diff options
Diffstat (limited to 'clang/utils/TableGen/MveEmitter.cpp')
-rw-r--r-- | clang/utils/TableGen/MveEmitter.cpp | 1692 |
1 files changed, 1692 insertions, 0 deletions
diff --git a/clang/utils/TableGen/MveEmitter.cpp b/clang/utils/TableGen/MveEmitter.cpp new file mode 100644 index 00000000000..6fac472a7a1 --- /dev/null +++ b/clang/utils/TableGen/MveEmitter.cpp @@ -0,0 +1,1692 @@ +//===- MveEmitter.cpp - Generate arm_mve.h for use with clang -*- C++ -*-=====// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// +// +// This set of linked tablegen backends is responsible for emitting the bits +// and pieces that implement <arm_mve.h>, which is defined by the ACLE standard +// and provides a set of types and functions for (more or less) direct access +// to the MVE instruction set, including the scalar shifts as well as the +// vector instructions. +// +// MVE's standard intrinsic functions are unusual in that they have a system of +// polymorphism. For example, the function vaddq() can behave like vaddq_u16(), +// vaddq_f32(), vaddq_s8(), etc., depending on the types of the vector +// arguments you give it. +// +// This constrains the implementation strategies. The usual approach to making +// the user-facing functions polymorphic would be to either use +// __attribute__((overloadable)) to make a set of vaddq() functions that are +// all inline wrappers on the underlying clang builtins, or to define a single +// vaddq() macro which expands to an instance of _Generic. +// +// The inline-wrappers approach would work fine for most intrinsics, except for +// the ones that take an argument required to be a compile-time constant, +// because if you wrap an inline function around a call to a builtin, the +// constant nature of the argument is not passed through. +// +// The _Generic approach can be made to work with enough effort, but it takes a +// lot of machinery, because of the design feature of _Generic that even the +// untaken branches are required to pass all front-end validity checks such as +// type-correctness. You can work around that by nesting further _Generics all +// over the place to coerce things to the right type in untaken branches, but +// what you get out is complicated, hard to guarantee its correctness, and +// worst of all, gives _completely unreadable_ error messages if the user gets +// the types wrong for an intrinsic call. +// +// Therefore, my strategy is to introduce a new __attribute__ that allows a +// function to be mapped to a clang builtin even though it doesn't have the +// same name, and then declare all the user-facing MVE function names with that +// attribute, mapping each one directly to the clang builtin. And the +// polymorphic ones have __attribute__((overloadable)) as well. So once the +// compiler has resolved the overload, it knows the internal builtin ID of the +// selected function, and can check the immediate arguments against that; and +// if the user gets the types wrong in a call to a polymorphic intrinsic, they +// get a completely clear error message showing all the declarations of that +// function in the header file and explaining why each one doesn't fit their +// call. +// +// The downside of this is that if every clang builtin has to correspond +// exactly to a user-facing ACLE intrinsic, then you can't save work in the +// frontend by doing it in the header file: CGBuiltin.cpp has to do the entire +// job of converting an ACLE intrinsic call into LLVM IR. So the Tablegen +// description for an MVE intrinsic has to contain a full description of the +// sequence of IRBuilder calls that clang will need to make. +// +//===----------------------------------------------------------------------===// + +#include "llvm/ADT/APInt.h" +#include "llvm/ADT/StringRef.h" +#include "llvm/Support/Casting.h" +#include "llvm/Support/raw_ostream.h" +#include "llvm/TableGen/Error.h" +#include "llvm/TableGen/Record.h" +#include <cassert> +#include <cstddef> +#include <cstdint> +#include <list> +#include <map> +#include <memory> +#include <set> +#include <string> +#include <vector> + +using namespace llvm; + +namespace { + +class MveEmitter; +class Result; + +// ----------------------------------------------------------------------------- +// A system of classes to represent all the types we'll need to deal with in +// the prototypes of intrinsics. +// +// Query methods include finding out the C name of a type; the "LLVM name" in +// the sense of a C++ code snippet that can be used in the codegen function; +// the suffix that represents the type in the ACLE intrinsic naming scheme +// (e.g. 's32' represents int32_t in intrinsics such as vaddq_s32); whether the +// type is floating-point related (hence should be under #ifdef in the MVE +// header so that it isn't included in integer-only MVE mode); and the type's +// size in bits. Not all subtypes support all these queries. + +class Type { +public: + enum class TypeKind { + // Void appears as a return type (for store intrinsics, which are pure + // side-effect). It's also used as the parameter type in the Tablegen + // when an intrinsic doesn't need to come in various suffixed forms like + // vfooq_s8,vfooq_u16,vfooq_f32. + Void, + + // Scalar is used for ordinary int and float types of all sizes. + Scalar, + + // Vector is used for anything that occupies exactly one MVE vector + // register, i.e. {uint,int,float}NxM_t. + Vector, + + // MultiVector is used for the {uint,int,float}NxMxK_t types used by the + // interleaving load/store intrinsics v{ld,st}{2,4}q. + MultiVector, + + // Predicate is used by all the predicated intrinsics. Its C + // representation is mve_pred16_t (which is just an alias for uint16_t). + // But we give more detail here, by indicating that a given predicate + // instruction is logically regarded as a vector of i1 containing the + // same number of lanes as the input vector type. So our Predicate type + // comes with a lane count, which we use to decide which kind of <n x i1> + // we'll invoke the pred_i2v IR intrinsic to translate it into. + Predicate, + + // Pointer is used for pointer types (obviously), and comes with a flag + // indicating whether it's a pointer to a const or mutable instance of + // the pointee type. + Pointer, + }; + +private: + const TypeKind TKind; + +protected: + Type(TypeKind K) : TKind(K) {} + +public: + TypeKind typeKind() const { return TKind; } + virtual ~Type() = default; + virtual bool requiresFloat() const = 0; + virtual unsigned sizeInBits() const = 0; + virtual std::string cName() const = 0; + virtual std::string llvmName() const { + PrintFatalError("no LLVM type name available for type " + cName()); + } + virtual std::string acleSuffix() const { + PrintFatalError("no ACLE suffix available for this type"); + } +}; + +enum class ScalarTypeKind { SignedInt, UnsignedInt, Float }; +inline std::string toLetter(ScalarTypeKind kind) { + switch (kind) { + case ScalarTypeKind::SignedInt: + return "s"; + case ScalarTypeKind::UnsignedInt: + return "u"; + case ScalarTypeKind::Float: + return "f"; + default: + llvm_unreachable("bad scalar type kind"); + } +} +inline std::string toCPrefix(ScalarTypeKind kind) { + switch (kind) { + case ScalarTypeKind::SignedInt: + return "int"; + case ScalarTypeKind::UnsignedInt: + return "uint"; + case ScalarTypeKind::Float: + return "float"; + default: + llvm_unreachable("bad scalar type kind"); + } +} + +class VoidType : public Type { +public: + VoidType() : Type(TypeKind::Void) {} + unsigned sizeInBits() const override { return 0; } + bool requiresFloat() const override { return false; } + std::string cName() const override { return "void"; } + + static bool classof(const Type *T) { return T->typeKind() == TypeKind::Void; } + std::string acleSuffix() const override { return ""; } +}; + +class PointerType : public Type { + const Type *Pointee; + bool Const; + +public: + PointerType(const Type *Pointee, bool