summaryrefslogtreecommitdiffstats
path: root/llvm/lib/CodeGen/SelectionDAG/SelectionDAG.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'llvm/lib/CodeGen/SelectionDAG/SelectionDAG.cpp')
-rw-r--r--llvm/lib/CodeGen/SelectionDAG/SelectionDAG.cpp55
1 files changed, 25 insertions, 30 deletions
diff --git a/llvm/lib/CodeGen/SelectionDAG/SelectionDAG.cpp b/llvm/lib/CodeGen/SelectionDAG/SelectionDAG.cpp
index cd8e6cd3f6d..28de92c6c88 100644
--- a/llvm/lib/CodeGen/SelectionDAG/SelectionDAG.cpp
+++ b/llvm/lib/CodeGen/SelectionDAG/SelectionDAG.cpp
@@ -2217,10 +2217,10 @@ void SelectionDAG::computeKnownBits(SDValue Op, KnownBits &Known,
// Also compute a conservative estimate for high known-0 bits.
// More trickiness is possible, but this is sufficient for the
// interesting case of alignment computation.
- unsigned TrailZ = Known.Zero.countTrailingOnes() +
- Known2.Zero.countTrailingOnes();
- unsigned LeadZ = std::max(Known.Zero.countLeadingOnes() +
- Known2.Zero.countLeadingOnes(),
+ unsigned TrailZ = Known.countMinTrailingZeros() +
+ Known2.countMinTrailingZeros();
+ unsigned LeadZ = std::max(Known.countMinLeadingZeros() +
+ Known2.countMinLeadingZeros(),
BitWidth) - BitWidth;
Known.resetAll();
@@ -2233,13 +2233,12 @@ void SelectionDAG::computeKnownBits(SDValue Op, KnownBits &Known,
// treat a udiv as a logical right shift by the power of 2 known to
// be less than the denominator.
computeKnownBits(Op.getOperand(0), Known2, DemandedElts, Depth + 1);
- unsigned LeadZ = Known2.Zero.countLeadingOnes();
+ unsigned LeadZ = Known2.countMinLeadingZeros();
computeKnownBits(Op.getOperand(1), Known2, DemandedElts, Depth + 1);
- unsigned RHSUnknownLeadingOnes = Known2.One.countLeadingZeros();
- if (RHSUnknownLeadingOnes != BitWidth)
- LeadZ = std::min(BitWidth,
- LeadZ + BitWidth - RHSUnknownLeadingOnes - 1);
+ unsigned RHSMaxLeadingZeros = Known2.countMaxLeadingZeros();
+ if (RHSMaxLeadingZeros != BitWidth)
+ LeadZ = std::min(BitWidth, LeadZ + BitWidth - RHSMaxLeadingZeros - 1);
Known.Zero.setHighBits(LeadZ);
break;
@@ -2359,7 +2358,7 @@ void SelectionDAG::computeKnownBits(SDValue Op, KnownBits &Known,
case ISD::CTTZ_ZERO_UNDEF: {
computeKnownBits(Op.getOperand(0), Known2, DemandedElts, Depth + 1);
// If we have a known 1, its position is our upper bound.
- unsigned PossibleTZ = Known2.One.countTrailingZeros();
+ unsigned PossibleTZ = Known2.countMaxTrailingZeros();
unsigned LowBits = Log2_32(PossibleTZ) + 1;
Known.Zero.setBitsFrom(LowBits);
break;
@@ -2368,7 +2367,7 @@ void SelectionDAG::computeKnownBits(SDValue Op, KnownBits &Known,
case ISD::CTLZ_ZERO_UNDEF: {
computeKnownBits(Op.getOperand(0), Known2, DemandedElts, Depth + 1);
// If we have a known 1, its position is our upper bound.
- unsigned PossibleLZ = Known2.One.countLeadingZeros();
+ unsigned PossibleLZ = Known2.countMaxLeadingZeros();
unsigned LowBits = Log2_32(PossibleLZ) + 1;
Known.Zero.setBitsFrom(LowBits);
break;
@@ -2376,7 +2375,7 @@ void SelectionDAG::computeKnownBits(SDValue Op, KnownBits &Known,
case ISD::CTPOP: {
computeKnownBits(Op.getOperand(0), Known2, DemandedElts, Depth + 1);
// If we know some of the bits are zero, they can't be one.
