summaryrefslogtreecommitdiffstats
path: root/clang/lib/CodeGen/TargetInfo.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'clang/lib/CodeGen/TargetInfo.cpp')
-rw-r--r--clang/lib/CodeGen/TargetInfo.cpp803
1 files changed, 574 insertions, 229 deletions
diff --git a/clang/lib/CodeGen/TargetInfo.cpp b/clang/lib/CodeGen/TargetInfo.cpp
index ba85531dcfe..d2e57ac73be 100644
--- a/clang/lib/CodeGen/TargetInfo.cpp
+++ b/clang/lib/CodeGen/TargetInfo.cpp
@@ -3135,6 +3135,569 @@ PPC64TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
}
//===----------------------------------------------------------------------===//
+// ARM64 ABI Implementation
+//===----------------------------------------------------------------------===//
+
+namespace {
+
+class ARM64ABIInfo : public ABIInfo {
+public:
+ enum ABIKind {
+ AAPCS = 0,
+ DarwinPCS
+ };
+
+private:
+ ABIKind Kind;
+
+public:
+ ARM64ABIInfo(CodeGenTypes &CGT, ABIKind Kind) : ABIInfo(CGT), Kind(Kind) {}
+
+private:
+ ABIKind getABIKind() const { return Kind; }
+ bool isDarwinPCS() const { return Kind == DarwinPCS; }
+
+ ABIArgInfo classifyReturnType(QualType RetTy) const;
+ ABIArgInfo classifyArgumentType(QualType RetTy, unsigned &AllocatedVFP,
+ bool &IsHA, unsigned &AllocatedGPR,
+ bool &IsSmallAggr) const;
+ bool isIllegalVectorType(QualType Ty) const;
+
+ virtual void computeInfo(CGFunctionInfo &FI) const {
+ // To correctly handle Homogeneous Aggregate, we need to keep track of the
+ // number of SIMD and Floating-point registers allocated so far.
+ // If the argument is an HFA or an HVA and there are sufficient unallocated
+ // SIMD and Floating-point registers, then the argument is allocated to SIMD
+ // and Floating-point Registers (with one register per member of the HFA or
+ // HVA). Otherwise, the NSRN is set to 8.
+ unsigned AllocatedVFP = 0;
+ // To correctly handle small aggregates, we need to keep track of the number
+ // of GPRs allocated so far. If the small aggregate can't all fit into
+ // registers, it will be on stack. We don't allow the aggregate to be
+ // partially in registers.
+ unsigned AllocatedGPR = 0;
+ FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
+ for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
+ it != ie; ++it) {
+ unsigned PreAllocation = AllocatedVFP, PreGPR = AllocatedGPR;
+ bool IsHA = false, IsSmallAggr = false;
+ const unsigned NumVFPs = 8;
+ const unsigned NumGPRs = 8;
+ it->info = classifyArgumentType(it->type, AllocatedVFP, IsHA,
+ AllocatedGPR, IsSmallAggr);
+ // If we do not have enough VFP registers for the HA, any VFP registers
+ // that are unallocated are marked as unavailable. To achieve this, we add
+ // padding of (NumVFPs - PreAllocation) floats.
+ if (IsHA && AllocatedVFP > NumVFPs && PreAllocation < NumVFPs) {
+ llvm::Type *PaddingTy = llvm::ArrayType::get(
+ llvm::Type::getFloatTy(getVMContext()), NumVFPs - PreAllocation);
+ if (isDarwinPCS())
+ it->info = ABIArgInfo::getExpandWithPadding(false, PaddingTy);
+ else {
+ // Under AAPCS the 64-bit stack slot alignment means we can't pass HAs
+ // as sequences of floats since they'll get "holes" inserted as
+ // padding by the back end.
+ uint32_t NumStackSlots = getContext().getTypeSize(it->type);
+ NumStackSlots = llvm::RoundUpToAlignment(NumStackSlots, 64) / 64;
+
+ llvm::Type *CoerceTy = llvm::ArrayType::get(
+ llvm::Type::getDoubleTy(getVMContext()), NumStackSlots);
+ it->info = ABIArgInfo::getDirect(CoerceTy, 0, PaddingTy);
+ }
+ }
+ // If we do not have enough GPRs for the small aggregate, any GPR regs
+ // that are unallocated are marked as unavailable.
