diff options
Diffstat (limited to 'llgo/third_party/gofrontend/libgo/go/math/big/int.go')
| -rw-r--r-- | llgo/third_party/gofrontend/libgo/go/math/big/int.go | 331 |
1 files changed, 134 insertions, 197 deletions
diff --git a/llgo/third_party/gofrontend/libgo/go/math/big/int.go b/llgo/third_party/gofrontend/libgo/go/math/big/int.go index ade5c2fc8cd..65334e0ef55 100644 --- a/llgo/third_party/gofrontend/libgo/go/math/big/int.go +++ b/llgo/third_party/gofrontend/libgo/go/math/big/int.go @@ -7,7 +7,6 @@ package big import ( - "errors" "fmt" "io" "math/rand" @@ -184,6 +183,10 @@ func (z *Int) MulRange(a, b int64) *Int { // Binomial sets z to the binomial coefficient of (n, k) and returns z. func (z *Int) Binomial(n, k int64) *Int { + // reduce the number of multiplications by reducing k + if n/2 < k && k <= n { + k = n - k // Binomial(n, k) == Binomial(n, n-k) + } var a, b Int a.MulRange(n-k+1, n) b.MulRange(1, k) @@ -321,195 +324,6 @@ func (x *Int) Cmp(y *Int) (r int) { return } -func (x *Int) String() string { - switch { - case x == nil: - return "<nil>" - case x.neg: - return "-" + x.abs.decimalString() - } - return x.abs.decimalString() -} - -func charset(ch rune) string { - switch ch { - case 'b': - return lowercaseDigits[0:2] - case 'o': - return lowercaseDigits[0:8] - case 'd', 's', 'v': - return lowercaseDigits[0:10] - case 'x': - return lowercaseDigits[0:16] - case 'X': - return uppercaseDigits[0:16] - } - return "" // unknown format -} - -// write count copies of text to s -func writeMultiple(s fmt.State, text string, count int) { - if len(text) > 0 { - b := []byte(text) - for ; count > 0; count-- { - s.Write(b) - } - } -} - -// Format is a support routine for fmt.Formatter. It accepts -// the formats 'b' (binary), 'o' (octal), 'd' (decimal), 'x' -// (lowercase hexadecimal), and 'X' (uppercase hexadecimal). -// Also supported are the full suite of package fmt's format -// verbs for integral types, including '+', '-', and ' ' -// for sign control, '#' for leading zero in octal and for -// hexadecimal, a leading "0x" or "0X" for "%#x" and "%#X" -// respectively, specification of minimum digits precision, -// output field width, space or zero padding, and left or -// right justification. -// -func (x *Int) Format(s fmt.State, ch rune) { - cs := charset(ch) - - // special cases - switch { - case cs == "": - // unknown format - fmt.Fprintf(s, "%%!%c(big.Int=%s)", ch, x.String()) - return - case x == nil: - fmt.Fprint(s, "<nil>") - return - } - - // determine sign character - sign := "" - switch { - case x.neg: - sign = "-" - case s.Flag('+'): // supersedes ' ' when both specified - sign = "+" - case s.Flag(' '): - sign = " " - } - - // determine prefix characters for indicating output base - prefix := "" - if s.Flag('#') { - switch ch { - case 'o': // octal - prefix = "0" - case 'x': // hexadecimal - prefix = "0x" - case 'X': - prefix = "0X" - } - } - - // determine digits with base set by len(cs) and digit characters from cs - digits := x.abs.string(cs) - - // number of characters for the three classes of number padding - var left int // space characters to left of digits for right justification ("%8d") - var zeroes int // zero characters (actually cs[0]) as left-most digits ("%.8d") - var right int // space characters to right of digits for left justification ("%-8d") - - // determine number padding from precision: the least number of digits to output - precision, precisionSet := s.Precision() - if precisionSet { - switch { - case len(digits) < precision: - zeroes = precision - len(digits) // count of zero padding - case digits == "0" && precision == 0: - return // print nothing if zero value (x == 0) and zero precision ("." or ".0") - } - } - - // determine field