diff options
Diffstat (limited to 'llvm/lib/CodeGen/LiveIntervalAnalysis.cpp')
| -rw-r--r-- | llvm/lib/CodeGen/LiveIntervalAnalysis.cpp | 674 |
1 files changed, 674 insertions, 0 deletions
diff --git a/llvm/lib/CodeGen/LiveIntervalAnalysis.cpp b/llvm/lib/CodeGen/LiveIntervalAnalysis.cpp new file mode 100644 index 00000000000..bce9d563a96 --- /dev/null +++ b/llvm/lib/CodeGen/LiveIntervalAnalysis.cpp @@ -0,0 +1,674 @@ +//===-- LiveIntervalAnalysis.cpp - Live Interval Analysis -----------------===// +// +// The LLVM Compiler Infrastructure +// +// This file was developed by the LLVM research group and is distributed under +// the University of Illinois Open Source License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This file implements the LiveInterval analysis pass which is used +// by the Linear Scan Register allocator. This pass linearizes the +// basic blocks of the function in DFS order and uses the +// LiveVariables pass to conservatively compute live intervals for +// each virtual and physical register. +// +//===----------------------------------------------------------------------===// + +#define DEBUG_TYPE "liveintervals" +#include "LiveIntervalAnalysis.h" +#include "llvm/Value.h" +#include "llvm/Analysis/LoopInfo.h" +#include "llvm/CodeGen/LiveVariables.h" +#include "llvm/CodeGen/MachineFrameInfo.h" +#include "llvm/CodeGen/MachineInstr.h" +#include "llvm/CodeGen/Passes.h" +#include "llvm/CodeGen/SSARegMap.h" +#include "llvm/Target/MRegisterInfo.h" +#include "llvm/Target/TargetInstrInfo.h" +#include "llvm/Target/TargetMachine.h" +#include "Support/CommandLine.h" +#include "Support/Debug.h" +#include "Support/Statistic.h" +#include "Support/STLExtras.h" +#include "VirtRegMap.h" +#include <cmath> + +using namespace llvm; + +namespace { + RegisterAnalysis<LiveIntervals> X("liveintervals", + "Live Interval Analysis"); + + Statistic<> numIntervals + ("liveintervals", "Number of original intervals"); + + Statistic<> numIntervalsAfter + ("liveintervals", "Number of intervals after coalescing"); + + Statistic<> numJoins + ("liveintervals", "Number of interval joins performed"); + + Statistic<> numPeep + ("liveintervals", "Number of identity moves eliminated after coalescing"); + + Statistic<> numFolded + ("liveintervals", "Number of loads/stores folded into instructions"); + + cl::opt<bool> + EnableJoining("join-liveintervals", + cl::desc("Join compatible live intervals"), + cl::init(true)); +}; + +void LiveIntervals::getAnalysisUsage(AnalysisUsage &AU) const +{ + AU.addPreserved<LiveVariables>(); + AU.addRequired<LiveVariables>(); + AU.addPreservedID(PHIEliminationID); + AU.addRequiredID(PHIEliminationID); + AU.addRequiredID(TwoAddressInstructionPassID); + AU.addRequired<LoopInfo>(); + MachineFunctionPass::getAnalysisUsage(AU); +} + +void LiveIntervals::releaseMemory() +{ + mi2iMap_.clear(); + i2miMap_.clear(); + r2iMap_.clear(); + r2rMap_.clear(); + intervals_.clear(); +} + + +/// runOnMachineFunction - Register allocate the whole function +/// +bool LiveIntervals::runOnMachineFunction(MachineFunction &fn) { + mf_ = &fn; + tm_ = &fn.getTarget(); + mri_ = tm_->getRegisterInfo(); + lv_ = &getAnalysis<LiveVariables>(); + + // number MachineInstrs + unsigned miIndex = 0; + for (MachineFunction::iterator mbb = mf_->begin(), mbbEnd = mf_->end(); + mbb != mbbEnd; ++mbb) + for (MachineBasicBlock::iterator mi = mbb->begin(), miEnd = mbb->end(); + mi != miEnd; ++mi) { + bool inserted = mi2iMap_.insert(std::make_pair(mi, miIndex)).second; + assert(inserted && "multiple MachineInstr -> index mappings"); + i2miMap_.push_back(mi); + miIndex += InstrSlots::NUM; + } + + computeIntervals(); + + numIntervals += intervals_.size(); + + // join intervals if requested + if (EnableJoining) joinIntervals(); + + numIntervalsAfter += intervals_.size(); + + // perform a final pass over the instructions and compute spill + // weights, coalesce virtual registers and remove identity moves + const LoopInfo& loopInfo = getAnalysis<LoopInfo>(); + const TargetInstrInfo& tii = *tm_->getInstrInfo(); + + for (MachineFunction::iterator mbbi = mf_->begin(), mbbe = mf_->end(); + mbbi != mbbe; ++mbbi) { + MachineBasicBlock* mbb = mbbi; + unsigned loopDepth = loopInfo.getLoopDepth(mbb->getBasicBlock()); + + for (MachineBasicBlock::iterator mii = mbb->begin(), mie = mbb->end(); + mii != mie; ) { + // if the move will be an identity move delete it + unsigned srcReg, dstReg; + if (tii.isMoveInstr(*mii, srcReg, dstReg) && + rep(srcReg) == rep(dstReg)) { + // remove from def list + LiveInterval& interval = getOrCreateInterval(rep(dstReg)); + // remove index -> MachineInstr and + // MachineInstr -> index mappings + Mi2IndexMap::iterator mi2i = mi2iMap_.find(mii); + if (mi2i != mi2iMap_.end()) { + i2miMap_[mi2i->second/InstrSlots::NUM] = 0; + mi2iMap_.erase(mi2i); + } + mii = mbbi->erase(mii); + ++numPeep; + } + else { + for (unsigned i = 0; i < mii->getNumOperands(); ++i) { + const MachineOperand& mop = mii->getOperand(i); + if (mop.isRegister() && mop.getReg() && + MRegisterInfo::isVirtualRegister(mop.getReg())) { + // replace register with representative register + unsigned reg = rep(mop.getReg()); + mii->SetMachineOperandReg(i, reg); + + Reg2IntervalMap::iterator r2iit = r2iMap_.find(reg); + assert(r2iit != r2iMap_.end()); + r2iit->second->weight += + (mop.isUse() + mop.isDef()) * pow(10.0F, loopDepth); + } + } + ++mii; + } + } + } + + DEBUG(std::cerr << "********** INTERVALS **********\n"); + DEBUG(std::copy(intervals_.begin(), intervals_.end(), + std::ostream_iterator<LiveInterval>(std::cerr, "\n"))); + DEBUG(std::cerr << "********** MACHINEINSTRS **********\n"); + DEBUG( + for (MachineFunction::iterator mbbi = mf_->begin(), mbbe = mf_->end(); + mbbi != mbbe; ++mbbi) { + std::cerr << ((Value*)mbbi->getBasicBlock())->getName() << ":\n"; + for (MachineBasicBlock::iterator mii = mbbi->begin(), + mie = mbbi->end(); mii != mie; ++mii) { + std::cerr << getInstructionIndex(mii) << '\t'; + mii->print(std::cerr, tm_); + } + }); + + return true; +} + +std::vector<LiveInterval*> LiveIntervals::addIntervalsForSpills( + const LiveInterval& li, + VirtRegMap& vrm, + int slot) +{ + std::vector<LiveInterval*> added; + + assert(li.weight != HUGE_VAL && + "attempt to spill already spilled interval!"); + + DEBUG(std::cerr << "\t\t\t\tadding intervals for spills for interval: " + << li << '\n'); + + const TargetRegisterClass* rc = mf_->getSSARegMap()->getRegClass(li.reg); + + for (LiveInterval::Ranges::const_iterator + i = li.ranges.begin(), e = li.ranges.end(); i != e; ++i) { + unsigned index = getBaseIndex(i->start); + unsigned end = getBaseIndex(i->end-1) + InstrSlots::NUM; + for (; index != end; index += InstrSlots::NUM) { + // skip deleted instructions + while (index != end && !getInstructionFromIndex(index)) + index += InstrSlots::NUM; + if (index == end) break; + + MachineBasicBlock::iterator mi = getInstructionFromIndex(index); + + for_operand: + for (unsigned i = 0; i != mi->getNumOperands(); ++i) { + MachineOperand& mop = mi->getOperand(i); + if (mop.isRegister() && mop.getReg() == li.reg) { + if (MachineInstr* fmi = + mri_->foldMemoryOperand(mi, i, slot)) { + lv_->instructionChanged(mi, fmi); + vrm.virtFolded(li.reg, mi, fmi); + mi2iMap_.erase(mi); + i2miMap_[index/InstrSlots::NUM] = fmi; + mi2iMap_[fmi] = index; + MachineBasicBlock& mbb = *mi->getParent(); + mi = mbb.insert(mbb.erase(mi), fmi); + ++numFolded; + goto for_operand; + } + else { + // This is tricky. We need to add information in + // the interval about the spill code so we have to + // use our