diff options
Diffstat (limited to 'llvm/lib/Analysis')
-rw-r--r-- | llvm/lib/Analysis/BasicAliasAnalysis.cpp | 40 | ||||
-rw-r--r-- | llvm/lib/Analysis/ConstantFolding.cpp | 132 | ||||
-rw-r--r-- | llvm/lib/Analysis/MemoryBuiltins.cpp | 22 | ||||
-rw-r--r-- | llvm/lib/Analysis/PointerTracking.cpp | 3 | ||||
-rw-r--r-- | llvm/lib/Analysis/ScalarEvolution.cpp | 13 |
5 files changed, 93 insertions, 117 deletions
diff --git a/llvm/lib/Analysis/BasicAliasAnalysis.cpp b/llvm/lib/Analysis/BasicAliasAnalysis.cpp index c81190b4184..2f4663531ae 100644 --- a/llvm/lib/Analysis/BasicAliasAnalysis.cpp +++ b/llvm/lib/Analysis/BasicAliasAnalysis.cpp @@ -23,7 +23,6 @@ #include "llvm/GlobalVariable.h" #include "llvm/Instructions.h" #include "llvm/IntrinsicInst.h" -#include "llvm/LLVMContext.h" #include "llvm/Operator.h" #include "llvm/Pass.h" #include "llvm/Target/TargetData.h" @@ -99,7 +98,7 @@ static bool isNonEscapingLocalObject(const Value *V) { /// isObjectSmallerThan - Return true if we can prove that the object specified /// by V is smaller than Size. static bool isObjectSmallerThan(const Value *V, unsigned Size, - LLVMContext &Context, const TargetData &TD) { + const TargetData &TD) { const Type *AccessTy; if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) { AccessTy = GV->getType()->getElementType(); @@ -109,7 +108,7 @@ static bool isObjectSmallerThan(const Value *V, unsigned Size, else return false; } else if (const CallInst* CI = extractMallocCall(V)) { - if (!isArrayMalloc(V, Context, &TD)) + if (!isArrayMalloc(V, &TD)) // The size is the argument to the malloc call. if (const ConstantInt* C = dyn_cast<ConstantInt>(CI->getOperand(1))) return (C->getZExtValue() < Size); @@ -665,10 +664,9 @@ BasicAliasAnalysis::aliasCheck(const Value *V1, unsigned V1Size, // If the size of one access is larger than the entire object on the other // side, then we know such behavior is undefined and can assume no alias. - LLVMContext &Context = V1->getContext(); if (TD) - if ((V1Size != ~0U && isObjectSmallerThan(O2, V1Size, Context, *TD)) || - (V2Size != ~0U && isObjectSmallerThan(O1, V2Size, Context, *TD))) + if ((V1Size != ~0U && isObjectSmallerThan(O2, V1Size, *TD)) || + (V2Size != ~0U && isObjectSmallerThan(O1, V2Size, *TD))) return NoAlias; // If one pointer is the result of a call/invoke and the other is a @@ -707,16 +705,16 @@ BasicAliasAnalysis::aliasCheck(const Value *V1, unsigned V1Size, // This function is used to determine if the indices of two GEP instructions are // equal. V1 and V2 are the indices. -static bool IndexOperandsEqual(Value *V1, Value *V2, LLVMContext &Context) { +static bool IndexOperandsEqual(Value *V1, Value *V2) { if (V1->getType() == V2->getType()) return V1 == V2; if (Constant *C1 = dyn_cast<Constant>(V1)) if (Constant *C2 = dyn_cast<Constant>(V2)) { // Sign extend the constants to long types, if necessary - if (C1->getType() != Type::getInt64Ty(Context)) - C1 = ConstantExpr::getSExt(C1, Type::getInt64Ty(Context)); - if (C2->getType() != Type::getInt64Ty(Context)) - C2 = ConstantExpr::getSExt(C2, Type::getInt64Ty(Context)); + if (C1->getType() != Type::getInt64Ty(C1->getContext())) + C1 = ConstantExpr::getSExt(C1, Type::getInt64Ty(C1->getContext())); + if (C2->getType() != Type::getInt64Ty(C1->getContext())) + C2 = ConstantExpr::getSExt(C2, Type::getInt64Ty(C1->getContext())); return