summaryrefslogtreecommitdiffstats
path: root/llvm/lib/Support
diff options
context:
space:
mode:
Diffstat (limited to 'llvm/lib/Support')
-rw-r--r--llvm/lib/Support/ConstantRange.cpp332
-rw-r--r--llvm/lib/Support/LeakDetector.cpp125
-rw-r--r--llvm/lib/Support/Mangler.cpp127
3 files changed, 0 insertions, 584 deletions
diff --git a/llvm/lib/Support/ConstantRange.cpp b/llvm/lib/Support/ConstantRange.cpp
deleted file mode 100644
index 3b91c5bc7a0..00000000000
--- a/llvm/lib/Support/ConstantRange.cpp
+++ /dev/null
@@ -1,332 +0,0 @@
-//===-- ConstantRange.cpp - ConstantRange implementation ------------------===//
-//
-// The LLVM Compiler Infrastructure
-//
-// This file was developed by the LLVM research group and is distributed under
-// the University of Illinois Open Source License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-//
-// Represent a range of possible values that may occur when the program is run
-// for an integral value. This keeps track of a lower and upper bound for the
-// constant, which MAY wrap around the end of the numeric range. To do this, it
-// keeps track of a [lower, upper) bound, which specifies an interval just like
-// STL iterators. When used with boolean values, the following are important
-// ranges (other integral ranges use min/max values for special range values):
-//
-// [F, F) = {} = Empty set
-// [T, F) = {T}
-// [F, T) = {F}
-// [T, T) = {F, T} = Full set
-//
-//===----------------------------------------------------------------------===//
-
-#include "llvm/Support/ConstantRange.h"
-#include "llvm/Constants.h"
-#include "llvm/Instruction.h"
-#include "llvm/Type.h"
-#include <iostream>
-
-using namespace llvm;
-
-static ConstantIntegral *Next(ConstantIntegral *CI) {
- if (CI->getType() == Type::BoolTy)
- return CI == ConstantBool::True ? ConstantBool::False : ConstantBool::True;
-
- Constant *Result = ConstantExpr::getAdd(CI,
- ConstantInt::get(CI->getType(), 1));
- return cast<ConstantIntegral>(Result);
-}
-
-static bool LT(ConstantIntegral *A, ConstantIntegral *B) {
- Constant *C = ConstantExpr::getSetLT(A, B);
- assert(isa<ConstantBool>(C) && "Constant folding of integrals not impl??");
- return cast<ConstantBool>(C)->getValue();
-}
-
-static bool LTE(ConstantIntegral *A, ConstantIntegral *B) {
- Constant *C = ConstantExpr::getSetLE(A, B);
- assert(isa<ConstantBool>(C) && "Constant folding of integrals not impl??");
- return cast<ConstantBool>(C)->getValue();
-}
-
-static bool GT(ConstantIntegral *A, ConstantIntegral *B) { return LT(B, A); }
-
-static ConstantIntegral *Min(ConstantIntegral *A, ConstantIntegral *B) {
- return LT(A, B) ? A : B;
-}
-static ConstantIntegral *Max(ConstantIntegral *A, ConstantIntegral *B) {
- return GT(A, B) ? A : B;
-}
-
-/// Initialize a full (the default) or empty set for the specified type.
-///
-ConstantRange::ConstantRange(const Type *Ty, bool Full) {
- assert(Ty->isIntegral() &&
- "Cannot make constant range of non-integral type!");
- if (Full)
- Lower = Upper = ConstantIntegral::getMaxValue(Ty);
- else
- Lower = Upper = ConstantIntegral::getMinValue(Ty);
-}
-
-/// Initialize a range to hold the single specified value.
-///
-ConstantRange::ConstantRange(Constant *V)
- : Lower(cast<ConstantIntegral>(V)), Upper(Next(cast<ConstantIntegral>(V))) {
-}
-
-/// Initialize a range of values explicitly... this will assert out if
-/// Lower==Upper and Lower != Min or Max for its type (or if the two constants
-/// have different types)
-///
-ConstantRange::ConstantRange(Constant *L, Constant *U)
- : Lower(cast<ConstantIntegral>(L)), Upper(cast<ConstantIntegral>(U)) {
- assert(Lower->getType() == Upper->getType() &&
- "Incompatible types for ConstantRange!");
-
- // Make sure that if L & U are equal that they are either Min or Max...
- assert((L != U || (L == ConstantIntegral::getMaxValue(L->getType()) ||
- L == ConstantIntegral::getMinValue(L->getType()))) &&
- "Lower == Upper, but they aren't min or max for type!");
-}
-
-/// Initialize a set of values that all satisfy the condition with C.
