summaryrefslogtreecommitdiffstats
path: root/llvm/lib/Target/AMDGPU/AMDGPUPerfHintAnalysis.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'llvm/lib/Target/AMDGPU/AMDGPUPerfHintAnalysis.cpp')
-rw-r--r--llvm/lib/Target/AMDGPU/AMDGPUPerfHintAnalysis.cpp404
1 files changed, 404 insertions, 0 deletions
diff --git a/llvm/lib/Target/AMDGPU/AMDGPUPerfHintAnalysis.cpp b/llvm/lib/Target/AMDGPU/AMDGPUPerfHintAnalysis.cpp
new file mode 100644
index 00000000000..6f8f9baee74
--- /dev/null
+++ b/llvm/lib/Target/AMDGPU/AMDGPUPerfHintAnalysis.cpp
@@ -0,0 +1,404 @@
+//===- AMDGPUPerfHintAnalysis.cpp - analysis of functions memory traffic --===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+/// \file
+/// \brief Analyzes if a function potentially memory bound and if a kernel
+/// kernel may benefit from limiting number of waves to reduce cache thrashing.
+///
+//===----------------------------------------------------------------------===//
+
+#include "AMDGPU.h"
+#include "AMDGPUPerfHintAnalysis.h"
+#include "Utils/AMDGPUBaseInfo.h"
+#include "llvm/ADT/SmallSet.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/Analysis/ValueTracking.h"
+#include "llvm/CodeGen/TargetLowering.h"
+#include "llvm/CodeGen/TargetPassConfig.h"
+#include "llvm/CodeGen/TargetSubtargetInfo.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/IntrinsicInst.h"
+#include "llvm/IR/Module.h"
+#include "llvm/IR/ValueMap.h"
+#include "llvm/Support/CommandLine.h"
+
+using namespace llvm;
+
+#define DEBUG_TYPE "amdgpu-perf-hint"
+
+static cl::opt<unsigned>
+ MemBoundThresh("amdgpu-membound-threshold", cl::init(50), cl::Hidden,
+ cl::desc("Function mem bound threshold in %"));
+
+static cl::opt<unsigned>
+ LimitWaveThresh("amdgpu-limit-wave-threshold", cl::init(50), cl::Hidden,
+ cl::desc("Kernel limit wave threshold in %"));
+
+static cl::opt<unsigned>
+ IAWeight("amdgpu-indirect-access-weight", cl::init(1000), cl::Hidden,
+ cl::desc("Indirect access memory instruction weight"));
+
+static cl::opt<unsigned>
+ LSWeight("amdgpu-large-stride-weight", cl::init(1000), cl::Hidden,
+ cl::desc("Large stride memory access weight"));
+
+static cl::opt<unsigned>
+ LargeStrideThresh("amdgpu-large-stride-threshold", cl::init(64), cl::Hidden,
+ cl::desc("Large stride memory access threshold"));
+
+STATISTIC(NumMemBound, "Number of functions marked as memory bound");
+STATISTIC(NumLimitWave, "Number of functions marked as needing limit wave");
+
+char llvm::AMDGPUPerfHintAnalysis::ID = 0;
+char &llvm::AMDGPUPerfHintAnalysisID = AMDGPUPerfHintAnalysis::ID;
+
+INITIALIZE_PASS(AMDGPUPerfHintAnalysis, DEBUG_TYPE,
+ "Analysis if a function is memory bound", true, true)
+
+namespace {
+
+struct AMDGPUPerfHint {
+ friend AMDGPUPerfHintAnalysis;
+
+public:
+ AMDGPUPerfHint(AMDGPUPerfHintAnalysis::FuncInfoMap &FIM_,
+ const TargetLowering *TLI_)
+ : FIM(FIM_), DL(nullptr), TLI(TLI_) {}
+
+ void runOnFunction(Function &F);
+
+private:
+ struct MemAccessInfo {
+ const Value *V;
+ const Value *Base;
+ int64_t Offset;
+ MemAccessInfo() : V(nullptr), Base(nullptr), Offset(0) {}
+ bool isLargeStride(MemAccessInfo &Reference) const;
+#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
+ Printable print() const {
+ return Printable([this](raw_ostream &OS) {
+ OS << "Value: " << *V << '\n'
+ << "Base: " << *Base << " Offset: " << Offset << '\n';
+ });
+ }
+#endif
+ };
+
+ MemAccessInfo makeMemAccessInfo(Instruction *) const;
+
+ MemAccessInfo LastAccess; // Last memory access info
+
+ AMDGPUPerfHintAnalysis::FuncInfoMap &FIM;
+
+ const DataLayout *DL;
+
+ AMDGPUAS AS;
+
+ const TargetLowering *TLI;
+
+ AMDGPUPerfHintAnalysis::FuncInfoMap::iterator visit(const Function &F);
+ static bool isMemBound(const AMDGPUPerfHintAnalysis::FuncInfo &F);
+ static bool needLimitWave(const AMDGPUPerfHintAnalysis::FuncInfo &F);
+
+ bool isIndirectAccess(const Instruction *Inst) const;
+
+ /// Check if the instruction is large stride.
