diff options
Diffstat (limited to 'llvm/lib/CodeGen/SimpleRegisterCoalescing.cpp')
| -rw-r--r-- | llvm/lib/CodeGen/SimpleRegisterCoalescing.cpp | 1138 |
1 files changed, 1138 insertions, 0 deletions
diff --git a/llvm/lib/CodeGen/SimpleRegisterCoalescing.cpp b/llvm/lib/CodeGen/SimpleRegisterCoalescing.cpp new file mode 100644 index 00000000000..f43ab7351c4 --- /dev/null +++ b/llvm/lib/CodeGen/SimpleRegisterCoalescing.cpp @@ -0,0 +1,1138 @@ +//===-- SimpleRegisterCoalescing.cpp - Register Coalescing ----------------===// +// +// The LLVM Compiler Infrastructure +// +// This file was developed by the LLVM research group and is distributed under +// the University of Illinois Open Source License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This file implements a simple register coalescing pass that attempts to +// aggressively coalesce every register copy that it can. +// +//===----------------------------------------------------------------------===// + +#define DEBUG_TYPE "simpleregistercoalescing" +#include "llvm/CodeGen/SimpleRegisterCoalescing.h" +#include "llvm/CodeGen/LiveIntervalAnalysis.h" +#include "VirtRegMap.h" +#include "llvm/Value.h" +#include "llvm/Analysis/LoopInfo.h" +#include "llvm/CodeGen/LiveVariables.h" +#include "llvm/CodeGen/MachineFrameInfo.h" +#include "llvm/CodeGen/MachineInstr.h" +#include "llvm/CodeGen/Passes.h" +#include "llvm/CodeGen/SSARegMap.h" +#include "llvm/Target/MRegisterInfo.h" +#include "llvm/Target/TargetInstrInfo.h" +#include "llvm/Target/TargetMachine.h" +#include "llvm/Support/CommandLine.h" +#include "llvm/Support/Debug.h" +#include "llvm/ADT/SmallSet.h" +#include "llvm/ADT/Statistic.h" +#include "llvm/ADT/STLExtras.h" +#include <algorithm> +#include <cmath> +using namespace llvm; + +STATISTIC(numJoins , "Number of interval joins performed"); +STATISTIC(numPeep , "Number of identity moves eliminated after coalescing"); +STATISTIC(numAborts , "Number of times interval joining aborted"); + +char SimpleRegisterCoalescing::ID = 0; +namespace { + static cl::opt<bool> + EnableJoining("join-liveintervals", + cl::desc("Coallesce copies (default=true)"), + cl::init(true)); + + RegisterPass<SimpleRegisterCoalescing> + X("simple-register-coalescing", + "Simple register coalescing to eliminate all possible register copies"); +} + +const PassInfo *llvm::SimpleRegisterCoalescingID = X.getPassInfo(); + +void SimpleRegisterCoalescing::getAnalysisUsage(AnalysisUsage &AU) const { + //AU.addPreserved<LiveVariables>(); + AU.addPreserved<LiveIntervals>(); + AU.addPreservedID(PHIEliminationID); + AU.addPreservedID(TwoAddressInstructionPassID); + AU.addRequired<LiveVariables>(); + AU.addRequired<LiveIntervals>(); + AU.addRequired<LoopInfo>(); + MachineFunctionPass::getAnalysisUsage(AU); +} + +/// AdjustCopiesBackFrom - We found a non-trivially-coallescable copy with IntA +/// being the source and IntB being the dest, thus this defines a value number +/// in IntB. If the source value number (in IntA) is defined by a copy from B, +/// see if we can merge these two pieces of B into a single value number, +/// eliminating a copy. For example: +/// +/// A3 = B0 +/// ... +/// B1 = A3 <- this copy +/// +/// In this case, B0 can be extended to where the B1 copy lives, allowing the B1 +/// value number to be replaced with B0 (which simplifies the B liveinterval). +/// +/// This returns true if an interval was modified. +/// +bool SimpleRegisterCoalescing::AdjustCopiesBackFrom(LiveInterval &IntA, LiveInterval &IntB, + MachineInstr *CopyMI) { + unsigned CopyIdx = li_->getDefIndex(li_->getInstructionIndex(CopyMI)); + + // BValNo is a value number in B that is defined by a copy from A. 'B3' in + // the example above. + LiveInterval::iterator BLR = IntB.FindLiveRangeContaining(CopyIdx); + unsigned BValNo = BLR->ValId; + + // Get the location that B is defined at. Two options: either this value has + // an unknown definition point or it is defined at CopyIdx. If unknown, we + // can't process it. + unsigned BValNoDefIdx = IntB.getInstForValNum(BValNo); + if (BValNoDefIdx == ~0U) return false; + assert(BValNoDefIdx == CopyIdx && + "Copy doesn't define the value?"); + + // AValNo is the value number in A that defines the copy, A0 in the example. + LiveInterval::iterator AValLR = IntA.FindLiveRangeContaining(CopyIdx-1); + unsigned AValNo = AValLR->ValId; + + // If AValNo is defined as a copy from IntB, we can potentially process this. + + // Get the instruction that defines this value number. + unsigned SrcReg = IntA.getSrcRegForValNum(AValNo); + if (!SrcReg) return false; // Not defined by a copy. + + // If the value number is not defined by a copy instruction, ignore it. + + // If the source register comes from an interval other than IntB, we can't + // handle this. + if (rep(SrcReg) != IntB.reg) return false; + + // Get the LiveRange in IntB that this value number starts with. + unsigned AValNoInstIdx = IntA.getInstForValNum(AValNo); + LiveInterval::iterator ValLR = IntB.FindLiveRangeContaining(AValNoInstIdx-1); + + // Make sure that the end of the live range is inside the same block as + // CopyMI. + MachineInstr *ValLREndInst = li_->getInstructionFromIndex(ValLR->end-1); + if (!ValLREndInst || + ValLREndInst->getParent() != CopyMI->getParent()) return false; + + // Okay, we now know that ValLR ends in the same block that the