+ if (IsSmallAggr && AllocatedGPR > NumGPRs && PreGPR < NumGPRs) {
+ llvm::Type *PaddingTy = llvm::ArrayType::get(
+ llvm::Type::getInt32Ty(getVMContext()), NumGPRs - PreGPR);
+ it->info =
+ ABIArgInfo::getDirect(it->info.getCoerceToType(), 0, PaddingTy);
+ }
+ }
+ }
+
+ llvm::Value *EmitDarwinVAArg(llvm::Value *VAListAddr, QualType Ty,
+ CodeGenFunction &CGF) const;
+
+ llvm::Value *EmitAAPCSVAArg(llvm::Value *VAListAddr, QualType Ty,
+ CodeGenFunction &CGF) const;
+
+ virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
+ CodeGenFunction &CGF) const {
+ return isDarwinPCS() ? EmitDarwinVAArg(VAListAddr, Ty, CGF)
+ : EmitAAPCSVAArg(VAListAddr, Ty, CGF);
+ }
+};
+
+class ARM64TargetCodeGenInfo : public TargetCodeGenInfo {
+public:
+ ARM64TargetCodeGenInfo(CodeGenTypes &CGT, ARM64ABIInfo::ABIKind Kind)
+ : TargetCodeGenInfo(new ARM64ABIInfo(CGT, Kind)) {}
+
+ StringRef getARCRetainAutoreleasedReturnValueMarker() const {
+ return "mov\tfp, fp\t\t; marker for objc_retainAutoreleaseReturnValue";
+ }
+
+ int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const { return 31; }
+
+ virtual bool doesReturnSlotInterfereWithArgs() const { return false; }
+};
+}
+
+static bool isHomogeneousAggregate(QualType Ty, const Type *&Base,
+ ASTContext &Context,
+ uint64_t *HAMembers = 0);
+
+ABIArgInfo ARM64ABIInfo::classifyArgumentType(QualType Ty,
+ unsigned &AllocatedVFP,
+ bool &IsHA,
+ unsigned &AllocatedGPR,
+ bool &IsSmallAggr) const {
+ // Handle illegal vector types here.
+ if (isIllegalVectorType(Ty)) {
+ uint64_t Size = getContext().getTypeSize(Ty);
+ if (Size <= 32) {
+ llvm::Type *ResType = llvm::Type::getInt32Ty(getVMContext());
+ AllocatedGPR++;
+ return ABIArgInfo::getDirect(ResType);
+ }
+ if (Size == 64) {
+ llvm::Type *ResType =
+ llvm::VectorType::get(llvm::Type::getInt32Ty(getVMContext()), 2);
+ AllocatedVFP++;
+ return ABIArgInfo::getDirect(ResType);
+ }
+ if (Size == 128) {
+ llvm::Type *ResType =
+ llvm::VectorType::get(llvm::Type::getInt32Ty(getVMContext()), 4);
+ AllocatedVFP++;
+ return ABIArgInfo::getDirect(ResType);
+ }
+ AllocatedGPR++;
+ return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
+ }
+ if (Ty->isVectorType())
+ // Size of a legal vector should be either 64 or 128.
+ AllocatedVFP++;
+ if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
+ if (BT->getKind() == BuiltinType::Half ||
+ BT->getKind() == BuiltinType::Float ||
+ BT->getKind() == BuiltinType::Double ||
+ BT->getKind() == BuiltinType::LongDouble)
+ AllocatedVFP++;
+ }
+
+ if (!isAggregateTypeForABI(Ty)) {
+ // Treat an enum type as its underlying type.
+ if (const EnumType *EnumTy = Ty->getAs<EnumType>())
+ Ty = EnumTy->getDecl()->getIntegerType();
+
+ if (!Ty->isFloatingType() && !Ty->isVectorType()) {
+ int RegsNeeded = getContext().getTypeSize(Ty) > 64 ? 2 : 1;
+ AllocatedGPR += RegsNeeded;
+ }
+ return (Ty->isPromotableIntegerType() && isDarwinPCS()
+ ? ABIArgInfo::getExtend()
+ : ABIArgInfo::getDirect());
+ }
+
+ // Structures with either a non-trivial destructor or a non-trivial
+ // copy constructor are always indirect.