+ /// The purpose is to identify memory access pattern like:
+ /// x = a[i];
+ /// y = a[i+1000];
+ /// z = a[i+2000];
+ /// In the above example, the second and third memory access will be marked
+ /// large stride memory access.
+ bool isLargeStride(const Instruction *Inst);
+
+ bool isGlobalAddr(const Value *V) const;
+ bool isLocalAddr(const Value *V) const;
+ bool isConstantAddr(const Value *V) const;
+};
+
+static const Value *getMemoryInstrPtr(const Instruction *Inst) {
+ if (auto LI = dyn_cast<LoadInst>(Inst)) {
+ return LI->getPointerOperand();
+ }
+ if (auto SI = dyn_cast<StoreInst>(Inst)) {
+ return SI->getPointerOperand();
+ }
+ if (auto AI = dyn_cast<AtomicCmpXchgInst>(Inst)) {
+ return AI->getPointerOperand();
+ }
+ if (auto AI = dyn_cast<AtomicRMWInst>(Inst)) {
+ return AI->getPointerOperand();
+ }
+ if (auto MI = dyn_cast<AnyMemIntrinsic>(Inst)) {
+ return MI->getRawDest();
+ }
+
+ return nullptr;
+}
+
+bool AMDGPUPerfHint::isIndirectAccess(const Instruction *Inst) const {
+ LLVM_DEBUG(dbgs() << "[isIndirectAccess] " << *Inst << '\n');
+ SmallSet<const Value *, 32> WorkSet;
+ SmallSet<const Value *, 32> Visited;
+ if (const Value *MO = getMemoryInstrPtr(Inst)) {
+ if (isGlobalAddr(MO))
+ WorkSet.insert(MO);
+ }
+
+ while (!WorkSet.empty()) {
+ const Value *V = *WorkSet.begin();
+ WorkSet.erase(*WorkSet.begin());
+ if (!Visited.insert(V).second)
+ continue;
+ LLVM_DEBUG(dbgs() << " check: " << *V << '\n');
+
+ if (auto LD = dyn_cast<LoadInst>(V)) {
+ auto M = LD->getPointerOperand();
+ if (isGlobalAddr(M) || isLocalAddr(M) || isConstantAddr(M)) {
+ LLVM_DEBUG(dbgs() << " is IA\n");
+ return true;
+ }
+ continue;
+ }
+
+ if (auto GEP = dyn_cast<GetElementPtrInst>(V)) {
+ auto P = GEP->getPointerOperand();
+ WorkSet.insert(P);
+ for (unsigned I = 1, E = GEP->getNumIndices() + 1; I != E; ++I)
+ WorkSet.insert(GEP->getOperand(I));
+ continue;
+ }
+
+ if (auto U = dyn_cast<UnaryInstruction>(V)) {
+ WorkSet.insert(U->getOperand(0));
+ continue;
+ }
+
+ if (auto BO = dyn_cast<BinaryOperator>(V)) {
+ WorkSet.insert(BO->getOperand(0));
+ WorkSet.insert(BO->getOperand(1));
+ continue;
+ }
+
+ if (auto S = dyn_cast<SelectInst>(V)) {
+ WorkSet.insert(S->getFalseValue());
+ WorkSet.insert(S->getTrueValue());
+ continue;
+ }
+
+ if (auto E = dyn_cast<ExtractElementInst>(V)) {
+ WorkSet.insert(E->getVectorOperand());
+ continue;
+ }
+
+ if (auto Phi = dyn_cast<PHINode>(V)) {
+ for (unsigned I = 0, E = Phi->getNumIncomingValues(); I != E; ++I)
+ WorkSet.insert(Phi->getIncomingValue(I));
+ continue;
+ }
+
+ LLVM_DEBUG(dbgs() << " dropped\n");
+ }
+
+ LLVM_DEBUG(dbgs() << " is not IA\n");
+ return false;
+}
+
+AMDGPUPerfHintAnalysis::FuncInfoMap::iterator
+AMDGPUPerfHint::visit(const Function &F) {
+ auto FIP = FIM.insert(std::make_pair(&F, AMDGPUPerfHintAnalysis::FuncInfo()));
+ if (!FIP.second)
