diff options
Diffstat (limited to 'llvm/lib/CodeGen/SwitchLoweringUtils.cpp')
-rw-r--r-- | llvm/lib/CodeGen/SwitchLoweringUtils.cpp | 486 |
1 files changed, 486 insertions, 0 deletions
diff --git a/llvm/lib/CodeGen/SwitchLoweringUtils.cpp b/llvm/lib/CodeGen/SwitchLoweringUtils.cpp new file mode 100644 index 00000000000..1909ce116dd --- /dev/null +++ b/llvm/lib/CodeGen/SwitchLoweringUtils.cpp @@ -0,0 +1,486 @@ +//===- SwitchLoweringUtils.cpp - Switch Lowering --------------------------===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// +// +// This file contains switch inst lowering optimizations and utilities for +// codegen, so that it can be used for both SelectionDAG and GlobalISel. +// +//===----------------------------------------------------------------------===// + +#include "llvm/CodeGen/MachineJumpTableInfo.h" +#include "llvm/CodeGen/SwitchLoweringUtils.h" + +using namespace llvm; +using namespace SwitchCG; + +uint64_t SwitchCG::getJumpTableRange(const CaseClusterVector &Clusters, + unsigned First, unsigned Last) { + assert(Last >= First); + const APInt &LowCase = Clusters[First].Low->getValue(); + const APInt &HighCase = Clusters[Last].High->getValue(); + assert(LowCase.getBitWidth() == HighCase.getBitWidth()); + + // FIXME: A range of consecutive cases has 100% density, but only requires one + // comparison to lower. We should discriminate against such consecutive ranges + // in jump tables. + + return (HighCase - LowCase).getLimitedValue((UINT64_MAX - 1) / 100) + 1; +} + +uint64_t +SwitchCG::getJumpTableNumCases(const SmallVectorImpl<unsigned> &TotalCases, + unsigned First, unsigned Last) { + assert(Last >= First); + assert(TotalCases[Last] >= TotalCases[First]); + uint64_t NumCases = + TotalCases[Last] - (First == 0 ? 0 : TotalCases[First - 1]); + return NumCases; +} + +void SwitchCG::SwitchLowering::findJumpTables(CaseClusterVector &Clusters, + const SwitchInst *SI, + MachineBasicBlock *DefaultMBB) { +#ifndef NDEBUG + // Clusters must be non-empty, sorted, and only contain Range clusters. + assert(!Clusters.empty()); + for (CaseCluster &C : Clusters) + assert(C.Kind == CC_Range); + for (unsigned i = 1, e = Clusters.size(); i < e; ++i) + assert(Clusters[i - 1].High->getValue().slt(Clusters[i].Low->getValue())); +#endif + + if (!TLI->areJTsAllowed(SI->getParent()->getParent())) + return; + + const int64_t N = Clusters.size(); + const unsigned MinJumpTableEntries = TLI->getMinimumJumpTableEntries(); + const unsigned SmallNumberOfEntries = MinJumpTableEntries / 2; + + if (N < 2 || N < MinJumpTableEntries) + return; + + // TotalCases[i]: Total nbr of cases in Clusters[0..i]. + SmallVector<unsigned, 8> TotalCases(N); + for (unsigned i = 0; i < N; ++i) { + const APInt &Hi = Clusters[i].High->getValue(); + const APInt &Lo = Clusters[i].Low->getValue(); + TotalCases[i] = (Hi - Lo).getLimitedValue() + 1; + if (i != 0) + TotalCases[i] += TotalCases[i - 1]; + } + + // Cheap case: the whole range may be suitable for jump table. + uint64_t Range = getJumpTableRange(Clusters,0, N - 1); + uint64_t NumCases = getJumpTableNumCases(TotalCases, 0, N - 1); + assert(NumCases < UINT64_MAX / 100); + assert(Range >= NumCases); + if (TLI->isSuitableForJumpTable(SI, NumCases, Range)) { + CaseCluster JTCluster; + if (buildJumpTable(Clusters, 0, N - 1, SI, DefaultMBB, JTCluster)) { + Clusters[0] = JTCluster; + Clusters.resize(1); + return; + } + } + + // The algorithm below is not suitable for -O0. + if (TM->getOptLevel() == CodeGenOpt::None) + return; + + // Split Clusters into minimum number of dense partitions. The algorithm uses + // the same idea as Kannan & Proebsting "Correction to 'Producing Good Code + // for the Case Statement'" (1994), but builds the MinPartitions array in + // reverse order to make it easier to reconstruct the partitions in ascending + // order. In the choice between two optimal partitionings, it picks the one + // which yields more jump tables. + + // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1]. + SmallVector<unsigned, 8> MinPartitions(N); + // LastElement[i] is the last element of the partition starting at i. + SmallVector<unsigned, 8> LastElement(N); + // PartitionsScore[i] is used to break ties when choosing between two + // partitionings resulting in the same number of partitions. + SmallVector<unsigned, 8> PartitionsScore(N); + // For PartitionsScore, a small number of comparisons is considered as good as + // a jump table and a single comparison is considered better than a jump + // table. + enum PartitionScores : unsigned { + NoTable = 0, + Table = 1, + FewCases = 1, + SingleCase = 2 + }; + + // Base case: There is only one way to partition Clusters[N-1]. + MinPartitions[N - 1] = 1; + LastElement[N - 1] = N - 1; + PartitionsScore[N - 1] = PartitionScores::SingleCase; + + // Note: loop indexes are signed to avoid underflow. + for (int64_t i = N - 2; i >= 0; i--) { + // Find optimal partitioning of Clusters[i..N-1]. + // Baseline: Put Clusters[i] into a partition on its own. + MinPartitions[i] = MinPartitions[i + 1] + 1; + LastElement[i] = i; + PartitionsScore[i] = PartitionsScore[i + 1] + PartitionScores::SingleCase; + + // Search for a solution that results in fewer partitions. + for (int64_t j = N - 1; j > i; j--) { + // Try building a partition from Clusters[i..j]. + uint64_t Range = getJumpTableRange(Clusters, i, j); + uint64_t NumCases = getJumpTableNumCases(TotalCases, i, j); + assert(NumCases < UINT64_MAX / 100); + assert(Range >= NumCases); + if (TLI->isSuitableForJumpTable(SI, NumCases, Range)) { + unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]); + unsigned Score = j == N - 1 ? 0 : PartitionsScore[j + 1]; + int64_t NumEntries = j - i + 1; + + if (NumEntries == 1) + Score += PartitionScores::SingleCase; + else if (NumEntries <= SmallNumberOfEntries) + Score += PartitionScores::FewCases; + else if (NumEntries >= MinJumpTableEntries) + Score += PartitionScores::Table; + + // If this leads to fewer partitions, or to the same number of + // partitions with better score, it is a better partitioning. + if (NumPartitions < MinPartitions[i] || + (NumPartitions == MinPartitions[i] && Score > PartitionsScore[i])) { + MinPartitions[i] = NumPartitions; + LastElement[i] = j; + PartitionsScore[i] = Score; + } + } + } + } + + // Iterate over the partitions, replacing some with jump tables in-place. + unsigned DstIndex = 0; + for (unsigned First = 0, Last; First < N; First = Last + 1) { + Last = LastElement[First]; + assert(Last >= First); + assert(DstIndex <= First); + unsigned NumClusters = Last - First + 1; + + CaseCluster JTCluster; + if (NumClusters >= MinJumpTableEntries && + buildJumpTable(Clusters, First, Last, SI, DefaultMBB, JTCluster)) { + Clusters[DstIndex++] = JTCluster; + } else { + for (unsigned I = First; I <= Last; ++I) + std::memmove(&Clusters[DstIndex++], &Clusters[I], sizeof(Clusters[I])); + } + } + Clusters.resize(DstIndex); +} + +bool