diff options
Diffstat (limited to 'libcxx/test/std/numerics/rand/rand.dis/rand.dist.bern/rand.dist.bern.negbin/eval.pass.cpp')
-rw-r--r-- | libcxx/test/std/numerics/rand/rand.dis/rand.dist.bern/rand.dist.bern.negbin/eval.pass.cpp | 478 |
1 files changed, 251 insertions, 227 deletions
diff --git a/libcxx/test/std/numerics/rand/rand.dis/rand.dist.bern/rand.dist.bern.negbin/eval.pass.cpp b/libcxx/test/std/numerics/rand/rand.dis/rand.dist.bern/rand.dist.bern.negbin/eval.pass.cpp index b89a16f3172..929e6e7e6c3 100644 --- a/libcxx/test/std/numerics/rand/rand.dis/rand.dist.bern/rand.dist.bern.negbin/eval.pass.cpp +++ b/libcxx/test/std/numerics/rand/rand.dis/rand.dist.bern/rand.dist.bern.negbin/eval.pass.cpp @@ -29,244 +29,268 @@ sqr(T x) return x * x; } -int main() +void +test1() +{ + typedef std::negative_binomial_distribution<> D; + typedef std::minstd_rand G; + G g; + D d(5, .25); + const int N = 1000000; + std::vector<D::result_type> u; + for (int i = 0; i < N; ++i) + { + D::result_type v = d(g); + assert(d.min() <= v && v <= d.max()); + u.push_back(v); + } + double mean = std::accumulate(u.begin(), u.end(), + double(0)) / u.size(); + double var = 0; + double skew = 0; + double kurtosis = 0; + for (int i = 0; i < u.size(); ++i) + { + double dbl = (u[i] - mean); + double d2 = sqr(dbl); + var += d2; + skew += dbl * d2; + kurtosis += d2 * d2; + } + var /= u.size(); + double dev = std::sqrt(var); + skew /= u.size() * dev * var; + kurtosis /= u.size() * var * var; + kurtosis -= 3; + double x_mean = d.k() * (1 - d.p()) / d.p(); + double x_var = x_mean / d.p(); + double x_skew = (2 - d.p()) / std::sqrt(d.k() * (1 - d.p())); + double x_kurtosis = 6. / d.k() + sqr(d.p()) / (d.k() * (1 - d.p())); + assert(std::abs((mean - x_mean) / x_mean) < 0.01); + assert(std::abs((var - x_var) / x_var) < 0.01); + assert(std::abs((skew - x_skew) / x_skew) < 0.01); + assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.02); +} + +void +test2() +{ + typedef std::negative_binomial_distribution<> D; + typedef std::mt19937 G; + G g; + D d(30, .03125); + const int N = 1000000; + std::vector<D::result_type> u; + for (int i = 0; i < N; ++i) + { + D::result_type v = d(g); + assert(d.min() <= v && v <= d.max()); + u.push_back(v); + } + double mean = std::accumulate(u.begin(), u.end(), + double(0)) / u.size(); + double var = 0; + double skew = 0; + double kurtosis = 0; + for (int i = 0; i < u.size(); ++i) + { + double dbl = (u[i] - mean); + double d2 = sqr(dbl); + var += d2; + skew += dbl * d2; + kurtosis += d2 * d2; + } + var /= u.size(); + double dev = std::sqrt(var); + skew /= u.size() * dev * var; + kurtosis /= u.size() * var * var; + kurtosis -= 3; + double x_mean = d.k() * (1 - d.p()) / d.p(); + double x_var = x_mean / d.p(); + double x_skew = (2 - d.p()) / std::sqrt(d.k() * (1 - d.p())); + double x_kurtosis = 6. / d.k() + sqr(d.p()) / (d.k() * (1 - d.p())); + assert(std::abs((mean - x_mean) / x_mean) < 0.01); + assert(std::abs((var - x_var) / x_var) < 0.01); + assert(std::abs((skew - x_skew) / x_skew) < 0.01); + assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.01); +} + +void +test3() +{ + typedef std::negative_binomial_distribution<> D; + typedef std::mt19937 G; + G g; + D d(40, .25); + const int N = 1000000; + std::vector<D::result_type> u; + for (int i = 0; i < N; ++i) + { + D::result_type v = d(g); + assert(d.min() <= v && v <= d.max()); + u.push_back(v); + } + double mean = std::accumulate(u.begin(), u.end(), + double(0)) / u.size(); + double var = 0; + double skew = 0; + double kurtosis = 0; + for (int i = 0; i < u.size(); ++i) + { + double