Const) + : Type(TypeKind::Pointer), Pointee(Pointee), Const(Const) {} + unsigned sizeInBits() const override { return 32; } + bool requiresFloat() const override { return Pointee->requiresFloat(); } + std::string cName() const override { + std::string Name = Pointee->cName(); + + // The syntax for a pointer in C is different when the pointee is + // itself a pointer. The MVE intrinsics don't contain any double + // pointers, so we don't need to worry about that wrinkle. + assert(!isa<PointerType>(Pointee) && "Pointer to pointer not supported"); + + if (Const) + Name = "const " + Name; + return Name + " *"; + } + + static bool classof(const Type *T) { + return T->typeKind() == TypeKind::Pointer; + } +}; + +// Base class for all the types that have a name of the form +// [prefix][numbers]_t, like int32_t, uint16x8_t, float32x4x2_t. +// +// For this sub-hierarchy we invent a cNameBase() method which returns the +// whole name except for the trailing "_t", so that Vector and MultiVector can +// append an extra "x2" or whatever to their element type's cNameBase(). Then +// the main cName() query method puts "_t" on the end for the final type name. + +class CRegularNamedType : public Type { + using Type::Type; + virtual std::string cNameBase() const = 0; + +public: + std::string cName() const override { return cNameBase() + "_t"; } +}; + +class ScalarType : public CRegularNamedType { + ScalarTypeKind Kind; + unsigned Bits; + +public: + ScalarType(const Record *Record) : CRegularNamedType(TypeKind::Scalar) { + Kind = StringSwitch<ScalarTypeKind>(Record->getValueAsString("kind")) + .Case("s", ScalarTypeKind::SignedInt) + .Case("u", ScalarTypeKind::UnsignedInt) + .Case("f", ScalarTypeKind::Float); + Bits = Record->getValueAsInt("size"); + } + unsigned sizeInBits() const override { return Bits; } + ScalarTypeKind kind() const { return Kind; } + std::string suffix() const { return toLetter(Kind) + utostr(Bits); } + std::string cNameBase() const override { + return toCPrefix(Kind) + utostr(Bits); + } + std::string llvmName() const override { + if (Kind == ScalarTypeKind::Float) { + if (Bits == 16) + return "HalfTy"; + if (Bits == 32) + return "FloatTy"; + if (Bits == 64) + return "DoubleTy"; + PrintFatalError("bad size for floating type"); + } + return "Int" + utostr(Bits) + "Ty"; + } + std::string acleSuffix() const override { + return "_" + toLetter(Kind) + utostr(Bits); + } + bool isInteger() const { return Kind != ScalarTypeKind::Float; } + bool requiresFloat() const override { return !isInteger(); } + + static bool classof(const Type *T) { + return T->typeKind() == TypeKind::Scalar; + } +}; + +class VectorType : public CRegularNamedType { + const ScalarType *Element; + unsigned Lanes; + +public: + VectorType(const ScalarType *Element) + : CRegularNamedType(TypeKind::Vector), Element(Element) { + // MVE has a fixed 128-bit vector size + Lanes = 128 / Element->sizeInBits(); + } + unsigned sizeInBits() const override { return 128; } + unsigned lanes() const { return Lanes; } + bool requiresFloat() const override { return Element->requiresFloat(); } + std::string cNameBase() const override { + return Element->cNameBase() + "x" + utostr(Lanes); + } + std::string llvmName() const override { + return "llvm::VectorType::get(" + Element->llvmName() + ", " + + utostr(Lanes) + ")"; + } + + static bool classof(const Type *T) { + return T->typeKind() == TypeKind::Vector; + } +}; + +class MultiVectorType : public CRegularNamedType { + const VectorType *Element; + unsigned Registers; + +public: + MultiVectorType(unsigned Registers, const VectorType *Element) + : CRegularNamedType(TypeKind::MultiVector), Element(Element), + Registers(Registers) {} + unsigned sizeInBits() const override { + return Registers * Element->sizeInBits(); + } + unsigned registers() const { return Registers; } + bool requiresFloat() const override { return Element->requiresFloat(); } + std::string cNameBase() const override { + return Element->cNameBase() + "x" + utostr(Registers); + } + + // MultiVectorType doesn't override llvmName, because we don't expect to do + // automatic code generation for the MVE intrinsics that use it: the {vld2, + // vld4, vst2, vst4} family are the only ones that use these types, so it was + // easier to hand-write the codegen for dealing with these structs than to + // build in lots of extra automatic machinery that would only be used once. + + static bool classof(const Type *T) { + return T->typeKind() == TypeKind::MultiVector; + } +}; + +class PredicateType : public CRegularNamedType { + unsigned Lanes; + +public: + PredicateType(unsigned Lanes) + : CRegularNamedType(TypeKind::Predicate), Lanes(Lanes) {} + unsigned sizeInBits() const override { return 16; } + std::string cNameBase() const override { return "mve_pred16"; } + bool requiresFloat() const override { return false; }; + std::string llvmName() const override { + // Use <4 x i1> instead of <2 x i1> for two-lane vector types. See + // the comment in llvm/lib/Target/ARM/ARMInstrMVE.td for further + // explanation. + unsigned ModifiedLanes = (Lanes == 2 ? 4 : Lanes); + + return "llvm::VectorType::get(Builder.getInt1Ty(), " + + utostr(ModifiedLanes) + ")"; + } + + static bool classof(const Type *T) { + return T->typeKind() == TypeKind::Predicate; + } +}; + +// ----------------------------------------------------------------------------- +// Class to facilitate merging together the code generation for many intrinsics +// by means of varying a few constant or type parameters. +// +// Most obviously, the intrinsics in a single parametrised family will have +// code generation sequences that only differ in a type or two, e.g. vaddq_s8 +// and vaddq_u16 will look the same apart from putting a different vector type +// in the call to CGM.getIntrinsic(). But also, completely different intrinsics +// will often code-generate in the same way, with only a different choice of +// _which_ IR intrinsic they lower to (e.g. vaddq_m_s8 and vmulq_m_s8), but +// marshalling the arguments and return values of the IR intrinsic in exactly +// the same way. And others might differ only in some other kind of constant, +// such as a lane index. +// +// So, when we generate the IR-building code for all these intrinsics, we keep +// track of every value that could possibly be pulled out of the code and +// stored ahead of time in a local variable. Then we group together intrinsics +// by textual equivalence of the code that would result if _all_ those +// parameters were stored in local variables. That gives us maximal sets that +// can be implemented by a single piece of IR-building code by changing +// parameter values ahead of time. +// +// After we've done that, we do a second pass in which we only allocate _some_ +// of the parameters into local variables, by tracking which ones have the same +// values as each other (so that a single variable can be reused) and which +// ones are the same across the whole set (so that no variable is needed at +// all). +// +// Hence the class below. Its allocParam method is invoked during code +// generation by every method of a Result subclass (see below) that wants to +// give it the opportunity to pull something out into a switchable parameter. +// It returns a variable name for the parameter, or (if it's being used in the +// second pass once we've decided that some parameters don't need to be stored +// in variables after all) it might just return the input expression unchanged. + +struct CodeGenParamAllocator { + // Accumulated during code generation + std::vector<std::string> *ParamTypes = nullptr; + std::vector<std::string> *ParamValues = nullptr; + + // Provided ahead of time in pass 2, to indicate which parameters are being + // assigned to what. This vector contains an entry for each call to + // allocParam expected during code gen (which we counted up in pass 1), and + // indicates the number of the parameter