diff options
Diffstat (limited to 'libcxx/test/std/numerics/rand/rand.dis/rand.dist.bern/rand.dist.bern.bin/eval.pass.cpp')
-rw-r--r-- | libcxx/test/std/numerics/rand/rand.dis/rand.dist.bern/rand.dist.bern.bin/eval.pass.cpp | 880 |
1 files changed, 462 insertions, 418 deletions
diff --git a/libcxx/test/std/numerics/rand/rand.dis/rand.dist.bern/rand.dist.bern.bin/eval.pass.cpp b/libcxx/test/std/numerics/rand/rand.dis/rand.dist.bern/rand.dist.bern.bin/eval.pass.cpp index 423b69eb6e1..88004ba4a74 100644 --- a/libcxx/test/std/numerics/rand/rand.dis/rand.dist.bern/rand.dist.bern.bin/eval.pass.cpp +++ b/libcxx/test/std/numerics/rand/rand.dis/rand.dist.bern/rand.dist.bern.bin/eval.pass.cpp @@ -29,447 +29,491 @@ sqr(T x) return x * x; } -int main() +void +test1() { + typedef std::binomial_distribution<> D; + typedef std::mt19937_64 G; + G g; + D d(5, .75); + const int N = 1000000; + std::vector<D::result_type> u; + for (int i = 0; i < N; ++i) { - typedef std::binomial_distribution<> D; - typedef std::mt19937_64 G; - G g; - D d(5, .75); - const int N = 1000000; - std::vector<D::result_type> u; - for (int i = 0; i < N; ++i) - { - D::result_type v = d(g); - assert(d.min() <= v && v <= d.max()); - u.push_back(v); - } - double mean = std::accumulate(u.begin(), u.end(), - double(0)) / u.size(); - double var = 0; - double skew = 0; - double kurtosis = 0; - for (int i = 0; i < u.size(); ++i) - { - double dbl = (u[i] - mean); - double d2 = sqr(dbl); - var += d2; - skew += dbl * d2; - kurtosis += d2 * d2; - } - var /= u.size(); - double dev = std::sqrt(var); - skew /= u.size() * dev * var; - kurtosis /= u.size() * var * var; - kurtosis -= 3; - double x_mean = d.t() * d.p(); - double x_var = x_mean*(1-d.p()); - double x_skew = (1-2*d.p()) / std::sqrt(x_var); - double x_kurtosis = (1-6*d.p()*(1-d.p())) / x_var; - assert(std::abs((mean - x_mean) / x_mean) < 0.01); - assert(std::abs((var - x_var) / x_var) < 0.01); - assert(std::abs((skew - x_skew) / x_skew) < 0.01); - assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.04); + D::result_type v = d(g); + assert(d.min() <= v && v <= d.max()); + u.push_back(v); } + double mean = std::accumulate(u.begin(), u.end(), + double(0)) / u.size(); + double var = 0; + double skew = 0; + double kurtosis = 0; + for (int i = 0; i < u.size(); ++i) { - typedef std::binomial_distribution<> D; - typedef std::mt19937 G; - G g; - D d(30, .03125); - const int N = 100000; - std::vector<D::result_type> u; - for (int i = 0; i < N; ++i) - { - D::result_type v = d(g); - assert(d.min() <= v && v <= d.max()); - u.push_back(v); - } - double mean = std::accumulate(u.begin(), u.end(), - double(0)) / u.size(); - double var = 0; - double skew = 0; - double kurtosis = 0; - for (int i = 0; i < u.size(); ++i) - { - double dbl = (u[i] - mean); - double d2 = sqr(dbl); - var += d2; - skew += dbl * d2; - kurtosis += d2 * d2; - } - var /= u.size(); - double dev = std::sqrt(var); - skew /= u.size() * dev * var; - kurtosis /= u.size() * var * var; - kurtosis -= 3; - double x_mean = d.t() * d.p(); - double x_var = x_mean*(1-d.p()); - double x_skew = (1-2*d.p()) / std::sqrt(x_var); - double x_kurtosis = (1-6*d.p()*(1-d.p())) / x_var; - assert(std::abs((mean - x_mean) / x_mean) < 0.01); - assert(std::abs((var - x_var) / x_var) < 0.01); - assert(std::abs((skew - x_skew) / x_skew) < 0.01); - assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.01); + double dbl = (u[i] - mean); + double d2 = sqr(dbl); + var += d2; + skew += dbl * d2; + kurtosis += d2 * d2; } + var /= u.size(); + double dev = std::sqrt(var); + skew /= u.size() * dev * var; + kurtosis /= u.size() * var * var; + kurtosis -= 3; + double x_mean = d.t() * d.p(); + double x_var = x_mean*(1-d.p()); + double x_skew = (1-2*d.p()) / std::sqrt(x_var); + double x_kurtosis = (1-6*d.p()*(1-d.p())) / x_var; + assert(std::abs((mean - x_mean) / x_mean) < 0.01); + assert(std::abs((var - x_var) / x_var) < 0.01); + assert(std::abs((skew - x_skew) / x_skew) < 0.01); + assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.04); +} + +void +test2() +{ + typedef std::binomial_distribution<> D; + typedef std::mt19937 G; + G g; + D d(30, .03125); + const int N = 100000; + std::vector<D::result_type> u; + for (int i = 0; i < N; ++i) { - typedef std::binomial_distribution<> D; - typedef std::mt19937 G; - G g; - D d(40, .25); - const int N = 100000; - std::vector<D::result_type> u; - for (int i = 0; i < N; ++i) - { - D::result_type v = d(g); - assert(d.min() <= v && v <= d.max()); - u.push_back(v); - } - double mean = std::accumulate(u.begin(), u.end(), - double(0)) / u.size(); - double var = 0; - double skew = 0; - double kurtosis = 0; - for (int i = 0; i < u.size(); ++i) - { - double dbl = (u[i] - mean); - double d2 = sqr(dbl); - var += d2; - skew += dbl * d2; - kurtosis += d2 * d2; - } - var /= u.size(); - double dev = std::sqrt(var); - skew /= u.size() * dev * var; - kurtosis /= u.size() * var * var; - kurtosis -= 3; - double x_mean = d.t() * d.p(); - double x_var = x_mean*(1-d.p()); - double x_skew = (1-2*d.p()) / std::sqrt(x_var); - double x_kurtosis = (1-6*d.p()*(1-d.p())) / x_var; - assert(std::abs((mean - x_mean) / x_mean) < 0.01); - assert(std::abs((var - x_var) / x_var) < 0.01); - assert(std::abs((skew - x_skew) / x_skew) < 0.03); - assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.3); + D::result_type v = d(g); + assert(d.min() <= v && v <= d.max()); + u.push_back(v); } + double mean = std::accumulate(u.begin(), u.end(), + double(0)) / u.size(); + double var = 0; + double skew = 0; + double kurtosis = 0; + for (int i = 0; i < u.size(); ++i) { - typedef std::binomial_distribution<> D; - typedef std::mt19937 G; - G g; - D d(40, 0); - const int N = 100000; - std::vector<D::result_type> u; - for (int i = 0; i < N; ++i) - { - D::result_type v = d(g); - assert(d.min() <= v && v <= d.max()); - u.push_back(v); - } - double mean = std::accumulate(u.begin(), u.end(), - double(0)) / u.size(); - double var = 0; - double skew = 0; - double kurtosis = 0; - for (int i = 0; i < u.size(); ++i) - { - double dbl = (u[i] - mean); - double d2 = sqr(dbl); - var += d2; - skew += dbl * d2; - kurtosis += d2 * d2; - } - var /= u.size(); - double dev = std::sqrt(var); - // In this case: - // skew computes to 0./0. == nan - // kurtosis computes to 0./0. == nan - // x_skew == inf - // x_kurtosis == inf - // These tests are commented out because UBSan warns about division by 0 -// skew /= u.size() * dev * var; -// kurtosis /= u.size() * var * var; -// kurtosis -= 3; - double x_mean = d.t() * d.p(); - double x_var = x_mean*(1-d.p()); -// double x_skew = (1-2*d.p()) / std::sqrt(x_var); -// double x_kurtosis = (1-6*d.p()*(1-d.p())) / x_var; - assert(mean == x_mean); - assert(var == x_var); -// assert(skew == x_skew); -// assert(kurtosis == x_kurtosis); + double dbl = (u[i] - mean); + double d2 = sqr(dbl); + var += d2; + skew += dbl * d2; + kurtosis += d2 * d2; } + var /= u.size(); + double dev = std::sqrt(var); + skew /= u.size() * dev * var; + kurtosis /= u.size() * var * var; + kurtosis -= 3; + double x_mean = d.t() * d.p(); + double x_var = x_mean*(1-d.p()); + double x_skew = (1-2*d.p()) / std::sqrt(x_var); + double x_kurtosis = (1-6*d.p()*(1-d.p())) / x_var; + assert(std::abs((mean - x_mean) / x_mean) < 0.01); + assert(std::abs((var - x_var) / x_var) < 0.01); + assert(std::abs((skew - x_skew) / x_skew) < 0.01); + assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.01); +} + +void +test3() +{ + typedef std::binomial_distribution<> D; + typedef std::mt19937 G; + G g; + D d(40, .25); + const int N = 100000; + std::vector<D::result_type> u; + for (int i = 0; i < N; ++i) { - typedef std::binomial_distribution<> D; - typedef std::mt19937 G; - G g; - D d(40, 1); - const int N = 100000; - std::vector<D::result_type> u; - for (int i = 0; i < N; ++i) - { - D::result_type v = d(g); - assert(d.min() <= v && v <= d.max()); - u.push_back(v); - } - double mean = std::accumulate(u.begin(), u.end(), - double(0)) / u.size(); - double var = 0; - double skew = 0; - double kurtosis = 0; - for (int i = 0; i < u.size(); ++i) - { - double dbl = (u[i] - mean); - double d2 = sqr(dbl); - var += d2; - skew += dbl * d2; - kurtosis += d2 * d2; - } - var /= u.size(); - double dev = std::sqrt(var); - // In this case: - // skew computes to 0./0. == nan - // kurtosis computes to 0./0. == nan - // x_skew == -inf - // x_kurtosis == inf - // These tests are commented out because UBSan warns about division by 0 -// skew /= u.size() * dev * var; -// kurtosis /= u.size() * var * var; -// kurtosis -= 3; - double x_mean = d.t() * d.p(); - double x_var = x_mean*(1-d.p()); -// double x_skew = (1-2*d.p()) / std::sqrt(x_var); -// double x_kurtosis = (1-6*d.p()*(1-d.p())) / x_var; - assert(mean == x_mean); - assert(var == x_var); -// assert(skew == x_skew); -// assert(kurtosis == x_kurtosis); + D::result_type v = d(g); + assert(d.min() <= v && v <= d.max()); + u.push_back(v); } + double mean = std::accumulate(u.begin(), u.end(), + double(0)) / u.size(); + double var = 0; + double skew = 0; + double kurtosis = 0; + for (int i = 0; i < u.size(); ++i) { - typedef std::binomial_distribution<> D; - typedef std::mt19937 G; - G g; - D d(400, 0.5); - const int N = 100000; - std::vector<D::result_type> u; - for (int i = 0; i < N; ++i) - { - D::result_type v = d(g); - assert(d.min() <= v && v <= d.max()); - u.push_back(v); - } - double mean = std::accumulate(u.begin(), u.end(), - double(0)) / u.size(); - double var = 0; - double skew = 0; - double kurtosis = 0; - for (int i = 0; i < u.size(); ++i) - { - double dbl = (u[i] - mean); - double d2 = sqr(dbl); - var += d2; - skew += dbl * d2; - kurtosis += d2 * d2; - } - var /= u.size(); - double dev = std::sqrt(var); - skew /= u.size() * dev * var; - kurtosis /= u.size() * var * var; - kurtosis -= 3; - double x_mean = d.t() * d.p(); - double x_var = x_mean*(1-d.p()); - double x_skew = (1-2*d.p()) / std::sqrt(x_var); - double x_kurtosis = (1-6*d.p()*(1-d.p())) / x_var; - assert(std::abs((mean - x_mean) / x_mean) < 0.01); - assert(std::abs((var - x_var) / x_var) < 0.01); - assert(std::abs(skew - x_skew) < 0.01); - assert(std::abs(kurtosis - x_kurtosis) < 0.01); + double dbl = (u[i] - mean); + double d2 = sqr(dbl); + var += d2; + skew += dbl * d2; + kurtosis += d2 * d2; } + var /= u.size(); + double dev = std::sqrt(var); + skew /= u.size() * dev * var; + kurtosis /= u.size() * var * var; + kurtosis -= 3; + double x_mean = d.t() * d.p(); + double x_var = x_mean*(1-d.p()); + double x_skew = (1-2*d.p()) / std::sqrt(x_var); + double x_kurtosis = (1-6*d.p()*(1-d.p())) / x_var; + assert(std::abs((mean - x_mean) / x_mean) < 0.01); + assert(std::abs((var - x_var) / x_var) < 0.01); + assert(std::abs((skew - x_skew) / x_skew) < 0.03); + assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.3); +} + +void +test4() +{ + typedef std::binomial_distribution<> D; + typedef std::mt19937 G; + G g; + D d(40, 0); + const int N = 100000; + std::vector<D::result_type> u; + for (int i = 0; i < N; ++i) { - typedef std::binomial_distribution<> D; - typedef std::mt19937 G; - G g; - D d(1, 0.5); - const int N = 100000; - std::vector<D::result_type> u; - for (int i = 0; i < N; ++i) - { - D::result_type v = d(g); - assert(d.min() <= v && v <= d.max()); - u.push_back(v); - } - double mean = std::accumulate(u.begin(), u.end(), - double(0)) / u.size(); - double var = 0; - double skew = 0; - double kurtosis = 0; - for (int i = 0; i < u.size(); ++i) - { - double dbl = (u[i] - mean); - double d2 = sqr(dbl); - var += d2; - skew += dbl * d2; - kurtosis += d2 * d2; - } - var /= u.size(); - double dev = std::sqrt(var); - skew /= u.size() * dev * var; - kurtosis /= u.size() * var * var; - kurtosis -= 3; - double x_mean = d.t() * d.p(); - double x_var = x_mean*(1-d.p()); - double x_skew = (1-2*d.p()) / std::sqrt(x_var); - double x_kurtosis = (1-6*d.p()*(1-d.p())) / x_var; - assert(std::abs((mean - x_mean) / x_mean) < 0.01); - assert(std::abs((var - x_var) / x_var) < 0.01); - assert(std::abs(skew - x_skew) < 0.01); - assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.01); + D::result_type v = d(g); + assert(d.min() <= v && v <= d.max()); + u.push_back(v); } + double mean = std::accumulate(u.begin(), u.end(), + double(0)) / u.size(); + double var = 0; + double skew = 0; + double kurtosis = 0; + for (int i = 0; i < u.size(); ++i) { - const int N = 100000; - std::mt19937 gen1; - std::mt19937 gen2; + double dbl = (u[i] - mean); + double d2 = sqr(dbl); + var += d2; + skew += dbl * d2; + kurtosis += d2 * d2; + } + var /= u.size(); + double dev = std::sqrt(var); + // In this case: + // skew computes to 0./0. == nan + // kurtosis computes to 0./0. == nan + // x_skew == inf + // x_kurtosis == inf + // These tests are commented out because UBSan warns about division by 0 +// skew /= u.size() * dev * var; +// kurtosis /= u.size() * var * var; +// kurtosis -= 3; + double x_mean = d.t() * d.p(); + double x_var = x_mean*(1-d.p()); +// double x_skew = (1-2*d.p()) / std::sqrt(x_var); +// double x_kurtosis = (1-6*d.p()*(1-d.p())) / x_var; + assert(mean == x_mean); + assert(var == x_var); +// assert(skew == x_skew); +// assert(kurtosis == x_kurtosis); +} - std::binomial_distribution<> dist1(5, 0.1); - std::binomial_distribution<unsigned> dist2(5, 0.1); +void +test5() +{ + typedef std::binomial_distribution<> D; + typedef std::mt19937 G; + G g; + D d(40, 1); + const int N = 100000; + std::vector<D::result_type> u; + for (int i = 0; i < N; ++i) + { + D::result_type v = d(g); + assert(d.min() <= v && v <= d.max()); + u.push_back(v); + } + double mean = std::accumulate(u.begin(), u.end(), + double(0)) / u.size(); + double var = 0; + double skew = 0; + double kurtosis = 0; + for (int i = 0; i < u.size(); ++i) + { + double dbl = (u[i] - mean); + double d2 = sqr(dbl); + var += d2; + skew += dbl * d2; + kurtosis += d2 * d2; + } + var /= u.size(); + double dev = std::sqrt(var); + // In this case: + // skew computes to 0./0. == nan + // kurtosis computes to 0./0. == nan + // x_skew == -inf + // x_kurtosis == inf + // These tests are commented out because UBSan warns about division by 0 +// skew /= u.size() * dev * var; +// kurtosis /= u.size() * var * var; +// kurtosis -= 3; + double x_mean = d.t() * d.p(); + double x_var = x_mean*(1-d.p()); +// double x_skew = (1-2*d.p()) / std::sqrt(x_var); +// double x_kurtosis = (1-6*d.p()*(1-d.p())) / x_var; + assert(mean == x_mean); + assert(var == x_var); +// assert(skew == x_skew); +// assert(kurtosis == x_kurtosis); +} - for(int i = 0; i < N; ++i) - assert(dist1(gen1) == dist2(gen2)); +void +test6() +{ + typedef std::binomial_distribution<> D; + typedef std::mt19937 G; + G g; + D d(400, 0.5); + const int N = 100000; + std::vector<D::result_type> u; + for (int i = 0; i < N; ++i) + { + D::result_type v = d(g); + assert(d.min() <= v && v <= d.max()); + u.push_back(v); } + double mean = std::accumulate(u.begin(), u.end(), + double(0)) / u.size(); + double var = 0; + double skew = 0; + double kurtosis = 0; + for (int i = 0; i < u.size(); ++i) { - typedef std::binomial_distribution<> D; - typedef std::mt19937 G; - G g; - D d(0, 0.005); - const int N = 100000; - std::vector<D::result_type> u; - for (int i = 0; i < N; ++i) - { - D::result_type v = d(g); - assert(d.min() <= v && v <= d.max()); - u.push_back(v); - } - double mean = std::accumulate(u.begin(), u.end(), - double(0)) / u.size(); - double var = 0; - double skew = 0; - double kurtosis = 0; - for (int i = 0; i < u.size(); ++i) - { - double dbl = (u[i] - mean); - double d2 = sqr(dbl); - var += d2; - skew += dbl * d2; - kurtosis += d2 * d2; - } - var /= u.size(); - double dev = std::sqrt(var); - // In this case: - // skew computes to 0./0. == nan - // kurtosis computes to 0./0. == nan - // x_skew == inf - // x_kurtosis == inf - // These tests are commented out because UBSan warns about division by 0 -// skew /= u.size() * dev * var; -// kurtosis /= u.size() * var * var; -// kurtosis -= 3; - double x_mean = d.t() * d.p(); - double x_var = x_mean*(1-d.p()); -// double x_skew = (1-2*d.p()) / std::sqrt(x_var); -// double x_kurtosis = (1-6*d.p()*(1-d.p())) / x_var; - assert(mean == x_mean); - assert(var == x_var); -// assert(skew == x_skew); -// assert(kurtosis == x_kurtosis); + double dbl = (u[i] - mean); + double d2 = sqr(dbl); + var += d2; + skew += dbl * d2; + kurtosis += d2 * d2; } + var /= u.size(); + double dev = std::sqrt(var); + skew /= u.size() * dev * var; + kurtosis /= u.size() * var * var; + kurtosis -= 3; + double x_mean = d.t() * d.p(); + double x_var = x_mean*(1-d.p()); + double x_skew = (1-2*d.p()) / std::sqrt(x_var); + double x_kurtosis = (1-6*d.p()*(1-d.p())) / x_var; + assert(std::abs((mean - x_mean) / x_mean) < 0.01); + assert(std::abs((var - x_var) / x_var) < 0.01); + assert(std::abs(skew - x_skew) < 0.01); + assert(std::abs(kurtosis - x_kurtosis) < 0.01); +} + +void +test7() +{ + typedef std::binomial_distribution<> D; + typedef std::mt19937 G; + G g; + D d(1, 0.5); + const int N = 100000; + std::vector<D::result_type> u; + for (int i = 0; i < N; ++i) { - typedef std::binomial_distribution<> D; - typedef std::mt19937 G; - G g; - D d(0, 0); - const int N = 100000; - std::vector<D::result_type> u; - for (int i = 0; i < N; ++i) - { - D::result_type v = d(g); - assert(d.min() <= v && v <= d.max()); - u.push_back(v); - } - double mean = std::accumulate(u.begin(), u.end(), - double(0)) / u.size(); - double var = 0; - double skew = 0; - double kurtosis = 0; - for (int i = 0; i < u.size(); ++i) - { - double dbl = (u[i] - mean); - double d2 = sqr(dbl); - var += d2; - skew += dbl * d2; - kurtosis += d2 * d2; - } - var /= u.size(); - double dev = std::sqrt(var); - // In this case: - // skew computes to 0./0. == nan - // kurtosis computes to 0./0. == nan - // x_skew == inf - // x_kurtosis == inf - // These tests are commented out because UBSan warns about division by 0 -// skew /= u.size() * dev * var; -// kurtosis /= u.size() * var * var; -// kurtosis -= 3; - double x_mean = d.t() * d.p(); - double x_var = x_mean*(1-d.p()); -// double x_skew = (1-2*d.p()) / std::sqrt(x_var); -// double x_kurtosis = (1-6*d.p()*(1-d.p())) / x_var; - assert(mean == x_mean); - assert(var == x_var); -// assert(skew == x_skew); -// assert(kurtosis == x_kurtosis); + D::result_type v = d(g); + assert(d.min() <= v && v <= d.max()); + u.push_back(v); } + double mean = std::accumulate(u.begin(), u.end(), + double(0)) / u.size(); + double var = 0; + double skew = 0; + double kurtosis = 0; + for (int i = 0; i < u.size(); ++i) { - typedef std::binomial_distribution<> D; - typedef std::mt19937 G; - G g; - D d(0, 1); - const int N = 100000; - std::vector<D::result_type> u; - for (int i = 0; i < N; ++i) - { - D::result_type v = d(g); - assert(d.min() <= v && v <= d.max()); - u.push_back(v); - } - double mean = std::accumulate(u.begin(), u.end(), - double(0)) / u.size(); - double var = 0; - double skew = 0; - double kurtosis = 0; - for (int i = 0; i < u.size(); ++i) - { - double dbl = (u[i] - mean); - double d2 = sqr(dbl); - var += d2; - skew += dbl * d2; - kurtosis += d2 * d2; - } - var /= u.size(); - double dev = std::sqrt(var); - // In this case: - // skew computes to 0./0. == nan - // kurtosis computes to 0./0. == nan - // x_skew == -inf - // x_kurtosis == inf - // These tests are commented out because UBSan warns about division by 0 -// skew /= u.size() * dev * var; -// kurtosis /= u.size() * var * var; -// kurtosis -= 3; - double x_mean = d.t() * d.p(); - double x_var = x_mean*(1-d.p()); -// double x_skew = (1-2*d.p()) / std::sqrt(x_var); -// double x_kurtosis = (1-6*d.p()*(1-d.p())) / x_var; - assert(mean == x_mean); - assert(var == x_var); -// assert(skew == x_skew); -// assert(kurtosis == x_kurtosis); + double dbl = (u[i] - mean); + double d2 = sqr(dbl); + var += d2; + skew += dbl * d2; + kurtosis += d2 * d2; } + var /= u.size(); + double dev = std::sqrt(var); + skew /= u.size() * dev * var; + kurtosis /= u.size() * var * var; + kurtosis -= 3; + double x_mean = d.t() * d.p(); + double x_var = x_mean*(1-d.p()); + double x_skew = (1-2*d.p()) / std::sqrt(x_var); + double x_kurtosis = (1-6*d.p()*(1-d.p())) / x_var; + assert(std::abs((mean - x_mean) / x_mean) < 0.01); + assert(std::abs((var - x_var) / x_var) < 0.01); + assert(std::abs(skew - x_skew) < 0.01); + assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.01); +} + +void +test8() +{ + const int N = 100000; + std::mt19937 gen1; + std::mt19937 gen2; + + std::binomial_distribution<> dist1(5, 0.1); + std::binomial_distribution<unsigned> dist2(5, 0.1); + + for(int i = 0; i < N; ++i) + assert(dist1(gen1) == dist2(gen2)); +} + +void +test9() +{ + typedef std::binomial_distribution<> D; + typedef std::mt19937 G; + G g; + D d(0, 0.005); + const int N = 100000; + std::vector<D::result_type> u; + for (int i = 0; i < N; ++i) + { + D::result_type v = d(g); + assert(d.min() <= v && v <= d.max()); + u.push_back(v); + } + double mean = std::accumulate(u.begin(), u.end(), + double(0)) / u.size(); + double var = 0; + double skew = 0; + double kurtosis = 0; + for (int i = 0; i < u.size(); ++i) + { + double dbl = (u[i] - mean); + double d2 = sqr(dbl); + var += d2; + skew += dbl * d2; + kurtosis += d2 * d2; + } + var /= u.size(); + double dev = std::sqrt(var); + // In this case: + // skew computes to 0./0. == nan + // kurtosis computes to 0./0. == nan + // x_skew == inf + // x_kurtosis == inf + // These tests are commented out because UBSan warns about division by 0 +// skew /= u.size() * dev * var; +// kurtosis /= u.size() * var * var; +// kurtosis -= 3; + double x_mean = d.t() * d.p(); + double x_var = x_mean*(1-d.p()); +// double x_skew = (1-2*d.p()) / std::sqrt(x_var); +// double x_kurtosis = (1-6*d.p()*(1-d.p())) / x_var; + assert(mean == x_mean); + assert(var == x_var); +// assert(skew == x_skew); +// assert(kurtosis == x_kurtosis); +} + +void +test10() +{ + typedef std::binomial_distribution<> D; + typedef std::mt19937 G; + G g; + D d(0, 0); + const int N = 100000; + std::vector<D::result_type> u; + for (int i = 0; i < N; ++i) + { + D::result_type v = d(g); + assert(d.min() <= v && v <= d.max()); + u.push_back(v); + } + double mean = std::accumulate(u.begin(), u.end(), + double(0)) / u.size(); + double var = 0; + double skew = 0; + double kurtosis = 0; + for (int i = 0; i < u.size(); ++i) + { + double dbl = (u[i] - mean); + double d2 = sqr(dbl); + var += d2; + skew += dbl * d2; + kurtosis += d2 * d2; + } + var /= u.size(); + double dev = std::sqrt(var); + // In this case: + // skew computes to 0./0. == nan + // kurtosis computes to 0./0. == nan + // x_skew == inf + // x_kurtosis == inf + // These tests are commented out because UBSan warns about division by 0 +// skew /= u.size() * dev * var; +// kurtosis /= u.size() * var * var; +// kurtosis -= 3; + double x_mean = d.t() * d.p(); + double x_var = x_mean*(1-d.p()); +// double x_skew = (1-2*d.p()) / std::sqrt(x_var); +// double x_kurtosis = (1-6*d.p()*(1-d.p())) / x_var; + assert(mean == x_mean); + assert(var == x_var); +// assert(skew == x_skew); +// assert(kurtosis == x_kurtosis); +} + +void +test11() +{ + typedef std::binomial_distribution<> D; + typedef std::mt19937 G; + G g; + D d(0, 1); + const int N = 100000; + std::vector<D::result_type> u; + for (int i = 0; i < N; ++i) + { + D::result_type v = d(g); + assert(d.min() <= v && v <= d.max()); + u.push_back(v); + } + double mean = std::accumulate(u.begin(), u.end(), + double(0)) / u.size(); + double var = 0; + double skew = 0; + double kurtosis = 0; + for (int i = 0; i < u.size(); ++i) + { + double dbl = (u[i] - mean); + double d2 = sqr(dbl); + var += d2; + skew += dbl * d2; + kurtosis += d2 * d2; + } + var /= u.size(); + double dev = std::sqrt(var); + // In this case: + // skew computes to 0./0. == nan + // kurtosis computes to 0./0. == nan + // x_skew == -inf + // x_kurtosis == inf + // These tests are commented out because UBSan warns about division by 0 +// skew /= u.size() * dev * var; +// kurtosis /= u.size() * var * var; +// kurtosis -= 3; + double x_mean = d.t() * d.p(); + double x_var = x_mean*(1-d.p()); +// double x_skew = (1-2*d.p()) / std::sqrt(x_var); +// double x_kurtosis = (1-6*d.p()*(1-d.p())) / x_var; + assert(mean == x_mean); + assert(var == x_var); +// assert(skew == x_skew); +// assert(kurtosis == x_kurtosis); +} + +int main() +{ + test1(); + test2(); + test3(); + test4(); + test5(); + test6(); + test7(); + test8(); + test9(); + test10(); + test11(); } |