summaryrefslogtreecommitdiffstats
path: root/llvm/lib/CodeGen/LiveIntervals.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'llvm/lib/CodeGen/LiveIntervals.cpp')
-rw-r--r--llvm/lib/CodeGen/LiveIntervals.cpp1598
1 files changed, 1598 insertions, 0 deletions
diff --git a/llvm/lib/CodeGen/LiveIntervals.cpp b/llvm/lib/CodeGen/LiveIntervals.cpp
new file mode 100644
index 00000000000..79fdba7e062
--- /dev/null
+++ b/llvm/lib/CodeGen/LiveIntervals.cpp
@@ -0,0 +1,1598 @@
+//===- LiveIntervals.cpp - Live Interval Analysis -------------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+/// \file This file implements the LiveInterval analysis pass which is used
+/// by the Linear Scan Register allocator. This pass linearizes the
+/// basic blocks of the function in DFS order and computes live intervals for
+/// each virtual and physical register.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/CodeGen/LiveIntervals.h"
+#include "LiveRangeCalc.h"
+#include "llvm/ADT/ArrayRef.h"
+#include "llvm/ADT/DepthFirstIterator.h"
+#include "llvm/ADT/SmallPtrSet.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/ADT/iterator_range.h"
+#include "llvm/Analysis/AliasAnalysis.h"
+#include "llvm/CodeGen/LiveInterval.h"
+#include "llvm/CodeGen/LiveVariables.h"
+#include "llvm/CodeGen/MachineBasicBlock.h"
+#include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
+#include "llvm/CodeGen/MachineDominators.h"
+#include "llvm/CodeGen/MachineFunction.h"
+#include "llvm/CodeGen/MachineInstr.h"
+#include "llvm/CodeGen/MachineInstrBundle.h"
+#include "llvm/CodeGen/MachineOperand.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/CodeGen/Passes.h"
+#include "llvm/CodeGen/SlotIndexes.h"
+#include "llvm/CodeGen/TargetRegisterInfo.h"
+#include "llvm/CodeGen/TargetSubtargetInfo.h"
+#include "llvm/CodeGen/VirtRegMap.h"
+#include "llvm/MC/LaneBitmask.h"
+#include "llvm/MC/MCRegisterInfo.h"
+#include "llvm/Pass.h"
+#include "llvm/Support/BlockFrequency.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/Compiler.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/MathExtras.h"
+#include "llvm/Support/raw_ostream.h"
+#include <algorithm>
+#include <cassert>
+#include <cstdint>
+#include <iterator>
+#include <tuple>
+#include <utility>
+
+using namespace llvm;
+
+#define DEBUG_TYPE "regalloc"
+
+char LiveIntervals::ID = 0;
+char &llvm::LiveIntervalsID = LiveIntervals::ID;
+INITIALIZE_PASS_BEGIN(LiveIntervals, "liveintervals",
+ "Live Interval Analysis", false, false)
+INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
+INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
+INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
+INITIALIZE_PASS_END(LiveIntervals, "liveintervals",
+ "Live Interval Analysis", false, false)
+
+#ifndef NDEBUG
+static cl::opt<bool> EnablePrecomputePhysRegs(
+ "precompute-phys-liveness", cl::Hidden,
+ cl::desc("Eagerly compute live intervals for all physreg units."));
+#else
+static bool EnablePrecomputePhysRegs = false;
+#endif // NDEBUG
+
+namespace llvm {
+
+cl::opt<bool> UseSegmentSetForPhysRegs(
+ "use-segment-set-for-physregs", cl::Hidden, cl::init(true),
+ cl::desc(
+ "Use segment set for the computation of the live ranges of physregs."));
+
+} // end namespace llvm
+
+void LiveIntervals::getAnalysisUsage(AnalysisUsage &AU) const {
+ AU.setPreservesCFG();
+ AU.addRequired<AAResultsWrapperPass>();
+ AU.addPreserved<AAResultsWrapperPass>();
+ AU.addPreserved<LiveVariables>();
+ AU.addPreservedID(MachineLoopInfoID);
+ AU.addRequiredTransitiveID(MachineDominatorsID);
+ AU.addPreservedID(MachineDominatorsID);
+ AU.addPreserved<SlotIndexes>();
+ AU.addRequiredTransitive<SlotIndexes>();
+ MachineFunctionPass::getAnalysisUsage(AU);
+}
+
+LiveIntervals::LiveIntervals() : MachineFunctionPass(ID) {
+ initializeLiveIntervalsPass(*PassRegistry::getPassRegistry());
+}
+
+LiveIntervals::~LiveIntervals() {
+ delete LRCalc;
+}
+
+void LiveIntervals::releaseMemory() {
+ // Free the live intervals themselves.
+ for (unsigned i = 0, e = VirtRegIntervals.size(); i != e; ++i)
+ delete VirtRegIntervals[TargetRegisterInfo::index2VirtReg(i)];
+ VirtRegIntervals.clear();
+ RegMaskSlots.clear();
+ RegMaskBits.clear();
+ RegMaskBlocks.clear();
+
+ for (LiveRange *LR : RegUnitRanges)
+ delete LR;
+ RegUnitRanges.clear();
+
+ // Release VNInfo memory regions, VNInfo objects don't need to be dtor'd.
+ VNInfoAllocator.Reset();
+}
+
+bool LiveIntervals::runOnMachineFunction(MachineFunction &fn) {
+ MF = &fn;
+ MRI = &MF->getRegInfo();
+ TRI = MF->getSubtarget().getRegisterInfo();
+ TII = MF->getSubtarget().getInstrInfo();
+ AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
+ Indexes = &getAnalysis<SlotIndexes>();
+ DomTree = &getAnalysis<MachineDominatorTree>();
+
+ if (!LRCalc)
+ LRCalc = new LiveRangeCalc();
+
+ // Allocate space for all virtual registers.
+ VirtRegIntervals.resize(MRI->getNumVirtRegs());
+
+ computeVirtRegs();
+ computeRegMasks();
+ computeLiveInRegUnits();
+
+ if (EnablePrecomputePhysRegs) {
+ // For stress testing, precompute live ranges of all physical register
+ // units, including reserved registers.
+ for (unsigned i = 0, e = TRI->getNumRegUnits(); i != e; ++i)
+ getRegUnit(i);
+ }
+ DEBUG(dump());
+ return true;
+}
+
+void LiveIntervals::print(raw_ostream &OS, const Module* ) const {
+ OS << "********** INTERVALS **********\n";
+
+ // Dump the regunits.
+ for (unsigned Unit = 0, UnitE = RegUnitRanges.size(); Unit != UnitE; ++Unit)
+ if (LiveRange *LR = RegUnitRanges[Unit])
+ OS << printRegUnit(Unit, TRI) << ' ' << *LR << '\n';
+
+ // Dump the virtregs.
+ for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
+ unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
+ if (hasInterval(Reg))
+ OS << getInterval(Reg) << '\n';
+ }
+
+ OS << "RegMasks:";
+ for (SlotIndex Idx : RegMaskSlots)
+ OS << ' ' << Idx;
+ OS << '\n';
+
+ printInstrs(OS);
+}
+
+void LiveIntervals::printInstrs(raw_ostream &OS) const {
+ OS << "********** MACHINEINSTRS **********\n";
+ MF->print(OS, Indexes);
+}
+
+#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
+LLVM_DUMP_METHOD void LiveIntervals::dumpInstrs() const {
+ printInstrs(dbgs());
+}
+#endif
+
+LiveInterval* LiveIntervals::createInterval(unsigned reg) {
+ float Weight = TargetRegisterInfo::isPhysicalRegister(reg) ? huge_valf : 0.0F;
+ return new LiveInterval(reg, Weight);
+}
+
+/// Compute the live interval of a virtual register, based on defs and uses.
+void LiveIntervals::computeVirtRegInterval(LiveInterval &LI) {
+ assert(LRCalc && "LRCalc not initialized.");
+ assert(LI.empty() && "Should only compute empty intervals.");
+ LRCalc->reset(MF, getSlotIndexes(), DomTree, &getVNInfoAllocator());
+ LRCalc->calculate(LI, MRI->shouldTrackSubRegLiveness(LI.reg));
+ computeDeadValues(LI, nullptr);
+}
+
+void LiveIntervals::computeVirtRegs() {
+ for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
+ unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
+ if (MRI->reg_nodbg_empty(Reg))
+ continue;
+ createAndComputeVirtRegInterval(Reg);
+ }
+}
+
+void LiveIntervals::computeRegMasks() {
+ RegMaskBlocks.resize(MF->getNumBlockIDs());
+
+ // Find all instructions with regmask operands.
+ for (const MachineBasicBlock &MBB : *MF) {
+ std::pair<unsigned, unsigned> &RMB = RegMaskBlocks[MBB.getNumber()];
+ RMB.first = RegMaskSlots.size();
+
+ // Some block starts, such as EH funclets, create masks.