CopyMI + // live-range starts. If there are no intervening live ranges between them in + // IntB, we can merge them. + if (ValLR+1 != BLR) return false; + + DOUT << "\nExtending: "; IntB.print(DOUT, mri_); + + // We are about to delete CopyMI, so need to remove it as the 'instruction + // that defines this value #'. + IntB.setValueNumberInfo(BValNo, std::make_pair(~0U, 0)); + + // Okay, we can merge them. We need to insert a new liverange: + // [ValLR.end, BLR.begin) of either value number, then we merge the + // two value numbers. + unsigned FillerStart = ValLR->end, FillerEnd = BLR->start; + IntB.addRange(LiveRange(FillerStart, FillerEnd, BValNo)); + + // If the IntB live range is assigned to a physical register, and if that + // physreg has aliases, + if (MRegisterInfo::isPhysicalRegister(IntB.reg)) { + // Update the liveintervals of sub-registers. + for (const unsigned *AS = mri_->getSubRegisters(IntB.reg); *AS; ++AS) { + LiveInterval &AliasLI = li_->getInterval(*AS); + AliasLI.addRange(LiveRange(FillerStart, FillerEnd, + AliasLI.getNextValue(~0U, 0))); + } + } + + // Okay, merge "B1" into the same value number as "B0". + if (BValNo != ValLR->ValId) + IntB.MergeValueNumberInto(BValNo, ValLR->ValId); + DOUT << " result = "; IntB.print(DOUT, mri_); + DOUT << "\n"; + + // If the source instruction was killing the source register before the + // merge, unset the isKill marker given the live range has been extended. + int UIdx = ValLREndInst->findRegisterUseOperandIdx(IntB.reg, true); + if (UIdx != -1) + ValLREndInst->getOperand(UIdx).unsetIsKill(); + + // Finally, delete the copy instruction. + li_->RemoveMachineInstrFromMaps(CopyMI); + CopyMI->eraseFromParent(); + ++numPeep; + return true; +} + +/// JoinCopy - Attempt to join intervals corresponding to SrcReg/DstReg, +/// which are the src/dst of the copy instruction CopyMI. This returns true +/// if the copy was successfully coallesced away, or if it is never possible +/// to coallesce this copy, due to register constraints. It returns +/// false if it is not currently possible to coallesce this interval, but +/// it may be possible if other things get coallesced. +bool SimpleRegisterCoalescing::JoinCopy(MachineInstr *CopyMI, + unsigned SrcReg, unsigned DstReg, bool PhysOnly) { + DOUT << li_->getInstructionIndex(CopyMI) << '\t' << *CopyMI; + + // Get representative registers. + unsigned repSrcReg = rep(SrcReg); + unsigned repDstReg = rep(DstReg); + + // If they are already joined we continue. + if (repSrcReg == repDstReg) { + DOUT << "\tCopy already coallesced.\n"; + return true; // Not coallescable. + } + + bool SrcIsPhys = MRegisterInfo::isPhysicalRegister(repSrcReg); + bool DstIsPhys = MRegisterInfo::isPhysicalRegister(repDstReg); + if (PhysOnly && !SrcIsPhys && !DstIsPhys) + // Only joining physical registers with virtual registers in this round. + return true; + + // If they are both physical registers, we cannot join them. + if (SrcIsPhys && DstIsPhys) { + DOUT << "\tCan not coallesce physregs.\n"; + return true; // Not coallescable. + } + + // We only join virtual registers with allocatable physical registers. + if (SrcIsPhys && !allocatableRegs_[repSrcReg]) { + DOUT << "\tSrc reg is unallocatable physreg.\n"; + return true; // Not coallescable. + } + if (DstIsPhys && !allocatableRegs_[repDstReg]) { + DOUT << "\tDst reg is unallocatable physreg.\n"; + return true; // Not coallescable. + } + + // If they are not of the same register class, we cannot join them. + if (differingRegisterClasses(repSrcReg, repDstReg)) { + DOUT << "\tSrc/Dest are different register classes.\n"; + return true; // Not coallescable. + } + + LiveInterval &SrcInt = li_->getInterval(repSrcReg); + LiveInterval &DstInt = li_->getInterval(repDstReg); + assert(SrcInt.reg == repSrcReg && DstInt.reg == repDstReg && + "Register mapping is horribly broken!"); + + DOUT << "\t\tInspecting "; SrcInt.print(DOUT, mri_); + DOUT << " and "; DstInt.print(DOUT, mri_); + DOUT << ": "; + + // Check if it is necessary to propagate "isDead" property before intervals + // are joined. + MachineOperand *mopd = CopyMI->findRegisterDefOperand(DstReg); + bool isDead = mopd->isDead(); + bool isShorten = false; + unsigned SrcStart = 0, RemoveStart = 0; + unsigned SrcEnd = 0, RemoveEnd = 0; + if (isDead) { + unsigned CopyIdx = li_->getInstructionIndex(CopyMI); + LiveInterval::iterator SrcLR = + SrcInt.FindLiveRangeContaining(li_->getUseIndex(CopyIdx)); + RemoveStart = SrcStart = SrcLR->start; + RemoveEnd = SrcEnd = SrcLR->end; + // The instruction which defines the src is only truly dead if there are + // no intermediate uses and there isn't a use beyond the copy. + // FIXME: find the last use, mark is kill and shorten the live range. + if (SrcEnd > li_->getDefIndex(CopyIdx)) { + isDead = false; + } else { + MachineOperand *MOU; + MachineInstr *LastUse= lastRegisterUse(SrcStart, CopyIdx, repSrcReg, MOU); + if (LastUse) { + // Shorten the liveinterval to the end of last use. + MOU->setIsKill(); + isDead = false; + isShorten = true; + RemoveStart = li_->getDefIndex(li_->getInstructionIndex(LastUse)); + RemoveEnd = SrcEnd; + } else { + MachineInstr *SrcMI = li_->getInstructionFromIndex(SrcStart); + if (SrcMI) { + MachineOperand *mops = findDefOperand(SrcMI, repSrcReg); + if (mops) + // A dead def should have a single cycle