C1 == C2; } return false; @@ -737,8 +735,6 @@ BasicAliasAnalysis::CheckGEPInstructions( const PointerType *GEPPointerTy = cast<PointerType>(BasePtr1Ty); - LLVMContext &Context = GEPPointerTy->getContext(); - // Find the (possibly empty) initial sequence of equal values... which are not // necessarily constants. unsigned NumGEP1Operands = NumGEP1Ops, NumGEP2Operands = NumGEP2Ops; @@ -746,8 +742,7 @@ BasicAliasAnalysis::CheckGEPInstructions( unsigned MaxOperands = std::max(NumGEP1Operands, NumGEP2Operands); unsigned UnequalOper = 0; while (UnequalOper != MinOperands && - IndexOperandsEqual(GEP1Ops[UnequalOper], GEP2Ops[UnequalOper], - Context)) { + IndexOperandsEqual(GEP1Ops[UnequalOper], GEP2Ops[UnequalOper])) { // Advance through the type as we go... ++UnequalOper; if (const CompositeType *CT = dyn_cast<CompositeType>(BasePtr1Ty)) @@ -811,10 +806,11 @@ BasicAliasAnalysis::CheckGEPInstructions( if (Constant *G2OC = dyn_cast<ConstantInt>(const_cast<Value*>(G2Oper))){ if (G1OC->getType() != G2OC->getType()) { // Sign extend both operands to long. - if (G1OC->getType() != Type::getInt64Ty(Context)) - G1OC = ConstantExpr::getSExt(G1OC, Type::getInt64Ty(Context)); - if (G2OC->getType() != Type::getInt64Ty(Context)) - G2OC = ConstantExpr::getSExt(G2OC, Type::getInt64Ty(Context)); + const Type *Int64Ty = Type::getInt64Ty(G1OC->getContext()); + if (G1OC->getType() != Int64Ty) + G1OC = ConstantExpr::getSExt(G1OC, Int64Ty); + if (G2OC->getType() != Int64Ty) + G2OC = ConstantExpr::getSExt(G2OC, Int64Ty); GEP1Ops[FirstConstantOper] = G1OC; GEP2Ops[FirstConstantOper] = G2OC; } @@ -950,7 +946,7 @@ BasicAliasAnalysis::CheckGEPInstructions( for (unsigned i = 0; i != FirstConstantOper; ++i) { if (!isa<StructType>(ZeroIdxTy)) GEP1Ops[i] = GEP2Ops[i] = - Constant::getNullValue(Type::getInt32Ty(Context)); + Constant::getNullValue(Type::getInt32Ty(ZeroIdxTy->getContext())); if (const CompositeType *CT = dyn_cast<CompositeType>(ZeroIdxTy)) ZeroIdxTy = CT->getTypeAtIndex(GEP1Ops[i]); @@ -992,11 +988,11 @@ BasicAliasAnalysis::CheckGEPInstructions( // if (const ArrayType *AT = dyn_cast<ArrayType>(BasePtr1Ty)) GEP1Ops[i] = - ConstantInt::get(Type::getInt64Ty(Context), + ConstantInt::get(Type::getInt64Ty(AT->getContext()), AT->getNumElements()-1); else if (const VectorType *VT = dyn_cast<VectorType>(BasePtr1Ty)) GEP1Ops[i] = - ConstantInt::get(Type::getInt64Ty(Context), + ConstantInt::get(Type::getInt64Ty(VT->getContext()), VT->getNumElements()-1); } } diff --git a/llvm/lib/Analysis/ConstantFolding.cpp b/llvm/lib/Analysis/ConstantFolding.cpp index 33a5792796f..589bd321157 100644 --- a/llvm/lib/Analysis/ConstantFolding.cpp +++ b/llvm/lib/Analysis/ConstantFolding.cpp @@ -23,7 +23,6 @@ #include "llvm/GlobalVariable.h" #include "llvm/Instructions.h" #include "llvm/Intrinsics.h" -#include "llvm/LLVMContext.h" #include "llvm/Analysis/ValueTracking.h" #include "llvm/Target/TargetData.h" #include "llvm/ADT/SmallVector.h" @@ -493,8 +492,7 @@ static Constant *ConstantFoldLoadInst(const LoadInst *LI, const TargetData *TD){ /// these together. If target data info is available, it is provided as TD, /// otherwise TD is null. static Constant *SymbolicallyEvaluateBinop(unsigned Opc, Constant *Op0, - Constant *Op1, const TargetData *TD, - LLVMContext &Context){ + Constant *Op1, const TargetData *TD){ // SROA // Fold (and 0xffffffff00000000, (shl x, 32)) -> shl. @@ -521,15 +519,15 @@ static Constant *SymbolicallyEvaluateBinop(unsigned Opc, Constant *Op0, /// SymbolicallyEvaluateGEP - If we can symbolically evaluate the specified GEP /// constant expression, do so. -static Constant *SymbolicallyEvaluateGEP(Constant* const* Ops, unsigned NumOps, +static Constant *SymbolicallyEvaluateGEP(Constant *const *Ops, unsigned NumOps, const Type *ResultTy, - LLVMContext &Context, const TargetData *TD) { Constant *Ptr = Ops[0]; if (!TD || !cast<PointerType>(Ptr->getType())->getElementType()->isSized()) return 0; - unsigned BitWidth = TD->getTypeSizeInBits(TD->getIntPtrType(Context)); + unsigned BitWidth = + TD->getTypeSizeInBits(TD->getIntPtrType(Ptr->getContext())); APInt BasePtr(BitWidth, 0); bool BaseIsInt = true; if (!Ptr->isNullValue()) { @@ -558,7 +556,7 @@ static Constant *SymbolicallyEvaluateGEP(Constant* const* Ops, unsigned NumOps, // If the base value for this address is a literal integer value, fold the // getelementptr to the resulting integer value casted to the pointer type. if (BaseIsInt) { - Constant *C = ConstantInt::get(Context, Offset+BasePtr); + Constant *C = ConstantInt::get(Ptr->getContext(), Offset+BasePtr); return ConstantExpr::getIntToPtr(C, ResultTy); } @@ -579,7 +577,8 @@ static Constant *SymbolicallyEvaluateGEP(Constant* const* Ops, unsigned NumOps, return 0; APInt NewIdx = Offset.udiv(ElemSize); Offset -= NewIdx * ElemSize; - NewIdxs.push_back(ConstantInt::get(TD->getIntPtrType(Context), NewIdx)); + NewIdxs.push_back(ConstantInt::get(TD->getIntPtrType(Ty->getContext()), + NewIdx)); Ty = ATy->getElementType(); } else if (const StructType *STy = dyn_cast<StructType>(Ty)) { // Determine which field of the struct the offset points into. The @@ -587,7 +586,8 @@ static Constant *SymbolicallyEvaluateGEP(Constant* const* Ops, unsigned NumOps, // know the offset is within the struct at this point. const StructLayout &SL = *TD->getStructLayout(STy); unsigned ElIdx = SL.getElementContainingOffset(Offset.getZExtValue()); - NewIdxs.push_back(ConstantInt::get(Type::getInt32Ty(Context), ElIdx)); + NewIdxs.push_back(ConstantInt::get(Type::getInt32Ty(Ty->getContext()), + ElIdx)); Offset -= APInt(BitWidth, SL.getElementOffset(ElIdx)); Ty = STy->getTypeAtIndex(ElIdx); } else { @@ -628,8 +628,7 @@ static Constant *SymbolicallyEvaluateGEP(Constant* const* Ops, unsigned NumOps, /// is returned. Note that this function can only fail when attempting to fold /// instructions like loads and stores, which have no constant expression form. /// -Constant *llvm::ConstantFoldInstruction(Instruction *I, LLVMContext &Context, - const TargetData *TD) { +Constant *llvm::ConstantFoldInstruction(Instruction *I, const TargetData *TD) { if (PHINode *PN = dyn_cast<PHINode>(I)) { if (PN->getNumIncomingValues() == 0) return UndefValue::get(PN->getType()); @@ -657,21 +656,19 @@ Constant *llvm::ConstantFoldInstruction(Instruction *I, LLVMContext &Context, if (const CmpInst *CI = dyn_cast<CmpInst>(I)) return ConstantFoldCompareInstOperands(CI->getPredicate(), - Ops.data(), Ops.size(), - Context, TD); + Ops.data(), Ops.size(), TD); if (const LoadInst *LI = dyn_cast<LoadInst>(I)) return ConstantFoldLoadInst(LI, TD); return ConstantFoldInstOperands(I->getOpcode(), I->getType(), - Ops.data(), Ops.size(), Context, TD); + Ops.data(), Ops.size(), TD); } /// ConstantFoldConstantExpression - Attempt to fold the constant expression /// using the specified TargetData. If successful, the constant result is /// result is returned, if not, null is returned. Constant *llvm::ConstantFoldConstantExpression(ConstantExpr *CE, - LLVMContext &Context, const TargetData *TD) { SmallVector<Constant*, 8> Ops; for (User::op_iterator i = CE->op_begin(), e = CE->op_end(); i != e; ++i) @@ -679,10 +676,9 @@ Constant *llvm::ConstantFoldConstantExpression(ConstantExpr *CE, if (CE->isCompare()) return ConstantFoldCompareInstOperands(CE->getPredicate(), - Ops.data(), Ops.size(), - Context, TD); + Ops.data(), Ops.size(), TD); return ConstantFoldInstOperands(CE->getOpcode(), CE->getType(), - Ops.data(), Ops.size(), Context, TD); + Ops.data(), Ops.size(), TD); } /// ConstantFoldInstOperands - Attempt to constant fold an instruction with the @@ -693,13 +689,11 @@ Constant *llvm::ConstantFoldConstantExpression(ConstantExpr *CE, /// Constant *llvm::ConstantFoldInstOperands(unsigned Opcode, const Type *DestTy, Constant* const* Ops, unsigned NumOps, - LLVMContext &Context, const TargetData *TD) { // Handle easy binops first. if (Instruction::isBinaryOp(Opcode)) { if (isa<ConstantExpr>(Ops[0]) || isa<ConstantExpr>(Ops[1])) - if (Constant *C = SymbolicallyEvaluateBinop(Opcode, Ops[0], Ops[1], TD, - Context)) + if (Constant *C = SymbolicallyEvaluateBinop(Opcode, Ops[0], Ops[1], TD)) return C; return ConstantExpr::get(Opcode, Ops[0], Ops[1]); @@ -724,7 +718,7 @@ Constant *llvm::ConstantFoldInstOperands(unsigned Opcode, const Type *DestTy, unsigned InWidth = Input->getType()->getScalarSizeInBits(); if (TD->getPointerSizeInBits() < InWidth) { Constant *Mask = - ConstantInt::get(Context, APInt::getLowBitsSet(InWidth, + ConstantInt::get(CE->getContext(), APInt::getLowBitsSet(InWidth, TD->getPointerSizeInBits())); Input = ConstantExpr::getAnd(Input, Mask); } @@ -766,7 +760,7 @@ Constant *llvm::ConstantFoldInstOperands(unsigned Opcode, const Type *DestTy, AT->getNumElements()))) { Constant *Index[] = { Constant::getNullValue(CE->getType()), - ConstantInt::get(Context, ElemIdx) + ConstantInt::get(ElTy->getContext(), ElemIdx) }; return ConstantExpr::getGetElementPtr(GV, &Index[0], 2); @@ -800,7 +794,7 @@ Constant *llvm::ConstantFoldInstOperands(unsigned Opcode, const Type *DestTy, case Instruction::ShuffleVector: return ConstantExpr::getShuffleVector(Ops[0], Ops[1], Ops[2]); case Instruction::GetElementPtr: - if (Constant *C = SymbolicallyEvaluateGEP(Ops, NumOps, DestTy, Context, TD)) + if (Constant *C = SymbolicallyEvaluateGEP(Ops, NumOps, DestTy, TD)) return C; return ConstantExpr::getGetElementPtr(Ops[0], Ops+1, NumOps-1); @@ -812,9 +806,8 @@ Constant *llvm::ConstantFoldInstOperands(unsigned Opcode, const Type *DestTy, /// returns a constant expression of the specified operands. /// Constant *llvm::ConstantFoldCompareInstOperands(unsigned Predicate, - Constant*const * Ops, + Constant *const *Ops, unsigned NumOps, - LLVMContext &Context, const TargetData *TD) { // fold: icmp (inttoptr x), null -> icmp x, 0 // fold: icmp (ptrtoint x), 0 -> icmp x, null @@ -825,15 +818,14 @@ Constant *llvm::ConstantFoldCompareInstOperands(unsigned Predicate, // around to know if bit truncation is happening. if (ConstantExpr *CE0 = dyn_cast<ConstantExpr>(Ops[0])) { if (TD && Ops[1]->isNullValue()) { - const Type *IntPtrTy = TD->getIntPtrType(Context); + const Type *IntPtrTy = TD->getIntPtrType(CE0->getContext()); if (CE0->getOpcode() == Instruction::IntToPtr) { // Convert the integer value to the right size to ensure we get the // proper extension or truncation. Constant *C = ConstantExpr::getIntegerCast(CE0->getOperand(0), IntPtrTy, false); Constant *NewOps[] = { C, Constant::getNullValue(C->getType()) }; - return ConstantFoldCompareInstOperands(Predicate, NewOps, 2, - Context, TD); + return ConstantFoldCompareInstOperands(Predicate, NewOps, 2, TD); } // Only do this transformation if the int is intptrty in size, otherwise @@ -843,14 +835,13 @@ Constant *llvm::ConstantFoldCompareInstOperands(unsigned Predicate, Constant *C = CE0->getOperand(0); Constant *NewOps[] = { C, Constant::getNullValue(C->getType()) }; // FIXME! - return ConstantFoldCompareInstOperands(Predicate, NewOps, 2, - Context, TD); + return ConstantFoldCompareInstOperands(Predicate, NewOps, 2, TD); } } if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(Ops[1])) { if (TD && CE0->getOpcode() == CE1->getOpcode()) { - const Type *IntPtrTy = TD->getIntPtrType(Context); + const Type *IntPtrTy = TD->getIntPtrType(CE0->getContext()); if (CE0->getOpcode() == Instruction::IntToPtr) { // Convert the integer value to the right size to ensure we get the @@ -860,8 +851,7 @@ Constant *llvm::ConstantFoldCompareInstOperands(unsigned Predicate, Constant *C1 = ConstantExpr::getIntegerCast(CE1->getOperand(0), IntPtrTy, false); Constant *NewOps[] = { C0, C1 }; - return ConstantFoldCompareInstOperands(Predicate, NewOps, 2, - Context, TD); + return ConstantFoldCompareInstOperands(Predicate, NewOps, 2, TD); } // Only do this transformation if the int is intptrty in size, otherwise @@ -872,8 +862,7 @@ Constant *llvm::ConstantFoldCompareInstOperands(unsigned Predicate, Constant *NewOps[] = { CE0->getOperand(0), CE1->getOperand(0) }; - return ConstantFoldCompareInstOperands(Predicate, NewOps, 2, - Context, TD); + return ConstantFoldCompareInstOperands(Predicate, NewOps, 2, TD); } } } @@ -996,7 +985,7 @@ llvm::canConstantFoldCallTo(const Function *F) { } static Constant *ConstantFoldFP(double (*NativeFP)(double), double V, - const Type *Ty, LLVMContext &Context) { + const Type *Ty) { errno = 0; V = NativeFP(V); if (errno != 0) { @@ -1005,17 +994,15 @@ static Constant *ConstantFoldFP(double (*NativeFP)(double), double V, } if (Ty->isFloatTy()) - return ConstantFP::get(Context, APFloat((float)V)); + return ConstantFP::get(Ty->getContext(), APFloat((float)V)); if (Ty->isDoubleTy()) - return ConstantFP::get(Context, APFloat(V)); + return ConstantFP::get(Ty->getContext(), APFloat(V)); llvm_unreachable("Can only constant fold float/double"); return 0; // dummy return to suppress warning } static Constant *ConstantFoldBinaryFP(double (*NativeFP)(double, double), - double V, double W, - const Type *Ty, - LLVMContext &Context) { + double V, double W, const Type *Ty) { errno = 0; V = NativeFP(V, W); if (errno != 0) { @@ -1024,9 +1011,9 @@ static Constant *ConstantFoldBinaryFP(double (*NativeFP)(double, double), } if (Ty->isFloatTy()) - return ConstantFP::get(Context, APFloat((float)V)); + return ConstantFP::get(Ty->getContext(), APFloat((float)V)); if (Ty->isDoubleTy()) - return