+ if (const uint32_t *Mask = MBB.getBeginClobberMask(TRI)) {
+ RegMaskSlots.push_back(Indexes->getMBBStartIdx(&MBB));
+ RegMaskBits.push_back(Mask);
+ }
+
+ for (const MachineInstr &MI : MBB) {
+ for (const MachineOperand &MO : MI.operands()) {
+ if (!MO.isRegMask())
+ continue;
+ RegMaskSlots.push_back(Indexes->getInstructionIndex(MI).getRegSlot());
+ RegMaskBits.push_back(MO.getRegMask());
+ }
+ }
+
+ // Some block ends, such as funclet returns, create masks. Put the mask on
+ // the last instruction of the block, because MBB slot index intervals are
+ // half-open.
+ if (const uint32_t *Mask = MBB.getEndClobberMask(TRI)) {
+ assert(!MBB.empty() && "empty return block?");
+ RegMaskSlots.push_back(
+ Indexes->getInstructionIndex(MBB.back()).getRegSlot());
+ RegMaskBits.push_back(Mask);
+ }
+
+ // Compute the number of register mask instructions in this block.
+ RMB.second = RegMaskSlots.size() - RMB.first;
+ }
+}
+
+//===----------------------------------------------------------------------===//
+// Register Unit Liveness
+//===----------------------------------------------------------------------===//
+//
+// Fixed interference typically comes from ABI boundaries: Function arguments
+// and return values are passed in fixed registers, and so are exception
+// pointers entering landing pads. Certain instructions require values to be
+// present in specific registers. That is also represented through fixed
+// interference.
+//
+
+/// Compute the live range of a register unit, based on the uses and defs of
+/// aliasing registers. The range should be empty, or contain only dead
+/// phi-defs from ABI blocks.
+void LiveIntervals::computeRegUnitRange(LiveRange &LR, unsigned Unit) {
+ assert(LRCalc && "LRCalc not initialized.");
+ LRCalc->reset(MF, getSlotIndexes(), DomTree, &getVNInfoAllocator());
+
+ // The physregs aliasing Unit are the roots and their super-registers.
+ // Create all values as dead defs before extending to uses. Note that roots
+ // may share super-registers. That's OK because createDeadDefs() is
+ // idempotent. It is very rare for a register unit to have multiple roots, so
+ // uniquing super-registers is probably not worthwhile.
+ bool IsReserved = false;
+ for (MCRegUnitRootIterator Root(Unit, TRI); Root.isValid(); ++Root) {
+ bool IsRootReserved = true;
+ for (MCSuperRegIterator Super(*Root, TRI, /*IncludeSelf=*/true);
+ Super.isValid(); ++Super) {
+ unsigned Reg = *Super;
+ if (!MRI->reg_empty(Reg))
+ LRCalc->createDeadDefs(LR, Reg);
+ // A register unit is considered reserved if all its roots and all their
+ // super registers are reserved.
+ if (!MRI->isReserved(Reg))
+ IsRootReserved = false;
+ }
+ IsReserved |= IsRootReserved;
+ }
+ assert(IsReserved == MRI->isReservedRegUnit(Unit) &&
+ "reserved computation mismatch");
+
+ // Now extend LR to reach all uses.
+ // Ignore uses of reserved registers. We only track defs of those.
+ if (!IsReserved) {
+ for (MCRegUnitRootIterator Root(Unit, TRI); Root.isValid(); ++Root) {
+ for (MCSuperRegIterator Super(*Root, TRI, /*IncludeSelf=*/true);
+ Super.isValid(); ++Super) {
+ unsigned Reg = *Super;
+ if (!MRI->reg_empty(Reg))
+ LRCalc->extendToUses(LR, Reg);
+ }
+ }
+ }
+
+ // Flush the segment set to the segment vector.
+ if (UseSegmentSetForPhysRegs)
+ LR.flushSegmentSet();
+}
+
+/// Precompute the live ranges of any register units that are live-in to an ABI
+/// block somewhere. Register values can appear without a corresponding def when
+/// entering the entry block or a landing pad.
+void LiveIntervals::computeLiveInRegUnits() {
+ RegUnitRanges.resize(TRI->getNumRegUnits());
+ DEBUG(dbgs() << "Computing live-in reg-units in ABI blocks.\n");
+
+ // Keep track of the live range sets allocated.
+ SmallVector<unsigned, 8> NewRanges;
+
+ // Check all basic blocks for live-ins.
+ for (const MachineBasicBlock &MBB : *MF) {
+ // We only care about ABI blocks: Entry + landing pads.
+ if ((&MBB != &MF->front() && !MBB.isEHPad()) || MBB.livein_empty())
+ continue;
+
+ // Create phi-defs at Begin for all live-in registers.
+ SlotIndex Begin = Indexes->getMBBStartIdx(&MBB);
+ DEBUG(dbgs() << Begin << "\t" << printMBBReference(MBB));
+ for (const auto &LI : MBB.liveins()) {
+ for (MCRegUnitIterator Units(LI.PhysReg, TRI); Units.isValid(); ++Units) {
+ unsigned Unit = *Units;
+ LiveRange *LR = RegUnitRanges[Unit];
+ if (!LR) {
+ // Use segment set to speed-up initial computation of the live range.
+ LR = RegUnitRanges[Unit] = new LiveRange(UseSegmentSetForPhysRegs);
+ NewRanges.push_back(Unit);
+ }
+ VNInfo *VNI = LR->createDeadDef(Begin, getVNInfoAllocator());
+ (void)VNI;
+ DEBUG(dbgs() << ' ' << printRegUnit(Unit, TRI) << '#' << VNI->id);
+ }
+ }
+ DEBUG(dbgs() << '\n');
+ }
+ DEBUG(dbgs() << "Created " << NewRanges.size() << " new intervals.\n");
+
+ // Compute the 'normal' part of the ranges.
+ for (unsigned Unit : NewRanges)
+ computeRegUnitRange(*RegUnitRanges[Unit], Unit);
+}
+
+static void createSegmentsForValues(LiveRange &LR,
+ iterator_range<LiveInterval::vni_iterator> VNIs) {
+ for (VNInfo *VNI : VNIs) {
+ if (VNI->isUnused())
+ continue;
+ SlotIndex Def = VNI->def;
+ LR.addSegment(LiveRange::Segment(Def, Def.getDeadSlot(), VNI));
+ }
+}
+
+using ShrinkToUsesWorkList = SmallVector<std::pair<SlotIndex, VNInfo*>, 16>;
+
+static void extendSegmentsToUses(LiveRange &LR, const SlotIndexes &Indexes,
+ ShrinkToUsesWorkList &WorkList,
+ const LiveRange &OldRange) {
+ // Keep track of the PHIs that are in use.
+ SmallPtrSet<VNInfo*, 8> UsedPHIs;
+ // Blocks that have already been added to WorkList as live-out.
+ SmallPtrSet<const MachineBasicBlock*, 16> LiveOut;
+
+ // Extend intervals to reach all uses in WorkList.
+ while (!WorkList.empty()) {
+ SlotIndex Idx = WorkList.back().first;
+ VNInfo *VNI = WorkList.back().second;
+ WorkList.pop_back();
+ const MachineBasicBlock *MBB = Indexes.getMBBFromIndex(Idx.getPrevSlot());
+ SlotIndex BlockStart = Indexes.getMBBStartIdx(MBB);
+
+ // Extend the live range for VNI to be live at Idx.
+ if (VNInfo *ExtVNI = LR.extendInBlock(BlockStart, Idx)) {
+ assert(ExtVNI == VNI && "Unexpected existing value number");
+ (void)ExtVNI;
+ // Is this a PHIDef we haven't seen before?
+ if (!VNI->isPHIDef() || VNI->def != BlockStart ||
+ !UsedPHIs.insert(VNI).second)
+ continue;
+ // The PHI is live, make sure the predecessors are live-out.
+ for (const MachineBasicBlock *Pred : MBB->predecessors()) {
+ if (!LiveOut.insert(Pred).second)
+ continue;
+ SlotIndex Stop = Indexes.getMBBEndIdx(Pred);
+ // A predecessor is not required to have a live-out value for a PHI.
+ if (VNInfo *PVNI = OldRange.getVNInfoBefore(Stop))
+ WorkList.push_back(std::make_pair(Stop, PVNI));
+ }
+ continue;
+ }
+
+ // VNI is live-in to MBB.
+ DEBUG(dbgs() << " live-in at " << BlockStart << '\n');
+ LR.addSegment(LiveRange::Segment(BlockStart, Idx, VNI));
+
+ // Make sure VNI is live-out from the predecessors.
+ for (const MachineBasicBlock *Pred : MBB->predecessors()) {
+ if (!LiveOut.insert(Pred).second)
+ continue;
+ SlotIndex Stop = Indexes.getMBBEndIdx(Pred);
+ assert(OldRange.getVNInfoBefore(Stop) == VNI &&
+ "Wrong value out of predecessor");
+ WorkList.push_back(std::make_pair(Stop, VNI));
+ }
+ }
+}
+
+bool LiveIntervals::shrinkToUses(LiveInterval *li,
+ SmallVectorImpl<MachineInstr*> *dead) {
+ DEBUG(dbgs() << "Shrink: " << *li << '\n');
+ assert(TargetRegisterInfo::isVirtualRegister(li->reg)
+ && "Can only shrink virtual registers");
+
+ // Shrink subregister live ranges.
