summaryrefslogtreecommitdiffstats
path: root/llvm/lib/IR/ConstantsContext.h
diff options
context:
space:
mode:
Diffstat (limited to 'llvm/lib/IR/ConstantsContext.h')
-rw-r--r--llvm/lib/IR/ConstantsContext.h564
1 files changed, 363 insertions, 201 deletions
diff --git a/llvm/lib/IR/ConstantsContext.h b/llvm/lib/IR/ConstantsContext.h
index 092de718776..c3aefb9ce2d 100644
--- a/llvm/lib/IR/ConstantsContext.h
+++ b/llvm/lib/IR/ConstantsContext.h
@@ -29,6 +29,8 @@
#define DEBUG_TYPE "ir"
namespace llvm {
+template<class ValType>
+struct ConstantTraits;
/// UnaryConstantExpr - This class is private to Constants.cpp, and is used
/// behind the scenes to implement unary constant exprs.
@@ -312,234 +314,379 @@ struct OperandTraits<CompareConstantExpr> :
};
DEFINE_TRANSPARENT_OPERAND_ACCESSORS(CompareConstantExpr, Value)
-template <class ConstantClass> struct ConstantAggrKeyType;
-struct InlineAsmKeyType;
-struct ConstantExprKeyType;
+struct ExprMapKeyType {
+ ExprMapKeyType(unsigned opc,
+ ArrayRef<Constant*> ops,
+ unsigned short flags = 0,
+ unsigned short optionalflags = 0,
+ ArrayRef<unsigned> inds = None)
+ : opcode(opc), subclassoptionaldata(optionalflags), subclassdata(flags),
+ operands(ops.begin(), ops.end()), indices(inds.begin(), inds.end()) {}
+ uint8_t opcode;
+ uint8_t subclassoptionaldata;
+ uint16_t subclassdata;
+ std::vector<Constant*> operands;
+ SmallVector<unsigned, 4> indices;
+ bool operator==(const ExprMapKeyType& that) const {
+ return this->opcode == that.opcode &&
+ this->subclassdata == that.subclassdata &&
+ this->subclassoptionaldata == that.subclassoptionaldata &&
+ this->operands == that.operands &&
+ this->indices == that.indices;
+ }
+ bool operator<(const ExprMapKeyType & that) const {
+ return std::tie(opcode, operands, subclassdata, subclassoptionaldata,
+ indices) <
+ std::tie(that.opcode, that.operands, that.subclassdata,
+ that.subclassoptionaldata, that.indices);
+ }
+
+ bool operator!=(const ExprMapKeyType& that) const {
+ return !(*this == that);
+ }
+};
-template <class ConstantClass> struct ConstantInfo;
-template <> struct ConstantInfo<ConstantExpr> {
- typedef ConstantExprKeyType ValType;
- typedef Type TypeClass;
+struct InlineAsmKeyType {
+ InlineAsmKeyType(StringRef AsmString,
+ StringRef Constraints, bool hasSideEffects,
+ bool isAlignStack, InlineAsm::AsmDialect asmDialect)
+ : asm_string(AsmString), constraints(Constraints),
+ has_side_effects(hasSideEffects), is_align_stack(isAlignStack),
+ asm_dialect(asmDialect) {}
+ std::string asm_string;
+ std::string constraints;
+ bool has_side_effects;
+ bool is_align_stack;
+ InlineAsm::AsmDialect asm_dialect;
+ bool operator==(const InlineAsmKeyType& that) const {
+ return this->asm_string == that.asm_string &&
+ this->constraints == that.constraints &&
+ this->has_side_effects == that.has_side_effects &&
+ this->is_align_stack == that.is_align_stack &&
+ this->asm_dialect == that.asm_dialect;
+ }
+ bool operator<(const InlineAsmKeyType& that) const {
+ return std::tie(asm_string, constraints, has_side_effects, is_align_stack,
+ asm_dialect) <
+ std::tie(that.asm_string, that.constraints, that.has_side_effects,
+ that.is_align_stack, that.asm_dialect);
+ }
+
+ bool operator!=(const InlineAsmKeyType& that) const {
+ return !(*this == that);
+ }
};
-template <> struct ConstantInfo<InlineAsm> {
- typedef InlineAsmKeyType ValType;
- typedef PointerType TypeClass;
+
+// The number of operands for each ConstantCreator::create method is
+// determined by the ConstantTraits template.