ConstantFP::get(Context, APFloat(V)); + return ConstantFP::get(Ty->getContext(), APFloat(V)); llvm_unreachable("Can only constant fold float/double"); return 0; // dummy return to suppress warning } @@ -1037,7 +1024,6 @@ Constant * llvm::ConstantFoldCall(Function *F, Constant *const *Operands, unsigned NumOperands) { if (!F->hasName()) return 0; - LLVMContext &Context = F->getContext(); StringRef Name = F->getName(); const Type *Ty = F->getReturnType(); @@ -1054,62 +1040,62 @@ llvm::ConstantFoldCall(Function *F, switch (Name[0]) { case 'a': if (Name == "acos") - return ConstantFoldFP(acos, V, Ty, Context); + return ConstantFoldFP(acos, V, Ty); else if (Name == "asin") - return ConstantFoldFP(asin, V, Ty, Context); + return ConstantFoldFP(asin, V, Ty); else if (Name == "atan") - return ConstantFoldFP(atan, V, Ty, Context); + return ConstantFoldFP(atan, V, Ty); break; case 'c': if (Name == "ceil") - return ConstantFoldFP(ceil, V, Ty, Context); + return ConstantFoldFP(ceil, V, Ty); else if (Name == "cos") - return ConstantFoldFP(cos, V, Ty, Context); + return ConstantFoldFP(cos, V, Ty); else if (Name == "cosh") - return ConstantFoldFP(cosh, V, Ty, Context); + return ConstantFoldFP(cosh, V, Ty); else if (Name == "cosf") - return ConstantFoldFP(cos, V, Ty, Context); + return ConstantFoldFP(cos, V, Ty); break; case 'e': if (Name == "exp") - return ConstantFoldFP(exp, V, Ty, Context); + return ConstantFoldFP(exp, V, Ty); break; case 'f': if (Name == "fabs") - return ConstantFoldFP(fabs, V, Ty, Context); + return ConstantFoldFP(fabs, V, Ty); else if (Name == "floor") - return ConstantFoldFP(floor, V, Ty, Context); + return ConstantFoldFP(floor, V, Ty); break; case 'l': if (Name == "log" && V > 0) - return ConstantFoldFP(log, V, Ty, Context); + return ConstantFoldFP(log, V, Ty); else if (Name == "log10" && V > 0) - return ConstantFoldFP(log10, V, Ty, Context); + return ConstantFoldFP(log10, V, Ty); else if (Name == "llvm.sqrt.f32" || Name == "llvm.sqrt.f64") { if (V >= -0.0) - return ConstantFoldFP(sqrt, V, Ty, Context); + return ConstantFoldFP(sqrt, V, Ty); else // Undefined return Constant::getNullValue(Ty); } break; case 's': if (Name == "sin") - return ConstantFoldFP(sin, V, Ty, Context); + return ConstantFoldFP(sin, V, Ty); else if (Name == "sinh") - return ConstantFoldFP(sinh, V, Ty, Context); + return ConstantFoldFP(sinh, V, Ty); else if (Name == "sqrt" && V >= 0) - return ConstantFoldFP(sqrt, V, Ty, Context); + return ConstantFoldFP(sqrt, V, Ty); else if (Name == "sqrtf" && V >= 0) - return ConstantFoldFP(sqrt, V, Ty, Context); + return ConstantFoldFP(sqrt, V, Ty); else if (Name == "sinf") - return ConstantFoldFP(sin, V, Ty, Context); + return ConstantFoldFP(sin, V, Ty); break; case 't': if (Name == "tan") - return ConstantFoldFP(tan, V, Ty, Context); + return ConstantFoldFP(tan, V, Ty); else if (Name == "tanh") - return ConstantFoldFP(tanh, V, Ty, Context); + return ConstantFoldFP(tanh, V, Ty); break; default: break; @@ -1120,7 +1106,7 @@ llvm::ConstantFoldCall(Function *F, if (ConstantInt *Op = dyn_cast<ConstantInt>(Operands[0])) { if (Name.startswith("llvm.bswap")) - return ConstantInt::get(Context, Op->getValue().byteSwap()); + return ConstantInt::get(F->getContext(), Op->getValue().byteSwap()); else if (Name.startswith("llvm.ctpop")) return ConstantInt::get(Ty, Op->getValue().countPopulation()); else