+ bool NeedsCleanup = false;
+ for (LiveInterval::SubRange &S : li->subranges()) {
+ shrinkToUses(S, li->reg);
+ if (S.empty())
+ NeedsCleanup = true;
+ }
+ if (NeedsCleanup)
+ li->removeEmptySubRanges();
+
+ // Find all the values used, including PHI kills.
+ ShrinkToUsesWorkList WorkList;
+
+ // Visit all instructions reading li->reg.
+ unsigned Reg = li->reg;
+ for (MachineInstr &UseMI : MRI->reg_instructions(Reg)) {
+ if (UseMI.isDebugValue() || !UseMI.readsVirtualRegister(Reg))
+ continue;
+ SlotIndex Idx = getInstructionIndex(UseMI).getRegSlot();
+ LiveQueryResult LRQ = li->Query(Idx);
+ VNInfo *VNI = LRQ.valueIn();
+ if (!VNI) {
+ // This shouldn't happen: readsVirtualRegister returns true, but there is
+ // no live value. It is likely caused by a target getting <undef> flags
+ // wrong.
+ DEBUG(dbgs() << Idx << '\t' << UseMI
+ << "Warning: Instr claims to read non-existent value in "
+ << *li << '\n');
+ continue;
+ }
+ // Special case: An early-clobber tied operand reads and writes the
+ // register one slot early.
+ if (VNInfo *DefVNI = LRQ.valueDefined())
+ Idx = DefVNI->def;
+
+ WorkList.push_back(std::make_pair(Idx, VNI));
+ }
+
+ // Create new live ranges with only minimal live segments per def.
+ LiveRange NewLR;
+ createSegmentsForValues(NewLR, make_range(li->vni_begin(), li->vni_end()));
+ extendSegmentsToUses(NewLR, *Indexes, WorkList, *li);
+
+ // Move the trimmed segments back.
+ li->segments.swap(NewLR.segments);
+
+ // Handle dead values.
+ bool CanSeparate = computeDeadValues(*li, dead);
+ DEBUG(dbgs() << "Shrunk: " << *li << '\n');
+ return CanSeparate;
+}
+
+bool LiveIntervals::computeDeadValues(LiveInterval &LI,
+ SmallVectorImpl<MachineInstr*> *dead) {
+ bool MayHaveSplitComponents = false;
+ for (VNInfo *VNI : LI.valnos) {
+ if (VNI->isUnused())
+ continue;
+ SlotIndex Def = VNI->def;
+ LiveRange::iterator I = LI.FindSegmentContaining(Def);
+ assert(I != LI.end() && "Missing segment for VNI");
+
+ // Is the register live before? Otherwise we may have to add a read-undef
+ // flag for subregister defs.
+ unsigned VReg = LI.reg;
+ if (MRI->shouldTrackSubRegLiveness(VReg)) {
+ if ((I == LI.begin() || std::prev(I)->end < Def) && !VNI->isPHIDef()) {
+ MachineInstr *MI = getInstructionFromIndex(Def);
+ MI->setRegisterDefReadUndef(VReg);
+ }
+ }
+
+ if (I->end != Def.getDeadSlot())
+ continue;
+ if (VNI->isPHIDef()) {
+ // This is a dead PHI. Remove it.
+ VNI->markUnused();
+ LI.removeSegment(I);
+ DEBUG(dbgs() << "Dead PHI at " << Def << " may separate interval\n");
+ MayHaveSplitComponents = true;
+ } else {
+ // This is a dead def. Make sure the instruction knows.
+ MachineInstr *MI = getInstructionFromIndex(Def);
+ assert(MI && "No instruction defining live value");
+ MI->addRegisterDead(LI.reg, TRI);
+ if (dead && MI->allDefsAreDead()) {
+ DEBUG(dbgs() << "All defs dead: " << Def << '\t' << *MI);
+ dead->push_back(MI);
+ }
+ }
+ }
+ return MayHaveSplitComponents;
+}
+
+void LiveIntervals::shrinkToUses(LiveInterval::SubRange &SR, unsigned Reg) {
+ DEBUG(dbgs() << "Shrink: " << SR << '\n');
+ assert(TargetRegisterInfo::isVirtualRegister(Reg)
+ && "Can only shrink virtual registers");
+ // Find all the values used, including PHI kills.
+ ShrinkToUsesWorkList WorkList;
+
+ // Visit all instructions reading Reg.
+ SlotIndex LastIdx;
+ for (MachineOperand &MO : MRI->use_nodbg_operands(Reg)) {
+ // Skip "undef" uses.
+ if (!MO.readsReg())
+ continue;
+ // Maybe the operand is for a subregister we don't care about.
+ unsigned SubReg = MO.getSubReg();
+ if (SubReg != 0) {
+ LaneBitmask LaneMask = TRI->getSubRegIndexLaneMask(SubReg);
+ if ((LaneMask & SR.LaneMask).none())
+ continue;
+ }
+ // We only need to visit each instruction once.
+ MachineInstr *UseMI = MO.getParent();
+ SlotIndex Idx = getInstructionIndex(*UseMI).getRegSlot();
+ if (Idx == LastIdx)
+ continue;
+ LastIdx = Idx;
+
+ LiveQueryResult LRQ = SR.Query(Idx);
+ VNInfo *VNI = LRQ.valueIn();
+ // For Subranges it is possible that only undef values are left in that
+ // part of the subregister, so there is no real liverange at the use
+ if (!VNI)
+ continue;
+
+ // Special case: An early-clobber tied operand reads and writes the
+ // register one slot early.
+ if (VNInfo *DefVNI = LRQ.valueDefined())
+ Idx = DefVNI->def;
+
+ WorkList.push_back(std::make_pair(Idx, VNI));
+ }
+
+ // Create a new live ranges with only minimal live segments per def.
+ LiveRange NewLR;
+ createSegmentsForValues(NewLR, make_range(SR.vni_begin(), SR.vni_end()));
+ extendSegmentsToUses(NewLR, *Indexes, WorkList, SR);
+
+ // Move the trimmed ranges back.
+ SR.segments.swap(NewLR.segments);
+
+ // Remove dead PHI value numbers
+ for (VNInfo *VNI : SR.valnos) {
+ if (VNI->isUnused())
+ continue;
+ const LiveRange::Segment *Segment = SR.getSegmentContaining(VNI->def);
+ assert(Segment != nullptr && "Missing segment for VNI");
+ if (Segment->end != VNI->def.getDeadSlot())
+ continue;
+ if (VNI->isPHIDef()) {
+ // This is a dead PHI. Remove it.
+ DEBUG(dbgs() << "Dead PHI at " << VNI->def << " may separate interval\n");
+ VNI->markUnused();
+ SR.removeSegment(*Segment);
+ }
+ }
+
+ DEBUG(dbgs() << "Shrunk: " << SR << '\n');
+}
+
+void LiveIntervals::extendToIndices(LiveRange &LR,
+ ArrayRef<SlotIndex> Indices,
+ ArrayRef<SlotIndex> Undefs) {
+ assert(LRCalc && "LRCalc not initialized.");
+ LRCalc->reset(MF, getSlotIndexes(), DomTree, &getVNInfoAllocator());
+ for (SlotIndex Idx : Indices)
+ LRCalc->extend(LR, Idx, /*PhysReg=*/0, Undefs);
+}
+
+void LiveIntervals::pruneValue(LiveRange &LR, SlotIndex Kill,
+ SmallVectorImpl<SlotIndex> *EndPoints) {
+ LiveQueryResult LRQ = LR.Query(Kill);
+ VNInfo *VNI = LRQ.valueOutOrDead();
+ if (!VNI)
+ return;
+
+ MachineBasicBlock *KillMBB = Indexes->getMBBFromIndex(Kill);
+ SlotIndex MBBEnd = Indexes->getMBBEndIdx(KillMBB);
+
+ // If VNI isn't live out from KillMBB, the value is trivially pruned.
+ if (LRQ.endPoint() < MBBEnd) {
+ LR.removeSegment(Kill, LRQ.endPoint());
+ if (EndPoints) EndPoints->push_back(LRQ.endPoint());
+ return;
+ }
+
+ // VNI is live out of KillMBB.
+ LR.removeSegment(Kill, MBBEnd);
+ if (EndPoints) EndPoints->push_back(MBBEnd);
+
+ // Find all blocks that are reachable from KillMBB without leaving VNI's live
+ // range. It is possible that KillMBB itself is reachable, so start a DFS
+ // from each successor.
+ using VisitedTy = df_iterator_default_set<MachineBasicBlock*,9>;
+ VisitedTy Visited;
+ for (MachineBasicBlock *Succ : KillMBB->successors()) {
+ for (df_ext_iterator<MachineBasicBlock*, VisitedTy>
+ I = df_ext_begin(Succ, Visited), E = df_ext_end(Succ, Visited);
+ I != E;) {
+ MachineBasicBlock *MBB = *I;
+
+ // Check if VNI is live in to MBB.