interval. + ++RemoveStart; + } + } + } + } + + // We need to be careful about coalescing a source physical register with a + // virtual register. Once the coalescing is done, it cannot be broken and + // these are not spillable! If the destination interval uses are far away, + // think twice about coalescing them! + if (!mopd->isDead() && (SrcIsPhys || DstIsPhys)) { + LiveInterval &JoinVInt = SrcIsPhys ? DstInt : SrcInt; + unsigned JoinVReg = SrcIsPhys ? repDstReg : repSrcReg; + unsigned JoinPReg = SrcIsPhys ? repSrcReg : repDstReg; + const TargetRegisterClass *RC = mf_->getSSARegMap()->getRegClass(JoinVReg); + unsigned Threshold = allocatableRCRegs_[RC].count(); + + // If the virtual register live interval is long has it has low use desity, + // do not join them, instead mark the physical register as its allocation + // preference. + unsigned Length = JoinVInt.getSize() / InstrSlots::NUM; + LiveVariables::VarInfo &vi = lv_->getVarInfo(JoinVReg); + if (Length > Threshold && + (((float)vi.NumUses / Length) < (1.0 / Threshold))) { + JoinVInt.preference = JoinPReg; + ++numAborts; + DOUT << "\tMay tie down a physical register, abort!\n"; + return false; + } + } + + // Okay, attempt to join these two intervals. On failure, this returns false. + // Otherwise, if one of the intervals being joined is a physreg, this method + // always canonicalizes DstInt to be it. The output "SrcInt" will not have + // been modified, so we can use this information below to update aliases. + if (JoinIntervals(DstInt, SrcInt)) { + if (isDead) { + // Result of the copy is dead. Propagate this property. + if (SrcStart == 0) { + assert(MRegisterInfo::isPhysicalRegister(repSrcReg) && + "Live-in must be a physical register!"); + // Live-in to the function but dead. Remove it from entry live-in set. + // JoinIntervals may end up swapping the two intervals. + mf_->begin()->removeLiveIn(repSrcReg); + } else { + MachineInstr *SrcMI = li_->getInstructionFromIndex(SrcStart); + if (SrcMI) { + MachineOperand *mops = findDefOperand(SrcMI, repSrcReg); + if (mops) + mops->setIsDead(); + } + } + } + + if (isShorten || isDead) { + // Shorten the live interval. + LiveInterval &LiveInInt = (repSrcReg == DstInt.reg) ? DstInt : SrcInt; + LiveInInt.removeRange(RemoveStart, RemoveEnd); + } + } else { + // Coallescing failed. + + // If we can eliminate the copy without merging the live ranges, do so now. + if (AdjustCopiesBackFrom(SrcInt, DstInt, CopyMI)) + return true; + + // Otherwise, we are unable to join the intervals. + DOUT << "Interference!\n"; + return false; + } + + bool Swapped = repSrcReg == DstInt.reg; + if (Swapped) + std::swap(repSrcReg, repDstReg); + assert(MRegisterInfo::isVirtualRegister(repSrcReg) && + "LiveInterval::join didn't work right!"); + + // If we're about to merge live ranges into a physical register live range, + // we have to update any aliased register's live ranges to indicate that they + // have clobbered values for this range. + if (MRegisterInfo::isPhysicalRegister(repDstReg)) { + // Unset unnecessary kills. + if (!DstInt.containsOneValue()) { + for (LiveInterval::Ranges::const_iterator I = SrcInt.begin(), + E = SrcInt.end(); I != E; ++I) + unsetRegisterKills(I->start, I->end, repDstReg); + } + + // Update the liveintervals of sub-registers. + for (const unsigned *AS = mri_->getSubRegisters(repDstReg); *AS; ++AS) + li_->getInterval(*AS).MergeInClobberRanges(SrcInt); + } else { + // Merge use info if the destination is a virtual register. + LiveVariables::VarInfo& dVI = lv_->getVarInfo(repDstReg); + LiveVariables::VarInfo& sVI = lv_->getVarInfo(repSrcReg); + dVI.NumUses += sVI.NumUses; + } + + DOUT << "\n\t\tJoined. Result = "; DstInt.print(DOUT, mri_); + DOUT << "\n"; + + // Remember these liveintervals have been joined. + JoinedLIs.set(repSrcReg - MRegisterInfo::FirstVirtualRegister); + if (MRegisterInfo::isVirtualRegister(repDstReg)) + JoinedLIs.set(repDstReg - MRegisterInfo::FirstVirtualRegister); + + // If the intervals were swapped by Join, swap them back so that the register + // mapping (in the r2i map) is correct. + if (Swapped) SrcInt.swap(DstInt); + li_->removeInterval(repSrcReg); + r2rMap_[repSrcReg] = repDstReg; + + // Finally, delete the copy instruction. + li_->RemoveMachineInstrFromMaps(CopyMI); + CopyMI->eraseFromParent(); + ++numPeep; + ++numJoins; + return true; +} + +/// ComputeUltimateVN - Assuming we are going to join two live intervals, +/// compute what the resultant value numbers for each value in the input two +/// ranges will be. This is complicated by copies between the two which can +/// and will commonly cause multiple value numbers to be merged into one. +/// +/// VN is the value number that we're trying to resolve. InstDefiningValue +/// keeps track of the new InstDefiningValue assignment for the result +/// LiveInterval. ThisFromOther/OtherFromThis are sets that keep track of +/// whether a value in this or other is a copy from the opposite set. +/// ThisValNoAssignments/OtherValNoAssignments keep track of value #'s that have +/// already been assigned. +/// +/// ThisFromOther[x] - If x is defined as a copy from the other interval, this +/// contains the value number the copy is from. +/// +static unsigned ComputeUltimateVN(unsigned VN, + SmallVector<std::pair<unsigned, + unsigned>, 16> &ValueNumberInfo, + SmallVector<int, 