variable that should be returned, or + // -1 if this call shouldn't allocate a parameter variable at all. + // + // We rely on the recursive code generation working identically in passes 1 + // and 2, so that the same list of calls to allocParam happen in the same + // order. That guarantees that the parameter numbers recorded in pass 1 will + // match the entries in this vector that store what MveEmitter::EmitBuiltinCG + // decided to do about each one in pass 2. + std::vector<int> *ParamNumberMap = nullptr; + + // Internally track how many things we've allocated + unsigned nparams = 0; + + std::string allocParam(StringRef Type, StringRef Value) { + unsigned ParamNumber; + + if (!ParamNumberMap) { + // In pass 1, unconditionally assign a new parameter variable to every + // value we're asked to process. + ParamNumber = nparams++; + } else { + // In pass 2, consult the map provided by the caller to find out which + // variable we should be keeping things in. + int MapValue = (*ParamNumberMap)[nparams++]; + if (MapValue < 0) + return Value; + ParamNumber = MapValue; + } + + // If we've allocated a new parameter variable for the first time, store + // its type and value to be retrieved after codegen. + if (ParamTypes && ParamTypes->size() == ParamNumber) + ParamTypes->push_back(Type); + if (ParamValues && ParamValues->size() == ParamNumber) + ParamValues->push_back(Value); + + // Unimaginative naming scheme for parameter variables. + return "Param" + utostr(ParamNumber); + } +}; + +// ----------------------------------------------------------------------------- +// System of classes that represent all the intermediate values used during +// code-generation for an intrinsic. +// +// The base class 'Result' can represent a value of the LLVM type 'Value', or +// sometimes 'Address' (for loads/stores, including an alignment requirement). +// +// In the case where the Tablegen provides a value in the codegen dag as a +// plain integer literal, the Result object we construct here will be one that +// returns true from hasIntegerConstantValue(). This allows the generated C++ +// code to use the constant directly in contexts which can take a literal +// integer, such as Builder.CreateExtractValue(thing, 1), without going to the +// effort of calling llvm::ConstantInt::get() and then pulling the constant +// back out of the resulting llvm:Value later. + +class Result { +public: + // Convenient shorthand for the pointer type we'll be using everywhere. + using Ptr = std::shared_ptr<Result>; + +private: + Ptr Predecessor; + std::string VarName; + bool VarNameUsed = false; + unsigned Visited = 0; + +public: + virtual ~Result() = default; + using Scope = std::map<std::string, Ptr>; + virtual void genCode(raw_ostream &OS, CodeGenParamAllocator &) const = 0; + virtual bool hasIntegerConstantValue() const { return false; } + virtual uint32_t integerConstantValue() const { return 0; } + virtual std::string typeName() const { return "Value *"; } + + // Mostly, when a code-generation operation has a dependency on prior + // operations, it's because it uses the output values of those operations as + // inputs. But there's one exception, which is the use of 'seq' in Tablegen + // to indicate that operations have to be performed in sequence regardless of + // whether they use each others' output values. + // + // So, the actual generation of code is done by depth-first search, using the + // prerequisites() method to get a list of all the other Results that have to + // be computed before this one. That method divides into the 'predecessor', + // set by setPredecessor() while processing a 'seq' dag node, and the list + // returned by 'morePrerequisites', which each subclass implements to return + // a list of the Results it uses as input to whatever its own computation is + // doing. + + virtual void morePrerequisites(std::vector<Ptr> &output) const {} + std::vector<Ptr> prerequisites() const { + std::vector<Ptr> ToRet; + if (Predecessor) + ToRet.push_back(Predecessor); + morePrerequisites(ToRet); + return ToRet; + } + + void setPredecessor(Ptr p) { + assert(!Predecessor); + Predecessor = p; + } + + // Each Result will be assigned a variable name in the output code, but not + // all those variable names will actually be used (e.g. the return value of + // Builder.CreateStore has void type, so nobody will want to refer to it). To + // prevent annoying compiler warnings, we track whether each Result's + // variable name was ever actually mentioned in subsequent statements, so + // that it can be left out of the final generated code. + std::string varname() { + VarNameUsed = true; + return VarName; + } + void setVarname(const StringRef s) { VarName = s; } + bool varnameUsed() const { return VarNameUsed; } + + // Code generation happens in multiple passes. This method tracks whether a + // Result has yet been visited in a given pass, without the need for a + // tedious loop in between passes that goes through and resets a 'visited' + // flag back to false: you just set Pass=1 the first time round, and Pass=2 + // the second time. + bool needsVisiting(unsigned Pass) { + bool ToRet = Visited < Pass; + Visited = Pass; + return ToRet; + } +}; + +// Result subclass that retrieves one of the arguments to the clang builtin +// function. In cases where the argument has pointer type, we call +// EmitPointerWithAlignment and store the result in a variable of type Address, +// so that load and store IR nodes can know the right alignment. Otherwise, we +// call EmitScalarExpr. +// +// There are aggregate parameters in the MVE intrinsics API, but we don't deal +// with them in this Tablegen back end: they only arise in the vld2q/vld4q and +// vst2q/vst4q family, which is few enough that we just write the code by hand +// for those in CGBuiltin.cpp. +class BuiltinArgResult : public Result { +public: + unsigned ArgNum; + bool AddressType; + BuiltinArgResult(unsigned ArgNum, bool AddressType) + : ArgNum(ArgNum), AddressType(AddressType) {} + void genCode(raw_ostream &OS, CodeGenParamAllocator &) const override { + OS << (AddressType ? "EmitPointerWithAlignment" : "EmitScalarExpr") + << "(E->getArg(" << ArgNum << "))"; + } + virtual std::string typeName() const { + return AddressType ? "Address" : Result::typeName(); + } +}; + +// Result subclass for an integer literal appearing in Tablegen. This may need +// to be turned into an llvm::Result by means of llvm::ConstantInt::get(), or +// it may be used directly as an integer, depending on which IRBuilder method +// it's being passed to. +class IntLiteralResult : public Result { +public: + const ScalarType *IntegerType; + uint32_t IntegerValue; + IntLiteralResult(const ScalarType *IntegerType, uint32_t IntegerValue) + : IntegerType(IntegerType), IntegerValue(IntegerValue) {} + void genCode(raw_ostream &OS, + CodeGenParamAllocator &ParamAlloc) const override { + OS << "llvm::ConstantInt::get(" + << ParamAlloc.allocParam("llvm::Type *", IntegerType->llvmName()) + << ", "; + OS << ParamAlloc.allocParam(IntegerType->cName(), utostr(IntegerValue)) + << ")"; + } + bool hasIntegerConstantValue() const override { return true; } + uint32_t integerConstantValue() const override { return IntegerValue; } +}; + +// Result subclass representing a cast between different integer types. We use +// our own ScalarType abstraction as the representation of the target type, +// which gives both size and signedness. +class IntCastResult : public Result { +public: + const ScalarType *IntegerType; + Ptr V; + IntCastResult(const ScalarType *IntegerType, Ptr V) + : IntegerType(IntegerType), V(V) {} + void genCode(raw_ostream &OS, + CodeGenParamAllocator &ParamAlloc) const override { + OS << "Builder.CreateIntCast(" << V->varname() << ", " + << ParamAlloc.allocParam("llvm::Type *", IntegerType->llvmName()) << ", " + << ParamAlloc.allocParam("bool", + IntegerType->kind() == ScalarTypeKind::SignedInt + ? "true" + : "false") + << ")"; + } + void morePrerequisites(std::vector<Ptr> &output) const override { + output.push_back(V); + } +}; + +// Result subclass representing a call to an IRBuilder method. Each IRBuilder +// method we want to use will have a Tablegen record giving the method name and +// describing any important details of how to call it, such as whether a +// particular argument should be an integer constant instead of an llvm::Value. +class IRBuilderResult : public Result { +public: + StringRef BuilderMethod; + std::vector<Ptr> Args; + std::set<unsigned> AddressArgs; + std::set<unsigned> IntConstantArgs; + IRBuilderResult(StringRef BuilderMethod, std::vector<Ptr> Args, + std::set<unsigned> AddressArgs, + std::set<unsigned> IntConstantArgs) + : BuilderMethod(BuilderMethod), Args(Args), AddressArgs(AddressArgs), + IntConstantArgs(IntConstantArgs) {} + void genCode(raw_ostream &OS, + CodeGenParamAllocator &ParamAlloc) const override { + OS << "Builder." << BuilderMethod << "("; + const char *Sep = ""; + for (unsigned i = 0, e = Args.size(); i < e; ++i) { + Ptr Arg = Args[i]; + if (IntConstantArgs.find(i) != IntConstantArgs.end()) { + assert(Arg->hasIntegerConstantValue()); + OS << Sep + << ParamAlloc.allocParam("unsigned", + utostr(Arg->integerConstantValue())); + } else { + OS << Sep << Arg->varname(); + } + Sep = ", "; + } + OS << ")"; + } + void morePrerequisites(std::vector<Ptr> &output) const override { + for (unsigned i = 0, e = Args.size(); i < e; ++i) { + Ptr Arg = Args[i]; + if (IntConstantArgs.find(i) != IntConstantArgs.end()) + continue; + output.push_back(Arg); + } + } +}; + +// Result subclass representing a call to an IR intrinsic, which we first have +// to look up using an Intrinsic::ID constant and an array of types. +class IRIntrinsicResult : public Result { +public: + std::string IntrinsicID; + std::vector<const Type *> ParamTypes; + std::vector<Ptr> Args; + IRIntrinsicResult(StringRef IntrinsicID, std::vector<const Type *> ParamTypes, + std::vector<Ptr> Args) + : IntrinsicID(IntrinsicID), ParamTypes(ParamTypes), Args(Args) {} + void genCode(raw_ostream &OS, + CodeGenParamAllocator &ParamAlloc) const override { + std::string IntNo = ParamAlloc.allocParam( + "Intrinsic::ID", "Intrinsic::arm_mve_" + IntrinsicID); + OS << "Builder.CreateCall(CGM.getIntrinsic(" << IntNo; + if (!ParamTypes.empty()) { + OS << ", llvm::SmallVector<llvm::Type *, " << ParamTypes.size() << "> {"; + const char *Sep = ""; + for (auto T : ParamTypes) { + OS << Sep << ParamAlloc.allocParam("llvm::Type *", T->llvmName()); + Sep = ", "; + } + OS << "}"; + } + OS << "), llvm::SmallVector<Value *, " << Args.size() << "> {"; + const char *Sep = ""; + for (auto Arg : Args) { + OS << Sep << Arg->varname(); + Sep = ", "; + } + OS << "})"; + } + void morePrerequisites(std::vector<Ptr> &output) const override { + output.insert(output.end(), Args.begin(), Args.end()); + } +}; + +// ----------------------------------------------------------------------------- +// Class that describes a single ACLE intrinsic. +// +// A Tablegen record will typically describe more than one ACLE intrinsic, by +// means of setting the 'list<Type> Params' field to a list of multiple +// parameter types, so as to define vaddq_{s8,u8,...,f16,f32} all in one go. +// We'll end up with one instance of ACLEIntrinsic for *each* parameter type, +// rather than a single one for all of them. Hence, the constructor takes both +// a Tablegen record and the current value of the parameter type. + +class ACLEIntrinsic { + // Structure documenting that one of the intrinsic's arguments is required to + // be a compile-time constant integer, and what constraints there are on its + // value. Used when generating Sema checking code. + struct ImmediateArg { + enum class BoundsType { ExplicitRange, UInt }; + BoundsType boundsType; + int64_t i1, i2; + StringRef ExtraCheckType, ExtraCheckArgs; + const Type *ArgType; + }; + + // For polymorphic intrinsics, FullName is the explicit name that uniquely + // identifies this variant of the intrinsic, and ShortName is the name it + // shares with at least one other intrinsic. + std::string ShortName, FullName; + + const Type *ReturnType; + std::vector<const Type *> ArgTypes; + std::map<unsigned, ImmediateArg> ImmediateArgs; + Result::Ptr Code; + + std::map<std::string, std::string> CustomCodeGenArgs; + + // Recursive function that does the internals of code generation. + void genCodeDfs(Result::Ptr V, std::list<Result::Ptr> &Used, + unsigned Pass) const { + if (!V->needsVisiting(Pass)) + return; + + for (Result::Ptr W : V->prerequisites()) + genCodeDfs(W, Used, Pass); + + Used.push_back(V); + } + +public: + const std::string &shortName() const { return ShortName; } + const std::string &fullName() const { return FullName; } + const Type *returnType() const { return ReturnType; } + const std::vector<const Type *> &argTypes() const { return ArgTypes; } + bool requiresFloat() const { + if (ReturnType->requiresFloat()) + return true; + for (const Type *T : ArgTypes) + if (T->requiresFloat()) + return true; + return false; + } + bool polymorphic() const { return ShortName != FullName; } + + // External entry point for code generation, called from MveEmitter. + void genCode(raw_ostream &OS, CodeGenParamAllocator &ParamAlloc, + unsigned Pass) const { + if (!hasCode()) { + for (auto kv : CustomCodeGenArgs) + OS << " " << kv.first << " = " << kv.second << ";\n"; + OS << " break; // custom code gen\n"; + return; + } + std::list<Result::Ptr> Used; + genCodeDfs(Code, Used, Pass); + + unsigned varindex = 0; + for (Result::Ptr V : Used) + if (V->varnameUsed()) + V->setVarname("Val" + utostr(varindex++)); + + for (Result::Ptr V : Used) { + OS << " "; + if (V == Used.back()) { + assert(!V->varnameUsed()); + OS << "return "; // FIXME: what if the top-level thing is void? + } else if (V->varnameUsed()) { + std::string Type = V->typeName(); + OS << V->typeName(); + if (!StringRef(Type).endswith("*")) + OS << " "; + OS << V->varname() << " = "; + } + V->genCode(OS, ParamAlloc); + OS << ";\n"; + } + } + bool hasCode() const { return Code != nullptr; } + + std::string genSema() const { + std::vector<std::string> SemaChecks; + + for (const auto &kv : ImmediateArgs) { + const ImmediateArg &IA = kv.second; + + llvm::APInt lo(128, 0), hi(128, 0); + switch (IA.boundsType) { + case ImmediateArg::BoundsType::ExplicitRange: + lo = IA.i1; + hi = IA.i2; + break; + case ImmediateArg::BoundsType::UInt: + lo = 0; + hi = IA.i1; + break; + } + + llvm::APInt typelo, typehi; + if (cast<ScalarType>(IA.ArgType)->kind() == ScalarTypeKind::UnsignedInt) { + typelo = llvm::APInt::getSignedMinValue(IA.ArgType->sizeInBits()); + typehi = llvm::APInt::getSignedMaxValue(IA.ArgType->sizeInBits()); + } else { + typelo = llvm::APInt::getMinValue(IA.ArgType->sizeInBits()); + typehi = llvm::APInt::getMaxValue(IA.ArgType->sizeInBits()); + } + typelo = typelo.sext(128); + typehi = typehi.sext(128); + + std::string Index = utostr(kv.first); + + if (lo.sle(typelo) && hi.sge(typehi)) + SemaChecks.push_back("SemaBuiltinConstantArg(TheCall, " + Index + ")"); + else + SemaChecks.push_back("SemaBuiltinConstantArgRange(TheCall, " + Index + + ", 0x" + lo.toString(16, true) + ", 0x" + + hi.toString(16, true) + ")"); + + if (!IA.ExtraCheckType.empty()) { + std::string Suffix; + if (!IA.ExtraCheckArgs.empty()) + Suffix = (Twine(", ") + IA.ExtraCheckArgs).str(); + SemaChecks.push_back((Twine("SemaBuiltinConstantArg") + + IA.ExtraCheckType + "(TheCall, " + Index + + Suffix + ")") + .str()); + } + } + if (SemaChecks.empty()) + return ""; + return (Twine(" return ") + + join(std::begin(SemaChecks), std::end(SemaChecks), + " ||\n ") + + ";\n") + .str(); + } + + ACLEIntrinsic(MveEmitter &ME, Record *R, const Type *Param); +}; + +// ----------------------------------------------------------------------------- +// The top-level class that holds all the state from