summaryrefslogtreecommitdiffstats
path: root/llvm/lib/Analysis/DivergenceAnalysis.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'llvm/lib/Analysis/DivergenceAnalysis.cpp')
-rw-r--r--llvm/lib/Analysis/DivergenceAnalysis.cpp340
1 files changed, 0 insertions, 340 deletions
diff --git a/llvm/lib/Analysis/DivergenceAnalysis.cpp b/llvm/lib/Analysis/DivergenceAnalysis.cpp
deleted file mode 100644
index f5f1874c930..00000000000
--- a/llvm/lib/Analysis/DivergenceAnalysis.cpp
+++ /dev/null
@@ -1,340 +0,0 @@
-//===- DivergenceAnalysis.cpp --------- Divergence Analysis Implementation -==//
-//
-// The LLVM Compiler Infrastructure
-//
-// This file is distributed under the University of Illinois Open Source
-// License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-//
-// This file implements divergence analysis which determines whether a branch
-// in a GPU program is divergent.It can help branch optimizations such as jump
-// threading and loop unswitching to make better decisions.
-//
-// GPU programs typically use the SIMD execution model, where multiple threads
-// in the same execution group have to execute in lock-step. Therefore, if the
-// code contains divergent branches (i.e., threads in a group do not agree on
-// which path of the branch to take), the group of threads has to execute all
-// the paths from that branch with different subsets of threads enabled until
-// they converge at the immediately post-dominating BB of the paths.
-//
-// Due to this execution model, some optimizations such as jump
-// threading and loop unswitching can be unfortunately harmful when performed on
-// divergent branches. Therefore, an analysis that computes which branches in a
-// GPU program are divergent can help the compiler to selectively run these
-// optimizations.
-//
-// This file defines divergence analysis which computes a conservative but
-// non-trivial approximation of all divergent branches in a GPU program. It
-// partially implements the approach described in
-//
-// Divergence Analysis
-// Sampaio, Souza, Collange, Pereira
-// TOPLAS '13
-//
-// The divergence analysis identifies the sources of divergence (e.g., special
-// variables that hold the thread ID), and recursively marks variables that are
-// data or sync dependent on a source of divergence as divergent.
-//
-// While data dependency is a well-known concept, the notion of sync dependency
-// is worth more explanation. Sync dependence characterizes the control flow
-// aspect of the propagation of branch divergence. For example,
-//
-// %cond = icmp slt i32 %tid, 10
-// br i1 %cond, label %then, label %else
-// then:
-// br label %merge
-// else:
-// br label %merge
-// merge:
-// %a = phi i32 [ 0, %then ], [ 1, %else ]
-//
-// Suppose %tid holds the thread ID. Although %a is not data dependent on %tid
-// because %tid is not on its use-def chains, %a is sync dependent on %tid
-// because the branch "br i1 %cond" depends on %tid and affects which value %a
-// is assigned to.
-//
-// The current implementation has the following limitations:
-// 1. intra-procedural. It conservatively considers the arguments of a
-// non-kernel-entry function and the return value of a function call as
-// divergent.
-// 2. memory as black box. It conservatively considers values loaded from
-// generic or local address as divergent. This can be improved by leveraging
-// pointer analysis.
-//
-//===----------------------------------------------------------------------===//
-
-#include "llvm/Analysis/DivergenceAnalysis.h"
-#include "llvm/Analysis/Passes.h"
-#include "llvm/Analysis/PostDominators.h"
-#include "llvm/Analysis/TargetTransformInfo.h"
-#include "llvm/IR/Dominators.h"
-#include "llvm/IR/InstIterator.h"
-#include "llvm/IR/Instructions.h"
-#include "llvm/IR/Value.h"
-#include "llvm/Support/Debug.h"
-#include "llvm/Support/raw_ostream.h"
-#include <vector>
-using namespace llvm;
-
-#define DEBUG_TYPE "divergence"
-
-namespace {
-
-class DivergencePropagator {
-public:
- DivergencePropagator(Function &F, TargetTransformInfo &TTI, DominatorTree &DT,
- PostDominatorTree &PDT, DenseSet<const Value *> &DV)
- : F(F), TTI(TTI), DT(DT), PDT(PDT), DV(DV) {}
- void populateWithSourcesOfDivergence();
- void propagate();
-
-private:
- // A helper function that explores data dependents of V.
- void exploreDataDependency(Value *V);
- // A helper function that explores sync dependents of TI.
- void exploreSyncDependency(TerminatorInst *TI);
- // Computes the influence region from Start to End. This region includes all
- // basic blocks on any simple path from Start to End.
- void computeInfluenceRegion(BasicBlock *Start, BasicBlock *End,
- DenseSet<BasicBlock *> &InfluenceRegion);
- // Finds all users of I that are outside the influence region, and add these
- // users to Worklist.