16> &ThisFromOther, + SmallVector<int, 16> &OtherFromThis, + SmallVector<int, 16> &ThisValNoAssignments, + SmallVector<int, 16> &OtherValNoAssignments, + LiveInterval &ThisLI, LiveInterval &OtherLI) { + // If the VN has already been computed, just return it. + if (ThisValNoAssignments[VN] >= 0) + return ThisValNoAssignments[VN]; +// assert(ThisValNoAssignments[VN] != -2 && "Cyclic case?"); + + // If this val is not a copy from the other val, then it must be a new value + // number in the destination. + int OtherValNo = ThisFromOther[VN]; + if (OtherValNo == -1) { + ValueNumberInfo.push_back(ThisLI.getValNumInfo(VN)); + return ThisValNoAssignments[VN] = ValueNumberInfo.size()-1; + } + + // Otherwise, this *is* a copy from the RHS. If the other side has already + // been computed, return it. + if (OtherValNoAssignments[OtherValNo] >= 0) + return ThisValNoAssignments[VN] = OtherValNoAssignments[OtherValNo]; + + // Mark this value number as currently being computed, then ask what the + // ultimate value # of the other value is. + ThisValNoAssignments[VN] = -2; + unsigned UltimateVN = + ComputeUltimateVN(OtherValNo, ValueNumberInfo, + OtherFromThis, ThisFromOther, + OtherValNoAssignments, ThisValNoAssignments, + OtherLI, ThisLI); + return ThisValNoAssignments[VN] = UltimateVN; +} + +static bool InVector(unsigned Val, const SmallVector<unsigned, 8> &V) { + return std::find(V.begin(), V.end(), Val) != V.end(); +} + +/// SimpleJoin - Attempt to joint the specified interval into this one. The +/// caller of this method must guarantee that the RHS only contains a single +/// value number and that the RHS is not defined by a copy from this +/// interval. This returns false if the intervals are not joinable, or it +/// joins them and returns true. +bool SimpleRegisterCoalescing::SimpleJoin(LiveInterval &LHS, LiveInterval &RHS) { + assert(RHS.containsOneValue()); + + // Some number (potentially more than one) value numbers in the current + // interval may be defined as copies from the RHS. Scan the overlapping + // portions of the LHS and RHS, keeping track of this and looking for + // overlapping live ranges that are NOT defined as copies. If these exist, we + // cannot coallesce. + + LiveInterval::iterator LHSIt = LHS.begin(), LHSEnd = LHS.end(); + LiveInterval::iterator RHSIt = RHS.begin(), RHSEnd = RHS.end(); + + if (LHSIt->start < RHSIt->start) { + LHSIt = std::upper_bound(LHSIt, LHSEnd, RHSIt->start); + if (LHSIt != LHS.begin()) --LHSIt; + } else if (RHSIt->start < LHSIt->start) { + RHSIt = std::upper_bound(RHSIt, RHSEnd, LHSIt->start); + if (RHSIt != RHS.begin()) --RHSIt; + } + + SmallVector<unsigned, 8> EliminatedLHSVals; + + while (1) { + // Determine if these live intervals overlap. + bool Overlaps = false; + if (LHSIt->start <= RHSIt->start) + Overlaps = LHSIt->end > RHSIt->start; + else + Overlaps = RHSIt->end > LHSIt->start; + + // If the live intervals overlap, there are two interesting cases: if the + // LHS interval is defined by a copy from the RHS, it's ok and we record + // that the LHS value # is the same as the RHS. If it's not, then we cannot + // coallesce these live ranges and we bail out. + if (Overlaps) { + // If we haven't already recorded that this value # is safe, check it. + if (!InVector(LHSIt->ValId, EliminatedLHSVals)) { + // Copy from the RHS? + unsigned SrcReg = LHS.getSrcRegForValNum(LHSIt->ValId); + if (rep(SrcReg) != RHS.reg) + return false; // Nope, bail out. + + EliminatedLHSVals.push_back(LHSIt->ValId); + } + + // We know this entire LHS live range is okay, so skip it now. + if (++LHSIt == LHSEnd) break; + continue; + } + + if (LHSIt->end < RHSIt->end) { + if (++LHSIt == LHSEnd) break; + } else { + // One interesting case to check here. It's possible that we have + // something like "X3 = Y" which defines a new value number in the LHS, + // and is the last use of this liverange of the RHS. In this case, we + // want to notice this copy (so that it gets coallesced away) even though + // the live ranges don't actually overlap. + if (LHSIt->start == RHSIt->end) { + if (InVector(LHSIt->ValId, EliminatedLHSVals)) { + // We already know that this value number is going to be merged in + // if coallescing succeeds. Just skip the liverange. + if (++LHSIt == LHSEnd) break; + } else { + // Otherwise, if this is a copy from the RHS, mark it as being merged + // in. + if (rep(LHS.getSrcRegForValNum(LHSIt->ValId)) == RHS.reg) { + EliminatedLHSVals.push_back(LHSIt->ValId); + + // We know this entire LHS live range is okay, so skip it now. + if (++LHSIt == LHSEnd) break; + } + } + } + + if (++RHSIt == RHSEnd) break; + } + } + + // If we got here, we know that the coallescing will be successful and that + // the value numbers in EliminatedLHSVals will all be merged together. Since + // the most common case is that EliminatedLHSVals has a single number, we + // optimize for it: if there is more than one value, we merge them all into + // the lowest numbered one, then handle the interval as if we were merging + // with one value number. + unsigned LHSValNo; + if (EliminatedLHSVals.size() > 1) { + // Loop through all the equal value numbers merging them into the smallest + // one. + unsigned Smallest = EliminatedLHSVals[0]; + for (unsigned i = 1, e = EliminatedLHSVals.size(); i != e; ++i) { + if (EliminatedLHSVals[i] < Smallest) { + // Merge