diff options
Diffstat (limited to 'libcxx/test/std/numerics/rand/rand.dis/rand.dist.samp/rand.dist.samp.pconst/eval.pass.cpp')
-rw-r--r-- | libcxx/test/std/numerics/rand/rand.dis/rand.dist.samp/rand.dist.samp.pconst/eval.pass.cpp | 695 |
1 files changed, 695 insertions, 0 deletions
diff --git a/libcxx/test/std/numerics/rand/rand.dis/rand.dist.samp/rand.dist.samp.pconst/eval.pass.cpp b/libcxx/test/std/numerics/rand/rand.dis/rand.dist.samp/rand.dist.samp.pconst/eval.pass.cpp new file mode 100644 index 00000000000..5d14b3612b2 --- /dev/null +++ b/libcxx/test/std/numerics/rand/rand.dis/rand.dist.samp/rand.dist.samp.pconst/eval.pass.cpp @@ -0,0 +1,695 @@ +//===----------------------------------------------------------------------===// +// +// The LLVM Compiler Infrastructure +// +// This file is dual licensed under the MIT and the University of Illinois Open +// Source Licenses. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// REQUIRES: long_tests + +// <random> + +// template<class RealType = double> +// class piecewise_constant_distribution + +// template<class _URNG> result_type operator()(_URNG& g); + +#include <random> +#include <vector> +#include <iterator> +#include <numeric> +#include <cassert> + +template <class T> +inline +T +sqr(T x) +{ + return x*x; +} + +int main() +{ + { + typedef std::piecewise_constant_distribution<> D; + typedef std::mt19937_64 G; + G g; + double b[] = {10, 14, 16, 17}; + double p[] = {25, 62.5, 12.5}; + const size_t Np = sizeof(p) / sizeof(p[0]); + D d(b, b+Np+1, p); + const int N = 1000000; + std::vector<D::result_type> u; + for (int i = 0; i < N; ++i) + { + D::result_type v = d(g); + assert(d.min() <= v && v < d.max()); + u.push_back(v); + } + std::vector<double> prob(std::begin(p), std::end(p)); + double s = std::accumulate(prob.begin(), prob.end(), 0.0); + for (int i = 0; i < prob.size(); ++i) + prob[i] /= s; + std::sort(u.begin(), u.end()); + for (int i = 0; i < Np; ++i) + { + typedef std::vector<D::result_type>::iterator I; + I lb = std::lower_bound(u.begin(), u.end(), b[i]); + I ub = std::lower_bound(u.begin(), u.end(), b[i+1]); + const size_t Ni = ub - lb; + if (prob[i] == 0) + assert(Ni == 0); + else + { + assert(std::abs((double)Ni/N - prob[i]) / prob[i] < .01); + double mean = std::accumulate(lb, ub, 0.0) / Ni; + double var = 0; + double skew = 0; + double kurtosis = 0; + for (I j = lb; j != ub; ++j) + { + double d = (*j - mean); + double d2 = sqr(d); + var += d2; + skew += d * d2; + kurtosis += d2 * d2; + } + var /= Ni; + double dev = std::sqrt(var); + skew /= Ni * dev * var; + kurtosis /= Ni * var * var; + kurtosis -= 3; + double x_mean = (b[i+1] + b[i]) / 2; + double x_var = sqr(b[i+1] - b[i]) / 12; + double x_skew = 0; + double x_kurtosis = -6./5; + assert(std::abs((mean - x_mean) / x_mean) < 0.01); + assert(std::abs((var - x_var) / x_var) < 0.01); + assert(std::abs(skew - x_skew) < 0.01); + assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.01); + } + } + } + { + typedef std::piecewise_constant_distribution<> D; + typedef std::mt19937_64 G; + G g; + double b[] = {10, 14, 16, 17}; + double p[] = {0, 62.5, 12.5}; + const size_t Np = sizeof(p) / sizeof(p[0]); + D d(b, b+Np+1, p); + const int N = 1000000; + std::vector<D::result_type> u; + for (int i = 0; i < N; ++i) + { + D::result_type v = d(g); + assert(d.min() <= v && v < d.max()); + u.push_back(v); + } + std::vector<double> prob(std::begin(p), std::end(p)); + double s = std::accumulate(prob.begin(), prob.end(), 0.0); + for (int i = 0; i < prob.size(); ++i) + prob[i] /= s; + std::sort(u.begin(), u.end()); + for (int i = 0; i < Np; ++i) + { + typedef std::vector<D::result_type>::iterator I; + I lb = std::lower_bound(u.begin(), u.end(), b[i]); + I ub = std::lower_bound(u.begin(), u.end(), b[i+1]); + const size_t Ni = ub - lb; + if (prob[i] == 0) + assert(Ni == 0); + else + { + assert(std::abs((double)Ni/N - prob[i]) / prob[i] < .01); + double mean = std::accumulate(lb, ub, 0.0) / Ni; + double var = 0; + double skew = 0; + double kurtosis = 0; + for (I j = lb; j != ub; ++j) + { + double d = (*j - mean); + double d2 = sqr(d); + var += d2; + skew += d * d2; + kurtosis += d2 * d2; + } + var /= Ni; + double dev = std::sqrt(var); + skew /= Ni * dev * var; + kurtosis /= Ni * var * var; + kurtosis -= 3; + double x_mean = (b[i+1] + b[i]) / 2; + double x_var = sqr(b[i+1] - b[i]) / 12; + double x_skew = 0; + double x_kurtosis = -6./5; + assert(std::abs((mean - x_mean) / x_mean) < 0.01); + assert(std::abs((var - x_var) / x_var) < 0.01); + assert(std::abs(skew - x_skew) < 0.01); + assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.01); + } + } + } + { + typedef std::piecewise_constant_distribution<> D; + typedef std::mt19937_64 G; + G g; + double b[] = {10, 14, 16, 17}; + double p[] = {25, 0, 12.5}; + const size_t Np = sizeof(p) / sizeof(p[0]); + D d(b, b+Np+1, p); + const int N = 1000000; + std::vector<D::result_type> u; + for (int i = 0; i < N; ++i) + { + D::result_type v = d(g); + assert(d.min() <= v && v < d.max()); + u.push_back(v); + } + std::vector<double> prob(std::begin(p), std::end(p)); + double s = std::accumulate(prob.begin(), prob.end(), 0.0); + for (int i = 0; i < prob.size(); ++i) + prob[i] /= s; + std::sort(u.begin(), u.end()); + for (int i = 0; i < Np; ++i) + { + typedef std::vector<D::result_type>::iterator I; + I lb = std::lower_bound(u.begin(), u.end(), b[i]); + I ub = std::lower_bound(u.begin(), u.end(), b[i+1]); + const size_t Ni = ub - lb; + if (prob[i] == 0) + assert(Ni == 0); + else + { + assert(std::abs((double)Ni/N - prob[i]) / prob[i] < .01); + double mean = std::accumulate(lb, ub, 0.0) / Ni; + double var = 0; + double skew = 0; + double kurtosis = 0; + for (I j = lb; j != ub; ++j) + { + double d = (*j - mean); + double d2 = sqr(d); + var += d2; + skew += d * d2; + kurtosis += d2 * d2; + } + var /= Ni; + double dev = std::sqrt(var); + skew /= Ni * dev * var; + kurtosis /= Ni * var * var; + kurtosis -= 3; + double x_mean = (b[i+1] + b[i]) / 2; + double x_var = sqr(b[i+1] - b[i]) / 12; + double x_skew = 0; + double x_kurtosis = -6./5; + assert(std::abs((mean - x_mean) / x_mean) < 0.01); + assert(std::abs((var - x_var) / x_var) < 0.01); + assert(std::abs(skew - x_skew) < 0.01); + assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.01); + } + } + } + { + typedef std::piecewise_constant_distribution<> D; + typedef std::mt19937_64 G; + G g; + double b[] = {10, 14, 16, 17}; + double p[] = {25, 62.5, 0}; + const size_t Np = sizeof(p) / sizeof(p[0]); + D