diff options
Diffstat (limited to 'llvm/lib/Analysis/ValueTracking.cpp')
| -rw-r--r-- | llvm/lib/Analysis/ValueTracking.cpp | 212 |
1 files changed, 212 insertions, 0 deletions
diff --git a/llvm/lib/Analysis/ValueTracking.cpp b/llvm/lib/Analysis/ValueTracking.cpp index cf6b92d74f9..edccd8c0914 100644 --- a/llvm/lib/Analysis/ValueTracking.cpp +++ b/llvm/lib/Analysis/ValueTracking.cpp @@ -39,6 +39,34 @@ using namespace llvm::PatternMatch; const unsigned MaxDepth = 6; +/// Enable an experimental feature to leverage information about dominating +/// conditions to compute known bits. The individual options below control how +/// hard we search. The defaults are choosen to be fairly aggressive. If you +/// run into compile time problems when testing, scale them back and report +/// your findings. +static cl::opt<bool> EnableDomConditions("value-tracking-dom-conditions", + cl::Hidden, cl::init(false)); + +// This is expensive, so we only do it for the top level query value. +// (TODO: evaluate cost vs profit, consider higher thresholds) +static cl::opt<unsigned> DomConditionsMaxDepth("dom-conditions-max-depth", + cl::Hidden, cl::init(1)); + +/// How many dominating blocks should be scanned looking for dominating +/// conditions? +static cl::opt<unsigned> DomConditionsMaxDomBlocks("dom-conditions-dom-blocks", + cl::Hidden, + cl::init(20000)); + +// Controls the number of uses of the value searched for possible +// dominating comparisons. +static cl::opt<unsigned> DomConditionsMaxUses("dom-conditions-max-uses", + cl::Hidden, cl::init(2000)); + +// If true, don't consider only compares whose only use is a branch. +static cl::opt<bool> DomConditionsSingleCmpUse("dom-conditions-single-cmp-use", + cl::Hidden, cl::init(false)); + /// Returns the bitwidth of the given scalar or pointer type (if unknown returns /// 0). For vector types, returns the element type's bitwidth. static unsigned getBitWidth(Type *Ty, const DataLayout &DL) { @@ -470,6 +498,179 @@ m_c_Xor(const LHS &L, const RHS &R) { return m_CombineOr(m_Xor(L, R), m_Xor(R, L)); } +/// Compute known bits in 'V' under the assumption that the condition 'Cmp' is +/// true (at the context instruction.) This is mostly a utility function for +/// the prototype dominating conditions reasoning below. +static void computeKnownBitsFromTrueCondition(Value *V, ICmpInst *Cmp, + APInt &KnownZero, + APInt &KnownOne, + const DataLayout &DL, + unsigned Depth, const Query &Q) { + Value *LHS = Cmp->getOperand(0); + Value *RHS = Cmp->getOperand(1); + // TODO: We could potentially be more aggressive here. This would be worth + // evaluating. If we can, explore commoning this code with the assume + // handling logic. + if (LHS != V && RHS != V) + return; + + const unsigned BitWidth = KnownZero.getBitWidth(); + + switch (Cmp->getPredicate()) { + default: + // We know nothing from this condition + break; + // TODO: implement unsigned bound from below (known one bits) + // TODO: common condition check implementations with assumes + // TODO: implement other patterns from assume (e.g. V & B == A) + case ICmpInst::ICMP_SGT: + if (LHS == V) { + APInt KnownZeroTemp(BitWidth, 0), KnownOneTemp(BitWidth, 0); + computeKnownBits(RHS, KnownZeroTemp, KnownOneTemp, DL, Depth + 1, Q); + if (KnownOneTemp.isAllOnesValue() || KnownZeroTemp.isNegative()) { + // We know that the sign bit is zero. + KnownZero |= APInt::getSignBit(BitWidth); + } + } + break; + case ICmpInst::ICMP_EQ: + if (LHS == V) + computeKnownBits(RHS, KnownZero, KnownOne, DL, Depth + 1, Q); + else if (RHS == V) + computeKnownBits(LHS, KnownZero, KnownOne, DL, Depth + 1, Q); + else + llvm_unreachable("missing use?"); + break; + case ICmpInst::ICMP_ULE: + if (LHS == V) { + APInt KnownZeroTemp(BitWidth, 0), KnownOneTemp(BitWidth, 0); + computeKnownBits(RHS, KnownZeroTemp, KnownOneTemp, DL, Depth + 1, Q); + // The known zero bits carry over + unsigned SignBits = KnownZeroTemp.countLeadingOnes(); + KnownZero |= APInt::getHighBitsSet(BitWidth, SignBits); + } + break; + case ICmpInst::ICMP_ULT: + if (LHS == V) { + APInt KnownZeroTemp(BitWidth, 0), KnownOneTemp(BitWidth, 0); + computeKnownBits(RHS, KnownZeroTemp, KnownOneTemp, DL, Depth + 1, Q); + // Whatever high bits in rhs are zero are known to be zero (if rhs is a + // power of 2, then one more). + unsigned SignBits = KnownZeroTemp.countLeadingOnes(); + if (isKnownToBeAPowerOfTwo(RHS, false, Depth + 1, Query(Q, Cmp), DL)) + SignBits++; + KnownZero |= APInt::getHighBitsSet(BitWidth, SignBits); + } + break; + }; +} + +/// Compute known bits in 'V' from conditions which are known to be true along +/// all paths leading to the context instruction. In particular, look for +/// cases where one branch of an interesting condition dominates the context +/// instruction. This does not do general dataflow. +/// NOTE: This code is EXPERIMENTAL and currently off by default. +static