summaryrefslogtreecommitdiffstats
path: root/libcxx/test/std/numerics/rand/rand.dis/rand.dist.samp/rand.dist.samp.pconst/eval.pass.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'libcxx/test/std/numerics/rand/rand.dis/rand.dist.samp/rand.dist.samp.pconst/eval.pass.cpp')
-rw-r--r--libcxx/test/std/numerics/rand/rand.dis/rand.dist.samp/rand.dist.samp.pconst/eval.pass.cpp695
1 files changed, 695 insertions, 0 deletions
diff --git a/libcxx/test/std/numerics/rand/rand.dis/rand.dist.samp/rand.dist.samp.pconst/eval.pass.cpp b/libcxx/test/std/numerics/rand/rand.dis/rand.dist.samp/rand.dist.samp.pconst/eval.pass.cpp
new file mode 100644
index 00000000000..5d14b3612b2
--- /dev/null
+++ b/libcxx/test/std/numerics/rand/rand.dis/rand.dist.samp/rand.dist.samp.pconst/eval.pass.cpp
@@ -0,0 +1,695 @@
+//===----------------------------------------------------------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is dual licensed under the MIT and the University of Illinois Open
+// Source Licenses. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// REQUIRES: long_tests
+
+// <random>
+
+// template<class RealType = double>
+// class piecewise_constant_distribution
+
+// template<class _URNG> result_type operator()(_URNG& g);
+
+#include <random>
+#include <vector>
+#include <iterator>
+#include <numeric>
+#include <cassert>
+
+template <class T>
+inline
+T
+sqr(T x)
+{
+ return x*x;
+}
+
+int main()
+{
+ {
+ typedef std::piecewise_constant_distribution<> D;
+ typedef std::mt19937_64 G;
+ G g;
+ double b[] = {10, 14, 16, 17};
+ double p[] = {25, 62.5, 12.5};
+ const size_t Np = sizeof(p) / sizeof(p[0]);
+ D d(b, b+Np+1, p);
+ const int N = 1000000;
+ std::vector<D::result_type> u;
+ for (int i = 0; i < N; ++i)
+ {
+ D::result_type v = d(g);
+ assert(d.min() <= v && v < d.max());
+ u.push_back(v);
+ }
+ std::vector<double> prob(std::begin(p), std::end(p));
+ double s = std::accumulate(prob.begin(), prob.end(), 0.0);
+ for (int i = 0; i < prob.size(); ++i)
+ prob[i] /= s;
+ std::sort(u.begin(), u.end());
+ for (int i = 0; i < Np; ++i)
+ {
+ typedef std::vector<D::result_type>::iterator I;
+ I lb = std::lower_bound(u.begin(), u.end(), b[i]);
+ I ub = std::lower_bound(u.begin(), u.end(), b[i+1]);
+ const size_t Ni = ub - lb;
+ if (prob[i] == 0)
+ assert(Ni == 0);
+ else
+ {
+ assert(std::abs((double)Ni/N - prob[i]) / prob[i] < .01);
+ double mean = std::accumulate(lb, ub, 0.0) / Ni;
+ double var = 0;
+ double skew = 0;
+ double kurtosis = 0;
+ for (I j = lb; j != ub; ++j)
+ {
+ double d = (*j - mean);
+ double d2 = sqr(d);
+ var += d2;
+ skew += d * d2;
+ kurtosis += d2 * d2;
+ }
+ var /= Ni;
+ double dev = std::sqrt(var);
+ skew /= Ni * dev * var;
+ kurtosis /= Ni * var * var;
+ kurtosis -= 3;
+ double x_mean = (b[i+1] + b[i]) / 2;
+ double x_var = sqr(b[i+1] - b[i]) / 12;