+ SlotIndex MBBStart, MBBEnd;
+ std::tie(MBBStart, MBBEnd) = Indexes->getMBBRange(MBB);
+ LiveQueryResult LRQ = LR.Query(MBBStart);
+ if (LRQ.valueIn() != VNI) {
+ // This block isn't part of the VNI segment. Prune the search.
+ I.skipChildren();
+ continue;
+ }
+
+ // Prune the search if VNI is killed in MBB.
+ if (LRQ.endPoint() < MBBEnd) {
+ LR.removeSegment(MBBStart, LRQ.endPoint());
+ if (EndPoints) EndPoints->push_back(LRQ.endPoint());
+ I.skipChildren();
+ continue;
+ }
+
+ // VNI is live through MBB.
+ LR.removeSegment(MBBStart, MBBEnd);
+ if (EndPoints) EndPoints->push_back(MBBEnd);
+ ++I;
+ }
+ }
+}
+
+//===----------------------------------------------------------------------===//
+// Register allocator hooks.
+//
+
+void LiveIntervals::addKillFlags(const VirtRegMap *VRM) {
+ // Keep track of regunit ranges.
+ SmallVector<std::pair<const LiveRange*, LiveRange::const_iterator>, 8> RU;
+ // Keep track of subregister ranges.
+ SmallVector<std::pair<const LiveInterval::SubRange*,
+ LiveRange::const_iterator>, 4> SRs;
+
+ for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
+ unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
+ if (MRI->reg_nodbg_empty(Reg))
+ continue;
+ const LiveInterval &LI = getInterval(Reg);
+ if (LI.empty())
+ continue;
+
+ // Find the regunit intervals for the assigned register. They may overlap
+ // the virtual register live range, cancelling any kills.
+ RU.clear();
+ for (MCRegUnitIterator Unit(VRM->getPhys(Reg), TRI); Unit.isValid();
+ ++Unit) {
+ const LiveRange &RURange = getRegUnit(*Unit);
+ if (RURange.empty())
+ continue;
+ RU.push_back(std::make_pair(&RURange, RURange.find(LI.begin()->end)));
+ }
+
+ if (MRI->subRegLivenessEnabled()) {
+ SRs.clear();
+ for (const LiveInterval::SubRange &SR : LI.subranges()) {
+ SRs.push_back(std::make_pair(&SR, SR.find(LI.begin()->end)));
+ }
+ }
+
+ // Every instruction that kills Reg corresponds to a segment range end
+ // point.
+ for (LiveInterval::const_iterator RI = LI.begin(), RE = LI.end(); RI != RE;
+ ++RI) {
+ // A block index indicates an MBB edge.
+ if (RI->end.isBlock())
+ continue;
+ MachineInstr *MI = getInstructionFromIndex(RI->end);
+ if (!MI)
+ continue;
+
+ // Check if any of the regunits are live beyond the end of RI. That could
+ // happen when a physreg is defined as a copy of a virtreg:
+ //
+ // %eax = COPY %5
+ // FOO %5 <--- MI, cancel kill because %eax is live.
+ // BAR killed %eax
+ //
+ // There should be no kill flag on FOO when %5 is rewritten as %eax.
+ for (auto &RUP : RU) {
+ const LiveRange &RURange = *RUP.first;
+ LiveRange::const_iterator &I = RUP.second;
+ if (I == RURange.end())
+ continue;
+ I = RURange.advanceTo(I, RI->end);
+ if (I == RURange.end() || I->start >= RI->end)
+ continue;
+ // I is overlapping RI.
+ goto CancelKill;
+ }
+
+ if (MRI->subRegLivenessEnabled()) {
+ // When reading a partial undefined value we must not add a kill flag.
+ // The regalloc might have used the undef lane for something else.
+ // Example:
+ // %1 = ... ; R32: %1
+ // %2:high16 = ... ; R64: %2
+ // = read killed %2 ; R64: %2
+ // = read %1 ; R32: %1
+ // The <kill> flag is correct for %2, but the register allocator may
+ // assign R0L to %1, and R0 to %2 because the low 32bits of R0
+ // are actually never written by %2. After assignment the <kill>
+ // flag at the read instruction is invalid.
+ LaneBitmask DefinedLanesMask;
+ if (!SRs.empty()) {
+ // Compute a mask of lanes that are defined.
+ DefinedLanesMask = LaneBitmask::getNone();
+ for (auto &SRP : SRs) {
+ const LiveInterval::SubRange &SR = *SRP.first;
+ LiveRange::const_iterator &I = SRP.second;
+ if (I == SR.end())
+ continue;
+ I = SR.advanceTo(I, RI->end);
+ if (I == SR.end() || I->start >= RI->end)
+ continue;
+ // I is overlapping RI
+ DefinedLanesMask |= SR.LaneMask;
+ }
+ } else
+ DefinedLanesMask = LaneBitmask::getAll();
+
+ bool IsFullWrite = false;
+ for (const MachineOperand &MO : MI->operands()) {
+ if (!MO.isReg() || MO.getReg() != Reg)
+ continue;
+ if (MO.isUse()) {
+ // Reading any undefined lanes?
+ LaneBitmask UseMask = TRI->getSubRegIndexLaneMask(MO.getSubReg());
+ if ((UseMask & ~DefinedLanesMask).any())
+ goto CancelKill;
+ } else if (MO.getSubReg() == 0) {
+ // Writing to the full register?
+ assert(MO.isDef());
+ IsFullWrite = true;
+ }
+ }
+
+ // If an instruction writes to a subregister, a new segment starts in
+ // the LiveInterval. But as this is only overriding part of the register
+ // adding kill-flags is not correct here after registers have been
+ // assigned.
+ if (!IsFullWrite) {
+ // Next segment has to be adjacent in the subregister write case.
+ LiveRange::const_iterator N = std::next(RI);
+ if (N != LI.end() && N->start == RI->end)
+ goto CancelKill;
+ }
+ }
+
+ MI->addRegisterKilled(Reg, nullptr);
+ continue;
+CancelKill:
+ MI->clearRegisterKills(Reg, nullptr);
+ }
+ }
+}
+
+MachineBasicBlock*
+LiveIntervals::intervalIsInOneMBB(const LiveInterval &LI) const {
+ // A local live range must be fully contained inside the block, meaning it is
+ // defined and killed at instructions, not at block boundaries. It is not
+ // live in or or out of any block.
+ //
+ // It is technically possible to have a PHI-defined live range identical to a
+ // single block, but we are going to return false in that case.
+
+ SlotIndex Start = LI.beginIndex();
+ if (Start.isBlock())
+ return nullptr;
+
+ SlotIndex Stop = LI.endIndex();
+ if (Stop.isBlock())
+ return nullptr;
+
+ // getMBBFromIndex doesn't need to search the MBB table when both indexes
+ // belong to proper instructions.
+ MachineBasicBlock *MBB1 = Indexes->getMBBFromIndex(Start);
+ MachineBasicBlock *MBB2 = Indexes->getMBBFromIndex(Stop);
+ return MBB1 == MBB2 ? MBB1 : nullptr;
+}
+
+bool
+LiveIntervals::hasPHIKill(const LiveInterval &LI, const VNInfo *VNI) const {
+ for (const VNInfo *PHI : LI.valnos) {
+ if (PHI->isUnused() || !PHI->isPHIDef())
+ continue;
+ const MachineBasicBlock *PHIMBB = getMBBFromIndex(PHI->def);
+ // Conservatively return true instead of scanning huge predecessor lists.
+ if (PHIMBB->pred_size() > 100)
+ return true;
+ for (const MachineBasicBlock *Pred : PHIMBB->predecessors())
+ if (VNI == LI.getVNInfoBefore(Indexes->getMBBEndIdx(Pred)))
+ return true;
+ }
+ return false;
+}
+
+float LiveIntervals::getSpillWeight(bool isDef, bool isUse,
+ const MachineBlockFrequencyInfo *MBFI,
+ const MachineInstr &MI) {
+ return getSpillWeight(isDef, isUse, MBFI, MI.getParent());
+}
+
+float LiveIntervals::getSpillWeight(bool isDef, bool isUse,
+ const MachineBlockFrequencyInfo *MBFI,
+ const MachineBasicBlock *MBB) {
+ BlockFrequency Freq = MBFI->getBlockFreq(MBB);
+ const float Scale = 1.0f / MBFI->getEntryFreq();
+ return (isDef + isUse) * (Freq.getFrequency() * Scale);
+}
+
+LiveRange::Segment
+LiveIntervals::addSegmentToEndOfBlock(unsigned reg, MachineInstr &startInst) {
+ LiveInterval& Interval = createEmptyInterval(reg);
+ VNInfo *VN = Interval.getNextValue(
+ SlotIndex(getInstructionIndex(startInst).getRegSlot()),
+ getVNInfoAllocator());
+ LiveRange::Segment S(SlotIndex(getInstructionIndex(startInst).getRegSlot()),
+ getMBBEndIdx(startInst.getParent()), VN);
+ Interval.addSegment(S);
+
+ return S;
+}
+
+//===----------------------------------------------------------------------===//
+// Register mask functions
+//===----------------------------------------------------------------------===//
+
+bool LiveIntervals::checkRegMaskInterference(LiveInterval &LI,
+ BitVector &UsableRegs) {
+ if (LI.empty())
+ return false;
+ LiveInterval::iterator LiveI = LI.begin(), LiveE = LI.end();
+
+ // Use a smaller arrays for local live ranges.
