diff options
Diffstat (limited to 'llvm/lib/CodeGen/SelectionDAG/SelectionDAG.cpp')
-rw-r--r-- | llvm/lib/CodeGen/SelectionDAG/SelectionDAG.cpp | 55 |
1 files changed, 25 insertions, 30 deletions
diff --git a/llvm/lib/CodeGen/SelectionDAG/SelectionDAG.cpp b/llvm/lib/CodeGen/SelectionDAG/SelectionDAG.cpp index cd8e6cd3f6d..28de92c6c88 100644 --- a/llvm/lib/CodeGen/SelectionDAG/SelectionDAG.cpp +++ b/llvm/lib/CodeGen/SelectionDAG/SelectionDAG.cpp @@ -2217,10 +2217,10 @@ void SelectionDAG::computeKnownBits(SDValue Op, KnownBits &Known, // Also compute a conservative estimate for high known-0 bits. // More trickiness is possible, but this is sufficient for the // interesting case of alignment computation. - unsigned TrailZ = Known.Zero.countTrailingOnes() + - Known2.Zero.countTrailingOnes(); - unsigned LeadZ = std::max(Known.Zero.countLeadingOnes() + - Known2.Zero.countLeadingOnes(), + unsigned TrailZ = Known.countMinTrailingZeros() + + Known2.countMinTrailingZeros(); + unsigned LeadZ = std::max(Known.countMinLeadingZeros() + + Known2.countMinLeadingZeros(), BitWidth) - BitWidth; Known.resetAll(); @@ -2233,13 +2233,12 @@ void SelectionDAG::computeKnownBits(SDValue Op, KnownBits &Known, // treat a udiv as a logical right shift by the power of 2 known to // be less than the denominator. computeKnownBits(Op.getOperand(0), Known2, DemandedElts, Depth + 1); - unsigned LeadZ = Known2.Zero.countLeadingOnes(); + unsigned LeadZ = Known2.countMinLeadingZeros(); computeKnownBits(Op.getOperand(1), Known2, DemandedElts, Depth + 1); - unsigned RHSUnknownLeadingOnes = Known2.One.countLeadingZeros(); - if (RHSUnknownLeadingOnes != BitWidth) - LeadZ = std::min(BitWidth, - LeadZ + BitWidth - RHSUnknownLeadingOnes - 1); + unsigned RHSMaxLeadingZeros = Known2.countMaxLeadingZeros(); + if (RHSMaxLeadingZeros != BitWidth) + LeadZ = std::min(BitWidth, LeadZ + BitWidth - RHSMaxLeadingZeros - 1); Known.Zero.setHighBits(LeadZ); break; @@ -2359,7 +2358,7 @@ void SelectionDAG::computeKnownBits(SDValue Op, KnownBits &Known, case ISD::CTTZ_ZERO_UNDEF: { computeKnownBits(Op.getOperand(0), Known2, DemandedElts, Depth + 1); // If we have a known 1, its position is our upper bound. - unsigned PossibleTZ = Known2.One.countTrailingZeros(); + unsigned PossibleTZ = Known2.countMaxTrailingZeros(); unsigned LowBits = Log2_32(PossibleTZ) + 1; Known.Zero.setBitsFrom(LowBits); break; @@ -2368,7 +2367,7 @@ void SelectionDAG::computeKnownBits(SDValue Op, KnownBits &Known, case ISD::CTLZ_ZERO_UNDEF: { computeKnownBits(Op.getOperand(0), Known2, DemandedElts, Depth + 1); // If we have a known 1, its position is our upper bound. - unsigned PossibleLZ = Known2.One.countLeadingZeros(); + unsigned PossibleLZ = Known2.countMaxLeadingZeros(); unsigned LowBits = Log2_32(PossibleLZ) + 1; Known.Zero.setBitsFrom(LowBits); break; @@ -2376,7 +2375,7 @@ void SelectionDAG::computeKnownBits(SDValue Op, KnownBits &Known, case ISD::CTPOP: { computeKnownBits(Op.getOperand(0), Known2, DemandedElts, Depth + 1); // If we know some of the bits are zero, they can't be one. - unsigned PossibleOnes = BitWidth - Known2.Zero.countPopulation(); + unsigned PossibleOnes = Known2.countMaxPopulation(); Known.Zero.setBitsFrom(Log2_32(PossibleOnes) + 1); break; } @@ -2493,13 +2492,12 @@ void SelectionDAG::computeKnownBits(SDValue Op, KnownBits &Known, // going to be 0 in the result. Both addition and complement operations // preserve the low zero bits. computeKnownBits(Op.getOperand(0), Known2, DemandedElts, Depth + 1); - unsigned KnownZeroLow = Known2.Zero.countTrailingOnes(); + unsigned KnownZeroLow = Known2.countMinTrailingZeros(); if (KnownZeroLow == 0) break; computeKnownBits(Op.getOperand(1), Known2, DemandedElts, Depth + 1); - KnownZeroLow = std::min(KnownZeroLow, - Known2.Zero.countTrailingOnes()); + KnownZeroLow = std::min(KnownZeroLow, Known2.countMinTrailingZeros()); Known.Zero.setLowBits(KnownZeroLow); break; } @@ -2526,15 +2524,13 @@ void SelectionDAG::computeKnownBits(SDValue Op, KnownBits &Known, // and the other has the top 8 bits clear, we know the top 7 bits of the // output must be clear. computeKnownBits(Op.getOperand(0), Known2, DemandedElts, Depth + 1); - unsigned KnownZeroHigh = Known2.Zero.countLeadingOnes(); - unsigned KnownZeroLow = Known2.Zero.countTrailingOnes(); + unsigned KnownZeroHigh = Known2.countMinLeadingZeros(); + unsigned KnownZeroLow = Known2.countMinTrailingZeros(); computeKnownBits(Op.getOperand(1), Known2, DemandedElts, Depth + 1); - KnownZeroHigh = std::min(KnownZeroHigh, - Known2.Zero.countLeadingOnes()); - KnownZeroLow = std::min(KnownZeroLow, - Known2.Zero.countTrailingOnes()); + KnownZeroHigh = std::min(KnownZeroHigh, Known2.countMinLeadingZeros()); + KnownZeroLow = std::min(KnownZeroLow, Known2.countMinTrailingZeros()); if (Opcode == ISD::ADDE || Opcode == ISD::ADDCARRY) { // With ADDE and ADDCARRY, a carry bit may be added in, so we can only @@ -2594,8 +2590,8 @@ void SelectionDAG::computeKnownBits(SDValue Op, KnownBits &Known, computeKnownBits(Op.getOperand(0), Known, DemandedElts, Depth + 1); computeKnownBits(Op.getOperand(1), Known2, DemandedElts, Depth + 1); - uint32_t Leaders = std::max(Known.Zero.countLeadingOnes(), - Known2.Zero.countLeadingOnes()); + uint32_t Leaders = + std::max(Known.countMinLeadingZeros(), Known2.countMinLeadingZeros()); Known.resetAll(); Known.Zero.setHighBits(Leaders); break; @@ -2711,8 +2707,8 @@ void SelectionDAG::computeKnownBits(SDValue Op, KnownBits &Known, // UMIN - we know that the result will have the maximum of the // known zero leading bits of the inputs. - unsigned LeadZero = Known.Zero.countLeadingOnes(); - LeadZero = std::max(LeadZero, Known2.Zero.countLeadingOnes()); + unsigned LeadZero = Known.countMinLeadingZeros(); + LeadZero = std::max(LeadZero, Known2.countMinLeadingZeros()); Known.Zero &= Known2.Zero; Known.One &= Known2.One; @@ -2726,8 +2722,8 @@ void SelectionDAG::computeKnownBits(SDValue Op, KnownBits &Known, // UMAX - we know that the result will have the maximum of the // known one leading bits of the inputs. - unsigned LeadOne = Known.One.countLeadingOnes(); - LeadOne = std::max(LeadOne, Known2.One.countLeadingOnes()); + unsigned LeadOne = Known.countMinLeadingOnes(); + LeadOne = std::max(LeadOne, Known2.countMinLeadingOnes()); Known.Zero &= Known2.Zero; Known.One &= Known2.One; @@ -2843,8 +2839,7 @@ bool SelectionDAG::isKnownToBeAPowerOfTwo(SDValue Val) const { // Fall back to computeKnownBits to catch other known cases. KnownBits Known; computeKnownBits(Val, Known); - return (Known.Zero.countPopulation() == BitWidth - 1) && - (Known.One.countPopulation() == 1); + return (Known.countMaxPopulation() == 1) && (Known.countMinPopulation() == 1); } unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const { @@ -7520,7 +7515,7 @@ unsigned SelectionDAG::InferPtrAlignment(SDValue Ptr) const { KnownBits Known(PtrWidth); llvm::computeKnownBits(const_cast<GlobalValue *>(GV), Known, getDataLayout()); - unsigned AlignBits = Known.Zero.countTrailingOnes(); + unsigned AlignBits = Known.countMinTrailingZeros(); unsigned Align = AlignBits ? 1 << std::min(31U, AlignBits) : 0; if (Align) return MinAlign(Align, GVOffset); |