extra load/store slots. + // + // If we have a use we are going to have a load so + // we start the interval from the load slot + // onwards. Otherwise we start from the def slot. + unsigned start = (mop.isUse() ? + getLoadIndex(index) : + getDefIndex(index)); + // If we have a def we are going to have a store + // right after it so we end the interval after the + // use of the next instruction. Otherwise we end + // after the use of this instruction. + unsigned end = 1 + (mop.isDef() ? + getStoreIndex(index) : + getUseIndex(index)); + + // create a new register for this spill + unsigned nReg = + mf_->getSSARegMap()->createVirtualRegister(rc); + mi->SetMachineOperandReg(i, nReg); + vrm.grow(); + vrm.assignVirt2StackSlot(nReg, slot); + LiveInterval& nI = getOrCreateInterval(nReg); + assert(nI.empty()); + // the spill weight is now infinity as it + // cannot be spilled again + nI.weight = HUGE_VAL; + DEBUG(std::cerr << " +" << LiveRange(start, end)); + nI.addRange(LiveRange(start, end)); + added.push_back(&nI); + // update live variables + lv_->addVirtualRegisterKilled(nReg, mi); + DEBUG(std::cerr << "\t\t\t\tadded new interval: " + << nI << '\n'); + } + } + } + } + } + + return added; +} + +void LiveIntervals::printRegName(unsigned reg) const +{ + if (MRegisterInfo::isPhysicalRegister(reg)) + std::cerr << mri_->getName(reg); + else + std::cerr << "%reg" << reg; +} + +void LiveIntervals::handleVirtualRegisterDef(MachineBasicBlock* mbb, + MachineBasicBlock::iterator mi, + LiveInterval& interval) +{ + DEBUG(std::cerr << "\t\tregister: "; printRegName(interval.reg)); + LiveVariables::VarInfo& vi = lv_->getVarInfo(interval.reg); + + // Virtual registers may be defined multiple times (due to phi + // elimination and 2-addr elimination). Much of what we do only has to be + // done once for the vreg. We use an empty interval to detect the first + // time we see a vreg. + if (interval.empty()) { + // Assume this interval is singly defined until we find otherwise. + interval.isDefinedOnce = true; + + // Get the Idx of the defining instructions. + unsigned defIndex = getDefIndex(getInstructionIndex(mi)); + + // Loop over all of the blocks that the vreg is defined in. There are + // two cases we have to handle here. The most common case is a vreg + // whose lifetime is contained within a basic block. In this case there + // will be a single kill, in MBB, which comes after the definition. + if (vi.Kills.size() == 1 && vi.Kills[0]->getParent() == mbb) { + // FIXME: what about dead vars? + unsigned killIdx; + if (vi.Kills[0] != mi) + killIdx = getUseIndex(getInstructionIndex(vi.Kills[0]))+1; + else + killIdx = defIndex+1; + + // If the kill happens after the definition, we have an intra-block + // live range. + if (killIdx > defIndex) { + assert(vi.AliveBlocks.empty() && + "Shouldn't be alive across any blocks!"); + interval.addRange(LiveRange(defIndex, killIdx)); + DEBUG(std::cerr << " +" << LiveRange(defIndex, killIdx) << "\n"); + return; + } + } + + // The other case we handle is when a virtual register lives to the end + // of the defining block, potentially live across some blocks, then is + // live into some number of blocks, but gets killed. Start by adding a + // range that goes from this definition to the end of the defining block. + LiveRange NewLR(defIndex, getInstructionIndex(&mbb->back()) + + InstrSlots::NUM); + DEBUG(std::cerr << " +" << NewLR); + interval.addRange(NewLR); + + // Iterate over all of the blocks that the variable is completely + // live in, adding [insrtIndex(begin), instrIndex(end)+4) to the + // live interval. + for (unsigned i = 0, e = vi.AliveBlocks.size(); i != e; ++i) { + if (vi.AliveBlocks[i]) { + MachineBasicBlock* mbb = mf_->getBlockNumbered(i); + if (!mbb->empty()) { + LiveRange