+ ArrayRef<SlotIndex> Slots;
+ ArrayRef<const uint32_t*> Bits;
+ if (MachineBasicBlock *MBB = intervalIsInOneMBB(LI)) {
+ Slots = getRegMaskSlotsInBlock(MBB->getNumber());
+ Bits = getRegMaskBitsInBlock(MBB->getNumber());
+ } else {
+ Slots = getRegMaskSlots();
+ Bits = getRegMaskBits();
+ }
+
+ // We are going to enumerate all the register mask slots contained in LI.
+ // Start with a binary search of RegMaskSlots to find a starting point.
+ ArrayRef<SlotIndex>::iterator SlotI =
+ std::lower_bound(Slots.begin(), Slots.end(), LiveI->start);
+ ArrayRef<SlotIndex>::iterator SlotE = Slots.end();
+
+ // No slots in range, LI begins after the last call.
+ if (SlotI == SlotE)
+ return false;
+
+ bool Found = false;
+ while (true) {
+ assert(*SlotI >= LiveI->start);
+ // Loop over all slots overlapping this segment.
+ while (*SlotI < LiveI->end) {
+ // *SlotI overlaps LI. Collect mask bits.
+ if (!Found) {
+ // This is the first overlap. Initialize UsableRegs to all ones.
+ UsableRegs.clear();
+ UsableRegs.resize(TRI->getNumRegs(), true);
+ Found = true;
+ }
+ // Remove usable registers clobbered by this mask.
+ UsableRegs.clearBitsNotInMask(Bits[SlotI-Slots.begin()]);
+ if (++SlotI == SlotE)
+ return Found;
+ }
+ // *SlotI is beyond the current LI segment.
+ LiveI = LI.advanceTo(LiveI, *SlotI);
+ if (LiveI == LiveE)
+ return Found;
+ // Advance SlotI until it overlaps.
+ while (*SlotI < LiveI->start)
+ if (++SlotI == SlotE)
+ return Found;
+ }
+}
+
+//===----------------------------------------------------------------------===//
+// IntervalUpdate class.
+//===----------------------------------------------------------------------===//
+
+/// Toolkit used by handleMove to trim or extend live intervals.
+class LiveIntervals::HMEditor {
+private:
+ LiveIntervals& LIS;
+ const MachineRegisterInfo& MRI;
+ const TargetRegisterInfo& TRI;
+ SlotIndex OldIdx;
+ SlotIndex NewIdx;
+ SmallPtrSet<LiveRange*, 8> Updated;
+ bool UpdateFlags;
+
+public:
+ HMEditor(LiveIntervals& LIS, const MachineRegisterInfo& MRI,
+ const TargetRegisterInfo& TRI,
+ SlotIndex OldIdx, SlotIndex NewIdx, bool UpdateFlags)
+ : LIS(LIS), MRI(MRI), TRI(TRI), OldIdx(OldIdx), NewIdx(NewIdx),
+ UpdateFlags(UpdateFlags) {}
+
+ // FIXME: UpdateFlags is a workaround that creates live intervals for all
+ // physregs, even those that aren't needed for regalloc, in order to update
+ // kill flags. This is wasteful. Eventually, LiveVariables will strip all kill
+ // flags, and postRA passes will use a live register utility instead.
+ LiveRange *getRegUnitLI(unsigned Unit) {
+ if (UpdateFlags && !MRI.isReservedRegUnit(Unit))
+ return &LIS.getRegUnit(Unit);
+ return LIS.getCachedRegUnit(Unit);
+ }
+
+ /// Update all live ranges touched by MI, assuming a move from OldIdx to
+ /// NewIdx.
+ void updateAllRanges(MachineInstr *MI) {
+ DEBUG(dbgs() << "handleMove " << OldIdx << " -> " << NewIdx << ": " << *MI);
+ bool hasRegMask = false;
+ for (MachineOperand &MO : MI->operands()) {
+ if (MO.isRegMask())
+ hasRegMask = true;
+ if (!MO.isReg())
+ continue;
+ if (MO.isUse()) {
+ if (!MO.readsReg())
+ continue;
+ // Aggressively clear all kill flags.
+ // They are reinserted by VirtRegRewriter.
+ MO.setIsKill(false);
+ }
+
+ unsigned Reg = MO.getReg();
+ if (!Reg)
+ continue;
+ if (TargetRegisterInfo::isVirtualRegister(Reg)) {
+ LiveInterval &LI = LIS.getInterval(Reg);
+ if (LI.hasSubRanges()) {
+ unsigned SubReg = MO.getSubReg();
+ LaneBitmask LaneMask = SubReg ? TRI.getSubRegIndexLaneMask(SubReg)
+ : MRI.getMaxLaneMaskForVReg(Reg);
+ for (LiveInterval::SubRange &S : LI.subranges()) {
+ if ((S.LaneMask & LaneMask).none())
+ continue;
+ updateRange(S, Reg, S.LaneMask);
+ }
+ }
+ updateRange(LI, Reg, LaneBitmask::getNone());
+ continue;
+ }
+
+ // For physregs, only update the regunits that actually have a
+ // precomputed live range.
+ for (MCRegUnitIterator Units(Reg, &TRI); Units.isValid(); ++Units)
+ if (LiveRange *LR = getRegUnitLI(*Units))
+ updateRange(*LR, *Units, LaneBitmask::getNone());
+ }
+ if (hasRegMask)
+ updateRegMaskSlots();
+ }
+
+private:
+ /// Update a single live range, assuming an instruction has been moved from
+ /// OldIdx to NewIdx.
+ void updateRange(LiveRange &LR, unsigned Reg, LaneBitmask LaneMask) {
+ if (!Updated.insert(&LR).second)
+ return;
+ DEBUG({
+ dbgs() << " ";
+ if (TargetRegisterInfo::isVirtualRegister(Reg)) {
+ dbgs() << printReg(Reg);
+ if (LaneMask.any())
+ dbgs() << " L" << PrintLaneMask(LaneMask);
+ } else {
+ dbgs() << printRegUnit(Reg, &TRI);
+ }
+ dbgs() << ":\t" << LR << '\n';
+ });
+ if (SlotIndex::isEarlierInstr(OldIdx, NewIdx))
+ handleMoveDown(LR);
+ else
+ handleMoveUp(LR, Reg, LaneMask);
+ DEBUG(dbgs() << " -->\t" << LR << '\n');
+ LR.verify();
+ }
+
+ /// Update LR to reflect an instruction has been moved downwards from OldIdx
+ /// to NewIdx (OldIdx < NewIdx).
+ void handleMoveDown(LiveRange &LR) {
+ LiveRange::iterator E = LR.end();
+ // Segment going into OldIdx.
+ LiveRange::iterator OldIdxIn = LR.find(OldIdx.getBaseIndex());
+
+ // No value live before or after OldIdx? Nothing to do.
+ if (OldIdxIn == E || SlotIndex::isEarlierInstr(OldIdx, OldIdxIn->start))
+ return;
+
+ LiveRange::iterator OldIdxOut;
+ // Do we have a value live-in to OldIdx?
+ if (SlotIndex::isEarlierInstr(OldIdxIn->start, OldIdx)) {
+ // If the live-in value already extends to NewIdx, there is nothing to do.
+ if (SlotIndex::isEarlierEqualInstr(NewIdx, OldIdxIn->end))
+ return;
+ // Aggressively remove all kill flags from the old kill point.
+ // Kill flags shouldn't be used while live intervals exist, they will be
+ // reinserted by VirtRegRewriter.
+ if (MachineInstr *KillMI = LIS.getInstructionFromIndex(OldIdxIn->end))
+ for (MIBundleOperands MO(*KillMI); MO.isValid(); ++MO)
+ if (MO->isReg() && MO->isUse())
+ MO->setIsKill(false);
+
+ // Is there a def before NewIdx which is not OldIdx?
+ LiveRange::iterator Next = std::next(OldIdxIn);
+ if (Next != E && !SlotIndex::isSameInstr(OldIdx, Next->start) &&
+ SlotIndex::isEarlierInstr(Next->start, NewIdx)) {
+ // If we are here then OldIdx was just a use but not a def. We only have
+ // to ensure liveness extends to NewIdx.
+ LiveRange::iterator NewIdxIn =
+ LR.advanceTo(Next, NewIdx.getBaseIndex());
+ // Extend the segment before NewIdx if necessary.
+ if (NewIdxIn == E ||
+ !SlotIndex::isEarlierInstr(NewIdxIn->start, NewIdx)) {
+ LiveRange::iterator Prev = std::prev(NewIdxIn);
+ Prev->end = NewIdx.getRegSlot();
+ }
+ // Extend OldIdxIn.