+ if (isRecordReturnIndirect(Ty, getCXXABI())) {
+ AllocatedGPR++;
+ return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
+ }
+
+ // Empty records are always ignored on Darwin, but actually passed in C++ mode
+ // elsewhere for GNU compatibility.
+ if (isEmptyRecord(getContext(), Ty, true)) {
+ if (!getContext().getLangOpts().CPlusPlus || isDarwinPCS())
+ return ABIArgInfo::getIgnore();
+
+ ++AllocatedGPR;
+ return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
+ }
+
+ // Homogeneous Floating-point Aggregates (HFAs) need to be expanded.
+ const Type *Base = 0;
+ uint64_t Members = 0;
+ if (isHomogeneousAggregate(Ty, Base, getContext(), &Members)) {
+ AllocatedVFP += Members;
+ IsHA = true;
+ return ABIArgInfo::getExpand();
+ }
+
+ // Aggregates <= 16 bytes are passed directly in registers or on the stack.
+ uint64_t Size = getContext().getTypeSize(Ty);
+ if (Size <= 128) {
+ Size = 64 * ((Size + 63) / 64); // round up to multiple of 8 bytes
+ AllocatedGPR += Size / 64;
+ IsSmallAggr = true;
+ // We use a pair of i64 for 16-byte aggregate with 8-byte alignment.
+ // For aggregates with 16-byte alignment, we use i128.
+ if (getContext().getTypeAlign(Ty) < 128 && Size == 128) {
+ llvm::Type *BaseTy = llvm::Type::getInt64Ty(getVMContext());
+ return ABIArgInfo::getDirect(llvm::ArrayType::get(BaseTy, Size / 64));
+ }
+ return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Size));
+ }
+
+ AllocatedGPR++;
+ return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
+}
+
+ABIArgInfo ARM64ABIInfo::classifyReturnType(QualType RetTy) const {
+ if (RetTy->isVoidType())
+ return ABIArgInfo::getIgnore();
+
+ // Large vector types should be returned via memory.
+ if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 128)
+ return ABIArgInfo::getIndirect(0);
+
+ if (!isAggregateTypeForABI(RetTy)) {
+ // Treat an enum type as its underlying type.
+ if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
+ RetTy = EnumTy->getDecl()->getIntegerType();
+
+ return (RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend()
+ : ABIArgInfo::getDirect());
+ }
+
+ // Structures with either a non-trivial destructor or a non-trivial
+ // copy constructor are always indirect.
+ if (isRecordReturnIndirect(RetTy, getCXXABI()))
+ return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
+
+ if (isEmptyRecord(getContext(), RetTy, true))
+ return ABIArgInfo::getIgnore();
+
+ const Type *Base = 0;
+ if (isHomogeneousAggregate(RetTy, Base, getContext()))
+ // Homogeneous Floating-point Aggregates (HFAs) are returned directly.
+ return ABIArgInfo::getDirect();
+
+ // Aggregates <= 16 bytes are returned directly in registers or on the stack.
+ uint64_t Size = getContext().getTypeSize(RetTy);
+ if (Size <= 128) {
+ Size = 64 * ((Size + 63) / 64); // round up to multiple of 8 bytes
+ return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Size));
+ }
+
+ return ABIArgInfo::getIndirect(0);
+}
+
+/// isIllegalVectorType - check whether the vector type is legal for ARM64.
+bool ARM64ABIInfo::isIllegalVectorType(QualType Ty) const {
+ if (const VectorType *VT = Ty->getAs<VectorType>()) {
+ // Check whether VT is legal.
+ unsigned NumElements = VT->getNumElements();
+ uint64_t Size = getContext().getTypeSize(VT);
+ // NumElements should be power of 2 between 1 and 16.