+ double x_skew = 0;
+ double x_kurtosis = -6./5;
+ assert(std::abs((mean - x_mean) / x_mean) < 0.01);
+ assert(std::abs((var - x_var) / x_var) < 0.01);
+ assert(std::abs(skew - x_skew) < 0.01);
+ assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.01);
+ }
+ }
+ }
+ {
+ typedef std::piecewise_constant_distribution<> D;
+ typedef std::mt19937_64 G;
+ G g;
+ double b[] = {10, 14, 16, 17};
+ double p[] = {0, 62.5, 12.5};
+ const size_t Np = sizeof(p) / sizeof(p[0]);
+ D d(b, b+Np+1, p);
+ const int N = 1000000;
+ std::vector<D::result_type> u;
+ for (int i = 0; i < N; ++i)
+ {
+ D::result_type v = d(g);
+ assert(d.min() <= v && v < d.max());
+ u.push_back(v);
+ }
+ std::vector<double> prob(std::begin(p), std::end(p));
+ double s = std::accumulate(prob.begin(), prob.end(), 0.0);
+ for (int i = 0; i < prob.size(); ++i)
+ prob[i] /= s;
+ std::sort(u.begin(), u.end());
+ for (int i = 0; i < Np; ++i)
+ {
+ typedef std::vector<D::result_type>::iterator I;
+ I lb = std::lower_bound(u.begin(), u.end(), b[i]);
+ I ub = std::lower_bound(u.begin(), u.end(), b[i+1]);
+ const size_t Ni = ub - lb;
+ if (prob[i] == 0)
+ assert(Ni == 0);
+ else
+ {
+ assert(std::abs((double)Ni/N - prob[i]) / prob[i] < .01);
+ double mean = std::accumulate(lb, ub, 0.0) / Ni;
+ double var = 0;
+ double skew = 0;
+ double kurtosis = 0;
+ for (I j = lb; j != ub; ++j)
+ {
+ double d = (*j - mean);
+ double d2 = sqr(d);
+ var += d2;
+ skew += d * d2;
+ kurtosis += d2 * d2;
+ }
+ var /= Ni;
+ double dev = std::sqrt(var);
+ skew /= Ni * dev * var;
+ kurtosis /= Ni * var * var;
+ kurtosis -= 3;
+ double x_mean = (b[i+1] + b[i]) / 2;
+ double x_var = sqr(b[i+1] - b[i]) / 12;
+ double x_skew = 0;
+ double x_kurtosis = -6./5;
+ assert(std::abs((mean - x_mean) / x_mean) < 0.01);
+ assert(std::abs((var - x_var) / x_var) < 0.01);
+ assert(std::abs(skew - x_skew) < 0.01);
+ assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.01);
+ }
+ }
+ }
+ {
+ typedef std::piecewise_constant_distribution<> D;
+ typedef std::mt19937_64 G;
+ G g;
+ double b[] = {10, 14, 16, 17};
+ double p[] = {25, 0, 12.5};
+ const size_t Np = sizeof(p) / sizeof(p[0]);
+ D d(b, b+Np+1, p);
+ const int N = 1000000;
+ std::vector<D::result_type> u;
+ for (int i = 0; i < N; ++i)
+ {
+ D::result_type v = d(g);
+ assert(d.min() <= v && v < d.max());
+ u.push_back(v);
+ }
+ std::vector<double> prob(std::begin(p), std::end(p));
+ double s = std::accumulate(prob.begin(), prob.end(), 0.0);
+ for (int i = 0; i < prob.size(); ++i)
+ prob[i] /= s;
+ std::sort(u.begin(), u.end());
+ for (int i = 0; i < Np; ++i)
+ {
+ typedef std::vector<D::result_type>::iterator I;
+ I lb = std::lower_bound(u.begin(), u.end(), b[i]);
+ I ub = std::lower_bound(u.begin(), u.end(), b[i+1]);
+ const size_t Ni = ub - lb;
+ if (prob[i] == 0)
+ assert(Ni == 0);