d(b, b+Np+1, p); + const int N = 1000000; + std::vector<D::result_type> u; + for (int i = 0; i < N; ++i) + { + D::result_type v = d(g); + assert(d.min() <= v && v < d.max()); + u.push_back(v); + } + std::vector<double> prob(std::begin(p), std::end(p)); + double s = std::accumulate(prob.begin(), prob.end(), 0.0); + for (int i = 0; i < prob.size(); ++i) + prob[i] /= s; + std::sort(u.begin(), u.end()); + for (int i = 0; i < Np; ++i) + { + typedef std::vector<D::result_type>::iterator I; + I lb = std::lower_bound(u.begin(), u.end(), b[i]); + I ub = std::lower_bound(u.begin(), u.end(), b[i+1]); + const size_t Ni = ub - lb; + if (prob[i] == 0) + assert(Ni == 0); + else + { + assert(std::abs((double)Ni/N - prob[i]) / prob[i] < .01); + double mean = std::accumulate(lb, ub, 0.0) / Ni; + double var = 0; + double skew = 0; + double kurtosis = 0; + for (I j = lb; j != ub; ++j) + { + double d = (*j - mean); + double d2 = sqr(d); + var += d2; + skew += d * d2; + kurtosis += d2 * d2; + } + var /= Ni; + double dev = std::sqrt(var); + skew /= Ni * dev * var; + kurtosis /= Ni * var * var; + kurtosis -= 3; + double x_mean = (b[i+1] + b[i]) / 2; + double x_var = sqr(b[i+1] - b[i]) / 12; + double x_skew = 0; + double x_kurtosis = -6./5; + assert(std::abs((mean - x_mean) / x_mean) < 0.01); + assert(std::abs((var - x_var) / x_var) < 0.01); + assert(std::abs(skew - x_skew) < 0.01); + assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.01); + } + } + } + { + typedef std::piecewise_constant_distribution<> D; + typedef std::mt19937_64 G; + G g; + double b[] = {10, 14, 16, 17}; + double p[] = {25, 0, 0}; + const size_t Np = sizeof(p) / sizeof(p[0]); + D d(b, b+Np+1, p); + const int N = 100000; + std::vector<D::result_type> u; + for (int i = 0; i < N; ++i) + { + D::result_type v = d(g); + assert(d.min() <= v && v < d.max()); + u.push_back(v); + } + std::vector<double> prob(std::begin(p), std::end(p)); + double s = std::accumulate(prob.begin(), prob.end(), 0.0); + for (int i = 0; i < prob.size(); ++i) + prob[i] /= s; + std::sort(u.begin(), u.end()); + for (int i = 0; i < Np; ++i) + { + typedef std::vector<D::result_type>::iterator I; + I lb = std::lower_bound(u.begin(), u.end(), b[i]); + I ub = std::lower_bound(u.begin(), u.end(), b[i+1]); + const size_t Ni = ub - lb; + if (prob[i] == 0) + assert(Ni == 0); + else + { + assert(std::abs((double)Ni/N - prob[i]) / prob[i] < .01); + double mean = std::accumulate(lb, ub, 0.0) / Ni; + double var = 0; + double skew = 0; + double kurtosis = 0; + for (I j = lb; j != ub; ++j) + { + double d = (*j - mean); + double d2 = sqr(d); + var += d2; + skew += d * d2; + kurtosis += d2 * d2; + } + var /= Ni; + double dev = std::sqrt(var); + skew /= Ni * dev * var; + kurtosis /= Ni * var * var; + kurtosis -= 3; + double x_mean = (b[i+1] + b[i]) / 2; + double x_var = sqr(b[i+1] - b[i]) / 12; + double x_skew = 0; + double x_kurtosis = -6./5; + assert(std::abs((mean - x_mean) / x_mean) < 0.01); + assert(std::abs((var - x_var) / x_var) < 0.01); + assert(std::abs(skew - x_skew) < 0.01); + assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.01); + } + } + } + { + typedef std::piecewise_constant_distribution<> D; + typedef std::mt19937_64 G; + G g; + double b[] = {10, 14, 16, 17}; + double p[] = {0, 25, 