pad from width: the least number of characters to output - length := len(sign) + len(prefix) + zeroes + len(digits) - if width, widthSet := s.Width(); widthSet && length < width { // pad as specified - switch d := width - length; { - case s.Flag('-'): - // pad on the right with spaces; supersedes '0' when both specified - right = d - case s.Flag('0') && !precisionSet: - // pad with zeroes unless precision also specified - zeroes = d - default: - // pad on the left with spaces - left = d - } - } - - // print number as [left pad][sign][prefix][zero pad][digits][right pad] - writeMultiple(s, " ", left) - writeMultiple(s, sign, 1) - writeMultiple(s, prefix, 1) - writeMultiple(s, "0", zeroes) - writeMultiple(s, digits, 1) - writeMultiple(s, " ", right) -} - -// scan sets z to the integer value corresponding to the longest possible prefix -// read from r representing a signed integer number in a given conversion base. -// It returns z, the actual conversion base used, and an error, if any. In the -// error case, the value of z is undefined but the returned value is nil. The -// syntax follows the syntax of integer literals in Go. -// -// The base argument must be 0 or a value from 2 through MaxBase. If the base -// is 0, the string prefix determines the actual conversion base. A prefix of -// ``0x'' or ``0X'' selects base 16; the ``0'' prefix selects base 8, and a -// ``0b'' or ``0B'' prefix selects base 2. Otherwise the selected base is 10. -// -func (z *Int) scan(r io.RuneScanner, base int) (*Int, int, error) { - // determine sign - ch, _, err := r.ReadRune() - if err != nil { - return nil, 0, err - } - neg := false - switch ch { - case '-': - neg = true - case '+': // nothing to do - default: - r.UnreadRune() - } - - // determine mantissa - z.abs, base, err = z.abs.scan(r, base) - if err != nil { - return nil, base, err - } - z.neg = len(z.abs) > 0 && neg // 0 has no sign - - return z, base, nil -} - -// Scan is a support routine for fmt.Scanner; it sets z to the value of -// the scanned number. It accepts the formats 'b' (binary), 'o' (octal), -// 'd' (decimal), 'x' (lowercase hexadecimal), and 'X' (uppercase hexadecimal). -func (z *Int) Scan(s fmt.ScanState, ch rune) error { - s.SkipSpace() // skip leading space characters - base := 0 - switch ch { - case 'b': - base = 2 - case 'o': - base = 8 - case 'd': - base = 10 - case 'x', 'X': - base = 16 - case 's', 'v': - // let scan determine the base - default: - return errors.New("Int.Scan: invalid verb") - } - _, _, err := z.scan(s, base) - return err -} - // low32 returns the least significant 32 bits of z. func low32(z nat) uint32 { if len(z) == 0 { @@ -550,7 +364,7 @@ func (x *Int) Uint64() uint64 { // and returns z and a boolean indicating success. If SetString fails, // the value of z is undefined but the returned value is nil. // -// The base argument must be 0 or a value from 2 through MaxBase. If the base +// The base argument must be 0 or a value between 2 and MaxBase. If the base // is 0, the string prefix determines the actual conversion base. A prefix of // ``0x'' or ``0X'' selects base 16; the ``0'' prefix selects base 8, and a // ``0b'' or ``0B'' prefix selects base 2. Otherwise the selected base is 10. @@ -561,7 +375,7 @@ func (z *Int) SetString(s string, base int) (*Int, bool) { if err != nil { return nil, false } - _, _, err = r.ReadRune() + _, err = r.ReadByte() if err != io.EOF { return nil, false } @@ -686,15 +500,17 @@ func (z *Int) binaryGCD(a, b *Int) *Int { // use one Euclidean iteration to ensure that u and v are approx. the same size switch { case len(a.abs) > len(b.abs): - u.Set(b) + // must set v before u since u may be alias for a or b (was issue #11284) v.Rem(a, b) + u.Set(b) case