LR(getInstructionIndex(&mbb->front()), + getInstructionIndex(&mbb->back())+InstrSlots::NUM); + interval.addRange(LR); + DEBUG(std::cerr << " +" << LR); + } + } + } + + // Finally, this virtual register is live from the start of any killing + // block to the 'use' slot of the killing instruction. + for (unsigned i = 0, e = vi.Kills.size(); i != e; ++i) { + MachineInstr *Kill = vi.Kills[i]; + LiveRange LR(getInstructionIndex(Kill->getParent()->begin()), + getUseIndex(getInstructionIndex(Kill))+1); + interval.addRange(LR); + DEBUG(std::cerr << " +" << LR); + } + + } else { + // If this is the second time we see a virtual register definition, it + // must be due to phi elimination or two addr elimination. If this is + // the result of two address elimination, then the vreg is the first + // operand, and is a def-and-use. + if (mi->getOperand(0).isRegister() && + mi->getOperand(0).getReg() == interval.reg && + mi->getOperand(0).isDef() && mi->getOperand(0).isUse()) { + // If this is a two-address definition, just ignore it. + } else { + // Otherwise, this must be because of phi elimination. In this case, + // the defined value will be live until the end of the basic block it + // is defined in. + unsigned defIndex = getDefIndex(getInstructionIndex(mi)); + LiveRange LR(defIndex, + getInstructionIndex(&mbb->back()) +InstrSlots::NUM); + interval.addRange(LR); + DEBUG(std::cerr << " +" << LR); + } + interval.isDefinedOnce = false; + } + + DEBUG(std::cerr << '\n'); +} + +void LiveIntervals::handlePhysicalRegisterDef(MachineBasicBlock* mbb, + MachineBasicBlock::iterator mi, + LiveInterval& interval) +{ + // A physical register cannot be live across basic block, so its + // lifetime must end somewhere in its defining basic block. + DEBUG(std::cerr << "\t\tregister: "; printRegName(interval.reg)); + typedef LiveVariables::killed_iterator KillIter; + + MachineBasicBlock::iterator e = mbb->end(); + unsigned baseIndex = getInstructionIndex(mi); + unsigned start = getDefIndex(baseIndex); + unsigned end = start; + + // If it is not used after definition, it is considered dead at + // the instruction defining it. Hence its interval is: + // [defSlot(def), defSlot(def)+1) + for (KillIter ki = lv_->dead_begin(mi), ke = lv_->dead_end(mi); + ki != ke; ++ki) { + if (interval.reg == ki->second) { + DEBUG(std::cerr << " dead"); + end = getDefIndex(start) + 1; + goto exit; + } + } + + // If it is not dead on definition, it must be killed by a + // subsequent instruction. Hence its interval is: + // [defSlot(def), useSlot(kill)+1) + do { + ++mi; + baseIndex += InstrSlots::NUM; + for (KillIter ki = lv_->killed_begin(mi), ke = lv_->killed_end(mi); + ki != ke; ++ki) { + if (interval.reg == ki->second) { + DEBUG(std::cerr << " killed"); + end = getUseIndex(baseIndex) + 1; + goto exit; + } + } + } while (mi != e); + +exit: + assert(start < end && "did not find end of interval?"); + interval.addRange(LiveRange(start, end)); + DEBUG(std::cerr << " +" << LiveRange(start, end) << '\n'); +} + +void LiveIntervals::handleRegisterDef(MachineBasicBlock* mbb, + MachineBasicBlock::iterator mi, + unsigned reg) +{ + if (MRegisterInfo::isPhysicalRegister(reg)) { + if (lv_->getAllocatablePhysicalRegisters()[reg]) { + handlePhysicalRegisterDef(mbb, mi, getOrCreateInterval(reg)); + for (const unsigned* as = mri_->getAliasSet(reg); *as; ++as) + handlePhysicalRegisterDef(mbb, mi, getOrCreateInterval(*as)); + } + } + else + handleVirtualRegisterDef(mbb, mi, getOrCreateInterval(reg)); +} + +unsigned LiveIntervals::getInstructionIndex(MachineInstr* instr) const +{ + Mi2IndexMap::const_iterator it = mi2iMap_.find(instr); + return (it == mi2iMap_.end() ? + std::numeric_limits<unsigned>::max() : + it->second); +} + +MachineInstr* LiveIntervals::getInstructionFromIndex(unsigned