- void findUsersOutsideInfluenceRegion(
- Instruction &I, const DenseSet<BasicBlock *> &InfluenceRegion);
-
- Function &F;
- TargetTransformInfo &TTI;
- DominatorTree &DT;
- PostDominatorTree &PDT;
- std::vector<Value *> Worklist; // Stack for DFS.
- DenseSet<const Value *> &DV; // Stores all divergent values.
-};
-
-void DivergencePropagator::populateWithSourcesOfDivergence() {
- Worklist.clear();
- DV.clear();
- for (auto &I : instructions(F)) {
- if (TTI.isSourceOfDivergence(&I)) {
- Worklist.push_back(&I);
- DV.insert(&I);
- }
- }
- for (auto &Arg : F.args()) {
- if (TTI.isSourceOfDivergence(&Arg)) {
- Worklist.push_back(&Arg);
- DV.insert(&Arg);
- }
- }
-}
-
-void DivergencePropagator::exploreSyncDependency(TerminatorInst *TI) {
- // Propagation rule 1: if branch TI is divergent, all PHINodes in TI's
- // immediate post dominator are divergent. This rule handles if-then-else
- // patterns. For example,
- //
- // if (tid < 5)
- // a1 = 1;
- // else
- // a2 = 2;
- // a = phi(a1, a2); // sync dependent on (tid < 5)
- BasicBlock *ThisBB = TI->getParent();
-
- // Unreachable blocks may not be in the dominator tree.
- if (!DT.isReachableFromEntry(ThisBB))
- return;
-
- // If the function has no exit blocks or doesn't reach any exit blocks, the
- // post dominator may be null.
- DomTreeNode *ThisNode = PDT.getNode(ThisBB);
- if (!ThisNode)
- return;
-
- BasicBlock *IPostDom = ThisNode->getIDom()->getBlock();
- if (IPostDom == nullptr)
- return;
-
- for (auto I = IPostDom->begin(); isa<PHINode>(I); ++I) {
- // A PHINode is uniform if it returns the same value no matter which path is
- // taken.
- if (!cast<PHINode>(I)->hasConstantOrUndefValue() && DV.insert(&*I).second)
- Worklist.push_back(&*I);
- }
-
- // Propagation rule 2: if a value defined in a loop is used outside, the user
- // is sync dependent on the condition of the loop exits that dominate the
- // user. For example,
- //
- // int i = 0;
- // do {
- // i++;
- // if (foo(i)) ... // uniform
- // } while (i < tid);
- // if (bar(i)) ... // divergent
- //
- // A program may contain unstructured loops. Therefore, we cannot leverage
- // LoopInfo, which only recognizes natural loops.
- //
- // The algorithm used here handles both natural and unstructured loops. Given
- // a branch TI, we first compute its influence region, the union of all simple
- // paths from TI to its immediate post dominator (IPostDom). Then, we search
- // for all the values defined in the influence region but used outside. All
- // these users are sync dependent on TI.
- DenseSet<BasicBlock *> InfluenceRegion;
- computeInfluenceRegion(ThisBB, IPostDom, InfluenceRegion);
- // An insight that can speed up the search process is that all the in-region
- // values that are used outside must dominate TI. Therefore, instead of
- // searching every basic blocks in the influence region, we search all the
- // dominators of TI until it is outside the influence region.
- BasicBlock *InfluencedBB = ThisBB;
- while (InfluenceRegion.count(InfluencedBB)) {
- for (auto &I : *InfluencedBB)
- findUsersOutsideInfluenceRegion(I, InfluenceRegion);
- DomTreeNode *IDomNode = DT.getNode(InfluencedBB)->getIDom();
- if (IDomNode == nullptr)
- break;
- InfluencedBB = IDomNode->getBlock();
- }
-}
-
-void DivergencePropagator::findUsersOutsideInfluenceRegion(
- Instruction &I, const DenseSet<BasicBlock *> &InfluenceRegion) {
- for (User *U : I.users()) {
- Instruction *UserInst = cast<Instruction>(U);
- if (!InfluenceRegion.count(UserInst->getParent())) {
- if (DV.insert(UserInst).second)
- Worklist.push_back(UserInst);
- }
- }
-}
-
-// A helper function for computeInfluenceRegion that adds successors of "ThisBB"
-// to the influence region.
-static void
-addSuccessorsToInfluenceRegion(BasicBlock *ThisBB, BasicBlock *End,
- DenseSet<BasicBlock *> &InfluenceRegion,
- std::vector<BasicBlock *> &InfluenceStack) {
- for (BasicBlock *Succ : successors(ThisBB)) {
- if (Succ != End && InfluenceRegion.insert(Succ).second)
- InfluenceStack.push_back(Succ);
- }
-}
-
-void DivergencePropagator::computeInfluenceRegion(
- BasicBlock *Start, BasicBlock *End,
- DenseSet<BasicBlock *> &InfluenceRegion) {
- assert(PDT.properlyDominates(End, Start) &&
- "End does not properly dominate Start");
-
- // The influence region starts from the end of "Start" to the beginning of
- // "End". Therefore, "Start" should not be in the region unless "Start" is in
- // a loop that doesn't contain "End".