void computeKnownBitsFromDominatingCondition(Value *V, APInt &KnownZero, + APInt &KnownOne, + const DataLayout &DL, + unsigned Depth, + const Query &Q) { + // Need both the dominator tree and the query location to do anything useful + if (!Q.DT || !Q.CxtI) + return; + Instruction *Cxt = const_cast<Instruction *>(Q.CxtI); + + // Avoid useless work + if (auto VI = dyn_cast<Instruction>(V)) + if (VI->getParent() == Cxt->getParent()) + return; + + // Note: We currently implement two options. It's not clear which of these + // will survive long term, we need data for that. + // Option 1 - Try walking the dominator tree looking for conditions which + // might apply. This works well for local conditions (loop guards, etc..), + // but not as well for things far from the context instruction (presuming a + // low max blocks explored). If we can set an high enough limit, this would + // be all we need. + // Option 2 - We restrict out search to those conditions which are uses of + // the value we're interested in. This is independent of dom structure, + // but is slightly less powerful without looking through lots of use chains. + // It does handle conditions far from the context instruction (e.g. early + // function exits on entry) really well though. + + // Option 1 - Search the dom tree + unsigned NumBlocksExplored = 0; + BasicBlock *Current = Cxt->getParent(); + while (true) { + // Stop searching if we've gone too far up the chain + if (NumBlocksExplored >= DomConditionsMaxDomBlocks) + break; + NumBlocksExplored++; + + if (!Q.DT->getNode(Current)->getIDom()) + break; + Current = Q.DT->getNode(Current)->getIDom()->getBlock(); + if (!Current) + // found function entry + break; + + BranchInst *BI = dyn_cast<BranchInst>(Current->getTerminator()); + if (!BI || BI->isUnconditional()) + continue; + ICmpInst *Cmp = dyn_cast<ICmpInst>(BI->getCondition()); + if (!Cmp) + continue; + + // We're looking for conditions that are guaranteed to hold at the context + // instruction. Finding a condition where one path dominates the context + // isn't enough because both the true and false cases could merge before + // the context instruction we're actually interested in. Instead, we need + // to ensure that the taken *edge* dominates the context instruction. + BasicBlock *BB0 = BI->getSuccessor(0); + BasicBlockEdge Edge(BI->getParent(), BB0); + if (!Edge.isSingleEdge() || !Q.DT->dominates(Edge, Q.CxtI->getParent())) + continue; + + computeKnownBitsFromTrueCondition(V, Cmp, KnownZero, KnownOne, DL, Depth, + Q); + } + + // Option 2 - Search the other uses of V + unsigned NumUsesExplored = 0; + for (auto U : V->users()) { + // Avoid massive lists + if (NumUsesExplored >= DomConditionsMaxUses) + break; + NumUsesExplored++; + // Consider only compare instructions uniquely controlling a branch + ICmpInst *Cmp = dyn_cast<ICmpInst>(U); + if (!Cmp) + continue; + + if (DomConditionsSingleCmpUse && !Cmp->hasOneUse()) + continue; + + for (auto *CmpU : Cmp->users()) { + BranchInst *BI = dyn_cast<BranchInst>(CmpU); + if (!BI || BI->isUnconditional()) + continue; + // We're looking for conditions that are guaranteed to hold at the + // context instruction. Finding a condition where one path dominates + // the context isn't enough because both the true and false cases could + // merge before the context instruction we're actually interested in. + // Instead, we need to ensure that the taken *edge* dominates the context + // instruction. + BasicBlock *BB0 = BI->getSuccessor(0); + BasicBlockEdge Edge(BI->getParent(), BB0); + if (!Edge.isSingleEdge() || !Q.DT->dominates(Edge, Q.CxtI->getParent())) + continue; + + computeKnownBitsFromTrueCondition(V, Cmp, KnownZero, KnownOne, DL, Depth, + Q); + } + } +} + static void computeKnownBitsFromAssume(Value *V, APInt &KnownZero, APInt &KnownOne, const DataLayout &DL, unsigned Depth, const Query &Q) { @@ -824,6 +1025,11 @@ void computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne, // Don't give up yet... there might be an assumption that provides more // information... computeKnownBitsFromAssume(V, KnownZero, KnownOne, DL, Depth, Q); + + // Or a dominating condition for that matter + if (EnableDomConditions && Depth <= DomConditionsMaxDepth) + computeKnownBitsFromDominatingCondition(V, KnownZero, KnownOne, DL, + Depth, Q); return; } @@ -846,6 +1052,12 @@ void computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne, // Check whether a nearby assume intrinsic can determine some known bits. computeKnownBitsFromAssume(V, KnownZero, KnownOne, DL, Depth, Q); + // Check whether there's a dominating condition which implies something about + // this value at the given context. + if (EnableDomConditions && Depth <= DomConditionsMaxDepth) + computeKnownBitsFromDominatingCondition(V, KnownZero, KnownOne, DL, Depth, + Q); + Operator *I = dyn_cast<Operator>(V); if (!I) return; |