+ OldIdxIn->end = Next->start;
+ return;
+ }
+
+ // Adjust OldIdxIn->end to reach NewIdx. This may temporarily make LR
+ // invalid by overlapping ranges.
+ bool isKill = SlotIndex::isSameInstr(OldIdx, OldIdxIn->end);
+ OldIdxIn->end = NewIdx.getRegSlot(OldIdxIn->end.isEarlyClobber());
+ // If this was not a kill, then there was no def and we're done.
+ if (!isKill)
+ return;
+
+ // Did we have a Def at OldIdx?
+ OldIdxOut = Next;
+ if (OldIdxOut == E || !SlotIndex::isSameInstr(OldIdx, OldIdxOut->start))
+ return;
+ } else {
+ OldIdxOut = OldIdxIn;
+ }
+
+ // If we are here then there is a Definition at OldIdx. OldIdxOut points
+ // to the segment starting there.
+ assert(OldIdxOut != E && SlotIndex::isSameInstr(OldIdx, OldIdxOut->start) &&
+ "No def?");
+ VNInfo *OldIdxVNI = OldIdxOut->valno;
+ assert(OldIdxVNI->def == OldIdxOut->start && "Inconsistent def");
+
+ // If the defined value extends beyond NewIdx, just move the beginning
+ // of the segment to NewIdx.
+ SlotIndex NewIdxDef = NewIdx.getRegSlot(OldIdxOut->start.isEarlyClobber());
+ if (SlotIndex::isEarlierInstr(NewIdxDef, OldIdxOut->end)) {
+ OldIdxVNI->def = NewIdxDef;
+ OldIdxOut->start = OldIdxVNI->def;
+ return;
+ }
+
+ // If we are here then we have a Definition at OldIdx which ends before
+ // NewIdx.
+
+ // Is there an existing Def at NewIdx?
+ LiveRange::iterator AfterNewIdx
+ = LR.advanceTo(OldIdxOut, NewIdx.getRegSlot());
+ bool OldIdxDefIsDead = OldIdxOut->end.isDead();
+ if (!OldIdxDefIsDead &&
+ SlotIndex::isEarlierInstr(OldIdxOut->end, NewIdxDef)) {
+ // OldIdx is not a dead def, and NewIdxDef is inside a new interval.
+ VNInfo *DefVNI;
+ if (OldIdxOut != LR.begin() &&
+ !SlotIndex::isEarlierInstr(std::prev(OldIdxOut)->end,
+ OldIdxOut->start)) {
+ // There is no gap between OldIdxOut and its predecessor anymore,
+ // merge them.
+ LiveRange::iterator IPrev = std::prev(OldIdxOut);
+ DefVNI = OldIdxVNI;
+ IPrev->end = OldIdxOut->end;
+ } else {
+ // The value is live in to OldIdx
+ LiveRange::iterator INext = std::next(OldIdxOut);
+ assert(INext != E && "Must have following segment");
+ // We merge OldIdxOut and its successor. As we're dealing with subreg
+ // reordering, there is always a successor to OldIdxOut in the same BB
+ // We don't need INext->valno anymore and will reuse for the new segment
+ // we create later.
+ DefVNI = OldIdxVNI;
+ INext->start = OldIdxOut->end;
+ INext->valno->def = INext->start;
+ }
+ // If NewIdx is behind the last segment, extend that and append a new one.
+ if (AfterNewIdx == E) {
+ // OldIdxOut is undef at this point, Slide (OldIdxOut;AfterNewIdx] up
+ // one position.
+ // |- ?/OldIdxOut -| |- X0 -| ... |- Xn -| end
+ // => |- X0/OldIdxOut -| ... |- Xn -| |- undef/NewS -| end
+ std::copy(std::next(OldIdxOut), E, OldIdxOut);
+ // The last segment is undefined now, reuse it for a dead def.
+ LiveRange::iterator NewSegment = std::prev(E);
+ *NewSegment = LiveRange::Segment(NewIdxDef, NewIdxDef.getDeadSlot(),
+ DefVNI);
+ DefVNI->def = NewIdxDef;
+
+ LiveRange::iterator Prev = std::prev(NewSegment);
+ Prev->end = NewIdxDef;
+ } else {
+ // OldIdxOut is undef at this point, Slide (OldIdxOut;AfterNewIdx] up
+ // one position.
+ // |- ?/OldIdxOut -| |- X0 -| ... |- Xn/AfterNewIdx -| |- Next -|
+ // => |- X0/OldIdxOut -| ... |- Xn -| |- Xn/AfterNewIdx -| |- Next -|
+ std::copy(std::next(OldIdxOut), std::next(AfterNewIdx), OldIdxOut);
+ LiveRange::iterator Prev = std::prev(AfterNewIdx);
+ // We have two cases:
+ if (SlotIndex::isEarlierInstr(Prev->start, NewIdxDef)) {
+ // Case 1: NewIdx is inside a liverange. Split this liverange at
+ // NewIdxDef into the segment "Prev" followed by "NewSegment".
+ LiveRange::iterator NewSegment = AfterNewIdx;
+ *NewSegment = LiveRange::Segment(NewIdxDef, Prev->end, Prev->valno);
+ Prev->valno->def = NewIdxDef;
+
+ *Prev = LiveRange::Segment(Prev->start, NewIdxDef, DefVNI);
+ DefVNI->def = Prev->start;
+ } else {
+ // Case 2: NewIdx is in a lifetime hole. Keep AfterNewIdx as is and
+ // turn Prev into a segment from NewIdx to AfterNewIdx->start.
+ *Prev = LiveRange::Segment(NewIdxDef, AfterNewIdx->start, DefVNI);
+ DefVNI->def = NewIdxDef;
+ assert(DefVNI != AfterNewIdx->valno);
+ }
+ }
+ return;
+ }
+
+ if (AfterNewIdx != E &&
+ SlotIndex::isSameInstr(AfterNewIdx->start, NewIdxDef)) {
+ // There is an existing def at NewIdx. The def at OldIdx is coalesced into
+ // that value.
+ assert(AfterNewIdx->valno != OldIdxVNI && "Multiple defs of value?");
+ LR.removeValNo(OldIdxVNI);
+ } else {
+ // There was no existing def at NewIdx. We need to create a dead def
+ // at NewIdx. Shift segments over the old OldIdxOut segment, this frees
+ // a new segment at the place where we want to construct the dead def.
+ // |- OldIdxOut -| |- X0 -| ... |- Xn -| |- AfterNewIdx -|
+ // => |- X0/OldIdxOut -| ... |- Xn -| |- undef/NewS. -| |- AfterNewIdx -|
+ assert(AfterNewIdx != OldIdxOut && "Inconsistent iterators");
+ std::copy(std::next(OldIdxOut), AfterNewIdx, OldIdxOut);
+ // We can reuse OldIdxVNI now.
+ LiveRange::iterator NewSegment = std::prev(AfterNewIdx);
+ VNInfo *NewSegmentVNI = OldIdxVNI;
+ NewSegmentVNI->def = NewIdxDef;
+ *NewSegment = LiveRange::Segment(NewIdxDef, NewIdxDef.getDeadSlot(),
+ NewSegmentVNI);
+ }
+ }
+
+ /// Update LR to reflect an instruction has been moved upwards from OldIdx
+ /// to NewIdx (NewIdx < OldIdx).
+ void handleMoveUp(LiveRange &LR, unsigned Reg, LaneBitmask LaneMask) {
+ LiveRange::iterator E = LR.end();
+ // Segment going into OldIdx.
+ LiveRange::iterator OldIdxIn = LR.find(OldIdx.getBaseIndex());
+
+ // No value live before or after OldIdx? Nothing to do.
+ if (OldIdxIn == E || SlotIndex::isEarlierInstr(OldIdx, OldIdxIn->start))
+ return;
+
+ LiveRange::iterator OldIdxOut;
+ // Do we have a value live-in to OldIdx?
+ if (SlotIndex::isEarlierInstr(OldIdxIn->start, OldIdx)) {
+ // If the live-in value isn't killed here, then we have no Def at
+ // OldIdx, moreover the value must be live at NewIdx so there is nothing
+ // to do.
+ bool isKill = SlotIndex::isSameInstr(OldIdx, OldIdxIn->end);
+ if (!isKill)
+ return;
+
+ // At this point we have to move OldIdxIn->end back to the nearest
+ // previous use or (dead-)def but no further than NewIdx.
+ SlotIndex DefBeforeOldIdx
+ = std::max(OldIdxIn->start.getDeadSlot(),
+ NewIdx.getRegSlot(OldIdxIn->end.isEarlyClobber()));
+ OldIdxIn->end = findLastUseBefore(DefBeforeOldIdx, Reg, LaneMask);
+
+ // Did we have a Def at OldIdx? If not we are done now.
+ OldIdxOut = std::next(OldIdxIn);
+ if (OldIdxOut == E || !SlotIndex::isSameInstr(OldIdx, OldIdxOut->start))
+ return;
+ } else {
+ OldIdxOut = OldIdxIn;
+ OldIdxIn = OldIdxOut != LR.begin() ? std::prev(OldIdxOut) : E;
+ }
+
+ // If we are here then there is a Definition at OldIdx. OldIdxOut points
+ // to the segment starting there.