+// ConstantCreator - A class that is used to create constants by
+// ConstantUniqueMap*. This class should be partially specialized if there is
+// something strange that needs to be done to interface to the ctor for the
+// constant.
+//
+template<typename T, typename Alloc>
+struct ConstantTraits< std::vector<T, Alloc> > {
+ static unsigned uses(const std::vector<T, Alloc>& v) {
+ return v.size();
+ }
};
-template <> struct ConstantInfo<ConstantArray> {
- typedef ConstantAggrKeyType<ConstantArray> ValType;
- typedef ArrayType TypeClass;
+
+template<>
+struct ConstantTraits<Constant *> {
+ static unsigned uses(Constant * const & v) {
+ return 1;
+ }
};
-template <> struct ConstantInfo<ConstantStruct> {
- typedef ConstantAggrKeyType<ConstantStruct> ValType;
- typedef StructType TypeClass;
+
+template<class ConstantClass, class TypeClass, class ValType>
+struct ConstantCreator {
+ static ConstantClass *create(TypeClass *Ty, const ValType &V) {
+ return new(ConstantTraits<ValType>::uses(V)) ConstantClass(Ty, V);
+ }
};
-template <> struct ConstantInfo<ConstantVector> {
- typedef ConstantAggrKeyType<ConstantVector> ValType;
- typedef VectorType TypeClass;
+
+template<class ConstantClass, class TypeClass>
+struct ConstantArrayCreator {
+ static ConstantClass *create(TypeClass *Ty, ArrayRef<Constant*> V) {
+ return new(V.size()) ConstantClass(Ty, V);
+ }
};
-template <class ConstantClass> struct ConstantAggrKeyType {
- ArrayRef<Constant *> Operands;
- ConstantAggrKeyType(ArrayRef<Constant *> Operands) : Operands(Operands) {}
- ConstantAggrKeyType(const ConstantClass *C,
- SmallVectorImpl<Constant *> &Storage) {
- assert(Storage.empty() && "Expected empty storage");
- for (unsigned I = 0, E = C->getNumOperands(); I != E; ++I)
- Storage.push_back(C->getOperand(I));
- Operands = Storage;
+template<class ConstantClass>
+struct ConstantKeyData {
+ typedef void ValType;
+ static ValType getValType(ConstantClass *C) {
+ llvm_unreachable("Unknown Constant type!");
}
+};
- bool operator==(const ConstantAggrKeyType &X) const {
- return Operands == X.Operands;
+template<>
+struct ConstantCreator<ConstantExpr, Type, ExprMapKeyType> {
+ static ConstantExpr *create(Type *Ty, const ExprMapKeyType &V,
+ unsigned short pred = 0) {
+ if (Instruction::isCast(V.opcode))
+ return new UnaryConstantExpr(V.opcode, V.operands[0], Ty);
+ if ((V.opcode >= Instruction::BinaryOpsBegin &&
+ V.opcode < Instruction::BinaryOpsEnd))
+ return new BinaryConstantExpr(V.opcode, V.operands[0], V.operands[1],
+ V.subclassoptionaldata);
+ if (V.opcode == Instruction::Select)
+ return new SelectConstantExpr(V.operands[0], V.operands[1],
+ V.operands[2]);
+ if (V.opcode == Instruction::ExtractElement)
+ return new ExtractElementConstantExpr(V.operands[0], V.operands[1]);
+ if (V.opcode == Instruction::InsertElement)
+ return new InsertElementConstantExpr(V.operands[0], V.operands[1],
+ V.operands[2]);
+ if (V.opcode == Instruction::ShuffleVector)
+ return new ShuffleVectorConstantExpr(V.operands[0], V.operands[1],
+ V.operands[2]);
+ if (V.opcode == Instruction::InsertValue)
+ return new InsertValueConstantExpr(V.operands[0], V.operands[1],
+ V.indices, Ty);
+ if (V.opcode == Instruction::ExtractValue)
+ return new ExtractValueConstantExpr(V.operands[0], V.indices, Ty);
+ if (V.opcode == Instruction::GetElementPtr) {
+ std::vector<Constant*> IdxList(V.operands.begin()+1, V.operands.end());
+ return GetElementPtrConstantExpr::Create(V.operands[0], IdxList, Ty,
+ V.subclassoptionaldata);
+ }
+
+ // The compare instructions are weird. We have to encode the predicate
+ // value and it is combined with the instruction opcode by multiplying
+ // the opcode by one hundred. We must decode this to get the predicate.