dbl = (u[i] - mean); + double d2 = sqr(dbl); + var += d2; + skew += dbl * d2; + kurtosis += d2 * d2; + } + var /= u.size(); + double dev = std::sqrt(var); + skew /= u.size() * dev * var; + kurtosis /= u.size() * var * var; + kurtosis -= 3; + double x_mean = d.k() * (1 - d.p()) / d.p(); + double x_var = x_mean / d.p(); + double x_skew = (2 - d.p()) / std::sqrt(d.k() * (1 - d.p())); + double x_kurtosis = 6. / d.k() + sqr(d.p()) / (d.k() * (1 - d.p())); + assert(std::abs((mean - x_mean) / x_mean) < 0.01); + assert(std::abs((var - x_var) / x_var) < 0.01); + assert(std::abs((skew - x_skew) / x_skew) < 0.01); + assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.03); +} + +void +test4() { + typedef std::negative_binomial_distribution<> D; + typedef std::mt19937 G; + G g; + D d(40, 1); + const int N = 1000; + std::vector<D::result_type> u; + for (int i = 0; i < N; ++i) { - typedef std::negative_binomial_distribution<> D; - typedef std::minstd_rand G; - G g; - D d(5, .25); - const int N = 1000000; - std::vector<D::result_type> u; - for (int i = 0; i < N; ++i) - { - D::result_type v = d(g); - assert(d.min() <= v && v <= d.max()); - u.push_back(v); - } - double mean = std::accumulate(u.begin(), u.end(), - double(0)) / u.size(); - double var = 0; - double skew = 0; - double kurtosis = 0; - for (int i = 0; i < u.size(); ++i) - { - double dbl = (u[i] - mean); - double d2 = sqr(dbl); - var += d2; - skew += dbl * d2; - kurtosis += d2 * d2; - } - var /= u.size(); - double dev = std::sqrt(var); - skew /= u.size() * dev * var; - kurtosis /= u.size() * var * var; - kurtosis -= 3; - double x_mean = d.k() * (1 - d.p()) / d.p(); - double x_var = x_mean / d.p(); - double x_skew = (2 - d.p()) / std::sqrt(d.k() * (1 - d.p())); - double x_kurtosis = 6. / d.k() + sqr(d.p()) / (d.k() * (1 - d.p())); - assert(std::abs((mean - x_mean) / x_mean) < 0.01); - assert(std::abs((var - x_var) / x_var) < 0.01); - assert(std::abs((skew - x_skew) / x_skew) < 0.01); - assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.02); + D::result_type v = d(g); + assert(d.min() <= v && v <= d.max()); + u.push_back(v); } + double mean = std::accumulate(u.begin(), u.end(), + double(0)) / u.size(); + double var = 0; + double skew = 0; + double kurtosis = 0; + for (int i = 0; i < u.size(); ++i) { - typedef std::negative_binomial_distribution<> D; - typedef std::mt19937 G; - G g; - D d(30, .03125); - const int N = 1000000; - std::vector<D::result_type> u; - for (int i = 0; i < N; ++i) - { - D::result_type v = d(g); - assert(d.min() <= v && v <= d.max()); - u.push_back(v); - } - double mean = std::accumulate(u.begin(), u.end(), - double(0)) / u.size(); - double var = 0; - double skew = 0; - double kurtosis = 0; - for (int i = 0; i < u.size(); ++i) - { - double dbl = (u[i] - mean); - double d2 = sqr(dbl); - var += d2; - skew += dbl * d2; - kurtosis += d2 * d2; - } - var /= u.size(); - double dev = std::sqrt(var); - skew /= u.size() * dev * var; - kurtosis /= u.size() * var * var; - kurtosis -= 3; - double x_mean = d.k() * (1 - d.p()) / d.p(); - double x_var = x_mean / d.p(); - double x_skew = (2 - d.p()) / std::sqrt(d.k() * (1 - d.p())); - double x_kurtosis = 6. / d.k() + sqr(d.p()) / (d.k() * (1 - d.p())); - assert(std::abs((mean - x_mean) / x_mean) < 0.01); - assert(std::abs((var - x_var) / x_var) < 0.01); - assert(std::abs((skew - x_skew) / x_skew) < 0.01); - assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.01); + double dbl = (u[i] - mean); + double d2 = sqr(dbl); + var += d2; + skew += dbl * d2; + kurtosis += d2 * d2; } + var /= u.size(); + double dev = std::sqrt(var); + skew /= u.size() * dev * var; + kurtosis /= u.size() * var * var; + kurtosis -= 3; + double x_mean = d.k() * (1 - d.p()) / d.p(); + double x_var = x_mean / d.p(); + double x_skew = (2 - d.p()) / std::sqrt(d.k() * (1 - d.p())); + double x_kurtosis = 6. / d.k() + sqr(d.p()) / (d.k() * (1 - d.p())); + assert(mean == x_mean); + assert(var == x_var); +} + +void +test5() +{ + typedef std::negative_binomial_distribution<> D; + typedef std::mt19937 G; + G g; + D d(400, 0.5); + const int N = 1000000; + std::vector<D::result_type> u; + for (int i = 0; i < N; ++i) { - typedef std::negative_binomial_distribution<> D; - typedef std::mt19937 G; - G g; - D d(40, .25); - const int N = 1000000; - std::vector<D::result_type> u; - for (int i = 0; i < N; ++i) - { - D::result_type v = d(g); - assert(d.min() <= v && v <= d.max()); - u.push_back(v); - } - double mean = std::accumulate(u.begin(), u.end(), - double(0)) / u.size(); - double var = 0; - double skew = 0; - double kurtosis = 0; - for (int i = 0; i < u.size(); ++i) - { - double dbl = (u[i] - mean); - double d2 = sqr(dbl); - var += d2; - skew += dbl * d2; - kurtosis += d2 * d2; - } - var /= u.size(); - double dev = std::sqrt(var); - skew /= u.size() * dev * var; - kurtosis /= u.size() * var * var; - kurtosis -= 3; - double x_mean = d.k() * (1 - d.p()) / d.p(); - double x_var = x_mean / d.p(); - double x_skew = (2 - d.p()) / std::sqrt(d.k() * (1 - d.p())); - double x_kurtosis = 6. / d.k() + sqr(d.p()) / (d.k() * (1 - d.p())); - assert(std::abs((mean - x_mean) / x_mean) < 0.01); - assert(std::abs((var - x_var) / x_var) < 0.01); - assert(std::abs((skew - x_skew) / x_skew) < 0.01); - assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.03); + D::result_type v = d(g); + assert(d.min() <= v && v <= d.max()); + u.push_back(v); } + double mean = std::accumulate(u.begin(), u.end(), + double(0)) / u.size(); + double var = 0; + double skew = 0; + double kurtosis = 0; + for (int i = 0; i < u.size(); ++i) { - typedef std::negative_binomial_distribution<> D; - typedef std::mt19937 G; - G g; - D d(40, 1); - const int N = 1000; - std::vector<D::result_type> u; - for (int i = 0; i < N; ++i) - { - D::result_type v = d(g); - assert(d.min() <= v && v <= d.max()); - u.push_back(v); - } - double mean = std::accumulate(u.begin(), u.end(), - double(0)) / u.size(); - double var = 0; - double skew = 0; - double kurtosis = 0; - for (int i = 0; i < u.size(); ++i) - { - double dbl = (u[i] - mean); - double d2 = sqr(dbl); - var += d2; - skew += dbl * d2; - kurtosis += d2 * d2; - } - var /= u.size(); - double dev = std::sqrt(var); - skew /= u.size() * dev * var; - kurtosis /= u.size() * var * var; - kurtosis -= 3; - double x_mean = d.k() * (1 - d.p()) / d.p(); - double x_var = x_mean / d.p(); - double x_skew = (2 - d.p()) / std::sqrt(d.k() * (1 - d.p())); - double x_kurtosis = 6. / d.k() + sqr(d.p()) / (d.k() * (1 - d.p())); - assert(mean == x_mean); - assert(var == x_var); + double dbl = (u[i] - mean); + double d2 = sqr(dbl); + var += d2; + skew += dbl * d2; + kurtosis += d2 * d2; } + var /= u.size(); + double dev = std::sqrt(var); + skew /= u.size() * dev * var; + kurtosis /= u.size() * var * var; + kurtosis -= 3; + double x_mean = d.k() * (1 - d.p()) / d.p(); + double x_var = x_mean / d.p(); + double x_skew = (2 - d.p()) / std::sqrt(d.k() * (1 - d.p())); + double x_kurtosis = 6. / d.k() + sqr(d.p()) / (d.k() * (1 - d.p())); + assert(std::abs((mean - x_mean) / x_mean) < 0.01); + assert(std::abs((var - x_var) / x_var) < 0.01); + assert(std::abs((skew - x_skew) / x_skew) < 