analyzing the entire +// Tablegen input. + +class MveEmitter { + // MveEmitter holds a collection of all the types we've instantiated. + VoidType Void; + std::map<std::string, std::unique_ptr<ScalarType>> ScalarTypes; + std::map<std::pair<ScalarTypeKind, unsigned>, std::unique_ptr<VectorType>> + VectorTypes; + std::map<std::pair<std::string, unsigned>, std::unique_ptr<MultiVectorType>> + MultiVectorTypes; + std::map<unsigned, std::unique_ptr<PredicateType>> PredicateTypes; + std::map<std::string, std::unique_ptr<PointerType>> PointerTypes; + + // And all the ACLEIntrinsic instances we've created. + std::map<std::string, std::unique_ptr<ACLEIntrinsic>> ACLEIntrinsics; + +public: + // Methods to create a Type object, or return the right existing one from the + // maps stored in this object. + const VoidType *getVoidType() { return &Void; } + const ScalarType *getScalarType(StringRef Name) { + return ScalarTypes[Name].get(); + } + const ScalarType *getScalarType(Record *R) { + return getScalarType(R->getName()); + } + const VectorType *getVectorType(const ScalarType *ST) { + std::pair<ScalarTypeKind, unsigned> key(ST->kind(), ST->sizeInBits()); + if (VectorTypes.find(key) == VectorTypes.end()) + VectorTypes[key] = std::make_unique<VectorType>(ST); + return VectorTypes[key].get(); + } + const MultiVectorType *getMultiVectorType(unsigned Registers, + const VectorType *VT) { + std::pair<std::string, unsigned> key(VT->cNameBase(), Registers); + if (MultiVectorTypes.find(key) == MultiVectorTypes.end()) + MultiVectorTypes[key] = std::make_unique<MultiVectorType>(Registers, VT); + return MultiVectorTypes[key].get(); + } + const PredicateType *getPredicateType(unsigned Lanes) { + unsigned key = Lanes; + if (PredicateTypes.find(key) == PredicateTypes.end()) + PredicateTypes[key] = std::make_unique<PredicateType>(Lanes); + return PredicateTypes[key].get(); + } + const PointerType *getPointerType(const Type *T, bool Const) { + PointerType PT(T, Const); + std::string key = PT.cName(); + if (PointerTypes.find(key) == PointerTypes.end()) + PointerTypes[key] = std::make_unique<PointerType>(PT); + return PointerTypes[key].get(); + } + + // Methods to construct a type from various pieces of Tablegen. These are + // always called in the context of setting up a particular ACLEIntrinsic, so + // there's always an ambient parameter type (because we're iterating through + // the Params list in the Tablegen record for the intrinsic), which is used + // to expand Tablegen classes like 'Vector' which mean something different in + // each member of a parametric family. + const Type *getType(Record *R, const Type *Param); + const Type *getType(DagInit *D, const Type *Param); + const Type *getType(Init *I, const Type *Param); + + // Functions that translate the Tablegen representation of an intrinsic's + // code generation into a collection of Value objects (which will then be + // reprocessed to read out the actual C++ code included by CGBuiltin.cpp). + Result::Ptr getCodeForDag(DagInit *D, const Result::Scope &Scope, + const Type *Param); + Result::Ptr getCodeForDagArg(DagInit *D, unsigned ArgNum, + const Result::Scope &Scope, const Type *Param); + Result::Ptr getCodeForArg(unsigned ArgNum, const Type *ArgType); + + // Constructor and top-level functions. + + MveEmitter(RecordKeeper &Records); + + void EmitHeader(raw_ostream &OS); + void EmitBuiltinDef(raw_ostream &OS); + void EmitBuiltinSema(raw_ostream &OS); + void EmitBuiltinCG(raw_ostream &OS); + void EmitBuiltinAliases(raw_ostream &OS); +}; + +const Type *MveEmitter::getType(Init *I, const Type *Param) { + if (auto Dag = dyn_cast<DagInit>(I)) + return getType(Dag, Param); + if (auto Def = dyn_cast<DefInit>(I)) + return getType(Def->getDef(), Param); + + PrintFatalError("Could not convert this value into a type"); +} + +const Type *MveEmitter::getType(Record *R, const Type *Param) { + if (R->isSubClassOf("Immediate")) + R = R->getValueAsDef("type"); // pass to subfield + + if (R->getName() == "Void") + return getVoidType(); + if (R->isSubClassOf("PrimitiveType")) + return getScalarType(R); + if (R->isSubClassOf("ComplexType")) + return getType(R->getValueAsDag("spec"), Param); + + PrintFatalError(R->getLoc(), "Could not convert this record into a type"); +} + +const Type *MveEmitter::getType(DagInit *D, const Type *Param) { + // The meat of the getType system: types in the Tablegen are represented by a + // dag whose operators select sub-cases of this function. + + Record *Op = cast<DefInit>(D->getOperator())->getDef(); + if (!Op->isSubClassOf("ComplexTypeOp")) + PrintFatalError( + "Expected ComplexTypeOp as dag operator in type expression"); + + if (Op->getName() == "CTO_Parameter") { + if (isa<VoidType>(Param)) + PrintFatalError("Parametric type in unparametrised context"); + return Param; + } + + if (Op->getName() == "CTO_Vec") { + const Type *Element = getType(D->getArg(0), Param); + return getVectorType(cast<ScalarType>(Element)); + } + + if (Op->getName() == "CTO_Pred") { + const Type *Element = getType(D->getArg(0), Param); + return getPredicateType(128 / Element->sizeInBits()); + } + + if (Op->isSubClassOf("CTO_Tuple")) { + unsigned Registers = Op->getValueAsInt("n"); + const Type *Element = getType(D->getArg(0), Param); + return getMultiVectorType(Registers, cast<VectorType>(Element)); + } + + if (Op->isSubClassOf("CTO_Pointer")) { + const Type *Pointee = getType(D->getArg(0), Param); + return getPointerType(Pointee, Op->getValueAsBit("const")); + } + + if (Op->isSubClassOf("CTO_Sign")) { + const ScalarType *ST = cast<ScalarType>(getType(D->getArg(0), Param)); + ScalarTypeKind NewKind = Op->getValueAsBit("signed") + ? ScalarTypeKind::SignedInt + : ScalarTypeKind::UnsignedInt; + for (const auto &kv : ScalarTypes) { + const ScalarType *RT = kv.second.get(); + if (RT->kind() == NewKind && RT->sizeInBits() == ST->sizeInBits()) + return RT; + } + PrintFatalError("Cannot change sign of this type"); + } + + PrintFatalError("Bad operator in type dag expression"); +} + +Result::Ptr MveEmitter::getCodeForDag(DagInit *D, const Result::Scope &Scope, + const Type *Param) { + Record *Op = cast<DefInit>(D->getOperator())->getDef(); + + if (Op->getName() == "seq") { + Result::Scope SubScope = Scope; + Result::Ptr PrevV = nullptr; + for (unsigned i = 0, e = D->getNumArgs(); i < e; ++i) { + // We don't use getCodeForDagArg here, because the argument name + // has different semantics in a seq + Result::Ptr V = + getCodeForDag(cast<DagInit>(D->getArg(i)), SubScope, Param); + StringRef ArgName = D->getArgNameStr(i); + if (!ArgName.empty()) + SubScope[ArgName] = V; + if (PrevV) + V->setPredecessor(PrevV); + PrevV = V; + } + return PrevV; + } else if (Op->isSubClassOf("Type")) { + if (D->getNumArgs() != 1) + PrintFatalError("Type casts should have exactly one argument"); + const Type *CastType = getType(Op, Param); + Result::Ptr Arg = getCodeForDagArg(D, 0, Scope, Param); + if (const auto *ST = dyn_cast<ScalarType>(CastType)) { + if (!ST->requiresFloat()) { + if (Arg->hasIntegerConstantValue()) + return std::make_shared<IntLiteralResult>( + ST, Arg->integerConstantValue()); + else + return std::make_shared<IntCastResult>(ST, Arg); + } + } + PrintFatalError("Unsupported type cast"); + } else { + std::vector<Result::Ptr> Args; + for (unsigned i = 0, e = D->getNumArgs(); i < e; ++i) + Args.push_back(getCodeForDagArg(D, i, Scope, Param)); + if (Op->isSubClassOf("IRBuilder")) { + std::set<unsigned> AddressArgs; + for (unsigned i : Op->getValueAsListOfInts("address_params")) + AddressArgs.insert(i); + std::set<unsigned> IntConstantArgs; + for (unsigned i : Op->getValueAsListOfInts("int_constant_params")) + IntConstantArgs.insert(i); + return std::make_shared<IRBuilderResult>( + Op->getValueAsString("func"), Args, AddressArgs, IntConstantArgs); + } else if (Op->isSubClassOf("IRInt")) { + std::vector<const Type *> ParamTypes; + for (Record *RParam : Op->getValueAsListOfDefs("params")) + ParamTypes.push_back(getType(RParam, Param)); + std::string IntName = Op->getValueAsString("intname"); + if (Op->getValueAsBit("appendKind")) + IntName += "_" + toLetter(cast<ScalarType>(Param)->kind()); + return std::make_shared<IRIntrinsicResult>(IntName, ParamTypes, Args); + } else { + PrintFatalError("Unsupported dag node " + Op->getName()); + } + } +} + +Result::Ptr MveEmitter::getCodeForDagArg(DagInit *D, unsigned ArgNum, + const Result::Scope &Scope, + const Type *Param) { + Init *Arg = D->getArg(ArgNum); + StringRef Name = D->getArgNameStr(ArgNum); + + if (!Name.empty()) { + if (!isa<UnsetInit>(Arg)) + PrintFatalError( + "dag operator argument should not have both a value and a name"); + auto it = Scope.find(Name); + if (it == Scope.end()) + PrintFatalError("unrecognized variable name '" + Name + "'"); + return it->second; + } + + if (auto *II = dyn_cast<IntInit>(Arg)) + return std::make_shared<IntLiteralResult>(getScalarType("u32"), + II->getValue()); + + if (auto *DI = dyn_cast<DagInit>(Arg)) + return getCodeForDag(DI, Scope, Param); + + PrintFatalError("bad dag argument type for code generation"); +} + +Result::Ptr MveEmitter::getCodeForArg(unsigned ArgNum, const Type *ArgType) { + Result::Ptr V = + std::make_shared<BuiltinArgResult>(ArgNum, isa<PointerType>(ArgType)); + + if (const auto *ST = dyn_cast<ScalarType>(ArgType)) { + if (ST->isInteger() && ST->sizeInBits() < 32) + V = std::make_shared<IntCastResult>(getScalarType("u32"), V); + } else if (const auto *PT = dyn_cast<PredicateType>(ArgType)) { + V = std::make_shared<IntCastResult>(getScalarType("u32"), V); + V = std::make_shared<IRIntrinsicResult>( + "pred_i2v", std::vector<const Type *>{PT}, std::vector<Result::Ptr>{V}); + } + + return V; +} + +ACLEIntrinsic::ACLEIntrinsic(MveEmitter &ME, Record *R, const Type *Param) + : ReturnType(ME.getType(R->getValueAsDef("ret"), Param)) { + // Derive the intrinsic's full name, by taking the name of the + // Tablegen record (or override) and appending the suffix from its + // parameter type. (If the intrinsic is unparametrised, its + // parameter type will be given as Void, which returns the empty + // string for acleSuffix.) + StringRef BaseName = + (R->isSubClassOf("NameOverride") ? R->getValueAsString("basename") + : R->getName()); + FullName = (Twine(BaseName) + Param->acleSuffix()).str(); + + // Derive the intrinsic's polymorphic name, by removing components from the + // full name as specified by its 'pnt' member ('polymorphic name type'), + // which indicates how many type suffixes to remove, and any other piece of + // the name that should be removed. + Record *PolymorphicNameType = R->getValueAsDef("pnt"); + SmallVector<StringRef, 8> NameParts; + StringRef(FullName).split(NameParts, '_'); + for (unsigned i = 0, e = PolymorphicNameType->getValueAsInt( + "NumTypeSuffixesToDiscard"); + i < e; ++i) + NameParts.pop_back(); + if (!PolymorphicNameType->isValueUnset("ExtraSuffixToDiscard")) { + StringRef ExtraSuffix = + PolymorphicNameType->getValueAsString("ExtraSuffixToDiscard"); + auto it = NameParts.end(); + while (it != NameParts.begin()) { + --it; + if (*it == ExtraSuffix) { + NameParts.erase(it); + break; + } + } + } + ShortName = join(std::begin(NameParts), std::end(NameParts), "_"); + + // Process the intrinsic's argument list. + DagInit *ArgsDag = R->getValueAsDag("args"); + Result::Scope Scope; + for (unsigned i = 0, e = ArgsDag->getNumArgs(); i < e; ++i) { + Init *TypeInit = ArgsDag->getArg(i); + + // Work out the type of the argument, for use in the function prototype in + // the header file. + const Type *ArgType = ME.getType(TypeInit, Param); + ArgTypes.push_back(ArgType); + + // The argument will usually have a name in the arguments dag, which goes + // into the variable-name scope that the code gen will refer to. + StringRef ArgName = ArgsDag->getArgNameStr(i); + if (!ArgName.empty()) + Scope[ArgName] = ME.getCodeForArg(i, ArgType); + + // If the argument is a subclass of Immediate, record the details about + // what values it can take, for Sema checking. + if (auto TypeDI = dyn_cast<DefInit>(TypeInit)) { + Record *TypeRec = TypeDI->getDef(); + if (TypeRec->isSubClassOf("Immediate")) { + Record *Bounds = TypeRec->getValueAsDef("bounds"); + ImmediateArg &IA = ImmediateArgs[i]; + if (Bounds->isSubClassOf("IB_ConstRange")) { + IA.boundsType = ImmediateArg::BoundsType::ExplicitRange; + IA.i1 = Bounds->getValueAsInt("lo"); + IA.i2 = Bounds->getValueAsInt("hi"); + } else if (Bounds->getName() == "IB_UEltValue") { + IA.boundsType = ImmediateArg::BoundsType::UInt; + IA.i1 = Param->sizeInBits(); + } else if (Bounds->getName() == "IB_LaneIndex") { + IA.boundsType = ImmediateArg::BoundsType::ExplicitRange; + IA.i1 = 0; + IA.i2 = 128 / Param->sizeInBits(); + } else if (Bounds->getName() == "IB_EltBit") { + IA.boundsType = ImmediateArg::BoundsType::ExplicitRange; + IA.i1 = Bounds->getValueAsInt("base"); + IA.i2 = IA.i1 + Param->sizeInBits() - 1; + } else { + PrintFatalError("unrecognised ImmediateBounds subclass"); + } + + IA.ArgType = ArgType; + + if (!TypeRec->isValueUnset("extra")) { + IA.ExtraCheckType = TypeRec->getValueAsString("extra"); + if (!TypeRec->isValueUnset("extraarg")) + IA.ExtraCheckArgs = TypeRec->getValueAsString("extraarg"); + } + } + } + } + + // Finally, go through the codegen dag and translate it into a Result object + // (with an arbitrary DAG of depended-on Results hanging off it). + DagInit *CodeDag = R->getValueAsDag("codegen"); + Record *MainOp = cast<DefInit>(CodeDag->getOperator())->getDef(); + if (MainOp->isSubClassOf("CustomCodegen")) { + // Or, if it's the special case of CustomCodegen, just accumulate + // a list of parameters we're going to assign to variables before + // breaking from the loop. + CustomCodeGenArgs["CustomCodeGenType"] = + (Twine("CustomCodeGen::") + MainOp->getValueAsString("type")).str(); + for (unsigned i = 0, e = CodeDag->getNumArgs(); i < e; ++i) { + StringRef Name = CodeDag->getArgNameStr(i); + if (Name.empty()) { + PrintFatalError("Operands to CustomCodegen should have names"); + } else if (auto *II = dyn_cast<IntInit>(CodeDag->getArg(i))) { + CustomCodeGenArgs[Name] = itostr(II->getValue()); + } else if (auto *SI = dyn_cast<StringInit>(CodeDag->getArg(i))) { + CustomCodeGenArgs[Name] = SI->getValue(); + } else { + PrintFatalError("Operands to CustomCodegen should be integers"); + } + } + } else { + Code = ME.getCodeForDag(CodeDag, Scope, Param); + } +} + +MveEmitter::MveEmitter(RecordKeeper &Records) { + // Construct the whole MveEmitter. + + // First, look up all the instances of PrimitiveType. This gives us the list + // of vector typedefs we have to put in arm_mve.h, and also allows us to + // collect all the useful ScalarType instances into a big list so that we can + // use it for operations such as 'find the unsigned version of this signed + // integer type'. + for (Record *R : Records.getAllDerivedDefinitions("PrimitiveType")) + ScalarTypes[R->getName()] = std::make_unique<ScalarType>(R); + + // Now go through the instances of Intrinsic, and for each one, iterate + // through its list of type parameters making an ACLEIntrinsic for each one. + for (Record *R : Records.getAllDerivedDefinitions("Intrinsic")) { + for (Record *RParam : R->getValueAsListOfDefs("params")) { + const Type *Param = getType(RParam, getVoidType()); + auto Intrinsic = std::make_unique<ACLEIntrinsic>(*this, R, Param); + ACLEIntrinsics[Intrinsic->fullName()] = std::move(Intrinsic); + } + } +} + +/// A wrapper on raw_string_ostream that contains its own buffer rather than +/// having to point it at one elsewhere. (In other words, it works just like +/// std::ostringstream; also, this makes it convenient to declare a whole array +/// of them at once.) +/// +/// We have to set this up using multiple inheritance, to ensure that the +/// string member has been constructed before raw_string_ostream's constructor +/// is given