+ if (V.opcode == Instruction::ICmp)
+ return new CompareConstantExpr(Ty, Instruction::ICmp, V.subclassdata,
+ V.operands[0], V.operands[1]);
+ if (V.opcode == Instruction::FCmp)
+ return new CompareConstantExpr(Ty, Instruction::FCmp, V.subclassdata,
+ V.operands[0], V.operands[1]);
+ llvm_unreachable("Invalid ConstantExpr!");
}
- bool operator==(const ConstantClass *C) const {
- if (Operands.size() != C->getNumOperands())
- return false;
- for (unsigned I = 0, E = Operands.size(); I != E; ++I)
- if (Operands[I] != C->getOperand(I))
- return false;
- return true;
+};
+
+template<>
+struct ConstantKeyData<ConstantExpr> {
+ typedef ExprMapKeyType ValType;
+ static ValType getValType(ConstantExpr *CE) {
+ std::vector<Constant*> Operands;
+ Operands.reserve(CE->getNumOperands());
+ for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i)
+ Operands.push_back(cast<Constant>(CE->getOperand(i)));
+ return ExprMapKeyType(CE->getOpcode(), Operands,
+ CE->isCompare() ? CE->getPredicate() : 0,
+ CE->getRawSubclassOptionalData(),
+ CE->hasIndices() ?
+ CE->getIndices() : ArrayRef<unsigned>());
}
- unsigned getHash() const {
- return hash_combine_range(Operands.begin(), Operands.end());
+};
+
+template<>
+struct ConstantCreator<InlineAsm, PointerType, InlineAsmKeyType> {
+ static InlineAsm *create(PointerType *Ty, const InlineAsmKeyType &Key) {
+ return new InlineAsm(Ty, Key.asm_string, Key.constraints,
+ Key.has_side_effects, Key.is_align_stack,
+ Key.asm_dialect);
}
+};
- typedef typename ConstantInfo<ConstantClass>::TypeClass TypeClass;
- ConstantClass *create(TypeClass *Ty) const {
- return new (Operands.size()) ConstantClass(Ty, Operands);
+template<>
+struct ConstantKeyData<InlineAsm> {
+ typedef InlineAsmKeyType ValType;
+ static ValType getValType(InlineAsm *Asm) {
+ return InlineAsmKeyType(Asm->getAsmString(), Asm->getConstraintString(),
+ Asm->hasSideEffects(), Asm->isAlignStack(),
+ Asm->getDialect());
}
};
-struct InlineAsmKeyType {
- StringRef AsmString;
- StringRef Constraints;
- bool HasSideEffects;
- bool IsAlignStack;
- InlineAsm::AsmDialect AsmDialect;
-
- InlineAsmKeyType(StringRef AsmString, StringRef Constraints,
- bool HasSideEffects, bool IsAlignStack,
- InlineAsm::AsmDialect AsmDialect)
- : AsmString(AsmString), Constraints(Constraints),
- HasSideEffects(HasSideEffects), IsAlignStack(IsAlignStack),
- AsmDialect(AsmDialect) {}
- InlineAsmKeyType(const InlineAsm *Asm, SmallVectorImpl<Constant *> &)
- : AsmString(Asm->getAsmString()), Constraints(Asm->getConstraintString()),
- HasSideEffects(Asm->hasSideEffects()),
- IsAlignStack(Asm->isAlignStack()), AsmDialect(Asm->getDialect()) {}
-
- bool operator==(const InlineAsmKeyType &X) const {
- return HasSideEffects == X.HasSideEffects &&
- IsAlignStack == X.IsAlignStack && AsmDialect == X.AsmDialect &&
- AsmString == X.AsmString && Constraints == X.Constraints;
- }
- bool operator==(const InlineAsm *Asm) const {
- return HasSideEffects == Asm->hasSideEffects() &&
- IsAlignStack == Asm->isAlignStack() &&
