summaryrefslogtreecommitdiffstats
path: root/llvm/lib/CodeGen/LiveIntervalAnalysis.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'llvm/lib/CodeGen/LiveIntervalAnalysis.cpp')
-rw-r--r--llvm/lib/CodeGen/LiveIntervalAnalysis.cpp674
1 files changed, 674 insertions, 0 deletions
diff --git a/llvm/lib/CodeGen/LiveIntervalAnalysis.cpp b/llvm/lib/CodeGen/LiveIntervalAnalysis.cpp
new file mode 100644
index 00000000000..bce9d563a96
--- /dev/null
+++ b/llvm/lib/CodeGen/LiveIntervalAnalysis.cpp
@@ -0,0 +1,674 @@
+//===-- LiveIntervalAnalysis.cpp - Live Interval Analysis -----------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file was developed by the LLVM research group and is distributed under
+// the University of Illinois Open Source License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the LiveInterval analysis pass which is used
+// by the Linear Scan Register allocator. This pass linearizes the
+// basic blocks of the function in DFS order and uses the
+// LiveVariables pass to conservatively compute live intervals for
+// each virtual and physical register.
+//
+//===----------------------------------------------------------------------===//
+
+#define DEBUG_TYPE "liveintervals"
+#include "LiveIntervalAnalysis.h"
+#include "llvm/Value.h"
+#include "llvm/Analysis/LoopInfo.h"
+#include "llvm/CodeGen/LiveVariables.h"
+#include "llvm/CodeGen/MachineFrameInfo.h"
+#include "llvm/CodeGen/MachineInstr.h"
+#include "llvm/CodeGen/Passes.h"
+#include "llvm/CodeGen/SSARegMap.h"
+#include "llvm/Target/MRegisterInfo.h"
+#include "llvm/Target/TargetInstrInfo.h"
+#include "llvm/Target/TargetMachine.h"
+#include "Support/CommandLine.h"
+#include "Support/Debug.h"
+#include "Support/Statistic.h"
+#include "Support/STLExtras.h"
+#include "VirtRegMap.h"
+#include <cmath>
+
+using namespace llvm;
+
+namespace {
+ RegisterAnalysis<LiveIntervals> X("liveintervals",
+ "Live Interval Analysis");
+
+ Statistic<> numIntervals
+ ("liveintervals", "Number of original intervals");
+
+ Statistic<> numIntervalsAfter
+ ("liveintervals", "Number of intervals after coalescing");
+
+ Statistic<> numJoins
+ ("liveintervals", "Number of interval joins performed");
+
+ Statistic<> numPeep
+ ("liveintervals", "Number of identity moves eliminated after coalescing");
+
+ Statistic<> numFolded
+ ("liveintervals", "Number of loads/stores folded into instructions");
+
+ cl::opt<bool>
+ EnableJoining("join-liveintervals",
+ cl::desc("Join compatible live intervals"),
+ cl::init(true));
+};
+
+void LiveIntervals::getAnalysisUsage(AnalysisUsage &AU) const
+{
+ AU.addPreserved<LiveVariables>();
+ AU.addRequired<LiveVariables>();
+ AU.addPreservedID(PHIEliminationID);
+ AU.addRequiredID(PHIEliminationID);
+ AU.addRequiredID(TwoAddressInstructionPassID);
+ AU.addRequired<LoopInfo>();
+ MachineFunctionPass::getAnalysisUsage(AU);
+}
+
+void LiveIntervals::releaseMemory()
+{
+ mi2iMap_.clear();
+ i2miMap_.clear();
+ r2iMap_.clear();
+ r2rMap_.clear();
+ intervals_.clear();
+}
+
+
+/// runOnMachineFunction - Register allocate the whole function
+///
+bool LiveIntervals::runOnMachineFunction(MachineFunction &fn) {
+ mf_ = &fn;
+ tm_ = &fn.getTarget();
+ mri_ = tm_->getRegisterInfo();
+ lv_ = &getAnalysis<LiveVariables>();