SwitchCG::SwitchLowering::buildJumpTable(const CaseClusterVector &Clusters, + unsigned First, unsigned Last, + const SwitchInst *SI, + MachineBasicBlock *DefaultMBB, + CaseCluster &JTCluster) { + assert(First <= Last); + + auto Prob = BranchProbability::getZero(); + unsigned NumCmps = 0; + std::vector<MachineBasicBlock*> Table; + DenseMap<MachineBasicBlock*, BranchProbability> JTProbs; + + // Initialize probabilities in JTProbs. + for (unsigned I = First; I <= Last; ++I) + JTProbs[Clusters[I].MBB] = BranchProbability::getZero(); + + for (unsigned I = First; I <= Last; ++I) { + assert(Clusters[I].Kind == CC_Range); + Prob += Clusters[I].Prob; + const APInt &Low = Clusters[I].Low->getValue(); + const APInt &High = Clusters[I].High->getValue(); + NumCmps += (Low == High) ? 1 : 2; + if (I != First) { + // Fill the gap between this and the previous cluster. + const APInt &PreviousHigh = Clusters[I - 1].High->getValue(); + assert(PreviousHigh.slt(Low)); + uint64_t Gap = (Low - PreviousHigh).getLimitedValue() - 1; + for (uint64_t J = 0; J < Gap; J++) + Table.push_back(DefaultMBB); + } + uint64_t ClusterSize = (High - Low).getLimitedValue() + 1; + for (uint64_t J = 0; J < ClusterSize; ++J) + Table.push_back(Clusters[I].MBB); + JTProbs[Clusters[I].MBB] += Clusters[I].Prob; + } + + unsigned NumDests = JTProbs.size(); + if (TLI->isSuitableForBitTests(NumDests, NumCmps, + Clusters[First].Low->getValue(), + Clusters[Last].High->getValue(), *DL)) { + // Clusters[First..Last] should be lowered as bit tests instead. + return false; + } + + // Create the MBB that will load from and jump through the table. + // Note: We create it here, but it's not inserted into the function yet. + MachineFunction *CurMF = FuncInfo.MF; + MachineBasicBlock *JumpTableMBB = + CurMF->CreateMachineBasicBlock(SI->getParent()); + + // Add successors. Note: use table order for determinism. + SmallPtrSet<MachineBasicBlock *, 8> Done; + for (MachineBasicBlock *Succ : Table) { + if (Done.count(Succ)) + continue; + addSuccessorWithProb(JumpTableMBB, Succ, JTProbs[Succ]); + Done.insert(Succ); + } + JumpTableMBB->normalizeSuccProbs(); + + unsigned JTI = CurMF->getOrCreateJumpTableInfo(TLI->getJumpTableEncoding()) + ->createJumpTableIndex(Table); + + // Set up the jump table info. + JumpTable JT(-1U, JTI, JumpTableMBB, nullptr); + JumpTableHeader JTH(Clusters[First].Low->getValue(), + Clusters[Last].High->getValue(), SI->getCondition(), + nullptr, false); + JTCases.emplace_back(std::move(JTH), std::move(JT)); + + JTCluster = CaseCluster::jumpTable(Clusters[First].Low, Clusters[Last].High, + JTCases.size() - 1, Prob); + return true; +} + +void SwitchCG::SwitchLowering::findBitTestClusters(CaseClusterVector &Clusters, + const SwitchInst *SI) { + // Partition Clusters into as few subsets as possible, where each subset has a + // range that fits in a machine word and has <= 3 unique destinations. + +#ifndef NDEBUG + // Clusters must be sorted and contain Range or JumpTable clusters. + assert(!Clusters.empty()); + assert(Clusters[0].Kind == CC_Range || Clusters[0].Kind == CC_JumpTable); + for (const CaseCluster &C : Clusters) + assert(C.Kind == CC_Range || C.Kind == CC_JumpTable); + for (unsigned i = 1; i < Clusters.size(); ++i) + assert(Clusters[i-1].High->getValue().slt(Clusters[i].Low->getValue())); +#endif + + // The algorithm below is not suitable for -O0. + if (TM->getOptLevel() == CodeGenOpt::None) + return; + + // If