0}; + const size_t Np = sizeof(p) / sizeof(p[0]); + D d(b, b+Np+1, p); + const int N = 100000; + std::vector<D::result_type> u; + for (int i = 0; i < N; ++i) + { + D::result_type v = d(g); + assert(d.min() <= v && v < d.max()); + u.push_back(v); + } + std::vector<double> prob(std::begin(p), std::end(p)); + double s = std::accumulate(prob.begin(), prob.end(), 0.0); + for (int i = 0; i < prob.size(); ++i) + prob[i] /= s; + std::sort(u.begin(), u.end()); + for (int i = 0; i < Np; ++i) + { + typedef std::vector<D::result_type>::iterator I; + I lb = std::lower_bound(u.begin(), u.end(), b[i]); + I ub = std::lower_bound(u.begin(), u.end(), b[i+1]); + const size_t Ni = ub - lb; + if (prob[i] == 0) + assert(Ni == 0); + else + { + assert(std::abs((double)Ni/N - prob[i]) / prob[i] < .01); + double mean = std::accumulate(lb, ub, 0.0) / Ni; + double var = 0; + double skew = 0; + double kurtosis = 0; + for (I j = lb; j != ub; ++j) + { + double d = (*j - mean); + double d2 = sqr(d); + var += d2; + skew += d * d2; + kurtosis += d2 * d2; + } + var /= Ni; + double dev = std::sqrt(var); + skew /= Ni * dev * var; + kurtosis /= Ni * var * var; + kurtosis -= 3; + double x_mean = (b[i+1] + b[i]) / 2; + double x_var = sqr(b[i+1] - b[i]) / 12; + double x_skew = 0; + double x_kurtosis = -6./5; + assert(std::abs((mean - x_mean) / x_mean) < 0.01); + assert(std::abs((var - x_var) / x_var) < 0.01); + assert(std::abs(skew - x_skew) < 0.01); + assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.01); + } + } + } + { + typedef std::piecewise_constant_distribution<> D; + typedef std::mt19937_64 G; + G g; + double b[] = {10, 14, 16, 17}; + double p[] = {0, 0, 1}; + const size_t Np = sizeof(p) / sizeof(p[0]); + D d(b, b+Np+1, p); + const int N = 100000; + std::vector<D::result_type> u; + for (int i = 0; i < N; ++i) + { + D::result_type v = d(g); + assert(d.min() <= v && v < d.max()); + u.push_back(v); + } + std::vector<double> prob(std::begin(p), std::end(p)); + double s = std::accumulate(prob.begin(), prob.end(), 0.0); + for (int i = 0; i < prob.size(); ++i) + prob[i] /= s; + std::sort(u.begin(), u.end()); + for (int i = 0; i < Np; ++i) + { + typedef std::vector<D::result_type>::iterator I; + I lb = std::lower_bound(u.begin(), u.end(), b[i]); + I ub = std::lower_bound(u.begin(), u.end(), b[i+1]); + const size_t Ni = ub - lb; + if (prob[i] == 0) + assert(Ni == 0); + else + { + assert(std::abs((double)Ni/N - prob[i]) / prob[i] < .01); + double mean = std::accumulate(lb, ub, 0.0) / Ni; + double var = 0; + double skew = 0; + double kurtosis = 0; + for (I j = lb; j != ub; ++j) + { + double d = (*j - mean); + double d2 = sqr(d); + var += d2; + skew += d * d2; + kurtosis += d2 * d2; + } + var /= Ni; + double dev = std::sqrt(var); + skew /= Ni * dev * var; + kurtosis /= Ni * var * var; + kurtosis -= 3; + double x_mean = (b[i+1] + b[i]) / 2; + double x_var = sqr(b[i+1] - b[i]) / 12; + double x_skew = 0; + double x_kurtosis = -6./5; + assert(std::abs((mean - x_mean) / x_mean) < 0.01); + assert(std::abs((var - x_var) / x_var) < 0.01); + assert(std::abs(skew - x_skew) < 0.01); + assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.01); + } + } + } + { + typedef std::piecewise_constant_distribution<> D; + typedef std::mt19937_64 G; + G