the current notion of the smallest into the smaller one. + LHS.MergeValueNumberInto(Smallest, EliminatedLHSVals[i]); + Smallest = EliminatedLHSVals[i]; + } else { + // Merge into the smallest. + LHS.MergeValueNumberInto(EliminatedLHSVals[i], Smallest); + } + } + LHSValNo = Smallest; + } else { + assert(!EliminatedLHSVals.empty() && "No copies from the RHS?"); + LHSValNo = EliminatedLHSVals[0]; + } + + // Okay, now that there is a single LHS value number that we're merging the + // RHS into, update the value number info for the LHS to indicate that the + // value number is defined where the RHS value number was. + LHS.setValueNumberInfo(LHSValNo, RHS.getValNumInfo(0)); + + // Okay, the final step is to loop over the RHS live intervals, adding them to + // the LHS. + LHS.MergeRangesInAsValue(RHS, LHSValNo); + LHS.weight += RHS.weight; + if (RHS.preference && !LHS.preference) + LHS.preference = RHS.preference; + + return true; +} + +/// JoinIntervals - Attempt to join these two intervals. On failure, this +/// returns false. Otherwise, if one of the intervals being joined is a +/// physreg, this method always canonicalizes LHS to be it. The output +/// "RHS" will not have been modified, so we can use this information +/// below to update aliases. +bool SimpleRegisterCoalescing::JoinIntervals(LiveInterval &LHS, LiveInterval &RHS) { + // Compute the final value assignment, assuming that the live ranges can be + // coallesced. + SmallVector<int, 16> LHSValNoAssignments; + SmallVector<int, 16> RHSValNoAssignments; + SmallVector<std::pair<unsigned,unsigned>, 16> ValueNumberInfo; + + // If a live interval is a physical register, conservatively check if any + // of its sub-registers is overlapping the live interval of the virtual + // register. If so, do not coalesce. + if (MRegisterInfo::isPhysicalRegister(LHS.reg) && + *mri_->getSubRegisters(LHS.reg)) { + for (const unsigned* SR = mri_->getSubRegisters(LHS.reg); *SR; ++SR) + if (li_->hasInterval(*SR) && RHS.overlaps(li_->getInterval(*SR))) { + DOUT << "Interfere with sub-register "; + DEBUG(li_->getInterval(*SR).print(DOUT, mri_)); + return false; + } + } else if (MRegisterInfo::isPhysicalRegister(RHS.reg) && + *mri_->getSubRegisters(RHS.reg)) { + for (const unsigned* SR = mri_->getSubRegisters(RHS.reg); *SR; ++SR) + if (li_->hasInterval(*SR) && LHS.overlaps(li_->getInterval(*SR))) { + DOUT << "Interfere with sub-register "; + DEBUG(li_->getInterval(*SR).print(DOUT, mri_)); + return false; + } + } + + // Compute ultimate value numbers for the LHS and RHS values. + if (RHS.containsOneValue()) { + // Copies from a liveinterval with a single value are simple to handle and + // very common, handle the special case here. This is important, because + // often RHS is small and LHS is large (e.g. a physreg). + + // Find out if the RHS is defined as a copy from some value in the LHS. + int RHSValID = -1; + std::pair<unsigned,unsigned> RHSValNoInfo; + unsigned RHSSrcReg = RHS.getSrcRegForValNum(0); + if ((RHSSrcReg == 0 || rep(RHSSrcReg) != LHS.reg)) { + // If RHS is not defined as a copy from the LHS, we can use simpler and + // faster checks to see if the live ranges are coallescable. This joiner + // can't swap the LHS/RHS intervals though. + if (!MRegisterInfo::isPhysicalRegister(RHS.reg)) { + return SimpleJoin(LHS, RHS); + } else { + RHSValNoInfo = RHS.getValNumInfo(0); + } + } else { + // It was defined as a copy from the LHS, find out what value # it is. + unsigned ValInst = RHS.getInstForValNum(0); + RHSValID = LHS.getLiveRangeContaining(ValInst-1)->ValId; + RHSValNoInfo = LHS.getValNumInfo(RHSValID); + } + + LHSValNoAssignments.resize(LHS.getNumValNums(), -1); + RHSValNoAssignments.resize(RHS.getNumValNums(), -1); + ValueNumberInfo.resize(LHS.getNumValNums()); + + // Okay, *all* of the values in LHS that are defined as a copy from RHS + // should now get updated. + for (unsigned VN = 0, e = LHS.getNumValNums(); VN != e; ++VN) { + if (unsigned LHSSrcReg = LHS.getSrcRegForValNum(VN)) { + if (rep(LHSSrcReg) != RHS.reg) { + // If this is not a copy from the RHS, its value number will be + // unmodified by the coallescing. + ValueNumberInfo[VN] = LHS.getValNumInfo(VN); + LHSValNoAssignments[VN] = VN; + } else if (RHSValID == -1) { + // Otherwise, it is a copy from the RHS, and we don't already have a + // value# for it. Keep the current value number, but remember it. + LHSValNoAssignments[VN] = RHSValID = VN; + ValueNumberInfo[VN] = RHSValNoInfo; + } else { + // Otherwise, use the specified value #. + LHSValNoAssignments[VN] = RHSValID; + if (VN != (unsigned)RHSValID) + ValueNumberInfo[VN].first = ~1U; + else + ValueNumberInfo[VN] = RHSValNoInfo; + } + } else { + ValueNumberInfo[VN] = LHS.getValNumInfo(VN); + LHSValNoAssignments[VN] = VN; + } + } + + assert(RHSValID != -1 && "Didn't find value #?"); + RHSValNoAssignments[0] = RHSValID; + + } else { + // Loop over the value numbers of the LHS, seeing if any are defined from + // the RHS. + SmallVector<int, 16> LHSValsDefinedFromRHS; + LHSValsDefinedFromRHS.resize(LHS.getNumValNums(), -1); + for (unsigned VN = 0, e = LHS.getNumValNums(); VN != e; ++VN) { + unsigned ValSrcReg = LHS.getSrcRegForValNum(VN); + if (ValSrcReg == 0) // Src not defined by a copy? + continue; + + // DstReg is known to be a register in the LHS interval. If the src is + // from the