+
+ // number MachineInstrs
+ unsigned miIndex = 0;
+ for (MachineFunction::iterator mbb = mf_->begin(), mbbEnd = mf_->end();
+ mbb != mbbEnd; ++mbb)
+ for (MachineBasicBlock::iterator mi = mbb->begin(), miEnd = mbb->end();
+ mi != miEnd; ++mi) {
+ bool inserted = mi2iMap_.insert(std::make_pair(mi, miIndex)).second;
+ assert(inserted && "multiple MachineInstr -> index mappings");
+ i2miMap_.push_back(mi);
+ miIndex += InstrSlots::NUM;
+ }
+
+ computeIntervals();
+
+ numIntervals += intervals_.size();
+
+ // join intervals if requested
+ if (EnableJoining) joinIntervals();
+
+ numIntervalsAfter += intervals_.size();
+
+ // perform a final pass over the instructions and compute spill
+ // weights, coalesce virtual registers and remove identity moves
+ const LoopInfo& loopInfo = getAnalysis<LoopInfo>();
+ const TargetInstrInfo& tii = *tm_->getInstrInfo();
+
+ for (MachineFunction::iterator mbbi = mf_->begin(), mbbe = mf_->end();
+ mbbi != mbbe; ++mbbi) {
+ MachineBasicBlock* mbb = mbbi;
+ unsigned loopDepth = loopInfo.getLoopDepth(mbb->getBasicBlock());
+
+ for (MachineBasicBlock::iterator mii = mbb->begin(), mie = mbb->end();
+ mii != mie; ) {
+ // if the move will be an identity move delete it
+ unsigned srcReg, dstReg;
+ if (tii.isMoveInstr(*mii, srcReg, dstReg) &&
+ rep(srcReg) == rep(dstReg)) {
+ // remove from def list
+ LiveInterval& interval = getOrCreateInterval(rep(dstReg));
+ // remove index -> MachineInstr and
+ // MachineInstr -> index mappings
+ Mi2IndexMap::iterator mi2i = mi2iMap_.find(mii);
+ if (mi2i != mi2iMap_.end()) {
+ i2miMap_[mi2i->second/InstrSlots::NUM] = 0;
+ mi2iMap_.erase(mi2i);
+ }
+ mii = mbbi->erase(mii);
+ ++numPeep;
+ }
+ else {
+ for (unsigned i = 0; i < mii->getNumOperands(); ++i) {
+ const MachineOperand& mop = mii->getOperand(i);
+ if (mop.isRegister() && mop.getReg() &&
+ MRegisterInfo::isVirtualRegister(mop.getReg())) {
+ // replace register with representative register
+ unsigned reg = rep(mop.getReg());
+ mii->SetMachineOperandReg(i, reg);
+
+ Reg2IntervalMap::iterator r2iit = r2iMap_.find(reg);
+ assert(r2iit != r2iMap_.end());
+ r2iit->second->weight +=
+ (mop.isUse() + mop.isDef()) * pow(10.0F, loopDepth);
+ }
+ }
+ ++mii;
+ }
+ }
+ }
+
+ DEBUG(std::cerr << "********** INTERVALS **********\n");
+ DEBUG(std::copy(intervals_.begin(), intervals_.end(),
+ std::ostream_iterator<LiveInterval>(std::cerr, "\n")));
+ DEBUG(std::cerr << "********** MACHINEINSTRS **********\n");
+ DEBUG(
+ for (MachineFunction::iterator mbbi = mf_->begin(), mbbe = mf_->end();
+ mbbi != mbbe; ++mbbi) {
+ std::cerr << ((Value*)mbbi->getBasicBlock())->getName() << ":\n";
+ for (MachineBasicBlock::iterator mii = mbbi->begin(),
+ mie = mbbi->end(); mii != mie; ++mii) {
+ std::cerr << getInstructionIndex(mii) << '\t';
+ mii->print(std::cerr, tm_);
+ }
+ });
+
+ return true;
+}
+
+std::vector<LiveInterval*> LiveIntervals::addIntervalsForSpills(
+ const LiveInterval& li,
+ VirtRegMap& vrm,
+ int slot)
+{
+ std::vector<LiveInterval*> added;
+
+ assert(li.weight != HUGE_VAL &&
+ "attempt to spill already spilled interval!");
+
+ DEBUG(std::cerr << "\t\t\t\tadding intervals for spills for interval: "
+ << li << '\n');
+