if (Name.startswith("llvm.cttz")) @@ -1149,18 +1135,20 @@ llvm::ConstantFoldCall(Function *F, Op2->getValueAPF().convertToDouble(); if (Name == "pow") - return ConstantFoldBinaryFP(pow, Op1V, Op2V, Ty, Context); + return ConstantFoldBinaryFP(pow, Op1V, Op2V, Ty); if (Name == "fmod") - return ConstantFoldBinaryFP(fmod, Op1V, Op2V, Ty, Context); + return ConstantFoldBinaryFP(fmod, Op1V, Op2V, Ty); if (Name == "atan2") - return ConstantFoldBinaryFP(atan2, Op1V, Op2V, Ty, Context); + return ConstantFoldBinaryFP(atan2, Op1V, Op2V, Ty); } else if (ConstantInt *Op2C = dyn_cast<ConstantInt>(Operands[1])) { if (Name == "llvm.powi.f32") - return ConstantFP::get(Context, APFloat((float)std::pow((float)Op1V, + return ConstantFP::get(F->getContext(), + APFloat((float)std::pow((float)Op1V, (int)Op2C->getZExtValue()))); if (Name == "llvm.powi.f64") - return ConstantFP::get(Context, APFloat((double)std::pow((double)Op1V, - (int)Op2C->getZExtValue()))); + return ConstantFP::get(F->getContext(), + APFloat((double)std::pow((double)Op1V, + (int)Op2C->getZExtValue()))); } return 0; } diff --git a/llvm/lib/Analysis/MemoryBuiltins.cpp b/llvm/lib/Analysis/MemoryBuiltins.cpp index e710350fa06..2ca004edf95 100644 --- a/llvm/lib/Analysis/MemoryBuiltins.cpp +++ b/llvm/lib/Analysis/MemoryBuiltins.cpp @@ -91,8 +91,7 @@ static bool isConstantOne(Value *val) { return isa<ConstantInt>(val) && cast<ConstantInt>(val)->isOne(); } -static Value *isArrayMallocHelper(const CallInst *CI, LLVMContext &Context, - const TargetData *TD) { +static Value *isArrayMallocHelper(const CallInst *CI, const TargetData *TD) { if (!CI) return NULL; @@ -109,7 +108,7 @@ static Value *isArrayMallocHelper(const CallInst *CI, LLVMContext &Context, ElementSize = ConstantExpr::getTruncOrBitCast(ElementSize, MallocArg->getType()); Constant *FoldedElementSize = - ConstantFoldConstantExpression(cast<ConstantExpr>(ElementSize), Context, TD); + ConstantFoldConstantExpression(cast<ConstantExpr>(ElementSize), TD); // First, check if CI is a non-array malloc. if (CO && ((CO == ElementSize) || @@ -159,7 +158,7 @@ static Value *isArrayMallocHelper(const CallInst *CI, LLVMContext &Context, APInt Op1Int = Op1CI->getValue(); uint64_t BitToSet = Op1Int.getLimitedValue(Op1Int.getBitWidth() - 1); - Value *Op1Pow = ConstantInt::get(Context, + Value *Op1Pow = ConstantInt::get(Op1CI->getContext(), APInt(Op1Int.getBitWidth(), 0).set(BitToSet)); if (Op0 == ElementSize || (FoldedElementSize && Op0 == FoldedElementSize)) // ArraySize << log2(ElementSize) @@ -178,10 +177,9 @@ static Value *isArrayMallocHelper(const CallInst *CI, LLVMContext &Context, /// isArrayMalloc - Returns the corresponding CallInst if the instruction /// is a call to malloc whose array size can be determined and the array size /// is not constant 1. Otherwise, return NULL. -CallInst *llvm::isArrayMalloc(Value *I, LLVMContext &Context, - const TargetData *TD) { +CallInst *llvm::isArrayMalloc(Value *I, const TargetData *TD) { CallInst *CI = extractMallocCall(I); - Value *ArraySize = isArrayMallocHelper(CI, Context, TD); + Value *ArraySize = isArrayMallocHelper(CI, TD); if (ArraySize && ArraySize != ConstantInt::get(CI->getOperand(1)->getType(), 1)) @@ -191,10 +189,9 @@ CallInst *llvm::isArrayMalloc(Value *I, LLVMContext &Context, return NULL; } -const CallInst *llvm::isArrayMalloc(const