+ else
+ {
+ assert(std::abs((double)Ni/N - prob[i]) / prob[i] < .01);
+ double mean = std::accumulate(lb, ub, 0.0) / Ni;
+ double var = 0;
+ double skew = 0;
+ double kurtosis = 0;
+ for (I j = lb; j != ub; ++j)
+ {
+ double d = (*j - mean);
+ double d2 = sqr(d);
+ var += d2;
+ skew += d * d2;
+ kurtosis += d2 * d2;
+ }
+ var /= Ni;
+ double dev = std::sqrt(var);
+ skew /= Ni * dev * var;
+ kurtosis /= Ni * var * var;
+ kurtosis -= 3;
+ double x_mean = (b[i+1] + b[i]) / 2;
+ double x_var = sqr(b[i+1] - b[i]) / 12;
+ double x_skew = 0;
+ double x_kurtosis = -6./5;
+ assert(std::abs((mean - x_mean) / x_mean) < 0.01);
+ assert(std::abs((var - x_var) / x_var) < 0.01);
+ assert(std::abs(skew - x_skew) < 0.01);
+ assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.01);
+ }
+ }
+ }
+ {
+ typedef std::piecewise_constant_distribution<> D;
+ typedef std::mt19937_64 G;
+ G g;
+ double b[] = {10, 14, 16, 17};
+ double p[] = {25, 62.5, 0};
+ const size_t Np = sizeof(p) / sizeof(p[0]);
+ D d(b, b+Np+1, p);
+ const int N = 1000000;
+ std::vector<D::result_type> u;
+ for (int i = 0; i < N; ++i)
+ {
+ D::result_type v = d(g);
+ assert(d.min() <= v && v < d.max());
+ u.push_back(v);
+ }
+ std::vector<double> prob(std::begin(p), std::end(p));
+ double s = std::accumulate(prob.begin(), prob.end(), 0.0);
+ for (int i = 0; i < prob.size(); ++i)
+ prob[i] /= s;
+ std::sort(u.begin(), u.end());
+ for (int i = 0; i < Np; ++i)
+ {
+ typedef std::vector<D::result_type>::iterator I;
+ I lb = std::lower_bound(u.begin(), u.end(), b[i]);
+ I ub = std::lower_bound(u.begin(), u.end(), b[i+1]);
+ const size_t Ni = ub - lb;
+ if (prob[i] == 0)
+ assert(Ni == 0);
+ else
+ {
+ assert(std::abs((double)Ni/N - prob[i]) / prob[i] < .01);
+ double mean = std::accumulate(lb, ub, 0.0) / Ni;
+ double var = 0;
+ double skew = 0;
+ double kurtosis = 0;
+ for (I j = lb; j != ub; ++j)
+ {
+ double d = (*j - mean);
+ double d2 = sqr(d);
+ var += d2;
+ skew += d * d2;
+ kurtosis += d2 * d2;
+ }
+ var /= Ni;
+ double dev = std::sqrt(var);
+ skew /= Ni * dev * var;
+ kurtosis /= Ni * var * var;
+ kurtosis -= 3;
+ double x_mean = (b[i+1] + b[i]) / 2;
+ double x_var = sqr(b[i+1] - b[i]) / 12;
+ double x_skew = 0;
+ double x_kurtosis = -6./5;
+ assert(std::abs((mean - x_mean) / x_mean) < 0.01);
+ assert(std::abs((var - x_var) / x_var) < 0.01);
+ assert(std::abs(skew - x_skew) < 0.01);
+ assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.01);
+ }
+ }
+ }
+ {
+ typedef std::piecewise_constant_distribution<> D;
+ typedef std::mt19937_64 G;
+ G g;
+ double b[] = {10, 14, 16, 17};
+ double p[] = {25, 0, 0};
+ const size_t Np = sizeof(p) / sizeof(p[0]);
+ D d(b, b+Np+1, p);
+ const int N = 100000;
+ std::vector<D::result_type> u;
+ for (int i = 0; i < N; ++i)
+ {
+ D::result_type v = d(g);
