. This + // helps with cases with multiple arguments which may alias, such as in a + // sincos implemntation. If we have 2 stores to arguments, on the first + // attempt the MDA query will succeed for the second store but not the + // first. On the second iteration we've removed that out clobbering argument + // (by effectively moving it into another function) and will find the second + // argument is OK to move. + for (Argument *OutArg : OutArgs) { + bool ThisReplaceable = true; + SmallVector<std::pair<ReturnInst *, StoreInst *>, 4> ReplaceableStores; + + Type *ArgTy = OutArg->getType()->getPointerElementType(); + + // Skip this argument if converting it will push us over the register + // count to return limit. + + // TODO: This is an approximation. When legalized this could be more. We + // can ask TLI for exactly how many. + unsigned ArgNumRegs = DL->getTypeStoreSize(ArgTy) / 4; + if (ArgNumRegs + ReturnNumRegs > MaxNumRetRegs) + continue; + + // An argument is convertible only if all exit blocks are able to replace + // it. + for (ReturnInst *RI : Returns) { + BasicBlock *BB = RI->getParent(); + + MemDepResult Q = MDA->getPointerDependencyFrom(MemoryLocation(OutArg), + true, BB->end(), BB, RI); + StoreInst *SI = nullptr; + if (Q.isDef()) + SI = dyn_cast<StoreInst>(Q.getInst()); + + if (SI) { + DEBUG(dbgs() << "Found out argument store: " << *SI << '\n'); + ReplaceableStores.emplace_back(RI, SI); + } else { + ThisReplaceable = false; + break; + } + } + + if (!ThisReplaceable) + continue; // Try the next argument candidate. + + for (std::pair<ReturnInst *, StoreInst *> Store : ReplaceableStores) { + Value *ReplVal = Store.second->getValueOperand(); + + auto &ValVec = Replacements[Store.first]; + if (llvm::find_if(ValVec, + [OutArg](const std::pair<Argument *, Value *> &Entry) { + return Entry.first == OutArg;}) != ValVec.end()) { + DEBUG(dbgs() << "Saw multiple out arg stores" << *OutArg << '\n'); + // It is possible to see stores to the same argument multiple times, + // but we expect these would have been optimized out already. + ThisReplaceable = false; + break; + } + + ValVec.emplace_back(OutArg, ReplVal); + Store.second->eraseFromParent(); + } + + if (ThisReplaceable) { + ReturnTypes.push_back(ArgTy); + OutArgIndexes.insert(OutArg->getArgNo()); + ++NumOutArgumentsReplaced; + Changing = true; + } + } + } while (Changing); + + if (Replacements.empty()) + return false; + + LLVMContext &Ctx = F.getParent()->getContext(); + StructType *NewRetTy = StructType::create(Ctx, ReturnTypes, F.getName()); + + FunctionType *NewFuncTy = FunctionType::get(NewRetTy, + F.getFunctionType()->params(), + F.isVarArg()); + + DEBUG(dbgs() << "Computed new return type: " << *NewRetTy << '\n'); + + Function *NewFunc = Function::Create(NewFuncTy, Function::PrivateLinkage, + F.getName() + ".body"); + F.getParent()->getFunctionList().insert(F.getIterator(), NewFunc); + NewFunc->copyAttributesFrom(&F); + NewFunc->setComdat(F.getComdat()); + + // We want to preserve the function and param attributes, but need to strip + // off any return attributes, e.g. zeroext doesn't make sense with a struct. + NewFunc->stealArgumentListFrom(F); + + AttrBuilder RetAttrs; + RetAttrs.addAttribute(Attribute::SExt); + RetAttrs.addAttribute(Attribute::ZExt); + RetAttrs.addAttribute(Attribute::NoAlias); + NewFunc->removeAttributes(AttributeList::ReturnIndex, RetAttrs); + // TODO: How to preserve metadata? + + // Move the body of the function into the new rewritten function, and replace + // this function with a stub. + NewFunc->getBasicBlockList().splice(NewFunc->begin(), F.getBasicBlockList()); + + for (std::pair<ReturnInst *, ReplacementVec> &Replacement : Replacements) { + ReturnInst *RI = Replacement.first; + IRBuilder<> B(RI); + B.SetCurrentDebugLocation(RI->getDebugLoc()); + + int RetIdx = 0; + Value *NewRetVal = UndefValue::get(NewRetTy); + + Value *RetVal = RI->getReturnValue(); + if (RetVal) + NewRetVal = B.CreateInsertValue(NewRetVal, RetVal, RetIdx++); + + for (std::pair<Argument *, Value *> ReturnPoint : Replacement.second) { + NewRetVal = B.CreateInsertValue(NewRetVal, ReturnPoint.second, RetIdx++); + } + + if (RetVal) + RI->setOperand(0, NewRetVal); + else { + B.CreateRet(NewRetVal); + RI->eraseFromParent(); + } + } + + SmallVector<Value *, 16> StubCallArgs; + for (Argument &Arg : F.args()) { + if (OutArgIndexes.count(Arg.getArgNo())) { + // It's easier to preserve the type of the argument list. We rely on + // DeadArgumentElimination to take care of these. + StubCallArgs.push_back(UndefValue::get(Arg.getType())); + } else { + StubCallArgs.push_back(&Arg); + } + } + + BasicBlock *StubBB = BasicBlock::Create(Ctx, "", &F); + IRBuilder<> B(StubBB); + CallInst *StubCall = B.CreateCall(NewFunc, StubCallArgs); + + int RetIdx = RetTy->isVoidTy() ? 0 : 1; + for (Argument &Arg : F.args()) { + if (!OutArgIndexes.count(Arg.getArgNo())) + continue; + + auto *EltTy = Arg.getType()->getPointerElementType(); + unsigned Align = Arg.getParamAlignment(); + if (Align == 0) + Align = DL->getABITypeAlignment(EltTy); + + Value *Val = B.CreateExtractValue(StubCall, RetIdx++); + B.CreateAlignedStore(Val, &Arg, Align); + } + + if (!RetTy->isVoidTy()) { + B.CreateRet(B.CreateExtractValue(StubCall, 0)); + } else { + B.CreateRetVoid(); + } + + // The function is now a stub we want to inline. + F.addFnAttr(Attribute::AlwaysInline); + + ++NumOutArgumentFunctionsReplaced; + return true; +} + +FunctionPass *llvm::createAMDGPURewriteOutArgumentsPass() { + return new AMDGPURewriteOutArguments(); +} |