-///
-ConstantRange::ConstantRange(unsigned SetCCOpcode, ConstantIntegral *C) {
- switch (SetCCOpcode) {
- default: assert(0 && "Invalid SetCC opcode to ConstantRange ctor!");
- case Instruction::SetEQ: Lower = C; Upper = Next(C); return;
- case Instruction::SetNE: Upper = C; Lower = Next(C); return;
- case Instruction::SetLT:
- Lower = ConstantIntegral::getMinValue(C->getType());
- Upper = C;
- return;
- case Instruction::SetGT:
- Lower = Next(C);
- Upper = ConstantIntegral::getMinValue(C->getType()); // Min = Next(Max)
- return;
- case Instruction::SetLE:
- Lower = ConstantIntegral::getMinValue(C->getType());
- Upper = Next(C);
- return;
- case Instruction::SetGE:
- Lower = C;
- Upper = ConstantIntegral::getMinValue(C->getType()); // Min = Next(Max)
- return;
- }
-}
-
-/// getType - Return the LLVM data type of this range.
-///
-const Type *ConstantRange::getType() const { return Lower->getType(); }
-
-/// isFullSet - Return true if this set contains all of the elements possible
-/// for this data-type
-bool ConstantRange::isFullSet() const {
- return Lower == Upper && Lower == ConstantIntegral::getMaxValue(getType());
-}
-
-/// isEmptySet - Return true if this set contains no members.
-///
-bool ConstantRange::isEmptySet() const {
- return Lower == Upper && Lower == ConstantIntegral::getMinValue(getType());
-}
-
-/// isWrappedSet - Return true if this set wraps around the top of the range,
-/// for example: [100, 8)
-///
-bool ConstantRange::isWrappedSet() const {
- return GT(Lower, Upper);
-}
-
-
-/// getSingleElement - If this set contains a single element, return it,
-/// otherwise return null.
-ConstantIntegral *ConstantRange::getSingleElement() const {
- if (Upper == Next(Lower)) // Is it a single element range?
- return Lower;
- return 0;
-}
-
-/// getSetSize - Return the number of elements in this set.
-///
-uint64_t ConstantRange::getSetSize() const {
- if (isEmptySet()) return 0;
- if (getType() == Type::BoolTy) {
- if (Lower != Upper) // One of T or F in the set...
- return 1;
- return 2; // Must be full set...
- }
-
- // Simply subtract the bounds...
- Constant *Result = ConstantExpr::getSub(Upper, Lower);
- return cast<ConstantInt>(Result)->getRawValue();
-}
-
-/// contains - Return true if the specified value is in the set.
-///
-bool ConstantRange::contains(ConstantInt *Val) const {
- if (Lower == Upper) {
- if (isFullSet()) return true;
- return false;
- }
-
- if (!isWrappedSet())
- return LTE(Lower, Val) && LT(Val, Upper);
- return LTE(Lower, Val) || LT(Val, Upper);
-}
-
-
-
-/// subtract - Subtract the specified constant from the endpoints of this
-/// constant range.
-ConstantRange ConstantRange::subtract(ConstantInt *CI) const {
- assert(CI->getType() == getType() && getType()->isInteger() &&
- "Cannot subtract from different type range or non-integer!");
- // If the set is empty or full, don't modify the endpoints.
- if (Lower == Upper) return *this;
- return ConstantRange(ConstantExpr::getSub(Lower, CI),
- ConstantExpr::getSub(Upper, CI));
-}
-
-
-// intersect1Wrapped - This helper function is used to intersect two ranges when
-// it is known that LHS is wrapped and RHS isn't.
-//
-static ConstantRange intersect1Wrapped(const ConstantRange &LHS,
- const ConstantRange &RHS) {
- assert(LHS.isWrappedSet() && !RHS.isWrappedSet());
-
- // Check to see if we overlap on the Left side of RHS...
- //
- if (LT(RHS.getLower(), LHS.getUpper())) {
- // We do overlap on the left side of RHS, see if we overlap on the right of
- // RHS...
- if (GT(RHS.getUpper(), LHS.getLower())) {
- // Ok, the result overlaps on both the left and right sides. See if the
- // resultant interval will be smaller if we wrap or not...
- //
- if (LHS.getSetSize() < RHS.getSetSize())
- return LHS;
- else
- return RHS;
-
- } else {
- // No overlap on the right, just on the left.