g; + double b[] = {10, 14, 16}; + double p[] = {75, 25}; + const size_t Np = sizeof(p) / sizeof(p[0]); + D d(b, b+Np+1, p); + const int N = 100000; + std::vector<D::result_type> u; + for (int i = 0; i < N; ++i) + { + D::result_type v = d(g); + assert(d.min() <= v && v < d.max()); + u.push_back(v); + } + std::vector<double> prob(std::begin(p), std::end(p)); + double s = std::accumulate(prob.begin(), prob.end(), 0.0); + for (int i = 0; i < prob.size(); ++i) + prob[i] /= s; + std::sort(u.begin(), u.end()); + for (int i = 0; i < Np; ++i) + { + typedef std::vector<D::result_type>::iterator I; + I lb = std::lower_bound(u.begin(), u.end(), b[i]); + I ub = std::lower_bound(u.begin(), u.end(), b[i+1]); + const size_t Ni = ub - lb; + if (prob[i] == 0) + assert(Ni == 0); + else + { + assert(std::abs((double)Ni/N - prob[i]) / prob[i] < .01); + double mean = std::accumulate(lb, ub, 0.0) / Ni; + double var = 0; + double skew = 0; + double kurtosis = 0; + for (I j = lb; j != ub; ++j) + { + double d = (*j - mean); + double d2 = sqr(d); + var += d2; + skew += d * d2; + kurtosis += d2 * d2; + } + var /= Ni; + double dev = std::sqrt(var); + skew /= Ni * dev * var; + kurtosis /= Ni * var * var; + kurtosis -= 3; + double x_mean = (b[i+1] + b[i]) / 2; + double x_var = sqr(b[i+1] - b[i]) / 12; + double x_skew = 0; + double x_kurtosis = -6./5; + assert(std::abs((mean - x_mean) / x_mean) < 0.01); + assert(std::abs((var - x_var) / x_var) < 0.01); + assert(std::abs(skew - x_skew) < 0.01); + assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.01); + } + } + } + { + typedef std::piecewise_constant_distribution<> D; + typedef std::mt19937_64 G; + G g; + double b[] = {10, 14, 16}; + double p[] = {0, 25}; + const size_t Np = sizeof(p) / sizeof(p[0]); + D d(b, b+Np+1, p); + const int N = 100000; + std::vector<D::result_type> u; + for (int i = 0; i < N; ++i) + { + D::result_type v = d(g); + assert(d.min() <= v && v < d.max()); + u.push_back(v); + } + std::vector<double> prob(std::begin(p), std::end(p)); + double s = std::accumulate(prob.begin(), prob.end(), 0.0); + for (int i = 0; i < prob.size(); ++i) + prob[i] /= s; + std::sort(u.begin(), u.end()); + for (int i = 0; i < Np; ++i) + { + typedef std::vector<D::result_type>::iterator I; + I lb = std::lower_bound(u.begin(), u.end(), b[i]); + I ub = std::lower_bound(u.begin(), u.end(), b[i+1]); + const size_t Ni = ub - lb; + if (prob[i] == 0) + assert(Ni == 0); + else + { + assert(std::abs((double)Ni/N - prob[i]) / prob[i] < .01); + double mean = std::accumulate(lb, ub, 0.0) / Ni; + double var = 0; + double skew = 0; + double kurtosis = 0; + for (I j = lb; j != ub; ++j) + { + double d = (*j - mean); + double d2 = sqr(d); + var += d2; + skew += d * d2; + kurtosis += d2 * d2; + } + var /= Ni; + double dev = std::sqrt(var); + skew /= Ni * dev * var; + kurtosis /= Ni * var * var; + kurtosis -= 3; + double x_mean = (b[i+1] + b[i]) / 2; + double x_var = sqr(b[i+1] - b[i]) / 12; + double x_skew = 0; + double x_kurtosis = -6./5; + assert(std::abs((mean - x_mean) / x_mean) < 0.01); + assert(std::abs((var - x_var) / x_var) < 0.01); + assert(std::abs(skew - x_skew) < 0.01); + assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.01); + } + } + } + { + typedef std::piecewise_constant_distribution<> D; + typedef