len(a.abs) < len(b.abs): - u.Set(a) v.Rem(b, a) - default: u.Set(a) + default: v.Set(b) + u.Set(a) } + // a, b must not be used anymore (may be aliases with u) // v might be 0 now if len(v.abs) == 0 { @@ -736,8 +552,11 @@ func (z *Int) binaryGCD(a, b *Int) *Int { // ProbablyPrime performs n Miller-Rabin tests to check whether x is prime. // If it returns true, x is prime with probability 1 - 1/4^n. -// If it returns false, x is not prime. +// If it returns false, x is not prime. n must be > 0. func (x *Int) ProbablyPrime(n int) bool { + if n <= 0 { + panic("non-positive n for ProbablyPrime") + } return !x.neg && x.abs.probablyPrime(n) } @@ -766,6 +585,124 @@ func (z *Int) ModInverse(g, n *Int) *Int { return z } +// Jacobi returns the Jacobi symbol (x/y), either +1, -1, or 0. +// The y argument must be an odd integer. +func Jacobi(x, y *Int) int { + if len(y.abs) == 0 || y.abs[0]&1 == 0 { + panic(fmt.Sprintf("big: invalid 2nd argument to Int.Jacobi: need odd integer but got %s", y)) + } + + // We use the formulation described in chapter 2, section 2.4, + // "The Yacas Book of Algorithms": + // http://yacas.sourceforge.net/Algo.book.pdf + + var a, b, c Int + a.Set(x) + b.Set(y) + j := 1 + + if b.neg { + if a.neg { + j = -1 + } + b.neg = false + } + + for { + if b.Cmp(intOne) == 0 { + return j + } + if len(a.abs) == 0 { + return 0 + } + a.Mod(&a, &b) + if len(a.abs) == 0 { + return 0 + } + // a > 0 + + // handle factors of 2 in 'a' + s := a.abs.trailingZeroBits() + if s&1 != 0 { + bmod8 := b.abs[0] & 7 + if bmod8 == 3 || bmod8 == 5 { + j = -j + } + } + c.Rsh(&a, s) // a = 2^s*c + + // swap numerator and denominator + if b.abs[0]&3 == 3 && c.abs[0]&3 == 3 { + j = -j + } + a.Set(&b) + b.Set(&c) + } +} + +// ModSqrt sets z to a square root of x mod p if such a square root exists, and +// returns z. The modulus p must be an odd prime. If x is not a square mod p, +// ModSqrt leaves z unchanged and returns nil. This function panics if p is +// not an odd integer. +func (z *Int) ModSqrt(x, p *Int) *Int { + switch Jacobi(x, p) { + case -1: + return nil // x is not a square mod p + case 0: + return z.SetInt64(0) // sqrt(0) mod p = 0 + case 1: + break + } + if x.neg || x.Cmp(p) >= 0 { // ensure 0 <= x < p + x = new(Int).Mod(x, p) + } + + // Break p-1 into s*2^e such that s is odd. + var s Int + s.Sub(p, intOne) + e := s.abs.trailingZeroBits() + s.Rsh(&s, e) + + // find some non-square n + var n Int + n.SetInt64(2) + for Jacobi(&n, p) != -1 { + n.Add(&n, intOne) + } + + // Core of the Tonelli-Shanks algorithm. Follows the description in + // section 6 of "Square roots from 1; 24, 51, 10 to Dan Shanks" by Ezra + // Brown: + // https://www.maa.org/sites/default/files/pdf/upload_library/22/Polya/07468342.di020786.02p0470a.pdf + var y, b, g, t Int + y.Add(&s, intOne) + y.Rsh(&y, 1) + y.Exp(x, &y, p) // y = x^((s+1)/2) + b.Exp(x, &s, p) // b = x^s + g.Exp(&n, &s, p) // g = n^s + r := e + for { + // find the least m such that ord_p(b) = 2^m + var m uint + t.Set(&b) + for t.Cmp(intOne) != 0 { + t.Mul(&t, &t).Mod(&t, p) + m++ + } + + if m == 0 { + return z.Set(&y) + } + + t.SetInt64(0).SetBit(&t, int(r-m-1), 1).Exp(&g, &t, p) + // t = g^(2^(r-m-1)) mod p + g.Mul(&t, &t).Mod(&g, p) // g = g^(2^(r-m)) mod p + y.Mul(&y, &t).Mod(&y, p) + b.Mul(&b, &g).Mod(&b, p) + r = m + } +} + // Lsh sets z = x << n and returns z. func (z *Int) Lsh(x *Int, n uint) *Int { z.abs = z.abs.shl(x.abs, n) @@ -995,7 +932,7 @@ func (z *Int) GobDecode(buf []byte) error { } b := buf[0] if b>>1 != intGobVersion { - return errors.New(fmt.Sprintf("Int.GobDecode: encoding version %d not supported", b>>1)) + return fmt.Errorf("Int.GobDecode: encoding version %d not supported", b>>1) } z.neg = b&1 != 0 z.abs = z.abs.setBytes(buf[1:]) |