+ assert(d.min() <= v && v < d.max());
+ u.push_back(v);
+ }
+ std::vector<double> prob(std::begin(p), std::end(p));
+ double s = std::accumulate(prob.begin(), prob.end(), 0.0);
+ for (int i = 0; i < prob.size(); ++i)
+ prob[i] /= s;
+ std::sort(u.begin(), u.end());
+ for (int i = 0; i < Np; ++i)
+ {
+ typedef std::vector<D::result_type>::iterator I;
+ I lb = std::lower_bound(u.begin(), u.end(), b[i]);
+ I ub = std::lower_bound(u.begin(), u.end(), b[i+1]);
+ const size_t Ni = ub - lb;
+ if (prob[i] == 0)
+ assert(Ni == 0);
+ else
+ {
+ assert(std::abs((double)Ni/N - prob[i]) / prob[i] < .01);
+ double mean = std::accumulate(lb, ub, 0.0) / Ni;
+ double var = 0;
+ double skew = 0;
+ double kurtosis = 0;
+ for (I j = lb; j != ub; ++j)
+ {
+ double d = (*j - mean);
+ double d2 = sqr(d);
+ var += d2;
+ skew += d * d2;
+ kurtosis += d2 * d2;
+ }
+ var /= Ni;
+ double dev = std::sqrt(var);
+ skew /= Ni * dev * var;
+ kurtosis /= Ni * var * var;
+ kurtosis -= 3;
+ double x_mean = (b[i+1] + b[i]) / 2;
+ double x_var = sqr(b[i+1] - b[i]) / 12;
+ double x_skew = 0;
+ double x_kurtosis = -6./5;
+ assert(std::abs((mean - x_mean) / x_mean) < 0.01);
+ assert(std::abs((var - x_var) / x_var) < 0.01);
+ assert(std::abs(skew - x_skew) < 0.01);
+ assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.01);
+ }
+ }
+ }
+ {
+ typedef std::piecewise_constant_distribution<> D;
+ typedef std::mt19937_64 G;
+ G g;
+ double b[] = {10, 14, 16, 17};
+ double p[] = {0, 25, 0};
+ const size_t Np = sizeof(p) / sizeof(p[0]);
+ D d(b, b+Np+1, p);
+ const int N = 100000;
+ std::vector<D::result_type> u;
+ for (int i = 0; i < N; ++i)
+ {
+ D::result_type v = d(g);
+ assert(d.min() <= v && v < d.max());
+ u.push_back(v);
+ }
+ std::vector<double> prob(std::begin(p), std::end(p));
+ double s = std::accumulate(prob.begin(), prob.end(), 0.0);
+ for (int i = 0; i < prob.size(); ++i)
+ prob[i] /= s;
+ std::sort(u.begin(), u.end());
+ for (int i = 0; i < Np; ++i)
+ {
+ typedef std::vector<D::result_type>::iterator I;
+ I lb = std::lower_bound(u.begin(), u.end(), b[i]);
+ I ub = std::lower_bound(u.begin(), u.end(), b[i+1]);
+ const size_t Ni = ub - lb;
+ if (prob[i] == 0)
+ assert(Ni == 0);
+ else
+ {
+ assert(std::abs((double)Ni/N - prob[i]) / prob[i] < .01);
+ double mean = std::accumulate(lb, ub, 0.0) / Ni;
+ double var = 0;
+ double skew = 0;
+ double kurtosis = 0;
+ for (I j = lb; j != ub; ++j)
+ {
+ double d = (*j - mean);
+ double d2 = sqr(d);
+ var += d2;
+ skew += d * d2;
+ kurtosis += d2 * d2;
+ }
+ var /= Ni;
+ double dev = std::sqrt(var);
+ skew /= Ni * dev * var;
+ kurtosis /= Ni * var * var;
+ kurtosis -= 3;
+ double x_mean = (b[i+1] + b[i]) / 2;
+ double x_var = sqr(b[i+1] - b[i]) / 12;
+ double x_skew = 0;
+ double x_kurtosis = -6./5;
+ assert(std::abs((mean - x_mean) / x_mean) < 0.01);