+ assert(OldIdxOut != E && SlotIndex::isSameInstr(OldIdx, OldIdxOut->start) &&
+ "No def?");
+ VNInfo *OldIdxVNI = OldIdxOut->valno;
+ assert(OldIdxVNI->def == OldIdxOut->start && "Inconsistent def");
+ bool OldIdxDefIsDead = OldIdxOut->end.isDead();
+
+ // Is there an existing def at NewIdx?
+ SlotIndex NewIdxDef = NewIdx.getRegSlot(OldIdxOut->start.isEarlyClobber());
+ LiveRange::iterator NewIdxOut = LR.find(NewIdx.getRegSlot());
+ if (SlotIndex::isSameInstr(NewIdxOut->start, NewIdx)) {
+ assert(NewIdxOut->valno != OldIdxVNI &&
+ "Same value defined more than once?");
+ // If OldIdx was a dead def remove it.
+ if (!OldIdxDefIsDead) {
+ // Remove segment starting at NewIdx and move begin of OldIdxOut to
+ // NewIdx so it can take its place.
+ OldIdxVNI->def = NewIdxDef;
+ OldIdxOut->start = NewIdxDef;
+ LR.removeValNo(NewIdxOut->valno);
+ } else {
+ // Simply remove the dead def at OldIdx.
+ LR.removeValNo(OldIdxVNI);
+ }
+ } else {
+ // Previously nothing was live after NewIdx, so all we have to do now is
+ // move the begin of OldIdxOut to NewIdx.
+ if (!OldIdxDefIsDead) {
+ // Do we have any intermediate Defs between OldIdx and NewIdx?
+ if (OldIdxIn != E &&
+ SlotIndex::isEarlierInstr(NewIdxDef, OldIdxIn->start)) {
+ // OldIdx is not a dead def and NewIdx is before predecessor start.
+ LiveRange::iterator NewIdxIn = NewIdxOut;
+ assert(NewIdxIn == LR.find(NewIdx.getBaseIndex()));
+ const SlotIndex SplitPos = NewIdxDef;
+ OldIdxVNI = OldIdxIn->valno;
+
+ // Merge the OldIdxIn and OldIdxOut segments into OldIdxOut.
+ OldIdxOut->valno->def = OldIdxIn->start;
+ *OldIdxOut = LiveRange::Segment(OldIdxIn->start, OldIdxOut->end,
+ OldIdxOut->valno);
+ // OldIdxIn and OldIdxVNI are now undef and can be overridden.
+ // We Slide [NewIdxIn, OldIdxIn) down one position.
+ // |- X0/NewIdxIn -| ... |- Xn-1 -||- Xn/OldIdxIn -||- OldIdxOut -|
+ // => |- undef/NexIdxIn -| |- X0 -| ... |- Xn-1 -| |- Xn/OldIdxOut -|
+ std::copy_backward(NewIdxIn, OldIdxIn, OldIdxOut);
+ // NewIdxIn is now considered undef so we can reuse it for the moved
+ // value.
+ LiveRange::iterator NewSegment = NewIdxIn;
+ LiveRange::iterator Next = std::next(NewSegment);
+ if (SlotIndex::isEarlierInstr(Next->start, NewIdx)) {
+ // There is no gap between NewSegment and its predecessor.
+ *NewSegment = LiveRange::Segment(Next->start, SplitPos,
+ Next->valno);
+ *Next = LiveRange::Segment(SplitPos, Next->end, OldIdxVNI);
+ Next->valno->def = SplitPos;
+ } else {
+ // There is a gap between NewSegment and its predecessor
+ // Value becomes live in.
+ *NewSegment = LiveRange::Segment(SplitPos, Next->start, OldIdxVNI);
+ NewSegment->valno->def = SplitPos;
+ }
+ } else {
+ // Leave the end point of a live def.
+ OldIdxOut->start = NewIdxDef;
+ OldIdxVNI->def = NewIdxDef;
+ if (OldIdxIn != E && SlotIndex::isEarlierInstr(NewIdx, OldIdxIn->end))
+ OldIdxIn->end = NewIdx.getRegSlot();
+ }
+ } else {
+ // OldIdxVNI is a dead def. It may have been moved across other values
+ // in LR, so move OldIdxOut up to NewIdxOut. Slide [NewIdxOut;OldIdxOut)
+ // down one position.
+ // |- X0/NewIdxOut -| ... |- Xn-1 -| |- Xn/OldIdxOut -| |- next - |
+ // => |- undef/NewIdxOut -| |- X0 -| ... |- Xn-1 -| |- next -|
+ std::copy_backward(NewIdxOut, OldIdxOut, std::next(OldIdxOut));
+ // OldIdxVNI can be reused now to build a new dead def segment.
+ LiveRange::iterator NewSegment = NewIdxOut;
+ VNInfo *NewSegmentVNI = OldIdxVNI;
+ *NewSegment = LiveRange::Segment(NewIdxDef, NewIdxDef.getDeadSlot(),
+ NewSegmentVNI);
+ NewSegmentVNI->def = NewIdxDef;
+ }
+ }
+ }
+
+ void updateRegMaskSlots() {
+ SmallVectorImpl<SlotIndex>::iterator RI =
+ std::lower_bound(LIS.RegMaskSlots.begin(), LIS.RegMaskSlots.end(),
+ OldIdx);
+ assert(RI != LIS.RegMaskSlots.end() && *RI == OldIdx.getRegSlot() &&
+ "No RegMask at OldIdx.");
+ *RI = NewIdx.getRegSlot();
+ assert((RI == LIS.RegMaskSlots.begin() ||
+ SlotIndex::isEarlierInstr(*std::prev(RI), *RI)) &&
+ "Cannot move regmask instruction above another call");
+ assert((std::next(RI) == LIS.RegMaskSlots.end() ||
+ SlotIndex::isEarlierInstr(*RI, *std::next(RI))) &&
+ "Cannot move regmask instruction below another call");
+ }
+
+ // Return the last use of reg between NewIdx and OldIdx.
+ SlotIndex findLastUseBefore(SlotIndex Before, unsigned Reg,
+ LaneBitmask LaneMask) {
+ if (TargetRegisterInfo::isVirtualRegister(Reg)) {
+ SlotIndex LastUse = Before;
+ for (MachineOperand &MO : MRI.use_nodbg_operands(Reg)) {
+ if (MO.isUndef())
+ continue;
+ unsigned SubReg = MO.getSubReg();
+ if (SubReg != 0 && LaneMask.any()
+ && (TRI.getSubRegIndexLaneMask(SubReg) & LaneMask).none())
+ continue;
+
+ const MachineInstr &MI = *MO.getParent();
+ SlotIndex InstSlot = LIS.getSlotIndexes()->getInstructionIndex(MI);
+ if (InstSlot > LastUse && InstSlot < OldIdx)
+ LastUse = InstSlot.getRegSlot();
+ }
+ return LastUse;
+ }
+
+ // This is a regunit interval, so scanning the use list could be very
+ // expensive. Scan upwards from OldIdx instead.
+ assert(Before < OldIdx && "Expected upwards move");
+ SlotIndexes *Indexes = LIS.getSlotIndexes();
+ MachineBasicBlock *MBB = Indexes->getMBBFromIndex(Before);
+
+ // OldIdx may not correspond to an instruction any longer, so set MII to
+ // point to the next instruction after OldIdx, or MBB->end().
+ MachineBasicBlock::iterator MII = MBB->end();
+ if (MachineInstr *MI = Indexes->getInstructionFromIndex(
+ Indexes->getNextNonNullIndex(OldIdx)))
+ if (MI->getParent() == MBB)
+ MII = MI;
+
+ MachineBasicBlock::iterator Begin = MBB->begin();
+ while (MII != Begin) {
+ if ((--MII)->isDebugValue())
+ continue;
+ SlotIndex Idx = Indexes->getInstructionIndex(*MII);
+
+ // Stop searching when Before is reached.
+ if (!SlotIndex::isEarlierInstr(Before, Idx))
+ return Before;
+
+ // Check if MII uses Reg.
+ for (MIBundleOperands MO(*MII); MO.isValid(); ++MO)
+ if (MO->isReg() && !MO->isUndef() &&
+ TargetRegisterInfo::isPhysicalRegister(MO->getReg()) &&
+ TRI.hasRegUnit(MO->getReg(), Reg))
+ return Idx.getRegSlot();
+ }
+ // Didn't reach Before. It must be the first instruction in the block.