+ return FIP.first;
+
+ AMDGPUPerfHintAnalysis::FuncInfo &FI = FIP.first->second;
+
+ LLVM_DEBUG(dbgs() << "[AMDGPUPerfHint] process " << F.getName() << '\n');
+
+ for (auto &B : F) {
+ LastAccess = MemAccessInfo();
+ for (auto &I : B) {
+ if (getMemoryInstrPtr(&I)) {
+ if (isIndirectAccess(&I))
+ ++FI.IAMInstCount;
+ if (isLargeStride(&I))
+ ++FI.LSMInstCount;
+ ++FI.MemInstCount;
+ ++FI.InstCount;
+ continue;
+ }
+ CallSite CS(const_cast<Instruction *>(&I));
+ if (CS) {
+ Function *Callee = CS.getCalledFunction();
+ if (!Callee || Callee->isDeclaration()) {
+ ++FI.InstCount;
+ continue;
+ }
+ if (&F == Callee) // Handle immediate recursion
+ continue;
+
+ auto Loc = visit(*Callee);
+
+ assert(Loc != FIM.end() && "No func info");
+ FI.MemInstCount += Loc->second.MemInstCount;
+ FI.InstCount += Loc->second.InstCount;
+ FI.IAMInstCount += Loc->second.IAMInstCount;
+ FI.LSMInstCount += Loc->second.LSMInstCount;
+ } else if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) {
+ TargetLoweringBase::AddrMode AM;
+ auto *Ptr = GetPointerBaseWithConstantOffset(GEP, AM.BaseOffs, *DL);
+ AM.BaseGV = dyn_cast_or_null<GlobalValue>(const_cast<Value *>(Ptr));
+ AM.HasBaseReg = !AM.BaseGV;
+ if (TLI->isLegalAddressingMode(*DL, AM, GEP->getResultElementType(),
+ GEP->getPointerAddressSpace()))
+ // Offset will likely be folded into load or store
+ continue;
+ ++FI.InstCount;
+ } else {
+ ++FI.InstCount;
+ }
+ }
+ }
+
+ return FIP.first;
+}
+
+void AMDGPUPerfHint::runOnFunction(Function &F) {
+ if (FIM.find(&F) != FIM.end())
+ return;
+
+ const Module &M = *F.getParent();
+ DL = &M.getDataLayout();
+ AS = AMDGPU::getAMDGPUAS(M);
+
+ auto Loc = visit(F);
+
+ assert(Loc != FIM.end() && "No func info");
+ LLVM_DEBUG(dbgs() << F.getName() << " MemInst: " << Loc->second.MemInstCount
+ << '\n'
+ << " IAMInst: " << Loc->second.IAMInstCount << '\n'
+ << " LSMInst: " << Loc->second.LSMInstCount << '\n'
+ << " TotalInst: " << Loc->second.InstCount << '\n');
+
+ auto &FI = Loc->second;
+
+ if (isMemBound(FI)) {
+ LLVM_DEBUG(dbgs() << F.getName() << " is memory bound\n");
+ NumMemBound++;
+ }
+
+ if (AMDGPU::isEntryFunctionCC(F.getCallingConv()) && needLimitWave(FI)) {
+ LLVM_DEBUG(dbgs() << F.getName() << " needs limit wave\n");
+ NumLimitWave++;
+ }
+}
+
+bool AMDGPUPerfHint::isMemBound(const AMDGPUPerfHintAnalysis::FuncInfo &FI) {
+ return FI.MemInstCount * 100 / FI.InstCount > MemBoundThresh;
+}
+
+bool AMDGPUPerfHint::needLimitWave(const AMDGPUPerfHintAnalysis::FuncInfo &FI) {
+ return ((FI.MemInstCount + FI.IAMInstCount * IAWeight +
+ FI.LSMInstCount * LSWeight) *
+ 100 / FI.InstCount) > LimitWaveThresh;
+}
+
+bool AMDGPUPerfHint::isGlobalAddr(const Value *V) const {
+ if (auto PT = dyn_cast<PointerType>(V->getType())) {
+ unsigned As = PT->getAddressSpace();
+ // Flat likely points to global too.