target does not have legal shift left, do not emit bit tests at all. + EVT PTy = TLI->getPointerTy(*DL); + if (!TLI->isOperationLegal(ISD::SHL, PTy)) + return; + + int BitWidth = PTy.getSizeInBits(); + const int64_t N = Clusters.size(); + + // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1]. + SmallVector<unsigned, 8> MinPartitions(N); + // LastElement[i] is the last element of the partition starting at i. + SmallVector<unsigned, 8> LastElement(N); + + // FIXME: This might not be the best algorithm for finding bit test clusters. + + // Base case: There is only one way to partition Clusters[N-1]. + MinPartitions[N - 1] = 1; + LastElement[N - 1] = N - 1; + + // Note: loop indexes are signed to avoid underflow. + for (int64_t i = N - 2; i >= 0; --i) { + // Find optimal partitioning of Clusters[i..N-1]. + // Baseline: Put Clusters[i] into a partition on its own. + MinPartitions[i] = MinPartitions[i + 1] + 1; + LastElement[i] = i; + + // Search for a solution that results in fewer partitions. + // Note: the search is limited by BitWidth, reducing time complexity. + for (int64_t j = std::min(N - 1, i + BitWidth - 1); j > i; --j) { + // Try building a partition from Clusters[i..j]. + + // Check the range. + if (!TLI->rangeFitsInWord(Clusters[i].Low->getValue(), + Clusters[j].High->getValue(), *DL)) + continue; + + // Check nbr of destinations and cluster types. + // FIXME: This works, but doesn't seem very efficient. + bool RangesOnly = true; + BitVector Dests(FuncInfo.MF->getNumBlockIDs()); + for (int64_t k = i; k <= j; k++) { + if (Clusters[k].Kind != CC_Range) { + RangesOnly = false; + break; + } + Dests.set(Clusters[k].MBB->getNumber()); + } + if (!RangesOnly || Dests.count() > 3) + break; + + // Check if it's a better partition. + unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]); + if (NumPartitions < MinPartitions[i]) { + // Found a better partition. + MinPartitions[i] = NumPartitions; + LastElement[i] = j; + } + } + } + + // Iterate over the partitions, replacing with bit-test clusters in-place. + unsigned DstIndex = 0; + for (unsigned First = 0, Last; First < N; First = Last + 1) { + Last = LastElement[First]; + assert(First <= Last); + assert(DstIndex <= First); + + CaseCluster BitTestCluster; + if (buildBitTests(Clusters, First, Last, SI, BitTestCluster)) { + Clusters[DstIndex++] = BitTestCluster; + } else { + size_t NumClusters = Last - First + 1; + std::memmove(&Clusters[DstIndex], &Clusters[First], + sizeof(Clusters[0]) * NumClusters); + DstIndex += NumClusters; + } + } + Clusters.resize(DstIndex); +} + +bool SwitchCG::SwitchLowering::buildBitTests(CaseClusterVector &Clusters, + unsigned First, unsigned Last, + const SwitchInst *SI, + CaseCluster &BTCluster) { + assert(First <= Last); + if (First == Last) + return false; + + BitVector Dests(FuncInfo.MF->getNumBlockIDs()); + unsigned NumCmps = 0; + for (int64_t I = First; I <= Last; ++I) { + assert(Clusters[I].Kind == CC_Range); + Dests.set(Clusters[I].MBB->getNumber()); + NumCmps += (Clusters[I].Low == Clusters[I].High) ? 