+ const TargetRegisterClass* rc = mf_->getSSARegMap()->getRegClass(li.reg);
+
+ for (LiveInterval::Ranges::const_iterator
+ i = li.ranges.begin(), e = li.ranges.end(); i != e; ++i) {
+ unsigned index = getBaseIndex(i->start);
+ unsigned end = getBaseIndex(i->end-1) + InstrSlots::NUM;
+ for (; index != end; index += InstrSlots::NUM) {
+ // skip deleted instructions
+ while (index != end && !getInstructionFromIndex(index))
+ index += InstrSlots::NUM;
+ if (index == end) break;
+
+ MachineBasicBlock::iterator mi = getInstructionFromIndex(index);
+
+ for_operand:
+ for (unsigned i = 0; i != mi->getNumOperands(); ++i) {
+ MachineOperand& mop = mi->getOperand(i);
+ if (mop.isRegister() && mop.getReg() == li.reg) {
+ if (MachineInstr* fmi =
+ mri_->foldMemoryOperand(mi, i, slot)) {
+ lv_->instructionChanged(mi, fmi);
+ vrm.virtFolded(li.reg, mi, fmi);
+ mi2iMap_.erase(mi);
+ i2miMap_[index/InstrSlots::NUM] = fmi;
+ mi2iMap_[fmi] = index;
+ MachineBasicBlock& mbb = *mi->getParent();
+ mi = mbb.insert(mbb.erase(mi), fmi);
+ ++numFolded;
+ goto for_operand;
+ }
+ else {
+ // This is tricky. We need to add information in
+ // the interval about the spill code so we have to
+ // use our extra load/store slots.
+ //
+ // If we have a use we are going to have a load so
+ // we start the interval from the load slot
+ // onwards. Otherwise we start from the def slot.
+ unsigned start = (mop.isUse() ?
+ getLoadIndex(index) :
+ getDefIndex(index));
+ // If we have a def we are going to have a store
+ // right after it so we end the interval after the
+ // use of the next instruction. Otherwise we end
+ // after the use of this instruction.
+ unsigned end = 1 + (mop.isDef() ?
+ getStoreIndex(index) :
+ getUseIndex(index));
+
+ // create a new register for this spill
+ unsigned nReg =
+ mf_->getSSARegMap()->createVirtualRegister(rc);
+ mi->SetMachineOperandReg(i, nReg);
+ vrm.grow();
+ vrm.assignVirt2StackSlot(nReg, slot);
+ LiveInterval& nI = getOrCreateInterval(nReg);
+ assert(nI.empty());
+ // the spill weight is now infinity as it
+ // cannot be spilled again
+ nI.weight = HUGE_VAL;
+ DEBUG(std::cerr << " +" << LiveRange(start, end));
+ nI.addRange(LiveRange(start, end));
+ added.push_back(&nI);
+ // update live variables
+ lv_->addVirtualRegisterKilled(nReg, mi);
+ DEBUG(std::cerr << "\t\t\t\tadded new interval: "
+ << nI << '\n');
+ }
+ }
+ }
+ }
+ }
+
+ return added;
+}
+
+void LiveIntervals::printRegName(unsigned reg) const
+{
+ if (MRegisterInfo::isPhysicalRegister(reg))
+ std::cerr << mri_->getName(reg);
+ else
+ std::cerr << "%reg" << reg;
+}
+
+void LiveIntervals::handleVirtualRegisterDef(MachineBasicBlock* mbb,
+ MachineBasicBlock::iterator mi,
+ LiveInterval& interval)
+{
+ DEBUG(std::cerr << "\t\tregister: "; printRegName(interval.reg));
+ LiveVariables::VarInfo& vi = lv_->getVarInfo(interval.reg);
+
+ // Virtual registers may be defined multiple times (due to phi
+ // elimination and 2-addr elimination). Much of what we do only has to be
+ // done once for the vreg. We use an empty interval to detect the first
+ // time we see a vreg.
+ if (interval.empty()) {
+ // Assume this interval is singly defined until we find otherwise.
+ interval.isDefinedOnce = true;
+
+ // Get the Idx of the defining instructions.