RHS interval, we can use its value #. + if (rep(ValSrcReg) != RHS.reg) + continue; + + // Figure out the value # from the RHS. + unsigned ValInst = LHS.getInstForValNum(VN); + LHSValsDefinedFromRHS[VN] = RHS.getLiveRangeContaining(ValInst-1)->ValId; + } + + // Loop over the value numbers of the RHS, seeing if any are defined from + // the LHS. + SmallVector<int, 16> RHSValsDefinedFromLHS; + RHSValsDefinedFromLHS.resize(RHS.getNumValNums(), -1); + for (unsigned VN = 0, e = RHS.getNumValNums(); VN != e; ++VN) { + unsigned ValSrcReg = RHS.getSrcRegForValNum(VN); + if (ValSrcReg == 0) // Src not defined by a copy? + continue; + + // DstReg is known to be a register in the RHS interval. If the src is + // from the LHS interval, we can use its value #. + if (rep(ValSrcReg) != LHS.reg) + continue; + + // Figure out the value # from the LHS. + unsigned ValInst = RHS.getInstForValNum(VN); + RHSValsDefinedFromLHS[VN] = LHS.getLiveRangeContaining(ValInst-1)->ValId; + } + + LHSValNoAssignments.resize(LHS.getNumValNums(), -1); + RHSValNoAssignments.resize(RHS.getNumValNums(), -1); + ValueNumberInfo.reserve(LHS.getNumValNums() + RHS.getNumValNums()); + + for (unsigned VN = 0, e = LHS.getNumValNums(); VN != e; ++VN) { + if (LHSValNoAssignments[VN] >= 0 || LHS.getInstForValNum(VN) == ~2U) + continue; + ComputeUltimateVN(VN, ValueNumberInfo, + LHSValsDefinedFromRHS, RHSValsDefinedFromLHS, + LHSValNoAssignments, RHSValNoAssignments, LHS, RHS); + } + for (unsigned VN = 0, e = RHS.getNumValNums(); VN != e; ++VN) { + if (RHSValNoAssignments[VN] >= 0 || RHS.getInstForValNum(VN) == ~2U) + continue; + // If this value number isn't a copy from the LHS, it's a new number. + if (RHSValsDefinedFromLHS[VN] == -1) { + ValueNumberInfo.push_back(RHS.getValNumInfo(VN)); + RHSValNoAssignments[VN] = ValueNumberInfo.size()-1; + continue; + } + + ComputeUltimateVN(VN, ValueNumberInfo, + RHSValsDefinedFromLHS, LHSValsDefinedFromRHS, + RHSValNoAssignments, LHSValNoAssignments, RHS, LHS); + } + } + + // Armed with the mappings of LHS/RHS values to ultimate values, walk the + // interval lists to see if these intervals are coallescable. + LiveInterval::const_iterator I = LHS.begin(); + LiveInterval::const_iterator IE = LHS.end(); + LiveInterval::const_iterator J = RHS.begin(); + LiveInterval::const_iterator JE = RHS.end(); + + // Skip ahead until the first place of potential sharing. + if (I->start < J->start) { + I = std::upper_bound(I, IE, J->start); + if (I != LHS.begin()) --I; + } else if (J->start < I->start) { + J = std::upper_bound(J, JE, I->start); + if (J != RHS.begin()) --J; + } + + while (1) { + // Determine if these two live ranges overlap. + bool Overlaps; + if (I->start < J->start) { + Overlaps = I->end > J->start; + } else { + Overlaps = J->end > I->start; + } + + // If so, check value # info to determine if they are really different. + if (Overlaps) { + // If the live range overlap will map to the same value number in the + // result liverange, we can still coallesce them. If not, we can't. + if (LHSValNoAssignments[I->ValId] != RHSValNoAssignments[J->ValId]) + return false; + } + + if (I->end < J->end) { + ++I; + if (I == IE) break; + } else { + ++J; + if (J == JE) break; + } + } + + // If we get here, we know that we can coallesce the live ranges. Ask the + // intervals to coallesce themselves now. + LHS.join(RHS, &LHSValNoAssignments[0], &RHSValNoAssignments[0], + ValueNumberInfo); + return true; +} + +namespace { + // DepthMBBCompare - Comparison predicate that sort first based on the loop + // depth of the basic block (the unsigned), and then on the MBB number. + struct DepthMBBCompare { + typedef std::pair<unsigned, MachineBasicBlock*> DepthMBBPair; + bool operator()(const DepthMBBPair &LHS, const DepthMBBPair &RHS) const { + if (LHS.first > RHS.first) return true; // Deeper loops first + return LHS.first == RHS.first && + LHS.second->getNumber() < RHS.second->getNumber(); + } + }; +} + +void SimpleRegisterCoalescing::CopyCoallesceInMBB(MachineBasicBlock *MBB, + std::vector<CopyRec> *TryAgain, bool PhysOnly) { + DOUT << ((Value*)MBB->getBasicBlock())->getName() << ":\n"; + + for (MachineBasicBlock::iterator MII = MBB->begin(), E = MBB->end(); + MII != E;) { + MachineInstr *Inst = MII++; + + // If this isn't a copy, we can't join intervals. + unsigned SrcReg, DstReg; + if (!tii_->isMoveInstr(*Inst, SrcReg, DstReg)) continue; + + if (TryAgain && !JoinCopy(Inst, SrcReg, DstReg, PhysOnly)) + TryAgain->push_back(getCopyRec(Inst, SrcReg, DstReg)); + } +} + +void SimpleRegisterCoalescing::joinIntervals() { + DOUT << "********** JOINING INTERVALS ***********\n"; + + JoinedLIs.resize(li_->getNumIntervals()); + JoinedLIs.reset(); + + std::vector<CopyRec> TryAgainList; + const LoopInfo &LI = getAnalysis<LoopInfo>(); + if (LI.begin() == LI.end()) { + // If there are no loops in the function, join intervals in function order. + for (MachineFunction::iterator I = mf_->begin(), E = mf_->end(); + I != E; ++I) + CopyCoallesceInMBB(I, &TryAgainList); + } else { + // Otherwise, join intervals in inner loops before other intervals. + // Unfortunately we can't just iterate over loop hierarchy here because + // there may be more MBB's than BB's. Collect MBB's for sorting. + + // Join intervals in the function prolog first. We want to join physical + // registers with virtual