+ if ((NumElements & (NumElements - 1)) != 0 || NumElements > 16)
+ return true;
+ return Size != 64 && (Size != 128 || NumElements == 1);
+ }
+ return false;
+}
+
+static llvm::Value *EmitAArch64VAArg(llvm::Value *VAListAddr, QualType Ty,
+ int AllocatedGPR, int AllocatedVFP,
+ bool IsIndirect, CodeGenFunction &CGF) {
+ // The AArch64 va_list type and handling is specified in the Procedure Call
+ // Standard, section B.4:
+ //
+ // struct {
+ // void *__stack;
+ // void *__gr_top;
+ // void *__vr_top;
+ // int __gr_offs;
+ // int __vr_offs;
+ // };
+
+ llvm::BasicBlock *MaybeRegBlock = CGF.createBasicBlock("vaarg.maybe_reg");
+ llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
+ llvm::BasicBlock *OnStackBlock = CGF.createBasicBlock("vaarg.on_stack");
+ llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
+ auto &Ctx = CGF.getContext();
+
+ llvm::Value *reg_offs_p = 0, *reg_offs = 0;
+ int reg_top_index;
+ int RegSize;
+ if (AllocatedGPR) {
+ assert(!AllocatedVFP && "Arguments never split between int & VFP regs");
+ // 3 is the field number of __gr_offs
+ reg_offs_p = CGF.Builder.CreateStructGEP(VAListAddr, 3, "gr_offs_p");
+ reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "gr_offs");
+ reg_top_index = 1; // field number for __gr_top
+ RegSize = 8 * AllocatedGPR;
+ } else {
+ assert(!AllocatedGPR && "Argument must go in VFP or int regs");
+ // 4 is the field number of __vr_offs.
+ reg_offs_p = CGF.Builder.CreateStructGEP(VAListAddr, 4, "vr_offs_p");
+ reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "vr_offs");
+ reg_top_index = 2; // field number for __vr_top
+ RegSize = 16 * AllocatedVFP;
+ }
+
+ //=======================================
+ // Find out where argument was passed
+ //=======================================
+
+ // If reg_offs >= 0 we're already using the stack for this type of
+ // argument. We don't want to keep updating reg_offs (in case it overflows,
+ // though anyone passing 2GB of arguments, each at most 16 bytes, deserves
+ // whatever they get).
+ llvm::Value *UsingStack = 0;
+ UsingStack = CGF.Builder.CreateICmpSGE(
+ reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, 0));
+
+ CGF.Builder.CreateCondBr(UsingStack, OnStackBlock, MaybeRegBlock);
+
+ // Otherwise, at least some kind of argument could go in these registers, the
+ // quesiton is whether this particular type is too big.
+ CGF.EmitBlock(MaybeRegBlock);
+
+ // Integer arguments may need to correct register alignment (for example a
+ // "struct { __int128 a; };" gets passed in x_2N, x_{2N+1}). In this case we
+ // align __gr_offs to calculate the potential address.
+ if (AllocatedGPR && !IsIndirect && Ctx.getTypeAlign(Ty) > 64) {
+ int Align = Ctx.getTypeAlign(Ty) / 8;
+
+ reg_offs = CGF.Builder.CreateAdd(
+ reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, Align - 1),
+ "align_regoffs");
+ reg_offs = CGF.Builder.CreateAnd(
+ reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, -Align),
+ "aligned_regoffs");
+ }
+
+ // Update the gr_offs/vr_offs pointer for next call to va_arg on this va_list.
+ llvm::Value *NewOffset = 0;
+ NewOffset = CGF.Builder.CreateAdd(
+ reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, RegSize), "new_reg_offs");
+ CGF.Builder.CreateStore(NewOffset, reg_offs_p);
+
+ // Now we're in a position to decide whether this argument really was in
+ // registers or not.
+ llvm::Value *InRegs = 0;
+ InRegs = CGF.Builder.CreateICmpSLE(
+ NewOffset, llvm::ConstantInt::get(CGF.Int32Ty, 0), "inreg");
+
+ CGF.Builder.CreateCondBr(InRegs, InRegBlock, OnStackBlock);
+
+ //=======================================
+ // Argument was in registers
+ //=======================================
+
+ // Now we emit the code for if the argument was originally passed in
+ // registers. First start the appropriate block:
+ CGF.EmitBlock(InRegBlock);
+
+ llvm::Value *reg_top_p = 0, *reg_top = 0;
+ reg_top_p =
+ CGF.Builder.CreateStructGEP(VAListAddr, reg_top_index, "reg_top_p");
+ reg_top = CGF.Builder.CreateLoad(reg_top_p, "reg_top");
+ llvm::Value *BaseAddr = CGF.Builder.CreateGEP(reg_top, reg_offs);
+ llvm::Value *RegAddr = 0;
+ llvm::Type *MemTy = llvm::PointerType::getUnqual(CGF.ConvertTypeForMem(Ty));
+
+ if (IsIndirect) {
+ // If it's been passed indirectly (actually a struct), whatever we find from
+ // stored registers or on the stack will actually be a struct **.