index) const +{ + index /= InstrSlots::NUM; // convert index to vector index + assert(index < i2miMap_.size() && + "index does not correspond to an instruction"); + return i2miMap_[index]; +} + +/// computeIntervals - computes the live intervals for virtual +/// registers. for some ordering of the machine instructions [1,N] a +/// live interval is an interval [i, j) where 1 <= i <= j < N for +/// which a variable is live +void LiveIntervals::computeIntervals() +{ + DEBUG(std::cerr << "********** COMPUTING LIVE INTERVALS **********\n"); + DEBUG(std::cerr << "********** Function: " + << ((Value*)mf_->getFunction())->getName() << '\n'); + + for (MachineFunction::iterator I = mf_->begin(), E = mf_->end(); + I != E; ++I) { + MachineBasicBlock* mbb = I; + DEBUG(std::cerr << ((Value*)mbb->getBasicBlock())->getName() << ":\n"); + + for (MachineBasicBlock::iterator mi = mbb->begin(), miEnd = mbb->end(); + mi != miEnd; ++mi) { + const TargetInstrDescriptor& tid = + tm_->getInstrInfo()->get(mi->getOpcode()); + DEBUG(std::cerr << getInstructionIndex(mi) << "\t"; + mi->print(std::cerr, tm_)); + + // handle implicit defs + for (const unsigned* id = tid.ImplicitDefs; *id; ++id) + handleRegisterDef(mbb, mi, *id); + + // handle explicit defs + for (int i = mi->getNumOperands() - 1; i >= 0; --i) { + MachineOperand& mop = mi->getOperand(i); + // handle register defs - build intervals + if (mop.isRegister() && mop.getReg() && mop.isDef()) + handleRegisterDef(mbb, mi, mop.getReg()); + } + } + } +} + +unsigned LiveIntervals::rep(unsigned reg) +{ + Reg2RegMap::iterator it = r2rMap_.find(reg); + if (it != r2rMap_.end()) + return it->second = rep(it->second); + return reg; +} + +void LiveIntervals::joinIntervalsInMachineBB(MachineBasicBlock *MBB) { + DEBUG(std::cerr << ((Value*)MBB->getBasicBlock())->getName() << ":\n"); + const TargetInstrInfo& tii = *tm_->getInstrInfo(); + + for (MachineBasicBlock::iterator mi = MBB->begin(), mie = MBB->end(); + mi != mie; ++mi) { + const TargetInstrDescriptor& tid = tii.get(mi->getOpcode()); + DEBUG(std::cerr << getInstructionIndex(mi) << '\t'; + mi->print(std::cerr, tm_);); + + // we only join virtual registers with allocatable + // physical registers since we do not have liveness information + // on not allocatable physical registers + unsigned regA, regB; + if (tii.isMoveInstr(*mi, regA, regB) && + (MRegisterInfo::isVirtualRegister(regA) || + lv_->getAllocatablePhysicalRegisters()[regA]) && + (MRegisterInfo::isVirtualRegister(regB) || + lv_->getAllocatablePhysicalRegisters()[regB])) { + + // get representative registers + regA = rep(regA); + regB = rep(regB); + + // if they are already joined we continue + if (regA == regB) + continue; + + Reg2IntervalMap::iterator r2iA = r2iMap_.find(regA); + assert(r2iA != r2iMap_.end() && + "Found unknown vreg in 'isMoveInstr' instruction"); + Reg2IntervalMap::iterator r2iB = r2iMap_.find(regB); + assert(r2iB != r2iMap_.end() && + "Found unknown vreg in 'isMoveInstr' instruction"); + + Intervals::iterator intA = r2iA->second; + Intervals::iterator intB = r2iB->second; + + DEBUG(std::cerr << "\t\tInspecting " << *intA << " and " << *intB + << ": "); + + // both A and B are virtual registers + if (MRegisterInfo::isVirtualRegister(intA->reg) && + MRegisterInfo::isVirtualRegister(intB->reg)) { + + const TargetRegisterClass *rcA, *rcB; + rcA = mf_->getSSARegMap()->getRegClass(intA->reg); + rcB = mf_->getSSARegMap()->getRegClass(intB->reg); + + // if they are not of the same register class we continue + if (rcA != rcB) { + DEBUG(std::cerr << "Differing reg classes.