+ assert(std::abs((var - x_var) / x_var) < 0.01);
+ assert(std::abs(skew - x_skew) < 0.01);
+ assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.01);
+ }
+ }
+ }
+ {
+ typedef std::piecewise_constant_distribution<> D;
+ typedef std::mt19937_64 G;
+ G g;
+ double b[] = {10, 14, 16, 17};
+ double p[] = {0, 0, 1};
+ const size_t Np = sizeof(p) / sizeof(p[0]);
+ D d(b, b+Np+1, p);
+ const int N = 100000;
+ std::vector<D::result_type> u;
+ for (int i = 0; i < N; ++i)
+ {
+ D::result_type v = d(g);
+ assert(d.min() <= v && v < d.max());
+ u.push_back(v);
+ }
+ std::vector<double> prob(std::begin(p), std::end(p));
+ double s = std::accumulate(prob.begin(), prob.end(), 0.0);
+ for (int i = 0; i < prob.size(); ++i)
+ prob[i] /= s;
+ std::sort(u.begin(), u.end());
+ for (int i = 0; i < Np; ++i)
+ {
+ typedef std::vector<D::result_type>::iterator I;
+ I lb = std::lower_bound(u.begin(), u.end(), b[i]);
+ I ub = std::lower_bound(u.begin(), u.end(), b[i+1]);
+ const size_t Ni = ub - lb;
+ if (prob[i] == 0)
+ assert(Ni == 0);
+ else
+ {
+ assert(std::abs((double)Ni/N - prob[i]) / prob[i] < .01);
+ double mean = std::accumulate(lb, ub, 0.0) / Ni;
+ double var = 0;
+ double skew = 0;
+ double kurtosis = 0;
+ for (I j = lb; j != ub; ++j)
+ {
+ double d = (*j - mean);
+ double d2 = sqr(d);
+ var += d2;
+ skew += d * d2;
+ kurtosis += d2 * d2;
+ }
+ var /= Ni;
+ double dev = std::sqrt(var);
+ skew /= Ni * dev * var;
+ kurtosis /= Ni * var * var;
+ kurtosis -= 3;
+ double x_mean = (b[i+1] + b[i]) / 2;
+ double x_var = sqr(b[i+1] - b[i]) / 12;
+ double x_skew = 0;
+ double x_kurtosis = -6./5;
+ assert(std::abs((mean - x_mean) / x_mean) < 0.01);
+ assert(std::abs((var - x_var) / x_var) < 0.01);
+ assert(std::abs(skew - x_skew) < 0.01);
+ assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.01);
+ }
+ }
+ }
+ {
+ typedef std::piecewise_constant_distribution<> D;
+ typedef std::mt19937_64 G;
+ G g;
+ double b[] = {10, 14, 16};
+ double p[] = {75, 25};
+ const size_t Np = sizeof(p) / sizeof(p[0]);
+ D d(b, b+Np+1, p);
+ const int N = 100000;
+ std::vector<D::result_type> u;
+ for (int i = 0; i < N; ++i)
+ {
+ D::result_type v = d(g);
+ assert(d.min() <= v && v < d.max());
+ u.push_back(v);
+ }
+ std::vector<double> prob(std::begin(p), std::end(p));
+ double s = std::accumulate(prob.begin(), prob.end(), 0.0);
+ for (int i = 0; i < prob.size(); ++i)
+ prob[i] /= s;
+ std::sort(u.begin(), u.end());
+ for (int i = 0; i < Np; ++i)
+ {
+ typedef std::vector<D::result_type>::iterator I;
+ I lb = std::lower_bound(u.begin(), u.end(), b[i]);
+ I ub = std::lower_bound(u.begin(), u.end(), b[i+1]);
+ const size_t Ni = ub - lb;
+ if (prob[i] == 0)
+ assert(Ni == 0);
+ else
+ {
+ assert(std::abs((double)Ni/N - prob[i]) / prob[i] < .01);
+ double mean = std::accumulate(lb, ub, 0.0) / Ni;
+ double var = 0;
