diff options
Diffstat (limited to 'llvm/lib/Analysis/DivergenceAnalysis.cpp')
-rw-r--r-- | llvm/lib/Analysis/DivergenceAnalysis.cpp | 340 |
1 files changed, 0 insertions, 340 deletions
diff --git a/llvm/lib/Analysis/DivergenceAnalysis.cpp b/llvm/lib/Analysis/DivergenceAnalysis.cpp deleted file mode 100644 index f5f1874c930..00000000000 --- a/llvm/lib/Analysis/DivergenceAnalysis.cpp +++ /dev/null @@ -1,340 +0,0 @@ -//===- DivergenceAnalysis.cpp --------- Divergence Analysis Implementation -==// -// -// The LLVM Compiler Infrastructure -// -// This file is distributed under the University of Illinois Open Source -// License. See LICENSE.TXT for details. -// -//===----------------------------------------------------------------------===// -// -// This file implements divergence analysis which determines whether a branch -// in a GPU program is divergent.It can help branch optimizations such as jump -// threading and loop unswitching to make better decisions. -// -// GPU programs typically use the SIMD execution model, where multiple threads -// in the same execution group have to execute in lock-step. Therefore, if the -// code contains divergent branches (i.e., threads in a group do not agree on -// which path of the branch to take), the group of threads has to execute all -// the paths from that branch with different subsets of threads enabled until -// they converge at the immediately post-dominating BB of the paths. -// -// Due to this execution model, some optimizations such as jump -// threading and loop unswitching can be unfortunately harmful when performed on -// divergent branches. Therefore, an analysis that computes which branches in a -// GPU program are divergent can help the compiler to selectively run these -// optimizations. -// -// This file defines divergence analysis which computes a conservative but -// non-trivial approximation of all divergent branches in a GPU program. It -// partially implements the approach described in -// -// Divergence Analysis -// Sampaio, Souza, Collange, Pereira -// TOPLAS '13 -// -// The divergence analysis identifies the sources of divergence (e.g., special -// variables that hold the thread ID), and recursively marks variables that are -// data or sync dependent on a source of divergence as divergent. -// -// While data dependency is a well-known concept, the notion of sync dependency -// is worth more explanation. Sync dependence characterizes the control flow -// aspect of the propagation of branch divergence. For example, -// -// %cond = icmp slt i32 %tid, 10 -// br i1 %cond, label %then, label %else -// then: -// br label %merge -// else: -// br label %merge -// merge: -// %a = phi i32 [ 0, %then ], [ 1, %else ] -// -// Suppose %tid holds the thread ID. Although %a is not data dependent on %tid -// because %tid is not on its use-def chains, %a is sync dependent on %tid -// because the branch "br i1 %cond" depends on %tid and affects which value %a -// is assigned to. -// -// The current implementation has the following limitations: -// 1. intra-procedural. It conservatively considers the arguments of a -// non-kernel-entry function and the return value of a function call as -// divergent. -// 2. memory as black box. It conservatively considers values loaded from -// generic or local address as divergent. This can be improved by leveraging -// pointer analysis. -// -//===----------------------------------------------------------------------===// - -#include "llvm/Analysis/DivergenceAnalysis.h" -#include "llvm/Analysis/Passes.h" -#include "llvm/Analysis/PostDominators.h" -#include "llvm/Analysis/TargetTransformInfo.h" -#include "llvm/IR/Dominators.h" -#include "llvm/IR/InstIterator.h" -#include "llvm/IR/Instructions.h" -#include "llvm/IR/Value.h" -#include "llvm/Support/Debug.h" -#include "llvm/Support/raw_ostream.h" -#include <vector> -using namespace llvm; - -#define DEBUG_TYPE "divergence" - -namespace { - -class DivergencePropagator { -public: - DivergencePropagator(Function &F, TargetTransformInfo &TTI, DominatorTree &DT, - PostDominatorTree &PDT, DenseSet<const Value *> &DV) - : F(F), TTI(TTI), DT(DT), PDT(PDT), DV(DV) {} - void populateWithSourcesOfDivergence(); - void propagate(); - -private: - // A helper function that explores