+ unsigned defIndex = getDefIndex(getInstructionIndex(mi));
+
+ // Loop over all of the blocks that the vreg is defined in. There are
+ // two cases we have to handle here. The most common case is a vreg
+ // whose lifetime is contained within a basic block. In this case there
+ // will be a single kill, in MBB, which comes after the definition.
+ if (vi.Kills.size() == 1 && vi.Kills[0]->getParent() == mbb) {
+ // FIXME: what about dead vars?
+ unsigned killIdx;
+ if (vi.Kills[0] != mi)
+ killIdx = getUseIndex(getInstructionIndex(vi.Kills[0]))+1;
+ else
+ killIdx = defIndex+1;
+
+ // If the kill happens after the definition, we have an intra-block
+ // live range.
+ if (killIdx > defIndex) {
+ assert(vi.AliveBlocks.empty() &&
+ "Shouldn't be alive across any blocks!");
+ interval.addRange(LiveRange(defIndex, killIdx));
+ DEBUG(std::cerr << " +" << LiveRange(defIndex, killIdx) << "\n");
+ return;
+ }
+ }
+
+ // The other case we handle is when a virtual register lives to the end
+ // of the defining block, potentially live across some blocks, then is
+ // live into some number of blocks, but gets killed. Start by adding a
+ // range that goes from this definition to the end of the defining block.
+ LiveRange NewLR(defIndex, getInstructionIndex(&mbb->back()) +
+ InstrSlots::NUM);
+ DEBUG(std::cerr << " +" << NewLR);
+ interval.addRange(NewLR);
+
+ // Iterate over all of the blocks that the variable is completely
+ // live in, adding [insrtIndex(begin), instrIndex(end)+4) to the
+ // live interval.
+ for (unsigned i = 0, e = vi.AliveBlocks.size(); i != e; ++i) {
+ if (vi.AliveBlocks[i]) {
+ MachineBasicBlock* mbb = mf_->getBlockNumbered(i);
+ if (!mbb->empty()) {
+ LiveRange LR(getInstructionIndex(&mbb->front()),
+ getInstructionIndex(&mbb->back())+InstrSlots::NUM);
+ interval.addRange(LR);
+ DEBUG(std::cerr << " +" << LR);
+ }
+ }
+ }
+
+ // Finally, this virtual register is live from the start of any killing
+ // block to the 'use' slot of the killing instruction.
+ for (unsigned i = 0, e = vi.Kills.size(); i != e; ++i) {
+ MachineInstr *Kill = vi.Kills[i];
+ LiveRange LR(getInstructionIndex(Kill->getParent()->begin()),
+ getUseIndex(getInstructionIndex(Kill))+1);
+ interval.addRange(LR);
+ DEBUG(std::cerr << " +" << LR);
+ }
+
+ } else {
+ // If this is the second time we see a virtual register definition, it
+ // must be due to phi elimination or two addr elimination. If this is
+ // the result of two address elimination, then the vreg is the first
+ // operand, and is a def-and-use.
+ if (mi->getOperand(0).isRegister() &&
+ mi->getOperand(0).getReg() == interval.reg &&
+ mi->getOperand(0).isDef() && mi->getOperand(0).isUse()) {
+ // If this is a two-address definition, just ignore it.
+ } else {
+ // Otherwise, this must be because of phi elimination. In this case,
+ // the defined value will be live until the end of the basic block it
+ // is defined in.
+ unsigned defIndex = getDefIndex(getInstructionIndex(mi));
+ LiveRange LR(defIndex,
+ getInstructionIndex(&mbb->back()) +InstrSlots::NUM);
+ interval.addRange(LR);
+ DEBUG(std::cerr << " +" << LR);
+ }
+ interval.isDefinedOnce = false;
+ }
+
+ DEBUG(std::cerr << '\n');
+}
+
+void LiveIntervals::handlePhysicalRegisterDef(MachineBasicBlock* mbb,
+ MachineBasicBlock::iterator mi,
+ LiveInterval& interval)
+{
+ // A physical register cannot be live across basic block, so its
+ // lifetime must end somewhere in its defining basic block.