- AsmDialect == Asm->getDialect() &&
- AsmString == Asm->getAsmString() &&
- Constraints == Asm->getConstraintString();
- }
- unsigned getHash() const {
- return hash_combine(AsmString, Constraints, HasSideEffects, IsAlignStack,
- AsmDialect);
- }
-
- typedef ConstantInfo<InlineAsm>::TypeClass TypeClass;
- InlineAsm *create(TypeClass *Ty) const {
- return new InlineAsm(Ty, AsmString, Constraints, HasSideEffects,
- IsAlignStack, AsmDialect);
- }
-};
-
-struct ConstantExprKeyType {
- uint8_t Opcode;
- uint8_t SubclassOptionalData;
- uint16_t SubclassData;
- ArrayRef<Constant *> Ops;
- ArrayRef<unsigned> Indexes;
-
- ConstantExprKeyType(unsigned Opcode, ArrayRef<Constant *> Ops,
- unsigned short SubclassData = 0,
- unsigned short SubclassOptionalData = 0,
- ArrayRef<unsigned> Indexes = None)
- : Opcode(Opcode), SubclassOptionalData(SubclassOptionalData),
- SubclassData(SubclassData), Ops(Ops), Indexes(Indexes) {}
- ConstantExprKeyType(const ConstantExpr *CE,
- SmallVectorImpl<Constant *> &Storage)
- : Opcode(CE->getOpcode()),
- SubclassOptionalData(CE->getRawSubclassOptionalData()),
- SubclassData(CE->isCompare() ? CE->getPredicate() : 0),
- Indexes(CE->hasIndices() ? CE->getIndices() : ArrayRef<unsigned>()) {
- assert(Storage.empty() && "Expected empty storage");
- for (unsigned I = 0, E = CE->getNumOperands(); I != E; ++I)
- Storage.push_back(CE->getOperand(I));
- Ops = Storage;
- }
-
- bool operator==(const ConstantExprKeyType &X) const {
- return Opcode == X.Opcode && SubclassData == X.SubclassData &&
- SubclassOptionalData == X.SubclassOptionalData && Ops == X.Ops &&
- Indexes == X.Indexes;
- }
-
- bool operator==(const ConstantExpr *CE) const {
- if (Opcode != CE->getOpcode())
- return false;
- if (SubclassOptionalData != CE->getRawSubclassOptionalData())
- return false;
- if (Ops.size() != CE->getNumOperands())
- return false;
- if (SubclassData != (CE->isCompare() ? CE->getPredicate() : 0))
- return false;
- for (unsigned I = 0, E = Ops.size(); I != E; ++I)
- if (Ops[I] != CE->getOperand(I))
- return false;
- if (Indexes != (CE->hasIndices() ? CE->getIndices() : ArrayRef<unsigned>()))
- return false;
- return true;
- }
-
- unsigned getHash() const {
- return hash_combine(Opcode, SubclassOptionalData, SubclassData,
- hash_combine_range(Ops.begin(), Ops.end()),
- hash_combine_range(Indexes.begin(), Indexes.end()));
- }
-
- typedef ConstantInfo<ConstantExpr>::TypeClass TypeClass;
- ConstantExpr *create(TypeClass *Ty) const {
- switch (Opcode) {
- default:
- if (Instruction::isCast(Opcode))
- return new UnaryConstantExpr(Opcode, Ops[0], Ty);
- if ((Opcode >= Instruction::BinaryOpsBegin &&
- Opcode < Instruction::BinaryOpsEnd))
- return new BinaryConstantExpr(Opcode, Ops[0], Ops[1],
- SubclassOptionalData);
- llvm_unreachable("Invalid ConstantExpr!");
- case Instruction::Select:
- return new SelectConstantExpr(Ops[0], Ops[1], Ops[2]);
- case Instruction::ExtractElement:
- return new ExtractElementConstantExpr(Ops[0], Ops[1]);
- case Instruction::InsertElement:
- return new InsertElementConstantExpr(Ops[0], Ops[1], Ops[2]);
- case Instruction::ShuffleVector:
- return new ShuffleVectorConstantExpr(Ops[0], Ops[1], Ops[2]);
- case Instruction::InsertValue:
- return new InsertValueConstantExpr(Ops[0], Ops[1], Indexes, Ty);
- case Instruction::ExtractValue:
- return new ExtractValueConstantExpr(Ops[0], Indexes, Ty);
- case Instruction::GetElementPtr:
- return GetElementPtrConstantExpr::Create(Ops[0], Ops.slice(1), Ty,
- SubclassOptionalData);
- case Instruction::ICmp:
- return new CompareConstantExpr(Ty, Instruction::ICmp, SubclassData,
- Ops[0], Ops[1]);
- case Instruction::FCmp:
- return new CompareConstantExpr(Ty, Instruction::FCmp, SubclassData,
- Ops[0], Ops[1]);
+template<class ValType, class ValRefType, class TypeClass, class ConstantClass,
+ bool HasLargeKey = false /*true for arrays and structs*/ >
+class ConstantUniqueMap {
+public:
+ typedef std::pair<TypeClass*, ValType> MapKey;
+ typedef std::map<MapKey, ConstantClass *> MapTy;
+ typedef std::map<ConstantClass *, typename MapTy::iterator> InverseMapTy;
+private:
+ /// Map - This is the main map from the element descriptor to the Constants.
+ /// This is the primary way we avoid creating two of the same shape
+ /// constant.
+ MapTy Map;
+
+ /// InverseMap - If "HasLargeKey" is true, this contains an inverse mapping
+ /// from the constants to their element in Map. This is important for
+ /// removal of constants from the array, which would otherwise have to scan
+ /// through the map with very large keys.
+ InverseMapTy InverseMap;
+
+public:
+ typename MapTy::iterator map_begin() { return Map.begin(); }
+ typename MapTy::iterator map_end() { return Map.end(); }
+
+ void freeConstants() {
+ for (typename MapTy::iterator I=Map.begin(), E=Map.end();
+ I != E; ++I) {
+ // Asserts that use_empty().
+ delete I->second;
}
}
-};
+
+ /// InsertOrGetItem - Return an iterator for the specified element.
+ /// If the element exists in the map, the returned iterator points to the
+ /// entry and Exists=true. If not, the iterator points to the newly
+ /// inserted entry and returns Exists=false. Newly inserted entries have
+ /// I->second == 0, and should be filled in.
+ typename MapTy::iterator InsertOrGetItem(std::pair<MapKey, ConstantClass *>
+ &InsertVal,
+ bool &Exists) {
+ std::pair<typename MapTy::iterator, bool> IP = Map.insert(InsertVal);
+ Exists = !IP.second;
+ return IP.first;
+ }
+
+private:
+ typename MapTy::iterator FindExistingElement(ConstantClass *CP) {
+ if (HasLargeKey) {
+ typename InverseMapTy::iterator IMI = InverseMap.find(CP);
+ assert(IMI != InverseMap.end() && IMI->second != Map.end() &&
+ IMI->second->second == CP &&
+ "InverseMap corrupt!");
+ return IMI->second;
+ }
+
+ typename MapTy::iterator I =
+ Map.find(MapKey(static_cast<TypeClass*>(CP->getType()),
+ ConstantKeyData<ConstantClass>::getValType(CP)));
+ if (I == Map.end() || I->second != CP) {
+ // FIXME: This should not use a linear scan. If this gets to be a
+ // performance problem, someone should look at this.