1 : 2; + } + unsigned NumDests = Dests.count(); + + APInt Low = Clusters[First].Low->getValue(); + APInt High = Clusters[Last].High->getValue(); + assert(Low.slt(High)); + + if (!TLI->isSuitableForBitTests(NumDests, NumCmps, Low, High, *DL)) + return false; + + APInt LowBound; + APInt CmpRange; + + const int BitWidth = TLI->getPointerTy(*DL).getSizeInBits(); + assert(TLI->rangeFitsInWord(Low, High, *DL) && + "Case range must fit in bit mask!"); + + // Check if the clusters cover a contiguous range such that no value in the + // range will jump to the default statement. + bool ContiguousRange = true; + for (int64_t I = First + 1; I <= Last; ++I) { + if (Clusters[I].Low->getValue() != Clusters[I - 1].High->getValue() + 1) { + ContiguousRange = false; + break; + } + } + + if (Low.isStrictlyPositive() && High.slt(BitWidth)) { + // Optimize the case where all the case values fit in a word without having + // to subtract minValue. In this case, we can optimize away the subtraction. + LowBound = APInt::getNullValue(Low.getBitWidth()); + CmpRange = High; + ContiguousRange = false; + } else { + LowBound = Low; + CmpRange = High - Low; + } + + CaseBitsVector CBV; + auto TotalProb = BranchProbability::getZero(); + for (unsigned i = First; i <= Last; ++i) { + // Find the CaseBits for this destination. + unsigned j; + for (j = 0; j < CBV.size(); ++j) + if (CBV[j].BB == Clusters[i].MBB) + break; + if (j == CBV.size()) + CBV.push_back( + CaseBits(0, Clusters[i].MBB, 0, BranchProbability::getZero())); + CaseBits *CB = &CBV[j]; + + // Update Mask, Bits and ExtraProb. + uint64_t Lo = (Clusters[i].Low->getValue() - LowBound).getZExtValue(); + uint64_t Hi = (Clusters[i].High->getValue() - LowBound).getZExtValue(); + assert(Hi >= Lo && Hi < 64 && "Invalid bit case!"); + CB->Mask |= (-1ULL >> (63 - (Hi - Lo))) << Lo; + CB->Bits += Hi - Lo + 1; + CB->ExtraProb += Clusters[i].Prob; + TotalProb += Clusters[i].Prob; + } + + BitTestInfo BTI; + llvm::sort(CBV, [](const CaseBits &a, const CaseBits &b) { + // Sort by probability first, number of bits second, bit mask third. + if (a.ExtraProb != b.ExtraProb) + return a.ExtraProb > b.ExtraProb; + if (a.Bits != b.Bits) + return a.Bits > b.Bits; + return a.Mask < b.Mask; + }); + + for (auto &CB : CBV) { + MachineBasicBlock *BitTestBB = + FuncInfo.MF->CreateMachineBasicBlock(SI->getParent()); + BTI.push_back(BitTestCase(CB.Mask, BitTestBB, CB.BB, CB.ExtraProb)); + } + BitTestCases.emplace_back(std::move(LowBound), std::move(CmpRange), + SI->getCondition(), -1U, MVT::Other, false, + ContiguousRange, nullptr, nullptr, std::move(BTI), + TotalProb); + + BTCluster = CaseCluster::bitTests(Clusters[First].Low, Clusters[Last].High, + BitTestCases.size() - 1, TotalProb); + return true; +} + +void SwitchCG::sortAndRangeify(CaseClusterVector &Clusters) { +#ifndef NDEBUG + for (const CaseCluster &CC : Clusters) + assert(CC.Low == CC.High && "Input clusters must be single-case"); +#endif + + llvm::sort(Clusters, [](const CaseCluster &a, const CaseCluster &b) { + return a.Low->getValue().slt(b.Low->getValue()); + }); + + // Merge adjacent clusters with the same destination. + const unsigned N = Clusters.size(); + unsigned DstIndex = 0; + for (unsigned SrcIndex = 0; SrcIndex < N; ++SrcIndex) { + CaseCluster &CC = Clusters[SrcIndex]; + const ConstantInt *CaseVal = CC.Low; + MachineBasicBlock *Succ = CC.MBB; + + if (DstIndex != 0 && Clusters[DstIndex - 1].MBB == Succ && + (CaseVal->getValue() - Clusters[DstIndex - 1].High->getValue()) == 1) { + // If this case has the same successor and is a neighbour, merge it into + // the previous cluster. + Clusters[DstIndex - 1].High = CaseVal; + Clusters[DstIndex - 1].Prob += CC.Prob; + } else { + std::memmove(&Clusters[DstIndex++], &Clusters[SrcIndex], + sizeof(Clusters[SrcIndex])); + } + } + Clusters.resize(DstIndex); +} |