+ DEBUG(std::cerr << "\t\tregister: "; printRegName(interval.reg));
+ typedef LiveVariables::killed_iterator KillIter;
+
+ MachineBasicBlock::iterator e = mbb->end();
+ unsigned baseIndex = getInstructionIndex(mi);
+ unsigned start = getDefIndex(baseIndex);
+ unsigned end = start;
+
+ // If it is not used after definition, it is considered dead at
+ // the instruction defining it. Hence its interval is:
+ // [defSlot(def), defSlot(def)+1)
+ for (KillIter ki = lv_->dead_begin(mi), ke = lv_->dead_end(mi);
+ ki != ke; ++ki) {
+ if (interval.reg == ki->second) {
+ DEBUG(std::cerr << " dead");
+ end = getDefIndex(start) + 1;
+ goto exit;
+ }
+ }
+
+ // If it is not dead on definition, it must be killed by a
+ // subsequent instruction. Hence its interval is:
+ // [defSlot(def), useSlot(kill)+1)
+ do {
+ ++mi;
+ baseIndex += InstrSlots::NUM;
+ for (KillIter ki = lv_->killed_begin(mi), ke = lv_->killed_end(mi);
+ ki != ke; ++ki) {
+ if (interval.reg == ki->second) {
+ DEBUG(std::cerr << " killed");
+ end = getUseIndex(baseIndex) + 1;
+ goto exit;
+ }
+ }
+ } while (mi != e);
+
+exit:
+ assert(start < end && "did not find end of interval?");
+ interval.addRange(LiveRange(start, end));
+ DEBUG(std::cerr << " +" << LiveRange(start, end) << '\n');
+}
+
+void LiveIntervals::handleRegisterDef(MachineBasicBlock* mbb,
+ MachineBasicBlock::iterator mi,
+ unsigned reg)
+{
+ if (MRegisterInfo::isPhysicalRegister(reg)) {
+ if (lv_->getAllocatablePhysicalRegisters()[reg]) {
+ handlePhysicalRegisterDef(mbb, mi, getOrCreateInterval(reg));
+ for (const unsigned* as = mri_->getAliasSet(reg); *as; ++as)
+ handlePhysicalRegisterDef(mbb, mi, getOrCreateInterval(*as));
+ }
+ }
+ else
+ handleVirtualRegisterDef(mbb, mi, getOrCreateInterval(reg));
+}
+
+unsigned LiveIntervals::getInstructionIndex(MachineInstr* instr) const
+{
+ Mi2IndexMap::const_iterator it = mi2iMap_.find(instr);
+ return (it == mi2iMap_.end() ?
+ std::numeric_limits<unsigned>::max() :
+ it->second);
+}
+
+MachineInstr* LiveIntervals::getInstructionFromIndex(unsigned index) const
+{
+ index /= InstrSlots::NUM; // convert index to vector index
+ assert(index < i2miMap_.size() &&
+ "index does not correspond to an instruction");
+ return i2miMap_[index];
+}
+
+/// computeIntervals - computes the live intervals for virtual
+/// registers. for some ordering of the machine instructions [1,N] a
+/// live interval is an interval [i, j) where 1 <= i <= j < N for
+/// which a variable is live
+void LiveIntervals::computeIntervals()
+{
+ DEBUG(std::cerr << "********** COMPUTING LIVE INTERVALS **********\n");
+ DEBUG(std::cerr << "********** Function: "
+ << ((Value*)mf_->getFunction())->getName() << '\n');
+
+ for (MachineFunction::iterator I = mf_->begin(), E = mf_->end();
+ I != E; ++I) {
+ MachineBasicBlock* mbb = I;
+ DEBUG(std::cerr << ((Value*)mbb->getBasicBlock())->getName() << ":\n");