+ for (I = Map.begin(); I != Map.end() && I->second != CP; ++I)
+ /* empty */;
+ }
+ return I;
+ }
+
+ ConstantClass *Create(TypeClass *Ty, ValRefType V,
+ typename MapTy::iterator I) {
+ ConstantClass* Result =
+ ConstantCreator<ConstantClass,TypeClass,ValType>::create(Ty, V);
-template <class ConstantClass> class ConstantUniqueMap {
+ assert(Result->getType() == Ty && "Type specified is not correct!");
+ I = Map.insert(I, std::make_pair(MapKey(Ty, V), Result));
+
+ if (HasLargeKey) // Remember the reverse mapping if needed.
+ InverseMap.insert(std::make_pair(Result, I));
+
+ return Result;
+ }
public:
- typedef typename ConstantInfo<ConstantClass>::ValType ValType;
- typedef typename ConstantInfo<ConstantClass>::TypeClass TypeClass;
- typedef std::pair<TypeClass *, ValType> LookupKey;
+
+ /// getOrCreate - Return the specified constant from the map, creating it if
+ /// necessary.
+ ConstantClass *getOrCreate(TypeClass *Ty, ValRefType V) {
+ MapKey Lookup(Ty, V);
+ ConstantClass* Result = nullptr;
+
+ typename MapTy::iterator I = Map.find(Lookup);
+ // Is it in the map?
+ if (I != Map.end())
+ Result = I->second;
+
+ if (!Result) {
+ // If no preexisting value, create one now...
+ Result = Create(Ty, V, I);
+ }
+
+ return Result;
+ }
+ void remove(ConstantClass *CP) {
+ typename MapTy::iterator I = FindExistingElement(CP);
+ assert(I != Map.end() && "Constant not found in constant table!");
+ assert(I->second == CP && "Didn't find correct element?");
+
+ if (HasLargeKey) // Remember the reverse mapping if needed.
+ InverseMap.erase(CP);
+
+ Map.erase(I);
+ }
+
+ /// MoveConstantToNewSlot - If we are about to change C to be the element
+ /// specified by I, update our internal data structures to reflect this
+ /// fact.
+ void MoveConstantToNewSlot(ConstantClass *C, typename MapTy::iterator I) {
+ // First, remove the old location of the specified constant in the map.
+ typename MapTy::iterator OldI = FindExistingElement(C);
+ assert(OldI != Map.end() && "Constant not found in constant table!");
+ assert(OldI->second == C && "Didn't find correct element?");
+
+ // Remove the old entry from the map.
+ Map.erase(OldI);
+
+ // Update the inverse map so that we know that this constant is now
+ // located at descriptor I.
+ if (HasLargeKey) {
+ assert(I->second == C && "Bad inversemap entry!");
+ InverseMap[C] = I;
+ }
+ }
+
+ void dump() const {
+ DEBUG(dbgs() << "Constant.cpp: ConstantUniqueMap\n");
+ }
+};
+
+// Unique map for aggregate constants
+template<class TypeClass, class ConstantClass>
+class ConstantAggrUniqueMap {
+public:
+ typedef ArrayRef<Constant*> Operands;
+ typedef std::pair<TypeClass*, Operands> LookupKey;
private:
struct MapInfo {
- typedef DenseMapInfo<ConstantClass *> ConstantClassInfo;
- static inline ConstantClass *getEmptyKey() {
+ typedef DenseMapInfo<ConstantClass*> ConstantClassInfo;
+ typedef DenseMapInfo<Constant*> ConstantInfo;
+ typedef DenseMapInfo<TypeClass*> TypeClassInfo;
+ static inline ConstantClass* getEmptyKey() {
return ConstantClassInfo::getEmptyKey();
}
- static inline ConstantClass *getTombstoneKey() {
+ static inline ConstantClass* getTombstoneKey() {
return ConstantClassInfo::getTombstoneKey();
}
static unsigned getHashValue(const ConstantClass *CP) {
- SmallVector<Constant *, 8> Storage;
- return getHashValue(LookupKey(CP->getType(), ValType(CP, Storage)));
+ SmallVector<Constant*, 8> CPOperands;
+ CPOperands.reserve(CP->getNumOperands());
+ for (unsigned I = 0, E = CP->getNumOperands(); I < E; ++I)
+ CPOperands.push_back(CP->getOperand(I));
+ return getHashValue(LookupKey(CP->getType(), CPOperands));
}
static bool isEqual(const ConstantClass *LHS, const ConstantClass *RHS) {
return LHS == RHS;
}
static unsigned getHashValue(const LookupKey &Val) {
- return hash_combine(Val.first, Val.second.getHash());
+ return hash_combine(Val.first, hash_combine_range(Val.second.begin(),
+ Val.second.end()));
}
static bool isEqual(const LookupKey &LHS, const ConstantClass *RHS) {
if (RHS == getEmptyKey() || RHS == getTombstoneKey())
return false;
- if (LHS.first != RHS->getType())
+ if (LHS.first != RHS->getType()
+ || LHS.second.size() != RHS->getNumOperands())
return false;
- return LHS.second == RHS;
+ for (unsigned I = 0, E = RHS->getNumOperands(); I < E; ++I) {
+ if (LHS.second[I] != RHS->getOperand(I))
+ return false;
+ }
+ return true;
}
};
-
public:
typedef DenseMap<ConstantClass *, char, MapInfo> MapTy;
private:
+ /// Map - This is the main map from the element descriptor to the Constants.