- return ConstantRange(RHS.getLower(), LHS.getUpper());
- }
-
- } else {
- // We don't overlap on the left side of RHS, see if we overlap on the right
- // of RHS...
- if (GT(RHS.getUpper(), LHS.getLower())) {
- // Simple overlap...
- return ConstantRange(LHS.getLower(), RHS.getUpper());
- } else {
- // No overlap...
- return ConstantRange(LHS.getType(), false);
- }
- }
-}
-
-/// intersect - Return the range that results from the intersection of this
-/// range with another range.
-///
-ConstantRange ConstantRange::intersectWith(const ConstantRange &CR) const {
- assert(getType() == CR.getType() && "ConstantRange types don't agree!");
- // Handle common special cases
- if (isEmptySet() || CR.isFullSet()) return *this;
- if (isFullSet() || CR.isEmptySet()) return CR;
-
- if (!isWrappedSet()) {
- if (!CR.isWrappedSet()) {
- ConstantIntegral *L = Max(Lower, CR.Lower);
- ConstantIntegral *U = Min(Upper, CR.Upper);
-
- if (LT(L, U)) // If range isn't empty...
- return ConstantRange(L, U);
- else
- return ConstantRange(getType(), false); // Otherwise, return empty set
- } else
- return intersect1Wrapped(CR, *this);
- } else { // We know "this" is wrapped...
- if (!CR.isWrappedSet())
- return intersect1Wrapped(*this, CR);
- else {
- // Both ranges are wrapped...
- ConstantIntegral *L = Max(Lower, CR.Lower);
- ConstantIntegral *U = Min(Upper, CR.Upper);
- return ConstantRange(L, U);
- }
- }
- return *this;
-}
-
-/// union - Return the range that results from the union of this range with
-/// another range. The resultant range is guaranteed to include the elements of
-/// both sets, but may contain more. For example, [3, 9) union [12,15) is [3,
-/// 15), which includes 9, 10, and 11, which were not included in either set
-/// before.
-///
-ConstantRange ConstantRange::unionWith(const ConstantRange &CR) const {
- assert(getType() == CR.getType() && "ConstantRange types don't agree!");
-
- assert(0 && "Range union not implemented yet!");
-
- return *this;
-}
-
-/// zeroExtend - Return a new range in the specified integer type, which must
-/// be strictly larger than the current type. The returned range will
-/// correspond to the possible range of values if the source range had been
-/// zero extended.
-ConstantRange ConstantRange::zeroExtend(const Type *Ty) const {
- assert(getLower()->getType()->getPrimitiveSize() < Ty->getPrimitiveSize() &&
- "Not a value extension");
- if (isFullSet()) {
- // Change a source full set into [0, 1 << 8*numbytes)
- unsigned SrcTySize = getLower()->getType()->getPrimitiveSize();
- return ConstantRange(Constant::getNullValue(Ty),
- ConstantUInt::get(Ty, 1ULL << SrcTySize*8));
- }
-
- Constant *Lower = getLower();
- Constant *Upper = getUpper();
- if (Lower->getType()->isInteger() && !Lower->getType()->isUnsigned()) {
- // Ensure we are doing a ZERO extension even if the input range is signed.
- Lower = ConstantExpr::getCast(Lower, Ty->getUnsignedVersion());
- Upper = ConstantExpr::getCast(Upper, Ty->getUnsignedVersion());
- }
-
- return ConstantRange(ConstantExpr::getCast(Lower, Ty),
- ConstantExpr::getCast(Upper, Ty));
-}
-
-/// truncate - Return a new range in the specified integer type, which must be
-/// strictly smaller than the current type. The returned range will
-/// correspond to the possible range of values if the source range had been
-/// truncated to the specified type.
-ConstantRange ConstantRange::truncate(const Type *Ty) const {
- assert(getLower()->getType()->getPrimitiveSize() > Ty->getPrimitiveSize() &&
- "Not a value truncation");
- uint64_t Size = 1ULL << Ty->getPrimitiveSize()*8;
- if (isFullSet() || getSetSize() >= Size)
- return ConstantRange(getType());
-
- return ConstantRange(ConstantExpr::getCast(getLower(), Ty),
- ConstantExpr::getCast(getUpper(), Ty));
-}
-
-
-/// print - Print out the bounds to a stream...
-///
-void ConstantRange::print(std::ostream &OS) const {
- OS << "[" << *Lower << "," << *Upper << " )";
-}
-
-/// dump - Allow printing from a debugger easily...