+
+ for (MachineBasicBlock::iterator mi = mbb->begin(), miEnd = mbb->end();
+ mi != miEnd; ++mi) {
+ const TargetInstrDescriptor& tid =
+ tm_->getInstrInfo()->get(mi->getOpcode());
+ DEBUG(std::cerr << getInstructionIndex(mi) << "\t";
+ mi->print(std::cerr, tm_));
+
+ // handle implicit defs
+ for (const unsigned* id = tid.ImplicitDefs; *id; ++id)
+ handleRegisterDef(mbb, mi, *id);
+
+ // handle explicit defs
+ for (int i = mi->getNumOperands() - 1; i >= 0; --i) {
+ MachineOperand& mop = mi->getOperand(i);
+ // handle register defs - build intervals
+ if (mop.isRegister() && mop.getReg() && mop.isDef())
+ handleRegisterDef(mbb, mi, mop.getReg());
+ }
+ }
+ }
+}
+
+unsigned LiveIntervals::rep(unsigned reg)
+{
+ Reg2RegMap::iterator it = r2rMap_.find(reg);
+ if (it != r2rMap_.end())
+ return it->second = rep(it->second);
+ return reg;
+}
+
+void LiveIntervals::joinIntervalsInMachineBB(MachineBasicBlock *MBB) {
+ DEBUG(std::cerr << ((Value*)MBB->getBasicBlock())->getName() << ":\n");
+ const TargetInstrInfo& tii = *tm_->getInstrInfo();
+
+ for (MachineBasicBlock::iterator mi = MBB->begin(), mie = MBB->end();
+ mi != mie; ++mi) {
+ const TargetInstrDescriptor& tid = tii.get(mi->getOpcode());
+ DEBUG(std::cerr << getInstructionIndex(mi) << '\t';
+ mi->print(std::cerr, tm_););
+
+ // we only join virtual registers with allocatable
+ // physical registers since we do not have liveness information
+ // on not allocatable physical registers
+ unsigned regA, regB;
+ if (tii.isMoveInstr(*mi, regA, regB) &&
+ (MRegisterInfo::isVirtualRegister(regA) ||
+ lv_->getAllocatablePhysicalRegisters()[regA]) &&
+ (MRegisterInfo::isVirtualRegister(regB) ||
+ lv_->getAllocatablePhysicalRegisters()[regB])) {
+
+ // get representative registers
+ regA = rep(regA);
+ regB = rep(regB);
+
+ // if they are already joined we continue
+ if (regA == regB)
+ continue;
+
+ Reg2IntervalMap::iterator r2iA = r2iMap_.find(regA);
+ assert(r2iA != r2iMap_.end() &&
+ "Found unknown vreg in 'isMoveInstr' instruction");
+ Reg2IntervalMap::iterator r2iB = r2iMap_.find(regB);
+ assert(r2iB != r2iMap_.end() &&
+ "Found unknown vreg in 'isMoveInstr' instruction");
+
+ Intervals::iterator intA = r2iA->second;
+ Intervals::iterator intB = r2iB->second;
+
+ DEBUG(std::cerr << "\t\tInspecting " << *intA << " and " << *intB
+ << ": ");
+
+ // both A and B are virtual registers
+ if (MRegisterInfo::isVirtualRegister(intA->reg) &&
+ MRegisterInfo::isVirtualRegister(intB->reg)) {
+
+ const TargetRegisterClass *rcA, *rcB;
+ rcA = mf_->getSSARegMap()->getRegClass(intA->reg);
+ rcB = mf_->getSSARegMap()->getRegClass(intB->reg);
+
+ // if they are not of the same register class we continue
+ if (rcA != rcB) {
+ DEBUG(std::cerr << "Differing reg classes.\n");
+ continue;
+ }
+
+ // if their intervals do not overlap we join them.