a pointer to it. +class string_holder { +protected: + std::string S; +}; +class raw_self_contained_string_ostream : private string_holder, + public raw_string_ostream { +public: + raw_self_contained_string_ostream() + : string_holder(), raw_string_ostream(S) {} +}; + +void MveEmitter::EmitHeader(raw_ostream &OS) { + // Accumulate pieces of the header file that will be enabled under various + // different combinations of #ifdef. The index into parts[] is made up of + // the following bit flags. + constexpr unsigned Float = 1; + constexpr unsigned UseUserNamespace = 2; + + constexpr unsigned NumParts = 4; + raw_self_contained_string_ostream parts[NumParts]; + + // Write typedefs for all the required vector types, and a few scalar + // types that don't already have the name we want them to have. + + parts[0] << "typedef uint16_t mve_pred16_t;\n"; + parts[Float] << "typedef __fp16 float16_t;\n" + "typedef float float32_t;\n"; + for (const auto &kv : ScalarTypes) { + const ScalarType *ST = kv.second.get(); + raw_ostream &OS = parts[ST->requiresFloat() ? Float : 0]; + const VectorType *VT = getVectorType(ST); + + OS << "typedef __attribute__((neon_vector_type(" << VT->lanes() << "))) " + << ST->cName() << " " << VT->cName() << ";\n"; + + // Every vector type also comes with a pair of multi-vector types for + // the VLD2 and VLD4 instructions. + for (unsigned n = 2; n <= 4; n += 2) { + const MultiVectorType *MT = getMultiVectorType(n, VT); + OS << "typedef struct { " << VT->cName() << " val[" << n << "]; } " + << MT->cName() << ";\n"; + } + } + parts[0] << "\n"; + parts[Float] << "\n"; + + // Write declarations for all the intrinsics. + + for (const auto &kv : ACLEIntrinsics) { + const ACLEIntrinsic &Int = *kv.second; + + // We generate each intrinsic twice, under its full unambiguous + // name and its shorter polymorphic name (if the latter exists). + for (bool Polymorphic : {false, true}) { + if (Polymorphic && !Int.polymorphic()) + continue; + + // We also generate each intrinsic under a name like __arm_vfooq + // (which is in C language implementation namespace, so it's + // safe to define in any conforming user program) and a shorter + // one like vfooq (which is in user namespace, so a user might + // reasonably have used it for something already). If so, they + // can #define __ARM_MVE_PRESERVE_USER_NAMESPACE before + // including the header, which will suppress the shorter names + // and leave only the implementation-namespace ones. Then they + // have to write __arm_vfooq everywhere, of course. + + for (bool UserNamespace : {false, true}) { + raw_ostream &OS = parts[(Int.requiresFloat() ? Float : 0) | + (UserNamespace ? UseUserNamespace : 0)]; + + // Make the name of the function in this declaration. + + std::string FunctionName = + Polymorphic ? Int.shortName() : Int.fullName(); + if (!UserNamespace) + FunctionName = "__arm_" + FunctionName; + + // Make strings for the types involved in the function's + // prototype. + + std::string RetTypeName = Int.returnType()->cName(); + if (!StringRef(RetTypeName).endswith("*")) + RetTypeName += " "; + + std::vector<std::string> ArgTypeNames; + for (const Type *ArgTypePtr : Int.argTypes()) + ArgTypeNames.push_back(ArgTypePtr->cName()); + std::string ArgTypesString = + join(std::begin(ArgTypeNames), std::end(ArgTypeNames), ", "); + + // Emit the actual declaration. All these functions are + // declared 'static inline' without a body, which is fine + // provided clang recognizes them as builtins, and has the + // effect that this type signature is used in place of the one + // that Builtins.def didn't provide. That's how we can get + // structure types that weren't defined until this header was + // included to be part of the type signature of a builtin that + // was known to clang already. + // + // The declarations use __attribute__(__clang_arm_mve_alias), + // so that each function declared will be recognized as the + // appropriate MVE builtin in spite of its user-facing name. + // + // (That's better than making them all wrapper functions, + // partly because it avoids any compiler error message citing + // the wrapper function definition instead of the user's code, + // and mostly because some MVE intrinsics have arguments + // required to be compile-time constants, and that property + // can't be propagated through a wrapper function. It can be + // propagated through a macro, but macros can't be overloaded + // on argument types very easily - you have to use _Generic, + // which makes error messages very confusing when the user + // gets it wrong.) + // + // Finally, the polymorphic versions of the intrinsics are + // also defined with __attribute__(overloadable), so that when + // the same name is defined with several type signatures, the + // right thing happens. Each one of the overloaded + // declarations is given a different builtin id, which + // has exactly the effect we want: first clang resolves the + // overload to the right function, then it knows which builtin + // it's referring to, and then the Sema checking for that + // builtin can check further things like the constant + // arguments. + // + // One more subtlety is the newline just before the return + // type name. That's a cosmetic tweak to make the error + // messages legible if the user gets the types wrong in a call + // to a polymorphic function: this way, clang will print just + // the _final_ line of each declaration in the header, to show + // the type signatures that would have been legal. So all the + // confusing machinery with __attribute__ is left out of the + // error message, and the user sees something that's more or + // less self-documenting: "here's a list of actually readable + // type signatures for vfooq(), and here's why each one didn't + // match your call". + + OS << "static __inline__ __attribute__((" + << (Polymorphic ? "overloadable, " : "") + << "__clang_arm_mve_alias(__builtin_arm_mve_" << Int.fullName() + << ")))\n" + << RetTypeName << FunctionName << "(" << ArgTypesString << ");\n"; + } + } + } + for (auto &part : parts) + part << "\n"; + + // Now we've finished accumulating bits and pieces into the parts[] array. + // Put it all together to write the final output file. + + OS << "/*===---- arm_mve.h - ARM MVE intrinsics " + "-----------------------------------===\n" + " *\n" + " *\n" + " * Part of the LLVM Project, under the Apache License v2.0 with LLVM " + "Exceptions.\n" + " * See https://llvm.org/LICENSE.txt for license information.\n" + " * SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception\n" + " *\n" + " *===-------------------------------------------------------------" + "----" + "------===\n" + " */\n" + "\n" + "#ifndef __ARM_MVE_H\n" + "#define __ARM_MVE_H\n" + "\n" + "#if !__ARM_FEATURE_MVE\n" + "#error \"MVE support not enabled\"\n" + "#endif\n" + "\n" + "#include <stdint.h>\n" + "\n"; + + for (size_t i = 0; i < NumParts; ++i) { + std::vector<std::string> conditions; + if (i & Float) + conditions.push_back("(__ARM_FEATURE_MVE & 2)"); + if (i & UseUserNamespace) + conditions.push_back("(!defined __ARM_MVE_PRESERVE_USER_NAMESPACE)"); + + std::string condition = + join(std::begin(conditions), std::end(conditions), " && "); + if (!condition.empty()) + OS << "#if " << condition << "\n\n"; + OS << parts[i].str(); + if (!condition.empty()) + OS << "#endif /* " << condition << " */\n\n"; + } + + OS << "#endif /* __ARM_MVE_H */\n"; +} + +void MveEmitter::EmitBuiltinDef(raw_ostream &OS) { + for (const auto &kv : ACLEIntrinsics) { + const ACLEIntrinsic &Int = *kv.second; + OS << "TARGET_HEADER_BUILTIN(__builtin_arm_mve_" << Int.fullName() + << ", \"\", \"n\", \"arm_mve.h\", ALL_LANGUAGES, \"\")\n"; + } + + std::set<std::string> ShortNamesSeen; + + for (const auto &kv : ACLEIntrinsics) { + const ACLEIntrinsic &Int = *kv.second; + if (Int.polymorphic()) { + StringRef Name = Int.shortName(); + if (ShortNamesSeen.find(Name) == ShortNamesSeen.end()) { + OS << "BUILTIN(__builtin_arm_mve_" << Name << ", \"vi.