-///
-void ConstantRange::dump() const {
- print(std::cerr);
-}
diff --git a/llvm/lib/Support/LeakDetector.cpp b/llvm/lib/Support/LeakDetector.cpp
deleted file mode 100644
index dbdb7dd70f2..00000000000
--- a/llvm/lib/Support/LeakDetector.cpp
+++ /dev/null
@@ -1,125 +0,0 @@
-//===-- LeakDetector.cpp - Implement LeakDetector interface ---------------===//
-//
-// The LLVM Compiler Infrastructure
-//
-// This file was developed by the LLVM research group and is distributed under
-// the University of Illinois Open Source License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-//
-// This file implements the LeakDetector class.
-//
-//===----------------------------------------------------------------------===//
-
-#include "Support/LeakDetector.h"
-#include "llvm/Value.h"
-#include <iostream>
-#include <set>
-using namespace llvm;
-
-namespace {
- template <class T>
- struct PrinterTrait {
- static void print(const T* P) { std::cerr << P; }
- };
-
- template<>
- struct PrinterTrait<Value> {
- static void print(const Value* P) { std::cerr << *P; }
- };
-
- template <typename T>
- struct LeakDetectorImpl {
- LeakDetectorImpl(const char* const name) : Cache(0), Name(name) { }
-
- // Because the most common usage pattern, by far, is to add a
- // garbage object, then remove it immediately, we optimize this
- // case. When an object is added, it is not added to the set
- // immediately, it is added to the CachedValue Value. If it is
- // immediately removed, no set search need be performed.
- void addGarbage(const T* o) {
- if (Cache) {
- assert(Ts.count(Cache) == 0 && "Object already in set!");
- Ts.insert(Cache);
- }
- Cache = o;
- }
-
- void removeGarbage(const T* o) {
- if (o == Cache)
- Cache = 0; // Cache hit
- else
- Ts.erase(o);
- }
-
- bool hasGarbage(const std::string& Message) {
- addGarbage(0); // Flush the Cache
-
- assert(Cache == 0 && "No value should be cached anymore!");
-
- if (!Ts.empty()) {
- std::cerr
- << "Leaked " << Name << " objects found: " << Message << ":\n";
- for (typename std::set<const T*>::iterator I = Ts.begin(),
- E = Ts.end(); I != E; ++I) {
- std::cerr << "\t";
- PrinterTrait<T>::print(*I);
- std::cerr << "\n";
- }
- std::cerr << '\n';
-
- // Clear out results so we don't get duplicate warnings on
- // next call...
- Ts.clear();
- return true;
- }
- return false;
- }
-
- private:
- std::set<const T*> Ts;
- const T* Cache;
- const char* const Name;
- };
-
- typedef LeakDetectorImpl<void> Objects;
- typedef LeakDetectorImpl<Value> LLVMObjects;
-
- Objects& getObjects() {
- static Objects *o = 0;
- if (o == 0)
- o = new Objects("GENERIC");
- return *o;
- }
-
- LLVMObjects& getLLVMObjects() {
- static LLVMObjects *o = 0;
- if (o == 0)
- o = new LLVMObjects("LLVM");
- return *o;
- }
-}
-
-void LeakDetector::addGarbageObjectImpl(void *Object) {
- getObjects().addGarbage(Object);
-}
-
-void LeakDetector::addGarbageObjectImpl(const Value *Object) {
- getLLVMObjects().addGarbage(Object);
-}
-
-void LeakDetector::removeGarbageObjectImpl(void *Object) {
- getObjects().removeGarbage(Object);
-}
-
-void LeakDetector::removeGarbageObjectImpl(const Value *Object) {
- getLLVMObjects().removeGarbage(Object);
-}
-
-void LeakDetector::checkForGarbageImpl(const std::string &Message) {
- // use non-short-circuit version so that both checks are performed
- if (getObjects().hasGarbage(Message) |
- getLLVMObjects().hasGarbage(Message))
- std::cerr << "\nThis is probably because you removed an object, but didn't "
- "delete it. Please check your code for memory leaks.\n";
-}
diff --git a/llvm/lib/Support/Mangler.cpp b/llvm/lib/Support/Mangler.cpp
deleted file mode 100644
index bf989b41ce8..00000000000
--- a/llvm/lib/Support/Mangler.cpp
+++ /dev/null
@@ -1,127 +0,0 @@
-//===-- Mangler.cpp - Self-contained c/asm llvm name mangler --------------===//
-//
-// The LLVM Compiler Infrastructure
-//
-// This file was developed by the LLVM research group and is distributed under
-// the University of Illinois Open Source License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-//
-// Unified name mangler for CWriter and assembly backends.