+ if ((intA->containsOneValue() && intB->containsOneValue()) ||
+ !intB->overlaps(*intA)) {
+ intA->join(*intB);
+ ++numJoins;
+ DEBUG(std::cerr << "Joined. Result = " << *intA << "\n");
+ r2iB->second = r2iA->second;
+ r2rMap_.insert(std::make_pair(intB->reg, intA->reg));
+ intervals_.erase(intB);
+ } else {
+ DEBUG(std::cerr << "Interference!\n");
+ }
+ } else if (!MRegisterInfo::isPhysicalRegister(intA->reg) ||
+ !MRegisterInfo::isPhysicalRegister(intB->reg)) {
+ if (MRegisterInfo::isPhysicalRegister(intB->reg)) {
+ std::swap(regA, regB);
+ std::swap(intA, intB);
+ std::swap(r2iA, r2iB);
+ }
+
+ assert(MRegisterInfo::isPhysicalRegister(intA->reg) &&
+ MRegisterInfo::isVirtualRegister(intB->reg) &&
+ "A must be physical and B must be virtual");
+
+ const TargetRegisterClass *rcA, *rcB;
+ rcA = mri_->getRegClass(intA->reg);
+ rcB = mf_->getSSARegMap()->getRegClass(intB->reg);
+ // if they are not of the same register class we continue
+ if (rcA != rcB) {
+ DEBUG(std::cerr << "Differing reg classes.\n");
+ continue;
+ }
+
+ if (!intA->overlaps(*intB) &&
+ !overlapsAliases(*intA, *intB)) {
+ intA->join(*intB);
+ ++numJoins;
+ DEBUG(std::cerr << "Joined. Result = " << *intA << "\n");
+ r2iB->second = r2iA->second;
+ r2rMap_.insert(std::make_pair(intB->reg, intA->reg));
+ intervals_.erase(intB);
+ } else {
+ DEBUG(std::cerr << "Interference!\n");
+ }
+ } else {
+ DEBUG(std::cerr << "Cannot join physregs.\n");
+ }
+ }
+ }
+}
+
+namespace {
+ // DepthMBBCompare - Comparison predicate that sort first based on the loop
+ // depth of the basic block (the unsigned), and then on the MBB number.
+ struct DepthMBBCompare {
+ typedef std::pair<unsigned, MachineBasicBlock*> DepthMBBPair;
+ bool operator()(const DepthMBBPair &LHS, const DepthMBBPair &RHS) const {
+ if (LHS.first > RHS.first) return true; // Deeper loops first
+ return LHS.first == RHS.first &&
+ LHS.second->getNumber() < RHS.second->getNumber();
+ }
+ };
+}
+
+void LiveIntervals::joinIntervals() {
+ DEBUG(std::cerr << "********** JOINING INTERVALS ***********\n");
+
+ const LoopInfo &LI = getAnalysis<LoopInfo>();
+ if (LI.begin() == LI.end()) {
+ // If there are no loops in the function, join intervals in function order.
+ for (MachineFunction::iterator I = mf_->begin(), E = mf_->end();
+ I != E; ++I)
+ joinIntervalsInMachineBB(I);
+ } else {
+ // Otherwise, join intervals in inner loops before other intervals.
+ // Unfortunately we can't just iterate over loop hierarchy here because
+ // there may be more MBB's than BB's. Collect MBB's for sorting.
+ std::vector<std::pair<unsigned, MachineBasicBlock*> > MBBs;
+ for (MachineFunction::iterator I = mf_->begin(), E = mf_->end();
+ I != E; ++I)
+ MBBs.push_back(std::make_pair(LI.getLoopDepth(I->getBasicBlock()), I));
+
+ // Sort by loop depth.
+ std::sort(MBBs.begin(), MBBs.end(), DepthMBBCompare());
+
+ // Finally, join intervals in loop nest order.
+ for (unsigned i = 0, e = MBBs.size(); i != e; ++i)
+ joinIntervalsInMachineBB(MBBs[i].second);
+ }
+}
+
+bool LiveIntervals::overlapsAliases(const LiveInterval& lhs,
+ const LiveInterval& rhs) const
+{
+ assert(MRegisterInfo::isPhysicalRegister(lhs.reg) &&
+ "first interval must describe a physical register");
+
+ for (const unsigned* as = mri_->getAliasSet(lhs.reg); *as; ++as) {
+ Reg2IntervalMap::const_iterator r2i = r2iMap_.find(*as);
+ assert(r2i != r2iMap_.end() && "alias does not have interval?");
+ if (rhs.overlaps(*r2i->second))
+ return true;
+ }
+
+ return false;
+}
+
+LiveInterval& LiveIntervals::getOrCreateInterval(unsigned reg)
+{
+ Reg2IntervalMap::iterator r2iit = r2iMap_.lower_bound(reg);
+ if (r2iit == r2iMap_.end() || r2iit->first != reg) {
+ float Weight = MRegisterInfo::isPhysicalRegister(reg) ? HUGE_VAL :0.0F;
+ intervals_.push_back(LiveInterval(reg, Weight));
+ r2iit = r2iMap_.insert(r2iit, std::make_pair(reg, --intervals_.end()));
+ }
+
+ return *r2iit->second;
+}
+
OpenPOWER on IntegriCloud