- std::vector<BasicBlock *> InfluenceStack;
- addSuccessorsToInfluenceRegion(Start, End, InfluenceRegion, InfluenceStack);
- while (!InfluenceStack.empty()) {
- BasicBlock *BB = InfluenceStack.back();
- InfluenceStack.pop_back();
- addSuccessorsToInfluenceRegion(BB, End, InfluenceRegion, InfluenceStack);
- }
-}
-
-void DivergencePropagator::exploreDataDependency(Value *V) {
- // Follow def-use chains of V.
- for (User *U : V->users()) {
- Instruction *UserInst = cast<Instruction>(U);
- if (!TTI.isAlwaysUniform(U) && DV.insert(UserInst).second)
- Worklist.push_back(UserInst);
- }
-}
-
-void DivergencePropagator::propagate() {
- // Traverse the dependency graph using DFS.
- while (!Worklist.empty()) {
- Value *V = Worklist.back();
- Worklist.pop_back();
- if (TerminatorInst *TI = dyn_cast<TerminatorInst>(V)) {
- // Terminators with less than two successors won't introduce sync
- // dependency. Ignore them.
- if (TI->getNumSuccessors() > 1)
- exploreSyncDependency(TI);
- }
- exploreDataDependency(V);
- }
-}
-
-} /// end namespace anonymous
-
-// Register this pass.
-char DivergenceAnalysis::ID = 0;
-INITIALIZE_PASS_BEGIN(DivergenceAnalysis, "divergence", "Divergence Analysis",
- false, true)
-INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
-INITIALIZE_PASS_DEPENDENCY(PostDominatorTreeWrapperPass)
-INITIALIZE_PASS_END(DivergenceAnalysis, "divergence", "Divergence Analysis",
- false, true)
-
-FunctionPass *llvm::createDivergenceAnalysisPass() {
- return new DivergenceAnalysis();
-}
-
-void DivergenceAnalysis::getAnalysisUsage(AnalysisUsage &AU) const {
- AU.addRequired<DominatorTreeWrapperPass>();
- AU.addRequired<PostDominatorTreeWrapperPass>();
- AU.setPreservesAll();
-}
-
-bool DivergenceAnalysis::runOnFunction(Function &F) {
- auto *TTIWP = getAnalysisIfAvailable<TargetTransformInfoWrapperPass>();
- if (TTIWP == nullptr)
- return false;
-
- TargetTransformInfo &TTI = TTIWP->getTTI(F);
- // Fast path: if the target does not have branch divergence, we do not mark
- // any branch as divergent.
- if (!TTI.hasBranchDivergence())
- return false;
-
- DivergentValues.clear();
- auto &PDT = getAnalysis<PostDominatorTreeWrapperPass>().getPostDomTree();
- DivergencePropagator DP(F, TTI,
- getAnalysis<DominatorTreeWrapperPass>().getDomTree(),
- PDT, DivergentValues);
- DP.populateWithSourcesOfDivergence();
- DP.propagate();
- LLVM_DEBUG(
- dbgs() << "\nAfter divergence analysis on " << F.getName() << ":\n";
- print(dbgs(), F.getParent())
- );
- return false;
-}
-
-void DivergenceAnalysis::print(raw_ostream &OS, const Module *) const {
- if (DivergentValues.empty())
- return;
- const Value *FirstDivergentValue = *DivergentValues.begin();
- const Function *F;
- if (const Argument *Arg = dyn_cast<Argument>(FirstDivergentValue)) {
- F = Arg->getParent();
- } else if (const Instruction *I =
- dyn_cast<Instruction>(FirstDivergentValue)) {
- F = I->getParent()->getParent();
- } else {
- llvm_unreachable("Only arguments and instructions can be divergent");
- }
-
- // Dumps all divergent values in F, arguments and then instructions.
- for (auto &Arg : F->args()) {
- OS << (DivergentValues.count(&Arg) ? "DIVERGENT: " : " ");
- OS << Arg << "\n";
- }
- // Iterate instructions using instructions() to ensure a deterministic order.
- for (auto BI = F->begin(), BE = F->end(); BI != BE; ++BI) {
- auto &BB = *BI;
- OS << "\n " << BB.getName() << ":\n";
- for (auto &I : BB.instructionsWithoutDebug()) {
- OS << (DivergentValues.count(&I) ? "DIVERGENT: " : " ");
- OS << I << "\n";
- }
- }
- OS << "\n";
-}
OpenPOWER on IntegriCloud