0.04); + assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.05); +} + +void +test6() +{ + typedef std::negative_binomial_distribution<> D; + typedef std::mt19937 G; + G g; + D d(1, 0.05); + const int N = 1000000; + std::vector<D::result_type> u; + for (int i = 0; i < N; ++i) { - typedef std::negative_binomial_distribution<> D; - typedef std::mt19937 G; - G g; - D d(400, 0.5); - const int N = 1000000; - std::vector<D::result_type> u; - for (int i = 0; i < N; ++i) - { - D::result_type v = d(g); - assert(d.min() <= v && v <= d.max()); - u.push_back(v); - } - double mean = std::accumulate(u.begin(), u.end(), - double(0)) / u.size(); - double var = 0; - double skew = 0; - double kurtosis = 0; - for (int i = 0; i < u.size(); ++i) - { - double dbl = (u[i] - mean); - double d2 = sqr(dbl); - var += d2; - skew += dbl * d2; - kurtosis += d2 * d2; - } - var /= u.size(); - double dev = std::sqrt(var); - skew /= u.size() * dev * var; - kurtosis /= u.size() * var * var; - kurtosis -= 3; - double x_mean = d.k() * (1 - d.p()) / d.p(); - double x_var = x_mean / d.p(); - double x_skew = (2 - d.p()) / std::sqrt(d.k() * (1 - d.p())); - double x_kurtosis = 6. / d.k() + sqr(d.p()) / (d.k() * (1 - d.p())); - assert(std::abs((mean - x_mean) / x_mean) < 0.01); - assert(std::abs((var - x_var) / x_var) < 0.01); - assert(std::abs((skew - x_skew) / x_skew) < 0.04); - assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.05); + D::result_type v = d(g); + assert(d.min() <= v && v <= d.max()); + u.push_back(v); } + double mean = std::accumulate(u.begin(), u.end(), + double(0)) / u.size(); + double var = 0; + double skew = 0; + double kurtosis = 0; + for (int i = 0; i < u.size(); ++i) { - typedef std::negative_binomial_distribution<> D; - typedef std::mt19937 G; - G g; - D d(1, 0.05); - const int N = 1000000; - std::vector<D::result_type> u; - for (int i = 0; i < N; ++i) - { - D::result_type v = d(g); - assert(d.min() <= v && v <= d.max()); - u.push_back(v); - } - double mean = std::accumulate(u.begin(), u.end(), - double(0)) / u.size(); - double var = 0; - double skew = 0; - double kurtosis = 0; - for (int i = 0; i < u.size(); ++i) - { - double dbl = (u[i] - mean); - double d2 = sqr(dbl); - var += d2; - skew += dbl * d2; - kurtosis += d2 * d2; - } - var /= u.size(); - double dev = std::sqrt(var); - skew /= u.size() * dev * var; - kurtosis /= u.size() * var * var; - kurtosis -= 3; - double x_mean = d.k() * (1 - d.p()) / d.p(); - double x_var = x_mean / d.p(); - double x_skew = (2 - d.p()) / std::sqrt(d.k() * (1 - d.p())); - double x_kurtosis = 6. / d.k() + sqr(d.p()) / (d.k() * (1 - d.p())); - assert(std::abs((mean - x_mean) / x_mean) < 0.01); - assert(std::abs((var - x_var) / x_var) < 0.01); - assert(std::abs((skew - x_skew) / x_skew) < 0.01); - assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.03); + double dbl = (u[i] - mean); + double d2 = sqr(dbl); + var += d2; + skew += dbl * d2; + kurtosis += d2 * d2; } + var /= u.size(); + double dev = std::sqrt(var); + skew /= u.size() * dev * var; + kurtosis /= u.size() * var * var; + kurtosis -= 3; + double x_mean = d.k() * (1 - d.p()) / d.p(); + double x_var = x_mean / d.p(); + double x_skew = (2 - d.p()) / std::sqrt(d.k() * (1 - d.p())); + double x_kurtosis = 6. / d.k() + sqr(d.p()) / (d.k() * (1 - d.p())); + assert(std::abs((mean - x_mean) / x_mean) < 0.01); + assert(std::abs((var - x_var) / x_var) < 0.01); + assert(std::abs((skew - x_skew) / x_skew) < 0.01); + assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.03); +} + +int main() +{ + test1(); + test2(); + test3(); + test4(); + test5(); + test6(); } |