\", \"nt\")\n"; + ShortNamesSeen.insert(Name); + } + } + } +} + +void MveEmitter::EmitBuiltinSema(raw_ostream &OS) { + std::map<std::string, std::set<std::string>> Checks; + + for (const auto &kv : ACLEIntrinsics) { + const ACLEIntrinsic &Int = *kv.second; + std::string Check = Int.genSema(); + if (!Check.empty()) + Checks[Check].insert(Int.fullName()); + } + + for (const auto &kv : Checks) { + for (StringRef Name : kv.second) + OS << "case ARM::BI__builtin_arm_mve_" << Name << ":\n"; + OS << kv.first; + } +} + +// Machinery for the grouping of intrinsics by similar codegen. +// +// The general setup is that 'MergeableGroup' stores the things that a set of +// similarly shaped intrinsics have in common: the text of their code +// generation, and the number and type of their parameter variables. +// MergeableGroup is the key in a std::map whose value is a set of +// OutputIntrinsic, which stores the ways in which a particular intrinsic +// specializes the MergeableGroup's generic description: the function name and +// the _values_ of the parameter variables. + +struct ComparableStringVector : std::vector<std::string> { + // Infrastructure: a derived class of vector<string> which comes with an + // ordering, so that it can be used as a key in maps and an element in sets. + // There's no requirement on the ordering beyond being deterministic. + bool operator<(const ComparableStringVector &rhs) const { + if (size() != rhs.size()) + return size() < rhs.size(); + for (size_t i = 0, e = size(); i < e; ++i) + if ((*this)[i] != rhs[i]) + return (*this)[i] < rhs[i]; + return false; + } +}; + +struct OutputIntrinsic { + const ACLEIntrinsic *Int; + std::string Name; + ComparableStringVector ParamValues; + bool operator<(const OutputIntrinsic &rhs) const { + if (Name != rhs.Name) + return Name < rhs.Name; + return ParamValues < rhs.ParamValues; + } +}; +struct MergeableGroup { + std::string Code; + ComparableStringVector ParamTypes; + bool operator<(const MergeableGroup &rhs) const { + if (Code != rhs.Code) + return Code < rhs.Code; + return ParamTypes < rhs.ParamTypes; + } +}; + +void MveEmitter::EmitBuiltinCG(raw_ostream &OS) { + // Pass 1: generate code for all the intrinsics as if every type or constant + // that can possibly be abstracted out into a parameter variable will be. + // This identifies the sets of intrinsics we'll group together into a single + // piece of code generation. + + std::map<MergeableGroup, std::set<OutputIntrinsic>> MergeableGroupsPrelim; + + for (const auto &kv : ACLEIntrinsics) { + const ACLEIntrinsic &Int = *kv.second; + + MergeableGroup MG; + OutputIntrinsic OI; + + OI.Int = ∬ + OI.Name = Int.fullName(); + CodeGenParamAllocator ParamAllocPrelim{&MG.ParamTypes, &OI.ParamValues}; + raw_string_ostream OS(MG.Code); + Int.genCode(OS, ParamAllocPrelim, 1); + OS.flush(); + + MergeableGroupsPrelim[MG].insert(OI); + } + + // Pass 2: for each of those groups, optimize the parameter variable set by + // eliminating 'parameters' that are the same for all intrinsics in the + // group, and merging together pairs of parameter variables that take the + // same values as each other for all intrinsics in the group. + + std::map<MergeableGroup, std::set<OutputIntrinsic>> MergeableGroups; + + for (const auto &kv : MergeableGroupsPrelim) { + const MergeableGroup &MG = kv.first; + std::vector<int> ParamNumbers; + std::map<ComparableStringVector, int> ParamNumberMap; + + // Loop over the parameters for this group. + for (size_t i = 0, e = MG.ParamTypes.size(); i < e; ++i) { + // Is this parameter the same for all intrinsics in the group? + const OutputIntrinsic &OI_first = *kv.second.begin(); + bool Constant = all_of(kv.second, [&](const OutputIntrinsic &OI) { + return OI.ParamValues[i] == OI_first.ParamValues[i]; + }); + + // If so, record it as -1, meaning 'no parameter variable needed'. Then + // the corresponding call to allocParam in pass 2 will not generate a + // variable at all, and just use the value inline. + if (Constant) { + ParamNumbers.push_back(-1); + continue; + } + + // Otherwise, make a list of the values this parameter takes for each + // intrinsic, and see if that value vector matches anything we already + // have. We also record the parameter type, so that we don't accidentally + // match up two parameter variables with different types. (Not that + // there's much chance of them having textually equivalent values, but in + // _principle_ it could happen.) + ComparableStringVector key; + key.push_back(MG.ParamTypes[i]); + for (const auto &OI : kv.second) + key.push_back(OI.ParamValues[i]); + + auto Found = ParamNumberMap.find(key); + if (Found != ParamNumberMap.end()) { + // Yes, an existing parameter variable can be reused for this. + ParamNumbers.push_back(Found->second); + continue; + } + + // No, we need a new parameter variable. + int ExistingIndex = ParamNumberMap.size(); + ParamNumberMap[key] = ExistingIndex; + ParamNumbers.push_back(ExistingIndex); + } + + // Now we're ready to do the pass 2 code generation, which will emit the + // reduced set of parameter variables we've just worked out. + + for (const auto &OI_prelim : kv.second) { + const ACLEIntrinsic *Int = OI_prelim.Int; + + MergeableGroup MG; + OutputIntrinsic OI; + + OI.Int = OI_prelim.Int; + OI.Name = OI_prelim.Name; + CodeGenParamAllocator ParamAlloc{&MG.ParamTypes, &OI.ParamValues, + &ParamNumbers}; + raw_string_ostream OS(MG.Code); + Int->genCode(OS, ParamAlloc, 2); + OS.flush(); + + MergeableGroups[MG].insert(OI); + } + } + + // Output the actual C++ code. + + for (const auto &kv : MergeableGroups) { + const MergeableGroup &MG = kv.first; + + // List of case statements in the main switch on BuiltinID, and an open + // brace. + const char *prefix = ""; + for (const auto &OI : kv.second) { + OS << prefix << "case ARM::BI__builtin_arm_mve_" << OI.Name << ":"; + prefix = "\n"; + } + OS << " {\n"; + + if (!MG.ParamTypes.empty()) { + // If we've got some parameter variables, then emit their declarations... + for (size_t i = 0, e = MG.ParamTypes.size(); i < e; ++i) { + StringRef Type = MG.ParamTypes[i]; + OS << " " << Type; + if (!Type.endswith("*")) + OS << " "; + OS << " Param" << utostr(i) << ";\n"; + } + + // ... and an inner switch on BuiltinID that will fill them in with each + // individual intrinsic's values. + OS << " switch (BuiltinID) {\n"; + for (const auto &OI : kv.second) { + OS << " case ARM::BI__builtin_arm_mve_" << OI.Name << ":\n"; + for (size_t i = 0, e = MG.ParamTypes.size(); i < e; ++i) + OS << " Param" << utostr(i) << " = " << OI.ParamValues[i] << ";\n"; + OS << " break;\n"; + } + OS << " }\n"; + } + + // And finally, output the code, and close the outer pair of braces. (The + // code will always end with a 'return' statement, so we need not insert a + // 'break' here.) + OS << MG.Code << "}\n"; + } +} + +void MveEmitter::EmitBuiltinAliases(raw_ostream &OS) { + for (const auto &kv : ACLEIntrinsics) { + const ACLEIntrinsic &Int = *kv.second; + OS << "case ARM::BI__builtin_arm_mve_" << Int.fullName() << ":\n" + << " return AliasName == \"" << Int.fullName() << "\""; + if (Int.polymorphic()) + OS << " || AliasName == \"" << Int.shortName() << "\""; + OS << ";\n"; + } +} + +} // namespace + +namespace clang { + +void EmitMveHeader(RecordKeeper &Records, raw_ostream &OS) { + MveEmitter(Records).EmitHeader(OS); +} + +void EmitMveBuiltinDef(RecordKeeper &Records, raw_ostream &OS) { + MveEmitter(Records).EmitBuiltinDef(OS); +} + +void EmitMveBuiltinSema(RecordKeeper &Records, raw_ostream &OS) { + MveEmitter(Records).EmitBuiltinSema(OS); +} + +void EmitMveBuiltinCG(RecordKeeper &Records, raw_ostream &OS) { + MveEmitter(Records).EmitBuiltinCG(OS); +} + +void EmitMveBuiltinAliases(RecordKeeper &Records, raw_ostream &OS) { + MveEmitter(Records).EmitBuiltinAliases(OS); +} + +} // end namespace clang |