+ /// This is the primary way we avoid creating two of the same shape
+ /// constant.
MapTy Map;
public:
@@ -547,33 +694,44 @@ public:
typename MapTy::iterator map_end() { return Map.end(); }
void freeConstants() {
- for (auto &I : Map)
+ for (typename MapTy::iterator I=Map.begin(), E=Map.end();
+ I != E; ++I) {
// Asserts that use_empty().
- delete I.first;
+ delete I->first;
+ }
}
private:
- ConstantClass *create(TypeClass *Ty, ValType V) {
- ConstantClass *Result = V.create(Ty);
+ typename MapTy::iterator findExistingElement(ConstantClass *CP) {
+ return Map.find(CP);
+ }
+
+ ConstantClass *Create(TypeClass *Ty, Operands V, typename MapTy::iterator I) {
+ ConstantClass* Result =
+ ConstantArrayCreator<ConstantClass,TypeClass>::create(Ty, V);
assert(Result->getType() == Ty && "Type specified is not correct!");
- insert(Result);
+ Map[Result] = '\0';
return Result;
}
-
public:
- /// Return the specified constant from the map, creating it if necessary.
- ConstantClass *getOrCreate(TypeClass *Ty, ValType V) {
+
+ /// getOrCreate - Return the specified constant from the map, creating it if
+ /// necessary.
+ ConstantClass *getOrCreate(TypeClass *Ty, Operands V) {
LookupKey Lookup(Ty, V);
- ConstantClass *Result = nullptr;
+ ConstantClass* Result = nullptr;
- auto I = find(Lookup);
- if (I == Map.end())
- Result = create(Ty, V);
- else
+ typename MapTy::iterator I = Map.find_as(Lookup);
+ // Is it in the map?
+ if (I != Map.end())
Result = I->first;
- assert(Result && "Unexpected nullptr");
+
+ if (!Result) {
+ // If no preexisting value, create one now...
+ Result = Create(Ty, V, I);
+ }
return Result;
}
@@ -584,17 +742,21 @@ public:
}
/// Insert the constant into its proper slot.
- void insert(ConstantClass *CP) { Map[CP] = '\0'; }
+ void insert(ConstantClass *CP) {
+ Map[CP] = '\0';
+ }
/// Remove this constant from the map
void remove(ConstantClass *CP) {
- typename MapTy::iterator I = Map.find(CP);
+ typename MapTy::iterator I = findExistingElement(CP);
assert(I != Map.end() && "Constant not found in constant table!");
assert(I->first == CP && "Didn't find correct element?");
Map.erase(I);
}
- void dump() const { DEBUG(dbgs() << "Constant.cpp: ConstantUniqueMap\n"); }
+ void dump() const {
+ DEBUG(dbgs() << "Constant.cpp: ConstantUniqueMap\n");
+ }
};
} // end namespace llvm
OpenPOWER on IntegriCloud