diff options
Diffstat (limited to 'llvm/lib/Analysis/ValueTracking.cpp')
-rw-r--r-- | llvm/lib/Analysis/ValueTracking.cpp | 70 |
1 files changed, 31 insertions, 39 deletions
diff --git a/llvm/lib/Analysis/ValueTracking.cpp b/llvm/lib/Analysis/ValueTracking.cpp index 39a92066a48..38bcb0f6c71 100644 --- a/llvm/lib/Analysis/ValueTracking.cpp +++ b/llvm/lib/Analysis/ValueTracking.cpp @@ -348,10 +348,10 @@ static void computeKnownBitsMul(const Value *Op0, const Value *Op1, bool NSW, // Also compute a conservative estimate for high known-0 bits. // More trickiness is possible, but this is sufficient for the // interesting case of alignment computation. - unsigned TrailZ = Known.Zero.countTrailingOnes() + - Known2.Zero.countTrailingOnes(); - unsigned LeadZ = std::max(Known.Zero.countLeadingOnes() + - Known2.Zero.countLeadingOnes(), + unsigned TrailZ = Known.countMinTrailingZeros() + + Known2.countMinTrailingZeros(); + unsigned LeadZ = std::max(Known.countMinLeadingZeros() + + Known2.countMinLeadingZeros(), BitWidth) - BitWidth; TrailZ = std::min(TrailZ, BitWidth); @@ -756,8 +756,8 @@ static void computeKnownBitsFromAssume(const Value *V, KnownBits &Known, computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); // Whatever high bits in c are zero are known to be zero. - Known.Zero.setHighBits(RHSKnown.Zero.countLeadingOnes()); - // assume(v <_u c) + Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros()); + // assume(v <_u c) } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && Pred == ICmpInst::ICMP_ULT && isValidAssumeForContext(I, Q.CxtI, Q.DT)) { @@ -767,9 +767,9 @@ static void computeKnownBitsFromAssume(const Value *V, KnownBits &Known, // Whatever high bits in c are zero are known to be zero (if c is a power // of 2, then one more). if (isKnownToBeAPowerOfTwo(A, false, Depth + 1, Query(Q, I))) - Known.Zero.setHighBits(RHSKnown.Zero.countLeadingOnes()+1); + Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros() + 1); else - Known.Zero.setHighBits(RHSKnown.Zero.countLeadingOnes()); + Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros()); } } @@ -922,7 +922,7 @@ static void computeKnownBitsFromOperator(const Operator *I, KnownBits &Known, m_Value(Y))))) { Known2.resetAll(); computeKnownBits(Y, Known2, Depth + 1, Q); - if (Known2.One.countTrailingOnes() > 0) + if (Known2.countMinTrailingOnes() > 0) Known.Zero.setBit(0); } break; @@ -959,14 +959,13 @@ static void computeKnownBitsFromOperator(const Operator *I, KnownBits &Known, // treat a udiv as a logical right shift by the power of 2 known to // be less than the denominator. computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); - unsigned LeadZ = Known2.Zero.countLeadingOnes(); + unsigned LeadZ = Known2.countMinLeadingZeros(); Known2.resetAll(); computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); - unsigned RHSUnknownLeadingOnes = Known2.One.countLeadingZeros(); - if (RHSUnknownLeadingOnes != BitWidth) - LeadZ = std::min(BitWidth, - LeadZ + BitWidth - RHSUnknownLeadingOnes - 1); + unsigned RHSMaxLeadingZeros = Known2.countMaxLeadingZeros(); + if (RHSMaxLeadingZeros != BitWidth) + LeadZ = std::min(BitWidth, LeadZ + BitWidth - RHSMaxLeadingZeros - 1); Known.Zero.setHighBits(LeadZ); break; @@ -989,8 +988,8 @@ static void computeKnownBitsFromOperator(const Operator *I, KnownBits &Known, if (Known.isNegative() && Known2.isNegative()) // We can derive a lower bound on the result by taking the max of the // leading one bits. - MaxHighOnes = std::max(Known.One.countLeadingOnes(), - Known2.One.countLeadingOnes()); + MaxHighOnes = + std::max(Known.countMinLeadingOnes(), Known2.countMinLeadingOnes()); // If either side is non-negative, the result is non-negative. else if (Known.isNonNegative() || Known2.isNonNegative()) MaxHighZeros = 1; @@ -999,8 +998,8 @@ static void computeKnownBitsFromOperator(const Operator *I, KnownBits &Known, if (Known.isNonNegative() && Known2.isNonNegative()) // We can derive an upper bound on the result by taking the max of the // leading zero bits. - MaxHighZeros = std::max(Known.Zero.countLeadingOnes(), - Known2.Zero.countLeadingOnes()); + MaxHighZeros = std::max(Known.countMinLeadingZeros(), + Known2.countMinLeadingZeros()); // If either side is negative, the result is negative. else if (Known.isNegative() || Known2.isNegative()) MaxHighOnes = 1; @@ -1008,12 +1007,12 @@ static void computeKnownBitsFromOperator(const Operator *I, KnownBits &Known, // We can derive a lower