data dependents of V. - void exploreDataDependency(Value *V); - // A helper function that explores sync dependents of TI. - void exploreSyncDependency(TerminatorInst *TI); - // Computes the influence region from Start to End. This region includes all - // basic blocks on any simple path from Start to End. - void computeInfluenceRegion(BasicBlock *Start, BasicBlock *End, - DenseSet<BasicBlock *> &InfluenceRegion); - // Finds all users of I that are outside the influence region, and add these - // users to Worklist. - void findUsersOutsideInfluenceRegion( - Instruction &I, const DenseSet<BasicBlock *> &InfluenceRegion); - - Function &F; - TargetTransformInfo &TTI; - DominatorTree &DT; - PostDominatorTree &PDT; - std::vector<Value *> Worklist; // Stack for DFS. - DenseSet<const Value *> &DV; // Stores all divergent values. -}; - -void DivergencePropagator::populateWithSourcesOfDivergence() { - Worklist.clear(); - DV.clear(); - for (auto &I : instructions(F)) { - if (TTI.isSourceOfDivergence(&I)) { - Worklist.push_back(&I); - DV.insert(&I); - } - } - for (auto &Arg : F.args()) { - if (TTI.isSourceOfDivergence(&Arg)) { - Worklist.push_back(&Arg); - DV.insert(&Arg); - } - } -} - -void DivergencePropagator::exploreSyncDependency(TerminatorInst *TI) { - // Propagation rule 1: if branch TI is divergent, all PHINodes in TI's - // immediate post dominator are divergent. This rule handles if-then-else - // patterns. For example, - // - // if (tid < 5) - // a1 = 1; - // else - // a2 = 2; - // a = phi(a1, a2); // sync dependent on (tid < 5) - BasicBlock *ThisBB = TI->getParent(); - - // Unreachable blocks may not be in the dominator tree. - if (!DT.isReachableFromEntry(ThisBB)) - return; - - // If the function has no exit blocks or doesn't reach any exit blocks, the - // post dominator may be null. - DomTreeNode *ThisNode = PDT.getNode(ThisBB); - if (!ThisNode) - return; - - BasicBlock *IPostDom = ThisNode->getIDom()->getBlock(); - if (IPostDom == nullptr) - return; - - for (auto I = IPostDom->begin(); isa<PHINode>(I); ++I) { - // A PHINode is uniform if it returns the same value no matter which path is - // taken. - if (!cast<PHINode>(I)->hasConstantOrUndefValue() && DV.insert(&*I).second) - Worklist.push_back(&*I); - } - - // Propagation rule 2: if a value defined in a loop is used outside, the user - // is sync dependent on the condition of the loop exits that dominate the - // user. For example, - // - // int i = 0; - // do { - // i++; - // if (foo(i)) ... // uniform - // } while (i < tid); - // if (bar(i)) ... // divergent - // - // A program may contain unstructured loops. Therefore, we cannot leverage - // LoopInfo, which only recognizes natural loops. - // - // The algorithm used here handles both natural and unstructured loops. Given - // a branch TI, we first compute its influence region, the union of all simple - // paths from TI to its immediate post dominator (IPostDom). Then, we search - // for all the values defined in the influence region but used outside. All - // these users are sync dependent on TI. - DenseSet<BasicBlock *> InfluenceRegion; - computeInfluenceRegion(ThisBB, IPostDom, InfluenceRegion); - // An insight that can speed up the search process is that all the in-region - // values that are used outside must dominate TI. Therefore, instead of - // searching every basic blocks in the influence region, we search all the - // dominators of TI until it is outside the influence region. - BasicBlock *InfluencedBB = ThisBB; - while (InfluenceRegion.count(InfluencedBB)) { - for (auto &I : *InfluencedBB) - findUsersOutsideInfluenceRegion(I, InfluenceRegion); - DomTreeNode *IDomNode = DT.getNode(InfluencedBB)->getIDom(); - if (IDomNode == nullptr) - break; - InfluencedBB = IDomNode->getBlock(); - } -} - -void DivergencePropagator::findUsersOutsideInfluenceRegion( - Instruction &I, const DenseSet<BasicBlock *> &InfluenceRegion) { - for (User *U : I.users()) { - Instruction *UserInst = cast<Instruction>(U); - if (!InfluenceRegion.count(UserInst->getParent())) { - if (DV.insert(UserInst).second) - Worklist.push_back(UserInst); - } - } -} - -// A helper function for computeInfluenceRegion that adds successors of "ThisBB" -// to the influence region. -static void -addSuccessorsToInfluenceRegion(BasicBlock *ThisBB, BasicBlock *End, - DenseSet<BasicBlock *> &InfluenceRegion, - std::vector<BasicBlock *> &InfluenceStack) { - for (BasicBlock *Succ : successors(ThisBB)) { - if (Succ != End && InfluenceRegion.insert(Succ).second) - InfluenceStack.push_back(Succ); - } -} - -void DivergencePropagator::computeInfluenceRegion( - BasicBlock *Start, BasicBlock *End, - DenseSet<BasicBlock *> &InfluenceRegion) { - assert(PDT.properlyDominates(End, Start) && - "End does not properly dominate Start"); - - // The influence region starts from the end of "Start" to the beginning of - // "End". Therefore, "Start" should not be in the region unless "Start" is in - // a loop that doesn't contain "End". - std::vector<BasicBlock *> InfluenceStack; - addSuccessorsToInfluenceRegion(Start, End, InfluenceRegion, InfluenceStack); - while (!InfluenceStack.empty()) { - BasicBlock *BB = InfluenceStack.back(); - InfluenceStack.pop_back(); - addSuccessorsToInfluenceRegion(BB, End, InfluenceRegion, InfluenceStack); - } -} - -void DivergencePropagator::exploreDataDependency(Value *V) { - // Follow def-use chains of V. - for (User *U : V->users()) { - Instruction *UserInst = cast<Instruction>(U); - if (!TTI.isAlwaysUniform(U) && DV.insert(UserInst).second) - Worklist.push_back(UserInst); - } -} - -void DivergencePropagator::propagate() { - // Traverse the dependency graph using DFS. - while (!Worklist.empty()) { - Value *V = Worklist.back(); - Worklist.pop_back(); - if (TerminatorInst *TI = dyn_cast<TerminatorInst>(V)) { - // Terminators with less than two successors won't introduce sync - // dependency. Ignore them. - if (TI->getNumSuccessors() > 1) - exploreSyncDependency(TI); - } - exploreDataDependency(V); - } -} - -} /// end namespace anonymous - -// Register this pass. -char DivergenceAnalysis::ID = 0; -INITIALIZE_PASS_BEGIN(DivergenceAnalysis, "divergence", "Divergence Analysis", - false, true) -INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) -INITIALIZE_PASS_DEPENDENCY(PostDominatorTreeWrapperPass) -INITIALIZE_PASS_END(DivergenceAnalysis, "divergence", "Divergence Analysis", - false, true) - -FunctionPass *llvm::createDivergenceAnalysisPass() { - return new DivergenceAnalysis(); -} - -void DivergenceAnalysis::getAnalysisUsage(AnalysisUsage &AU) const { - AU.addRequired<DominatorTreeWrapperPass>(); - AU.addRequired<PostDominatorTreeWrapperPass>(); - AU.setPreservesAll(); -} - -bool DivergenceAnalysis::runOnFunction(Function &F) { - auto *TTIWP = getAnalysisIfAvailable<TargetTransformInfoWrapperPass>(); - if (TTIWP == nullptr) - return false; - - TargetTransformInfo &TTI = TTIWP->getTTI(F); - // Fast path: if the target does not have branch divergence, we do not mark - // any branch as divergent. - if (!TTI.hasBranchDivergence()) - return false; - - DivergentValues.clear(); - auto &PDT = getAnalysis<PostDominatorTreeWrapperPass>().getPostDomTree(); - DivergencePropagator DP(F, TTI, - getAnalysis<DominatorTreeWrapperPass>().getDomTree(), - PDT, DivergentValues); - DP.populateWithSourcesOfDivergence(); - DP.propagate(); - LLVM_DEBUG( - dbgs() << "\nAfter divergence analysis on " << F.getName() << ":\n"; - print(dbgs(), F.getParent()) - ); - return false; -} - -void DivergenceAnalysis::print(raw_ostream &OS, const Module *) const { - if (DivergentValues.empty()) - return; - const Value *FirstDivergentValue = *DivergentValues.begin(); - const Function *F; - if (const Argument *Arg = dyn_cast<Argument>(FirstDivergentValue)) { - F = Arg->getParent(); - } else if (const Instruction *I = - dyn_cast<Instruction>(FirstDivergentValue)) { - F = I->getParent()->getParent(); - } else { - llvm_unreachable("Only arguments and instructions can be divergent"); - } - - // Dumps all divergent values in F, arguments and then instructions. - for (auto &Arg : F->args()) { - OS << (DivergentValues.count(&Arg) ? "DIVERGENT: " : " "); - OS << Arg << "\n"; - } - // Iterate instructions using instructions() to ensure a deterministic order. - for (auto BI = F->begin(), BE = F->end(); BI != BE; ++BI) { - auto &BB = *BI; - OS << "\n " << BB.getName() << ":\n"; - for (auto &I : BB.instructionsWithoutDebug()) { - OS << (DivergentValues.count(&I) ? "DIVERGENT: " : " "); - OS << I << "\n"; - } - } - OS << "\n"; -} |