+ return Before;
+ }
+};
+
+void LiveIntervals::handleMove(MachineInstr &MI, bool UpdateFlags) {
+ assert(!MI.isBundled() && "Can't handle bundled instructions yet.");
+ SlotIndex OldIndex = Indexes->getInstructionIndex(MI);
+ Indexes->removeMachineInstrFromMaps(MI);
+ SlotIndex NewIndex = Indexes->insertMachineInstrInMaps(MI);
+ assert(getMBBStartIdx(MI.getParent()) <= OldIndex &&
+ OldIndex < getMBBEndIdx(MI.getParent()) &&
+ "Cannot handle moves across basic block boundaries.");
+
+ HMEditor HME(*this, *MRI, *TRI, OldIndex, NewIndex, UpdateFlags);
+ HME.updateAllRanges(&MI);
+}
+
+void LiveIntervals::handleMoveIntoBundle(MachineInstr &MI,
+ MachineInstr &BundleStart,
+ bool UpdateFlags) {
+ SlotIndex OldIndex = Indexes->getInstructionIndex(MI);
+ SlotIndex NewIndex = Indexes->getInstructionIndex(BundleStart);
+ HMEditor HME(*this, *MRI, *TRI, OldIndex, NewIndex, UpdateFlags);
+ HME.updateAllRanges(&MI);
+}
+
+void LiveIntervals::repairOldRegInRange(const MachineBasicBlock::iterator Begin,
+ const MachineBasicBlock::iterator End,
+ const SlotIndex endIdx,
+ LiveRange &LR, const unsigned Reg,
+ LaneBitmask LaneMask) {
+ LiveInterval::iterator LII = LR.find(endIdx);
+ SlotIndex lastUseIdx;
+ if (LII == LR.begin()) {
+ // This happens when the function is called for a subregister that only
+ // occurs _after_ the range that is to be repaired.
+ return;
+ }
+ if (LII != LR.end() && LII->start < endIdx)
+ lastUseIdx = LII->end;
+ else
+ --LII;
+
+ for (MachineBasicBlock::iterator I = End; I != Begin;) {
+ --I;
+ MachineInstr &MI = *I;
+ if (MI.isDebugValue())
+ continue;
+
+ SlotIndex instrIdx = getInstructionIndex(MI);
+ bool isStartValid = getInstructionFromIndex(LII->start);
+ bool isEndValid = getInstructionFromIndex(LII->end);
+
+ // FIXME: This doesn't currently handle early-clobber or multiple removed
+ // defs inside of the region to repair.
+ for (MachineInstr::mop_iterator OI = MI.operands_begin(),
+ OE = MI.operands_end();
+ OI != OE; ++OI) {
+ const MachineOperand &MO = *OI;
+ if (!MO.isReg() || MO.getReg() != Reg)
+ continue;
+
+ unsigned SubReg = MO.getSubReg();
+ LaneBitmask Mask = TRI->getSubRegIndexLaneMask(SubReg);
+ if ((Mask & LaneMask).none())
+ continue;
+
+ if (MO.isDef()) {
+ if (!isStartValid) {
+ if (LII->end.isDead()) {
+ SlotIndex prevStart;
+ if (LII != LR.begin())
+ prevStart = std::prev(LII)->start;
+
+ // FIXME: This could be more efficient if there was a
+ // removeSegment method that returned an iterator.
+ LR.removeSegment(*LII, true);
+ if (prevStart.isValid())
+ LII = LR.find(prevStart);
+ else
+ LII = LR.begin();
+ } else {
+ LII->start = instrIdx.getRegSlot();
+ LII->valno->def = instrIdx.getRegSlot();
+ if (MO.getSubReg() && !MO.isUndef())
+ lastUseIdx = instrIdx.getRegSlot();
+ else
+ lastUseIdx = SlotIndex();
+ continue;
+ }
+ }
+
+ if (!lastUseIdx.isValid()) {
+ VNInfo *VNI = LR.getNextValue(instrIdx.getRegSlot(), VNInfoAllocator);
+ LiveRange::Segment S(instrIdx.getRegSlot(),
+ instrIdx.getDeadSlot(), VNI);
+ LII = LR.addSegment(S);
+ } else if (LII->start != instrIdx.getRegSlot()) {
+ VNInfo *VNI = LR.getNextValue(instrIdx.getRegSlot(), VNInfoAllocator);
+ LiveRange::Segment S(instrIdx.getRegSlot(), lastUseIdx, VNI);
+ LII = LR.addSegment(S);
+ }
+
+ if (MO.getSubReg() && !MO.isUndef())
+ lastUseIdx = instrIdx.getRegSlot();
+ else
+ lastUseIdx = SlotIndex();
+ } else if (MO.isUse()) {
+ // FIXME: This should probably be handled outside of this branch,
+ // either as part of the def case (for defs inside of the region) or
+ // after the loop over the region.
+ if (!isEndValid && !LII->end.isBlock())
+ LII->end = instrIdx.getRegSlot();
+ if (!lastUseIdx.isValid())
+ lastUseIdx = instrIdx.getRegSlot();
+ }
+ }
+ }
+}
+
+void
+LiveIntervals::repairIntervalsInRange(MachineBasicBlock *MBB,
+ MachineBasicBlock::iterator Begin,
+ MachineBasicBlock::iterator End,
+ ArrayRef<unsigned> OrigRegs) {
+ // Find anchor points, which are at the beginning/end of blocks or at
+ // instructions that already have indexes.
+ while (Begin != MBB->begin() && !Indexes->hasIndex(*Begin))
+ --Begin;
+ while (End != MBB->end() && !Indexes->hasIndex(*End))
+ ++End;
+
+ SlotIndex endIdx;
+ if (End == MBB->end())
+ endIdx = getMBBEndIdx(MBB).getPrevSlot();
+ else
+ endIdx = getInstructionIndex(*End);
+
+ Indexes->repairIndexesInRange(MBB, Begin, End);
+
+ for (MachineBasicBlock::iterator I = End; I != Begin;) {
+ --I;
+ MachineInstr &MI = *I;
+ if (MI.isDebugValue())
+ continue;
+ for (MachineInstr::const_mop_iterator MOI = MI.operands_begin(),
+ MOE = MI.operands_end();
+ MOI != MOE; ++MOI) {
+ if (MOI->isReg() &&
+ TargetRegisterInfo::isVirtualRegister(MOI->getReg()) &&
+ !hasInterval(MOI->getReg())) {
+ createAndComputeVirtRegInterval(MOI->getReg());
+ }
+ }
+ }
+
+ for (unsigned Reg : OrigRegs) {
+ if (!TargetRegisterInfo::isVirtualRegister(Reg))
+ continue;
+
+ LiveInterval &LI = getInterval(Reg);
+ // FIXME: Should we support undefs that gain defs?
+ if (!LI.hasAtLeastOneValue())
+ continue;
+
+ for (LiveInterval::SubRange &S : LI.subranges())
+ repairOldRegInRange(Begin, End, endIdx, S, Reg, S.LaneMask);
+
+ repairOldRegInRange(Begin, End, endIdx, LI, Reg);
+ }
+}
+
+void LiveIntervals::removePhysRegDefAt(unsigned Reg, SlotIndex Pos) {
+ for (MCRegUnitIterator Unit(Reg, TRI); Unit.isValid(); ++Unit) {
+ if (LiveRange *LR = getCachedRegUnit(*Unit))
+ if (VNInfo *VNI = LR->getVNInfoAt(Pos))
+ LR->removeValNo(VNI);
+ }
+}
+
+void LiveIntervals::removeVRegDefAt(LiveInterval &LI, SlotIndex Pos) {
+ // LI may not have the main range computed yet, but its subranges may
+ // be present.
+ VNInfo *VNI = LI.getVNInfoAt(Pos);
+ if (VNI != nullptr) {
+ assert(VNI->def.getBaseIndex() == Pos.getBaseIndex());
+ LI.removeValNo(VNI);
+ }
+
+ // Also remove the value defined in subranges.
+ for (LiveInterval::SubRange &S : LI.subranges()) {
+ if (VNInfo *SVNI = S.getVNInfoAt(Pos))
+ if (SVNI->def.getBaseIndex() == Pos.getBaseIndex())
+ S.removeValNo(SVNI);
+ }
+ LI.removeEmptySubRanges();
+}
+
+void LiveIntervals::splitSeparateComponents(LiveInterval &LI,
+ SmallVectorImpl<LiveInterval*> &SplitLIs) {
+ ConnectedVNInfoEqClasses ConEQ(*this);
+ unsigned NumComp = ConEQ.Classify(LI);
+ if (NumComp <= 1)
+ return;
+ DEBUG(dbgs() << " Split " << NumComp << " components: " << LI << '\n');
+ unsigned Reg = LI.reg;
+ const TargetRegisterClass *RegClass = MRI->getRegClass(Reg);
+ for (unsigned I = 1; I < NumComp; ++I) {
+ unsigned NewVReg = MRI->createVirtualRegister(RegClass);
+ LiveInterval &NewLI = createEmptyInterval(NewVReg);
+ SplitLIs.push_back(&NewLI);
+ }
+ ConEQ.Distribute(LI, SplitLIs.data(), *MRI);
+}
+
+void LiveIntervals::constructMainRangeFromSubranges(LiveInterval &LI) {
+ assert(LRCalc && "LRCalc not initialized.");
+ LRCalc->reset(MF, getSlotIndexes(), DomTree, &getVNInfoAllocator());
+ LRCalc->constructMainRangeFromSubranges(LI);
+}
OpenPOWER on IntegriCloud