summaryrefslogtreecommitdiffstats
path: root/compiler-rt/lib/arm/comparesf2.S
diff options
context:
space:
mode:
Diffstat (limited to 'compiler-rt/lib/arm/comparesf2.S')
-rw-r--r--compiler-rt/lib/arm/comparesf2.S148
1 files changed, 0 insertions, 148 deletions
diff --git a/compiler-rt/lib/arm/comparesf2.S b/compiler-rt/lib/arm/comparesf2.S
deleted file mode 100644
index ad1b10a7fd3..00000000000
--- a/compiler-rt/lib/arm/comparesf2.S
+++ /dev/null
@@ -1,148 +0,0 @@
-//===-- comparesf2.S - Implement single-precision soft-float comparisons --===//
-//
-// The LLVM Compiler Infrastructure
-//
-// This file is dual licensed under the MIT and the University of Illinois Open
-// Source Licenses. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-//
-// This file implements the following soft-fp_t comparison routines:
-//
-// __eqsf2 __gesf2 __unordsf2
-// __lesf2 __gtsf2
-// __ltsf2
-// __nesf2
-//
-// The semantics of the routines grouped in each column are identical, so there
-// is a single implementation for each, with multiple names.
-//
-// The routines behave as follows:
-//
-// __lesf2(a,b) returns -1 if a < b
-// 0 if a == b
-// 1 if a > b
-// 1 if either a or b is NaN
-//
-// __gesf2(a,b) returns -1 if a < b
-// 0 if a == b
-// 1 if a > b
-// -1 if either a or b is NaN
-//
-// __unordsf2(a,b) returns 0 if both a and b are numbers
-// 1 if either a or b is NaN
-//
-// Note that __lesf2( ) and __gesf2( ) are identical except in their handling of
-// NaN values.
-//
-//===----------------------------------------------------------------------===//
-
-#include "../assembly.h"
-.syntax unified
-
-.align 2
-DEFINE_COMPILERRT_FUNCTION(__eqsf2)
- // Make copies of a and b with the sign bit shifted off the top. These will
- // be used to detect zeros and NaNs.
- mov r2, r0, lsl #1
- mov r3, r1, lsl #1
-
- // We do the comparison in three stages (ignoring NaN values for the time
- // being). First, we orr the absolute values of a and b; this sets the Z
- // flag if both a and b are zero (of either sign). The shift of r3 doesn't
- // effect this at all, but it *does* make sure that the C flag is clear for
- // the subsequent operations.
- orrs r12, r2, r3, lsr #1
-
- // Next, we check if a and b have the same or different signs. If they have
- // opposite signs, this eor will set the N flag.
- it ne
- eorsne r12, r0, r1
-
- // If a and b are equal (either both zeros or bit identical; again, we're
- // ignoring NaNs for now), this subtract will zero out r0. If they have the
- // same sign, the flags are updated as they would be for a comparison of the
- // absolute values of a and b.
- it pl
- subspl r0, r2, r3
-
- // If a is smaller in magnitude than b and both have the same sign, place
- // the negation of the sign of b in r0. Thus, if both are negative and
- // a > b, this sets r0 to 0; if both are positive and a < b, this sets
- // r0 to -1.
- //
- // This is also done if a and b have opposite signs and are not both zero,
- // because in that case the subtract was not performed and the C flag is
- // still clear from the shift argument in orrs; if a is positive and b
- // negative, this places 0 in r0; if a is negative and b positive, -1 is
- // placed in r0.
- it lo
- mvnlo r0, r1, asr #31
-
- // If a is greater in magnitude than b and both have the same sign, place
- // the sign of b in r0. Thus, if both are negative and a < b, -1 is placed
- // in r0, which is the desired result. Conversely, if both are positive
- // and a > b, zero is placed in r0.
- it hi
- movhi r0, r1, asr #31
-
- // If you've been keeping track, at this point r0 contains -1 if a < b and
- // 0 if a >= b. All that remains to be done is to set it to 1 if a > b.
- // If a == b, then the Z flag is set, so we can get the correct final value
- // into r0 by simply or'ing with 1 if Z is clear.
- it ne
- orrne r0, r0, #1
-
- // Finally, we need to deal with NaNs. If either argument is NaN, replace
- // the value in r0 with 1.
- cmp r2, #0xff000000
- ite ls
- cmpls r3, #0xff000000
- movhi r0, #1
- JMP(lr)
-END_COMPILERRT_FUNCTION(__eqsf2)
-DEFINE_COMPILERRT_FUNCTION_ALIAS(__lesf2, __eqsf2)
-DEFINE_COMPILERRT_FUNCTION_ALIAS(__ltsf2, __eqsf2)
-DEFINE_COMPILERRT_FUNCTION_ALIAS(__nesf2, __eqsf2)
-
-.align 2
-DEFINE_COMPILERRT_FUNCTION(__gtsf2)
- // Identical to the preceeding except in that we return -1 for NaN values.
- // Given that the two paths share so much code, one might be tempted to
- // unify them; however, the extra code needed to do so makes the code size
- // to performance tradeoff very hard to justify for such small functions.
- mov r2, r0, lsl #1
- mov r3, r1, lsl #1
- orrs r12, r2, r3, lsr #1
- it ne
- eorsne r12, r0, r1
- it pl
- subspl r0, r2, r3
- it lo
- mvnlo r0, r1, asr #31
- it hi
- movhi r0, r1, asr #31
- it ne
- orrne r0, r0, #1
- cmp r2, #0xff000000
- ite ls
- cmpls r3, #0xff000000
- movhi r0, #-1
- JMP(lr)
-END_COMPILERRT_FUNCTION(__gtsf2)
-DEFINE_COMPILERRT_FUNCTION_ALIAS(__gesf2, __gtsf2)
-
-.align 2
-DEFINE_COMPILERRT_FUNCTION(__unordsf2)
- // Return 1 for NaN values, 0 otherwise.
- mov r2, r0, lsl #1
- mov r3, r1, lsl #1
- mov r0, #0
- cmp r2, #0xff000000
- ite ls
- cmpls r3, #0xff000000
- movhi r0, #1
- JMP(lr)
-END_COMPILERRT_FUNCTION(__unordsf2)
-
-DEFINE_AEABI_FUNCTION_ALIAS(__aeabi_fcmpun, __unordsf2)
OpenPOWER on IntegriCloud