+ double skew = 0;
+ double kurtosis = 0;
+ for (I j = lb; j != ub; ++j)
+ {
+ double d = (*j - mean);
+ double d2 = sqr(d);
+ var += d2;
+ skew += d * d2;
+ kurtosis += d2 * d2;
+ }
+ var /= Ni;
+ double dev = std::sqrt(var);
+ skew /= Ni * dev * var;
+ kurtosis /= Ni * var * var;
+ kurtosis -= 3;
+ double x_mean = (b[i+1] + b[i]) / 2;
+ double x_var = sqr(b[i+1] - b[i]) / 12;
+ double x_skew = 0;
+ double x_kurtosis = -6./5;
+ assert(std::abs((mean - x_mean) / x_mean) < 0.01);
+ assert(std::abs((var - x_var) / x_var) < 0.01);
+ assert(std::abs(skew - x_skew) < 0.01);
+ assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.01);
+ }
+ }
+ }
+ {
+ typedef std::piecewise_constant_distribution<> D;
+ typedef std::mt19937_64 G;
+ G g;
+ double b[] = {10, 14, 16};
+ double p[] = {0, 25};
+ const size_t Np = sizeof(p) / sizeof(p[0]);
+ D d(b, b+Np+1, p);
+ const int N = 100000;
+ std::vector<D::result_type> u;
+ for (int i = 0; i < N; ++i)
+ {
+ D::result_type v = d(g);
+ assert(d.min() <= v && v < d.max());
+ u.push_back(v);
+ }
+ std::vector<double> prob(std::begin(p), std::end(p));
+ double s = std::accumulate(prob.begin(), prob.end(), 0.0);
+ for (int i = 0; i < prob.size(); ++i)
+ prob[i] /= s;
+ std::sort(u.begin(), u.end());
+ for (int i = 0; i < Np; ++i)
+ {
+ typedef std::vector<D::result_type>::iterator I;
+ I lb = std::lower_bound(u.begin(), u.end(), b[i]);
+ I ub = std::lower_bound(u.begin(), u.end(), b[i+1]);
+ const size_t Ni = ub - lb;
+ if (prob[i] == 0)
+ assert(Ni == 0);
+ else
+ {
+ assert(std::abs((double)Ni/N - prob[i]) / prob[i] < .01);
+ double mean = std::accumulate(lb, ub, 0.0) / Ni;
+ double var = 0;
+ double skew = 0;
+ double kurtosis = 0;
+ for (I j = lb; j != ub; ++j)
+ {
+ double d = (*j - mean);
+ double d2 = sqr(d);
+ var += d2;
+ skew += d * d2;
+ kurtosis += d2 * d2;
+ }
+ var /= Ni;
+ double dev = std::sqrt(var);
+ skew /= Ni * dev * var;
+ kurtosis /= Ni * var * var;
+ kurtosis -= 3;
+ double x_mean = (b[i+1] + b[i]) / 2;
+ double x_var = sqr(b[i+1] - b[i]) / 12;
+ double x_skew = 0;
+ double x_kurtosis = -6./5;
+ assert(std::abs((mean - x_mean) / x_mean) < 0.01);
+ assert(std::abs((var - x_var) / x_var) < 0.01);
+ assert(std::abs(skew - x_skew) < 0.01);
+ assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.01);
+ }
+ }
+ }
+ {
+ typedef std::piecewise_constant_distribution<> D;
+ typedef std::mt19937_64 G;
+ G g;
+ double b[] = {10, 14, 16};
+ double p[] = {1, 0};
+ const size_t Np = sizeof(p) / sizeof(p[0]);
+ D d(b, b+Np+1, p);
+ const int N = 100000;
+ std::vector<D::result_type> u;
+ for (int i = 0; i < N; ++i)
+ {
+ D::result_type v = d(g);
+ assert(d.min() <= v && v < d.max());
+ u.push_back(v);
+ }
+ std::vector<double> prob(std::begin(p), std::end(p));
+ double s = std::accumulate(prob.begin(), prob.end(), 0.0);