-//
-//===----------------------------------------------------------------------===//
-
-#include "llvm/Support/Mangler.h"
-#include "llvm/Module.h"
-#include "llvm/Type.h"
-#include "Support/StringExtras.h"
-using namespace llvm;
-
-static char HexDigit(int V) {
- return V < 10 ? V+'0' : V+'A'-10;
-}
-
-static std::string MangleLetter(unsigned char C) {
- return std::string("_")+HexDigit(C >> 4) + HexDigit(C & 15) + "_";
-}
-
-/// makeNameProper - We don't want identifier names non-C-identifier characters
-/// in them, so mangle them as appropriate.
-///
-std::string Mangler::makeNameProper(const std::string &X) {
- std::string Result;
-
- // Mangle the first letter specially, don't allow numbers...
- if ((X[0] < 'a' || X[0] > 'z') && (X[0] < 'A' || X[0] > 'Z') && X[0] != '_')
- Result += MangleLetter(X[0]);
- else
- Result += X[0];
-
- for (std::string::const_iterator I = X.begin()+1, E = X.end(); I != E; ++I)
- if ((*I < 'a' || *I > 'z') && (*I < 'A' || *I > 'Z') &&
- (*I < '0' || *I > '9') && *I != '_')
- Result += MangleLetter(*I);
- else
- Result += *I;
- return Result;
-}
-
-/// getTypeID - Return a unique ID for the specified LLVM type.
-///
-unsigned Mangler::getTypeID(const Type *Ty) {
- unsigned &E = TypeMap[Ty];
- if (E == 0) E = ++TypeCounter;
- return E;
-}
-
-
-std::string Mangler::getValueName(const Value *V) {
- // Check to see whether we've already named V.
- ValueMap::iterator VI = Memo.find(V);
- if (VI != Memo.end()) {
- return VI->second; // Return the old name for V.
- }
-
- std::string name;
- if (V->hasName()) { // Print out the label if it exists...
- // Name mangling occurs as follows:
- // - If V is an intrinsic function, do not change name at all
- // - If V is not a global, mangling always occurs.
- // - Otherwise, mangling occurs when any of the following are true:
- // 1) V has internal linkage
- // 2) V's name would collide if it is not mangled.
- //
- const GlobalValue* gv = dyn_cast<GlobalValue>(V);
- if (gv && isa<Function>(gv) && cast<Function>(gv)->getIntrinsicID()) {
- name = gv->getName(); // Is an intrinsic function
- } else if (gv && !gv->hasInternalLinkage() && !MangledGlobals.count(gv)) {
- name = makeNameProper(gv->getName());
- if (AddUnderscorePrefix) name = "_" + name;
- } else {
- // Non-global, or global with internal linkage / colliding name
- // -> mangle.
- unsigned TypeUniqueID = getTypeID(V->getType());
- name = "l" + utostr(TypeUniqueID) + "_" + makeNameProper(V->getName());
- }
- } else {
- name = "ltmp_" + utostr(Count++) + "_" + utostr(getTypeID(V->getType()));
- }
-
- Memo[V] = name;
- return name;
-}
-
-void Mangler::InsertName(GlobalValue *GV,
- std::map<std::string, GlobalValue*> &Names) {
- if (!GV->hasName()) { // We must mangle unnamed globals.
- MangledGlobals.insert(GV);
- return;
- }
-
- // Figure out if this is already used.
- GlobalValue *&ExistingValue = Names[GV->getName()];
- if (!ExistingValue) {
- ExistingValue = GV;
- } else {
- // If GV is external but the existing one is static, mangle the existing one
- if (GV->hasExternalLinkage() && !ExistingValue->hasExternalLinkage()) {
- MangledGlobals.insert(ExistingValue);
- ExistingValue = GV;
- } else {
- // Otherwise, mangle GV
- MangledGlobals.insert(GV);
- }
- }
-}
-
-
-Mangler::Mangler(Module &m, bool addUnderscorePrefix)
- : M(m), AddUnderscorePrefix(addUnderscorePrefix), TypeCounter(0), Count(0) {
- // Calculate which global values have names that will collide when we throw
- // away type information.
- std::map<std::string, GlobalValue*> Names;
- for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I)
- InsertName(I, Names);
- for (Module::giterator I = M.gbegin(), E = M.gend(); I != E; ++I)
- InsertName(I, Names);
-}
OpenPOWER on IntegriCloud