+ return As == AS.GLOBAL_ADDRESS || As == AS.FLAT_ADDRESS;
+ }
+ return false;
+}
+
+bool AMDGPUPerfHint::isLocalAddr(const Value *V) const {
+ if (auto PT = dyn_cast<PointerType>(V->getType()))
+ return PT->getAddressSpace() == AS.LOCAL_ADDRESS;
+ return false;
+}
+
+bool AMDGPUPerfHint::isLargeStride(const Instruction *Inst) {
+ LLVM_DEBUG(dbgs() << "[isLargeStride] " << *Inst << '\n');
+
+ MemAccessInfo MAI = makeMemAccessInfo(const_cast<Instruction *>(Inst));
+ bool IsLargeStride = MAI.isLargeStride(LastAccess);
+ if (MAI.Base)
+ LastAccess = std::move(MAI);
+
+ return IsLargeStride;
+}
+
+AMDGPUPerfHint::MemAccessInfo
+AMDGPUPerfHint::makeMemAccessInfo(Instruction *Inst) const {
+ MemAccessInfo MAI;
+ const Value *MO = getMemoryInstrPtr(Inst);
+
+ LLVM_DEBUG(dbgs() << "[isLargeStride] MO: " << *MO << '\n');
+ // Do not treat local-addr memory access as large stride.
+ if (isLocalAddr(MO))
+ return MAI;
+
+ MAI.V = MO;
+ MAI.Base = GetPointerBaseWithConstantOffset(MO, MAI.Offset, *DL);
+ return MAI;
+}
+
+bool AMDGPUPerfHint::isConstantAddr(const Value *V) const {
+ if (auto PT = dyn_cast<PointerType>(V->getType())) {
+ unsigned As = PT->getAddressSpace();
+ return As == AS.CONSTANT_ADDRESS || As == AS.CONSTANT_ADDRESS_32BIT;
+ }
+ return false;
+}
+
+bool AMDGPUPerfHint::MemAccessInfo::isLargeStride(
+ MemAccessInfo &Reference) const {
+
+ if (!Base || !Reference.Base || Base != Reference.Base)
+ return false;
+
+ uint64_t Diff = Offset > Reference.Offset ? Offset - Reference.Offset
+ : Reference.Offset - Offset;
+ bool Result = Diff > LargeStrideThresh;
+ LLVM_DEBUG(dbgs() << "[isLargeStride compare]\n"
+ << print() << "<=>\n"
+ << Reference.print() << "Result:" << Result << '\n');
+ return Result;
+}
+} // namespace
+
+bool AMDGPUPerfHintAnalysis::runOnFunction(Function &F) {
+ auto *TPC = getAnalysisIfAvailable<TargetPassConfig>();
+ if (!TPC)
+ return false;
+
+ const TargetMachine &TM = TPC->getTM<TargetMachine>();
+ const TargetSubtargetInfo *ST = TM.getSubtargetImpl(F);
+
+ AMDGPUPerfHint Analyzer(FIM, ST->getTargetLowering());
+ Analyzer.runOnFunction(F);
+ return false;
+}
+
+bool AMDGPUPerfHintAnalysis::isMemoryBound(const Function *F) const {
+ auto FI = FIM.find(F);
+ if (FI == FIM.end())
+ return false;
+
+ return AMDGPUPerfHint::isMemBound(FI->second);
+}
+
+bool AMDGPUPerfHintAnalysis::needsWaveLimiter(const Function *F) const {
+ auto FI = FIM.find(F);
+ if (FI == FIM.end())
+ return false;
+
+ return AMDGPUPerfHint::needLimitWave(FI->second);
+}
OpenPOWER on IntegriCloud