\n"); + continue; + } + + // if their intervals do not overlap we join them. + if ((intA->containsOneValue() && intB->containsOneValue()) || + !intB->overlaps(*intA)) { + intA->join(*intB); + ++numJoins; + DEBUG(std::cerr << "Joined. Result = " << *intA << "\n"); + r2iB->second = r2iA->second; + r2rMap_.insert(std::make_pair(intB->reg, intA->reg)); + intervals_.erase(intB); + } else { + DEBUG(std::cerr << "Interference!\n"); + } + } else if (!MRegisterInfo::isPhysicalRegister(intA->reg) || + !MRegisterInfo::isPhysicalRegister(intB->reg)) { + if (MRegisterInfo::isPhysicalRegister(intB->reg)) { + std::swap(regA, regB); + std::swap(intA, intB); + std::swap(r2iA, r2iB); + } + + assert(MRegisterInfo::isPhysicalRegister(intA->reg) && + MRegisterInfo::isVirtualRegister(intB->reg) && + "A must be physical and B must be virtual"); + + const TargetRegisterClass *rcA, *rcB; + rcA = mri_->getRegClass(intA->reg); + rcB = mf_->getSSARegMap()->getRegClass(intB->reg); + // if they are not of the same register class we continue + if (rcA != rcB) { + DEBUG(std::cerr << "Differing reg classes.\n"); + continue; + } + + if (!intA->overlaps(*intB) && + !overlapsAliases(*intA, *intB)) { + intA->join(*intB); + ++numJoins; + DEBUG(std::cerr << "Joined. Result = " << *intA << "\n"); + r2iB->second = r2iA->second; + r2rMap_.insert(std::make_pair(intB->reg, intA->reg)); + intervals_.erase(intB); + } else { + DEBUG(std::cerr << "Interference!\n"); + } + } else { + DEBUG(std::cerr << "Cannot join physregs.\n"); + } + } + } +} + +namespace { + // DepthMBBCompare - Comparison predicate that sort first based on the loop + // depth of the basic block (the unsigned), and then on the MBB number. + struct DepthMBBCompare { + typedef std::pair<unsigned, MachineBasicBlock*> DepthMBBPair; + bool operator()(const DepthMBBPair &LHS, const DepthMBBPair &RHS) const { + if (LHS.first > RHS.first) return true; // Deeper loops first + return LHS.first == RHS.first && + LHS.second->getNumber() < RHS.second->getNumber(); + } + }; +} + +void LiveIntervals::joinIntervals() { + DEBUG(std::cerr << "********** JOINING INTERVALS ***********\n"); + + const LoopInfo &LI = getAnalysis<LoopInfo>(); + if (LI.begin() == LI.end()) { + // If there are no loops in the function, join intervals in function order. + for (MachineFunction::iterator I = mf_->begin(), E = mf_->end(); + I != E; ++I) + joinIntervalsInMachineBB(I); + } else { + // Otherwise, join intervals in inner loops before other intervals. + // Unfortunately we can't just iterate over loop hierarchy here because + // there may be more MBB's than BB's. Collect MBB's for sorting. + std::vector<std::pair<unsigned, MachineBasicBlock*> > MBBs; + for (MachineFunction::iterator I = mf_->begin(), E = mf_->end(); + I != E; ++I) + MBBs.push_back(std::make_pair(LI.getLoopDepth(I->getBasicBlock()), I)); + + // Sort by loop depth. + std::sort(MBBs.begin(), MBBs.end(), DepthMBBCompare()); + + // Finally, join intervals in loop nest order. + for (unsigned i = 0, e = MBBs.size(); i != e; ++i) + joinIntervalsInMachineBB(MBBs[i].second); + } +} + +bool LiveIntervals::overlapsAliases(const LiveInterval& lhs, + const LiveInterval& rhs) const +{ + assert(MRegisterInfo::isPhysicalRegister(lhs.reg) && + "first interval must describe a physical register"); + + for (const unsigned* as = mri_->getAliasSet(lhs.reg); *as; ++as) { + Reg2IntervalMap::const_iterator r2i = r2iMap_.find(*as); + assert(r2i != r2iMap_.end() && "alias does not have interval?"); + if (rhs.overlaps(*r2i->second)) + return true; + } + + return false; +} + +LiveInterval& LiveIntervals::getOrCreateInterval(unsigned reg) +{ + Reg2IntervalMap::iterator r2iit = r2iMap_.lower_bound(reg); + if (r2iit == r2iMap_.end() || r2iit->first != reg) { + float Weight = MRegisterInfo::isPhysicalRegister(reg) ? HUGE_VAL :0.0F; + intervals_.push_back(LiveInterval(reg, Weight)); + r2iit = r2iMap_.insert(r2iit, std::make_pair(reg, --intervals_.end())); + } + + return *r2iit->second; +} + |