bound on the result by taking the max of the // leading one bits. MaxHighOnes = - std::max(Known.One.countLeadingOnes(), Known2.One.countLeadingOnes()); + std::max(Known.countMinLeadingOnes(), Known2.countMinLeadingOnes()); } else if (SPF == SPF_UMIN) { // We can derive an upper bound on the result by taking the max of the // leading zero bits. MaxHighZeros = - std::max(Known.Zero.countLeadingOnes(), Known2.Zero.countLeadingOnes()); + std::max(Known.countMinLeadingZeros(), Known2.countMinLeadingZeros()); } // Only known if known in both the LHS and RHS. @@ -1191,8 +1190,8 @@ static void computeKnownBitsFromOperator(const Operator *I, KnownBits &Known, computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); - unsigned Leaders = std::max(Known.Zero.countLeadingOnes(), - Known2.Zero.countLeadingOnes()); + unsigned Leaders = + std::max(Known.countMinLeadingZeros(), Known2.countMinLeadingZeros()); Known.resetAll(); Known.Zero.setHighBits(Leaders); break; @@ -1213,7 +1212,7 @@ static void computeKnownBitsFromOperator(const Operator *I, KnownBits &Known, // to determine if we can prove known low zero bits. KnownBits LocalKnown(BitWidth); computeKnownBits(I->getOperand(0), LocalKnown, Depth + 1, Q); - unsigned TrailZ = LocalKnown.Zero.countTrailingOnes(); + unsigned TrailZ = LocalKnown.countMinTrailingZeros(); gep_type_iterator GTI = gep_type_begin(I); for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) { @@ -1247,7 +1246,7 @@ static void computeKnownBitsFromOperator(const Operator *I, KnownBits &Known, computeKnownBits(Index, LocalKnown, Depth + 1, Q); TrailZ = std::min(TrailZ, unsigned(countTrailingZeros(TypeSize) + - LocalKnown.Zero.countTrailingOnes())); + LocalKnown.countMinTrailingZeros())); } } @@ -1292,8 +1291,8 @@ static void computeKnownBitsFromOperator(const Operator *I, KnownBits &Known, KnownBits Known3(Known); computeKnownBits(L, Known3, Depth + 1, Q); - Known.Zero.setLowBits(std::min(Known2.Zero.countTrailingOnes(), - Known3.Zero.countTrailingOnes())); + Known.Zero.setLowBits(std::min(Known2.countMinTrailingZeros(), + Known3.countMinTrailingZeros())); if (DontImproveNonNegativePhiBits) break; @@ -1418,7 +1417,7 @@ static void computeKnownBitsFromOperator(const Operator *I, KnownBits &Known, computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); // We can bound the space the count needs. Also, bits known to be zero // can't contribute to the population. - unsigned BitsPossiblySet = BitWidth - Known2.Zero.countPopulation(); + unsigned BitsPossiblySet = Known2.countMaxPopulation(); unsigned LowBits = Log2_32(BitsPossiblySet)+1; Known.Zero.setBitsFrom(LowBits); // TODO: we could bound KnownOne using the lower bound on the number @@ -1869,10 +1868,10 @@ bool isKnownNonZero(const Value *V, unsigned Depth, const Query &Q) { if (ConstantInt *Shift = dyn_cast<ConstantInt>(Y)) { auto ShiftVal = Shift->getLimitedValue(BitWidth - 1); // Is there a known one in the portion not shifted out? - if (Known.One.countLeadingZeros() < BitWidth - ShiftVal) + if (Known.countMaxLeadingZeros() < BitWidth - ShiftVal) return true; // Are all the bits to be shifted out known zero? - if (Known.Zero.countTrailingOnes() >= ShiftVal) + if (Known.countMinTrailingZeros() >= ShiftVal) return isKnownNonZero(X, Depth, Q); } } @@ -2284,14 +2283,7 @@ static unsigned ComputeNumSignBitsImpl(const Value *V, unsigned Depth, // If we know that the sign bit is either zero or one, determine the number of // identical bits in the top of the input value. - if (Known.isNonNegative()) - return std::max(FirstAnswer, Known.Zero.countLeadingOnes()); - - if (Known.isNegative()) - return std::max(FirstAnswer, Known.One.countLeadingOnes()); - - // computeKnownBits gave us no extra information about the top bits. - return FirstAnswer; + return std::max(FirstAnswer, Known.countMinSignBits()); } /// This function computes the integer multiple of Base that equals V. @@ -3449,8 +3441,8 @@ OverflowResult llvm::computeOverflowForUnsignedMul(const Value *LHS, computeKnownBits(RHS, RHSKnown, DL, /*Depth=*/0, AC, CxtI, DT); // Note that underestimating the number of zero bits gives a more // conservative answer. - unsigned ZeroBits = LHSKnown.Zero.countLeadingOnes() + - RHSKnown.Zero.countLeadingOnes(); + unsigned ZeroBits = LHSKnown.countMinLeadingZeros() + + RHSKnown.countMinLeadingZeros(); // First handle the easy case: if we have enough zero bits there's // definitely no overflow. if (ZeroBits >= BitWidth) |