std::mt19937_64 G; + G g; + double b[] = {10, 14, 16}; + double p[] = {1, 0}; + const size_t Np = sizeof(p) / sizeof(p[0]); + D d(b, b+Np+1, p); + const int N = 100000; + std::vector<D::result_type> u; + for (int i = 0; i < N; ++i) + { + D::result_type v = d(g); + assert(d.min() <= v && v < d.max()); + u.push_back(v); + } + std::vector<double> prob(std::begin(p), std::end(p)); + double s = std::accumulate(prob.begin(), prob.end(), 0.0); + for (int i = 0; i < prob.size(); ++i) + prob[i] /= s; + std::sort(u.begin(), u.end()); + for (int i = 0; i < Np; ++i) + { + typedef std::vector<D::result_type>::iterator I; + I lb = std::lower_bound(u.begin(), u.end(), b[i]); + I ub = std::lower_bound(u.begin(), u.end(), b[i+1]); + const size_t Ni = ub - lb; + if (prob[i] == 0) + assert(Ni == 0); + else + { + assert(std::abs((double)Ni/N - prob[i]) / prob[i] < .01); + double mean = std::accumulate(lb, ub, 0.0) / Ni; + double var = 0; + double skew = 0; + double kurtosis = 0; + for (I j = lb; j != ub; ++j) + { + double d = (*j - mean); + double d2 = sqr(d); + var += d2; + skew += d * d2; + kurtosis += d2 * d2; + } + var /= Ni; + double dev = std::sqrt(var); + skew /= Ni * dev * var; + kurtosis /= Ni * var * var; + kurtosis -= 3; + double x_mean = (b[i+1] + b[i]) / 2; + double x_var = sqr(b[i+1] - b[i]) / 12; + double x_skew = 0; + double x_kurtosis = -6./5; + assert(std::abs((mean - x_mean) / x_mean) < 0.01); + assert(std::abs((var - x_var) / x_var) < 0.01); + assert(std::abs(skew - x_skew) < 0.01); + assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.01); + } + } + } + { + typedef std::piecewise_constant_distribution<> D; + typedef std::mt19937_64 G; + G g; + double b[] = {10, 14}; + double p[] = {1}; + const size_t Np = sizeof(p) / sizeof(p[0]); + D d(b, b+Np+1, p); + const int N = 100000; + std::vector<D::result_type> u; + for (int i = 0; i < N; ++i) + { + D::result_type v = d(g); + assert(d.min() <= v && v < d.max()); + u.push_back(v); + } + std::vector<double> prob(std::begin(p), std::end(p)); + double s = std::accumulate(prob.begin(), prob.end(), 0.0); + for (int i = 0; i < prob.size(); ++i) + prob[i] /= s; + std::sort(u.begin(), u.end()); + for (int i = 0; i < Np; ++i) + { + typedef std::vector<D::result_type>::iterator I; + I lb = std::lower_bound(u.begin(), u.end(), b[i]); + I ub = std::lower_bound(u.begin(), u.end(), b[i+1]); + const size_t Ni = ub - lb; + if (prob[i] == 0) + assert(Ni == 0); + else + { + assert(std::abs((double)Ni/N - prob[i]) / prob[i] < .01); + double mean = std::accumulate(lb, ub, 0.0) / Ni; + double var = 0; + double skew = 0; + double kurtosis = 0; + for (I j = lb; j != ub; ++j) + { + double d = (*j - mean); + double d2 = sqr(d); + var += d2; + skew += d * d2; + kurtosis += d2 * d2; + } + var /= Ni; + double dev = std::sqrt(var); + skew /= Ni * dev * var; + kurtosis /= Ni * var * var; + kurtosis -= 3; + double x_mean = (b[i+1] + b[i]) / 2; + double x_var = sqr(b[i+1] - b[i]) / 12; + double x_skew = 0; + double x_kurtosis = -6./5; + assert(std::abs((mean - x_mean) / x_mean) < 0.01); + assert(std::abs((var - x_var) / x_var) < 0.01); + assert(std::abs(skew - x_skew) < 0.01); + assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.01); + } + } + } +} |