registers before the intervals got too long. + std::vector<std::pair<unsigned, MachineBasicBlock*> > MBBs; + for (MachineFunction::iterator I = mf_->begin(), E = mf_->end(); I != E;++I) + MBBs.push_back(std::make_pair(LI.getLoopDepth(I->getBasicBlock()), I)); + + // Sort by loop depth. + std::sort(MBBs.begin(), MBBs.end(), DepthMBBCompare()); + + // Finally, join intervals in loop nest order. + for (unsigned i = 0, e = MBBs.size(); i != e; ++i) + CopyCoallesceInMBB(MBBs[i].second, NULL, true); + for (unsigned i = 0, e = MBBs.size(); i != e; ++i) + CopyCoallesceInMBB(MBBs[i].second, &TryAgainList, false); + } + + // Joining intervals can allow other intervals to be joined. Iteratively join + // until we make no progress. + bool ProgressMade = true; + while (ProgressMade) { + ProgressMade = false; + + for (unsigned i = 0, e = TryAgainList.size(); i != e; ++i) { + CopyRec &TheCopy = TryAgainList[i]; + if (TheCopy.MI && + JoinCopy(TheCopy.MI, TheCopy.SrcReg, TheCopy.DstReg)) { + TheCopy.MI = 0; // Mark this one as done. + ProgressMade = true; + } + } + } + + // Some live range has been lengthened due to colaescing, eliminate the + // unnecessary kills. + int RegNum = JoinedLIs.find_first(); + while (RegNum != -1) { + unsigned Reg = RegNum + MRegisterInfo::FirstVirtualRegister; + unsigned repReg = rep(Reg); + LiveInterval &LI = li_->getInterval(repReg); + LiveVariables::VarInfo& svi = lv_->getVarInfo(Reg); + for (unsigned i = 0, e = svi.Kills.size(); i != e; ++i) { + MachineInstr *Kill = svi.Kills[i]; + // Suppose vr1 = op vr2, x + // and vr1 and vr2 are coalesced. vr2 should still be marked kill + // unless it is a two-address operand. + if (li_->isRemoved(Kill) || hasRegisterDef(Kill, repReg)) + continue; + if (LI.liveAt(li_->getInstructionIndex(Kill) + InstrSlots::NUM)) + unsetRegisterKill(Kill, repReg); + } + RegNum = JoinedLIs.find_next(RegNum); + } + + DOUT << "*** Register mapping ***\n"; + for (int i = 0, e = r2rMap_.size(); i != e; ++i) + if (r2rMap_[i]) { + DOUT << " reg " << i << " -> "; + DEBUG(printRegName(r2rMap_[i])); + DOUT << "\n"; + } +} + +/// Return true if the two specified registers belong to different register +/// classes. The registers may be either phys or virt regs. +bool SimpleRegisterCoalescing::differingRegisterClasses(unsigned RegA, + unsigned RegB) const { + + // Get the register classes for the first reg. + if (MRegisterInfo::isPhysicalRegister(RegA)) { + assert(MRegisterInfo::isVirtualRegister(RegB) && + "Shouldn't consider two physregs!"); + return !mf_->getSSARegMap()->getRegClass(RegB)->contains(RegA); + } + + // Compare against the regclass for the second reg. + const TargetRegisterClass *RegClass = mf_->getSSARegMap()->getRegClass(RegA); + if (MRegisterInfo::isVirtualRegister(RegB)) + return RegClass != mf_->getSSARegMap()->getRegClass(RegB); + else + return !RegClass->contains(RegB); +} + +/// lastRegisterUse - Returns the last use of the specific register between +/// cycles Start and End. It also returns the use operand by reference. It +/// returns NULL if there are no uses. +MachineInstr * +SimpleRegisterCoalescing::lastRegisterUse(unsigned Start, unsigned End, unsigned Reg, + MachineOperand *&MOU) { + int e = (End-1) / InstrSlots::NUM * InstrSlots::NUM; + int s = Start; + while (e >= s) { + // Skip deleted instructions + MachineInstr *MI = li_->getInstructionFromIndex(e); + while ((e - InstrSlots::NUM) >= s && !MI) { + e -= InstrSlots::NUM; + MI = li_->getInstructionFromIndex(e); + } + if (e < s || MI == NULL) + return NULL; + + for (unsigned i = 0, NumOps = MI->getNumOperands(); i != NumOps; ++i) { + MachineOperand &MO = MI->getOperand(i); + if (MO.isReg() && MO.isUse() && MO.getReg() && + mri_->regsOverlap(rep(MO.getReg()), Reg)) { + MOU = &MO; + return MI; + } + } + + e -= InstrSlots::NUM; + } + + return NULL; +} + + +/// findDefOperand - Returns the MachineOperand that is a def of the specific +/// register. It returns NULL if the def is not found. +MachineOperand *SimpleRegisterCoalescing::findDefOperand(MachineInstr *MI, unsigned Reg) { + for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { + MachineOperand &MO = MI->getOperand(i); + if (MO.isReg() && MO.isDef() && + mri_->regsOverlap(rep(MO.getReg()), Reg)) + return &MO; + } + return NULL; +} + +/// unsetRegisterKill - Unset IsKill property of all uses of specific register +/// of the specific instruction. +void SimpleRegisterCoalescing::unsetRegisterKill(MachineInstr *MI, unsigned Reg) { + for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { + MachineOperand &MO = MI->getOperand(i); + if (MO.isReg() && MO.isUse() && MO.isKill() && MO.getReg() && + mri_->regsOverlap(rep(MO.getReg()), Reg)) + MO.unsetIsKill(); + } +} + +/// unsetRegisterKills - Unset IsKill property of all uses of specific register +/// between cycles Start and End. +void SimpleRegisterCoalescing::unsetRegisterKills(unsigned Start, unsigned End, + unsigned Reg) { + int e = (End-1) / InstrSlots::NUM * InstrSlots::NUM; + int s = Start; + while (e >= s) { + // Skip deleted instructions + MachineInstr *MI = li_->getInstructionFromIndex(e); + while ((e - InstrSlots::NUM) >= s && !MI) { + e -= InstrSlots::NUM; + MI = li_->getInstructionFromIndex(e); + } + if (e < s || MI == NULL) + return; + + for (unsigned i = 0, NumOps = MI->getNumOperands(); i != NumOps; ++i) { + MachineOperand &MO = MI->getOperand(i); + if (MO.isReg() && MO.isUse() && MO.isKill() && MO.getReg() && + mri_->regsOverlap(rep(MO.getReg()), Reg)) { + MO.unsetIsKill(); + } + } + + e -= InstrSlots::NUM; + } +} + +/// hasRegisterDef - True if the instruction defines the specific register. +/// +bool SimpleRegisterCoalescing::hasRegisterDef(MachineInstr *MI, unsigned Reg) { + for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { + MachineOperand &MO = MI->getOperand(i); + if (MO.isReg() && MO.isDef() && + mri_->regsOverlap(rep(MO.getReg()), Reg)) + return true; + } + return false; +} + +void SimpleRegisterCoalescing::printRegName(unsigned reg) const { + if (MRegisterInfo::isPhysicalRegister(reg)) + cerr << mri_->getName(reg); + else + cerr << "%reg" << reg; +} + +void SimpleRegisterCoalescing::releaseMemory() { + r2rMap_.clear(); + JoinedLIs.clear(); +} + +static bool isZeroLengthInterval(LiveInterval *li) { + for (LiveInterval::Ranges::const_iterator + i = li->ranges.begin(), e = li->ranges.end(); i != e; ++i) + if (i->end - i->start > LiveIntervals::InstrSlots::NUM) + return false; + return true; +} + +bool SimpleRegisterCoalescing::runOnMachineFunction(MachineFunction &fn) { + mf_ = &fn; + tm_ = &fn.getTarget(); + mri_ = tm_->getRegisterInfo(); + tii_ = tm_->getInstrInfo(); + li_ = &getAnalysis<LiveIntervals>(); + lv_ = &getAnalysis<LiveVariables>(); + + DOUT << "********** SIMPLE REGISTER COALESCING **********\n" + << "********** Function: " + << ((Value*)mf_->getFunction())->getName() << '\n'; + + allocatableRegs_ = mri_->getAllocatableSet(fn); + for (MRegisterInfo::regclass_iterator I = mri_->regclass_begin(), + E = mri_->regclass_end(); I != E; ++I) + allocatableRCRegs_.insert(std::make_pair(*I,mri_->getAllocatableSet(fn, *I))); + + r2rMap_.grow(mf_->getSSARegMap()->getLastVirtReg()); + + // Join (coallesce) intervals if requested. + if (EnableJoining) { + joinIntervals(); + DOUT << "********** INTERVALS POST JOINING **********\n"; + for (LiveIntervals::iterator I = li_->begin(), E = li_->end(); I != E; ++I) { + I->second.print(DOUT, mri_); + DOUT << "\n"; + } + } + + // perform a final pass over the instructions and compute spill + // weights, coalesce virtual registers and remove identity moves. + const LoopInfo &loopInfo = getAnalysis<LoopInfo>(); + + for (MachineFunction::iterator mbbi = mf_->begin(), mbbe = mf_->end(); + mbbi != mbbe; ++mbbi) { + MachineBasicBlock* mbb = mbbi; + unsigned loopDepth = loopInfo.getLoopDepth(mbb->getBasicBlock()); + + for (MachineBasicBlock::iterator mii = mbb->begin(), mie = mbb->end(); + mii != mie; ) { + // if the move will be an identity move delete it + unsigned srcReg, dstReg, RegRep; + if (tii_->isMoveInstr(*mii, srcReg, dstReg) && + (RegRep = rep(srcReg)) == rep(dstReg)) { + // remove from def list + LiveInterval &RegInt = li_->getOrCreateInterval(RegRep); + MachineOperand *MO = mii->findRegisterDefOperand(dstReg); + // If def of this move instruction is dead, remove its live range from + // the dstination register's live interval. + if (MO->isDead()) { + unsigned MoveIdx = li_->getDefIndex(li_->getInstructionIndex(mii)); + LiveInterval::iterator MLR = RegInt.FindLiveRangeContaining(MoveIdx); + RegInt.removeRange(MLR->start, MoveIdx+1); + if (RegInt.empty()) + li_->removeInterval(RegRep); + } + li_->RemoveMachineInstrFromMaps(mii); + mii = mbbi->erase(mii); + ++numPeep; + } else { + SmallSet<unsigned, 4> UniqueUses; + for (unsigned i = 0, e = mii->getNumOperands(); i != e; ++i) { + const MachineOperand &mop = mii->getOperand(i); + if (mop.isRegister() && mop.getReg() && + MRegisterInfo::isVirtualRegister(mop.getReg())) { + // replace register with representative register + unsigned reg = rep(mop.getReg()); + mii->getOperand(i).setReg(reg); + + // Multiple uses of reg by the same instruction. It should not + // contribute to spill weight again. + if (UniqueUses.count(reg) != 0) + continue; + LiveInterval &RegInt = li_->getInterval(reg); + float w = (mop.isUse()+mop.isDef()) * powf(10.0F, (float)loopDepth); + // If the definition instruction is re-materializable, its spill + // weight is half of what it would have been normally unless it's + // a load from fixed stack slot. + int Dummy; + if (RegInt.remat && !tii_->isLoadFromStackSlot(RegInt.remat, Dummy)) + w /= 2; + RegInt.weight += w; + UniqueUses.insert(reg); + } + } + ++mii; + } + } + } + + for (LiveIntervals::iterator I = li_->begin(), E = li_->end(); I != E; ++I) { + LiveInterval &LI = I->second; + if (MRegisterInfo::isVirtualRegister(LI.reg)) { + // If the live interval length is essentially zero, i.e. in every live + // range the use follows def immediately, it doesn't make sense to spill + // it and hope it will be easier to allocate for this li. + if (isZeroLengthInterval(&LI)) + LI.weight = HUGE_VALF; + + // Slightly prefer live interval that has been assigned a preferred reg. + if (LI.preference) + LI.weight *= 1.01F; + + // Divide the weight of the interval by its size. This encourages + // spilling of intervals that are large and have few uses, and + // discourages spilling of small intervals with many uses. + LI.weight /= LI.getSize(); + } + } + + DEBUG(dump()); + return true; +} + +/// print - Implement the dump method. +void SimpleRegisterCoalescing::print(std::ostream &O, const Module* m) const { + li_->print(O, m); +} |