+ for (int i = 0; i < prob.size(); ++i)
+ prob[i] /= s;
+ std::sort(u.begin(), u.end());
+ for (int i = 0; i < Np; ++i)
+ {
+ typedef std::vector<D::result_type>::iterator I;
+ I lb = std::lower_bound(u.begin(), u.end(), b[i]);
+ I ub = std::lower_bound(u.begin(), u.end(), b[i+1]);
+ const size_t Ni = ub - lb;
+ if (prob[i] == 0)
+ assert(Ni == 0);
+ else
+ {
+ assert(std::abs((double)Ni/N - prob[i]) / prob[i] < .01);
+ double mean = std::accumulate(lb, ub, 0.0) / Ni;
+ double var = 0;
+ double skew = 0;
+ double kurtosis = 0;
+ for (I j = lb; j != ub; ++j)
+ {
+ double d = (*j - mean);
+ double d2 = sqr(d);
+ var += d2;
+ skew += d * d2;
+ kurtosis += d2 * d2;
+ }
+ var /= Ni;
+ double dev = std::sqrt(var);
+ skew /= Ni * dev * var;
+ kurtosis /= Ni * var * var;
+ kurtosis -= 3;
+ double x_mean = (b[i+1] + b[i]) / 2;
+ double x_var = sqr(b[i+1] - b[i]) / 12;
+ double x_skew = 0;
+ double x_kurtosis = -6./5;
+ assert(std::abs((mean - x_mean) / x_mean) < 0.01);
+ assert(std::abs((var - x_var) / x_var) < 0.01);
+ assert(std::abs(skew - x_skew) < 0.01);
+ assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.01);
+ }
+ }
+ }
+ {
+ typedef std::piecewise_constant_distribution<> D;
+ typedef std::mt19937_64 G;
+ G g;
+ double b[] = {10, 14};
+ double p[] = {1};
+ const size_t Np = sizeof(p) / sizeof(p[0]);
+ D d(b, b+Np+1, p);
+ const int N = 100000;
+ std::vector<D::result_type> u;
+ for (int i = 0; i < N; ++i)
+ {
+ D::result_type v = d(g);
+ assert(d.min() <= v && v < d.max());
+ u.push_back(v);
+ }
+ std::vector<double> prob(std::begin(p), std::end(p));
+ double s = std::accumulate(prob.begin(), prob.end(), 0.0);
+ for (int i = 0; i < prob.size(); ++i)
+ prob[i] /= s;
+ std::sort(u.begin(), u.end());
+ for (int i = 0; i < Np; ++i)
+ {
+ typedef std::vector<D::result_type>::iterator I;
+ I lb = std::lower_bound(u.begin(), u.end(), b[i]);
+ I ub = std::lower_bound(u.begin(), u.end(), b[i+1]);
+ const size_t Ni = ub - lb;
+ if (prob[i] == 0)
+ assert(Ni == 0);
+ else
+ {
+ assert(std::abs((double)Ni/N - prob[i]) / prob[i] < .01);
+ double mean = std::accumulate(lb, ub, 0.0) / Ni;
+ double var = 0;
+ double skew = 0;
+ double kurtosis = 0;
+ for (I j = lb; j != ub; ++j)
+ {
+ double d = (*j - mean);
+ double d2 = sqr(d);
+ var += d2;
+ skew += d * d2;
+ kurtosis += d2 * d2;
+ }
+ var /= Ni;
+ double dev = std::sqrt(var);
+ skew /= Ni * dev * var;
+ kurtosis /= Ni * var * var;
+ kurtosis -= 3;
+ double x_mean = (b[i+1] + b[i]) / 2;
+ double x_var = sqr(b[i+1] - b[i]) / 12;
+ double x_skew = 0;
+ double x_kurtosis = -6./5;
+ assert(std::abs((mean - x_mean) / x_mean) < 0.01);
+ assert(std::abs((var - x_var) / x_var) < 0.01);
+ assert(std::abs(skew - x_skew) < 0.01);
+ assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.01);
+ }
+ }
+ }
+}
OpenPOWER on IntegriCloud