- unsigned PossibleOnes = BitWidth - Known2.Zero.countPopulation();
+ unsigned PossibleOnes = Known2.countMaxPopulation();
Known.Zero.setBitsFrom(Log2_32(PossibleOnes) + 1);
break;
}
@@ -2493,13 +2492,12 @@ void SelectionDAG::computeKnownBits(SDValue Op, KnownBits &Known,
// going to be 0 in the result. Both addition and complement operations
// preserve the low zero bits.
computeKnownBits(Op.getOperand(0), Known2, DemandedElts, Depth + 1);
- unsigned KnownZeroLow = Known2.Zero.countTrailingOnes();
+ unsigned KnownZeroLow = Known2.countMinTrailingZeros();
if (KnownZeroLow == 0)
break;
computeKnownBits(Op.getOperand(1), Known2, DemandedElts, Depth + 1);
- KnownZeroLow = std::min(KnownZeroLow,
- Known2.Zero.countTrailingOnes());
+ KnownZeroLow = std::min(KnownZeroLow, Known2.countMinTrailingZeros());
Known.Zero.setLowBits(KnownZeroLow);
break;
}
@@ -2526,15 +2524,13 @@ void SelectionDAG::computeKnownBits(SDValue Op, KnownBits &Known,
// and the other has the top 8 bits clear, we know the top 7 bits of the
// output must be clear.
computeKnownBits(Op.getOperand(0), Known2, DemandedElts, Depth + 1);
- unsigned KnownZeroHigh = Known2.Zero.countLeadingOnes();
- unsigned KnownZeroLow = Known2.Zero.countTrailingOnes();
+ unsigned KnownZeroHigh = Known2.countMinLeadingZeros();
+ unsigned KnownZeroLow = Known2.countMinTrailingZeros();
computeKnownBits(Op.getOperand(1), Known2, DemandedElts,
Depth + 1);
- KnownZeroHigh = std::min(KnownZeroHigh,
- Known2.Zero.countLeadingOnes());
- KnownZeroLow = std::min(KnownZeroLow,
- Known2.Zero.countTrailingOnes());
+ KnownZeroHigh = std::min(KnownZeroHigh, Known2.countMinLeadingZeros());
+ KnownZeroLow = std::min(KnownZeroLow, Known2.countMinTrailingZeros());
if (Opcode == ISD::ADDE || Opcode == ISD::ADDCARRY) {
// With ADDE and ADDCARRY, a carry bit may be added in, so we can only
@@ -2594,8 +2590,8 @@ void SelectionDAG::computeKnownBits(SDValue Op, KnownBits &Known,
computeKnownBits(Op.getOperand(0), Known, DemandedElts, Depth + 1);
computeKnownBits(Op.getOperand(1), Known2, DemandedElts, Depth + 1);
- uint32_t Leaders = std::max(Known.Zero.countLeadingOnes(),
- Known2.Zero.countLeadingOnes());
+ uint32_t Leaders =
+ std::max(Known.countMinLeadingZeros(), Known2.countMinLeadingZeros());
Known.resetAll();
Known.Zero.setHighBits(Leaders);
break;
@@ -2711,8 +2707,8 @@ void SelectionDAG::computeKnownBits(SDValue Op, KnownBits &Known,
// UMIN - we know that the result will have the maximum of the
// known zero leading bits of the inputs.
- unsigned LeadZero = Known.Zero.countLeadingOnes();
- LeadZero = std::max(LeadZero, Known2.Zero.countLeadingOnes());
+ unsigned LeadZero = Known.countMinLeadingZeros();
+ LeadZero = std::max(LeadZero, Known2.countMinLeadingZeros());
Known.Zero &= Known2.Zero;
Known.One &= Known2.One;
@@ -2726,8 +2722,8 @@ void SelectionDAG::computeKnownBits(SDValue Op, KnownBits &Known,
// UMAX - we know that the result will have the maximum of the
// known one leading bits of the inputs.
- unsigned LeadOne = Known.One.countLeadingOnes();
- LeadOne = std::max(LeadOne, Known2.One.countLeadingOnes());
+ unsigned LeadOne = Known.countMinLeadingOnes();
+ LeadOne = std::max(LeadOne, Known2.countMinLeadingOnes());
Known.Zero &= Known2.Zero;
Known.One &= Known2.One;
@@ -2843,8 +2839,7 @@ bool SelectionDAG::isKnownToBeAPowerOfTwo(SDValue Val) const {
// Fall back to computeKnownBits to catch other known cases.
KnownBits Known;
computeKnownBits(Val, Known);
- return (Known.Zero.countPopulation() == BitWidth - 1) &&
- (Known.One.countPopulation() == 1);
+ return (Known.countMaxPopulation() == 1) && (Known.countMinPopulation() == 1);
}
unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const {
@@ -7520,7 +7515,7 @@ unsigned SelectionDAG::InferPtrAlignment(SDValue Ptr) const {
KnownBits Known(PtrWidth);
llvm::computeKnownBits(const_cast<GlobalValue *>(GV), Known,
getDataLayout());
- unsigned AlignBits = Known.Zero.countTrailingOnes();
+ unsigned AlignBits = Known.countMinTrailingZeros();
unsigned Align = AlignBits ? 1 << std::min(31U, AlignBits) : 0;
if (Align)
return MinAlign(Align, GVOffset);
OpenPOWER on IntegriCloud