Value *I, LLVMContext &Context, - const TargetData *TD) { +const CallInst *llvm::isArrayMalloc(const Value *I, const TargetData *TD) { const CallInst *CI = extractMallocCall(I); - Value *ArraySize = isArrayMallocHelper(CI, Context, TD); + Value *ArraySize = isArrayMallocHelper(CI, TD); if (ArraySize && ArraySize != ConstantInt::get(CI->getOperand(1)->getType(), 1)) @@ -244,9 +241,8 @@ const Type *llvm::getMallocAllocatedType(const CallInst *CI) { /// then return that multiple. For non-array mallocs, the multiple is /// constant 1. Otherwise, return NULL for mallocs whose array size cannot be /// determined. -Value *llvm::getMallocArraySize(CallInst *CI, LLVMContext &Context, - const TargetData *TD) { - return isArrayMallocHelper(CI, Context, TD); +Value *llvm::getMallocArraySize(CallInst *CI, const TargetData *TD) { + return isArrayMallocHelper(CI, TD); } //===----------------------------------------------------------------------===// diff --git a/llvm/lib/Analysis/PointerTracking.cpp b/llvm/lib/Analysis/PointerTracking.cpp index 2251b62b180..8da07e756d4 100644 --- a/llvm/lib/Analysis/PointerTracking.cpp +++ b/llvm/lib/Analysis/PointerTracking.cpp @@ -10,6 +10,7 @@ // This file implements tracking of pointer bounds. // //===----------------------------------------------------------------------===// + #include "llvm/Analysis/ConstantFolding.h" #include "llvm/Analysis/Dominators.h" #include "llvm/Analysis/LoopInfo.h" @@ -101,7 +102,7 @@ const SCEV *PointerTracking::computeAllocationCount(Value *P, } if (CallInst *CI = extractMallocCall(V)) { - Value *arraySize = getMallocArraySize(CI, P->getContext(), TD); + Value *arraySize = getMallocArraySize(CI, TD); const Type* AllocTy = getMallocAllocatedType(CI); if (!AllocTy || !arraySize) return SE->getCouldNotCompute(); Ty = AllocTy; diff --git a/llvm/lib/Analysis/ScalarEvolution.cpp b/llvm/lib/Analysis/ScalarEvolution.cpp index 3e87ca22be3..8ead14e9a87 100644 --- a/llvm/lib/Analysis/ScalarEvolution.cpp +++ b/llvm/lib/Analysis/ScalarEvolution.cpp @@ -3816,7 +3816,6 @@ static Constant *EvaluateExpression(Value *V, Constant *PHIVal) { if (Constant *C = dyn_cast<Constant>(V)) return C; if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) return GV; Instruction *I = cast<Instruction>(V); - LLVMContext &Context = I->getParent()->getContext(); std::vector<Constant*> Operands; Operands.resize(I->getNumOperands()); @@ -3828,12 +3827,10 @@ static Constant *EvaluateExpression(Value *V, Constant *PHIVal) { if (const CmpInst *CI = dyn_cast<CmpInst>(I)) return ConstantFoldCompareInstOperands(CI->getPredicate(), - &Operands[0], Operands.size(), - Context); + &Operands[0], Operands.size()); else return ConstantFoldInstOperands(I->getOpcode(), I->getType(), - &Operands[0], Operands.size(), - Context); + &Operands[0], Operands.size()); } /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is @@ -4040,12 +4037,10 @@ const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) { Constant *C; if (const CmpInst *CI = dyn_cast<CmpInst>(I)) C = ConstantFoldCompareInstOperands(CI->getPredicate(), - &Operands[0], Operands.size(), - getContext()); + &Operands[0], Operands.size()); else C = ConstantFoldInstOperands(I->getOpcode(), I->getType(), - &Operands[0], Operands.size(), - getContext()); + &Operands[0], Operands.size()); return getSCEV(C); } } |