+ MemTy = llvm::PointerType::getUnqual(MemTy);
+ }
+
+ const Type *Base = 0;
+ uint64_t NumMembers;
+ if (isHomogeneousAggregate(Ty, Base, Ctx, &NumMembers) && NumMembers > 1) {
+ // Homogeneous aggregates passed in registers will have their elements split
+ // and stored 16-bytes apart regardless of size (they're notionally in qN,
+ // qN+1, ...). We reload and store into a temporary local variable
+ // contiguously.
+ assert(!IsIndirect && "Homogeneous aggregates should be passed directly");
+ llvm::Type *BaseTy = CGF.ConvertType(QualType(Base, 0));
+ llvm::Type *HFATy = llvm::ArrayType::get(BaseTy, NumMembers);
+ llvm::Value *Tmp = CGF.CreateTempAlloca(HFATy);
+ int Offset = 0;
+
+ if (CGF.CGM.getDataLayout().isBigEndian() && Ctx.getTypeSize(Base) < 128)
+ Offset = 16 - Ctx.getTypeSize(Base) / 8;
+ for (unsigned i = 0; i < NumMembers; ++i) {
+ llvm::Value *BaseOffset =
+ llvm::ConstantInt::get(CGF.Int32Ty, 16 * i + Offset);
+ llvm::Value *LoadAddr = CGF.Builder.CreateGEP(BaseAddr, BaseOffset);
+ LoadAddr = CGF.Builder.CreateBitCast(
+ LoadAddr, llvm::PointerType::getUnqual(BaseTy));
+ llvm::Value *StoreAddr = CGF.Builder.CreateStructGEP(Tmp, i);
+
+ llvm::Value *Elem = CGF.Builder.CreateLoad(LoadAddr);
+ CGF.Builder.CreateStore(Elem, StoreAddr);
+ }
+
+ RegAddr = CGF.Builder.CreateBitCast(Tmp, MemTy);
+ } else {
+ // Otherwise the object is contiguous in memory
+ unsigned BeAlign = reg_top_index == 2 ? 16 : 8;
+ if (CGF.CGM.getDataLayout().isBigEndian() && !isAggregateTypeForABI(Ty) &&
+ Ctx.getTypeSize(Ty) < (BeAlign * 8)) {
+ int Offset = BeAlign - Ctx.getTypeSize(Ty) / 8;
+ BaseAddr = CGF.Builder.CreatePtrToInt(BaseAddr, CGF.Int64Ty);
+
+ BaseAddr = CGF.Builder.CreateAdd(
+ BaseAddr, llvm::ConstantInt::get(CGF.Int64Ty, Offset), "align_be");
+
+ BaseAddr = CGF.Builder.CreateIntToPtr(BaseAddr, CGF.Int8PtrTy);
+ }
+
+ RegAddr = CGF.Builder.CreateBitCast(BaseAddr, MemTy);
+ }
+
+ CGF.EmitBranch(ContBlock);
+
+ //=======================================
+ // Argument was on the stack
+ //=======================================
+ CGF.EmitBlock(OnStackBlock);
+
+ llvm::Value *stack_p = 0, *OnStackAddr = 0;
+ stack_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, "stack_p");
+ OnStackAddr = CGF.Builder.CreateLoad(stack_p, "stack");
+
+ // Again, stack arguments may need realigmnent. In this case both integer and
+ // floating-point ones might be affected.
+ if (!IsIndirect && Ctx.getTypeAlign(Ty) > 64) {
+ int Align = Ctx.getTypeAlign(Ty) / 8;
+
+ OnStackAddr = CGF.Builder.CreatePtrToInt(OnStackAddr, CGF.Int64Ty);
+
+ OnStackAddr = CGF.Builder.CreateAdd(
+ OnStackAddr, llvm::ConstantInt::get(CGF.Int64Ty, Align - 1),
+ "align_stack");
+ OnStackAddr = CGF.Builder.CreateAnd(
+ OnStackAddr, llvm::ConstantInt::get(CGF.Int64Ty, -Align),
+ "align_stack");
+
+ OnStackAddr = CGF.Builder.CreateIntToPtr(OnStackAddr, CGF.Int8PtrTy);
+ }
+
+ uint64_t StackSize;
+ if (IsIndirect)
+ StackSize = 8;
+ else
+ StackSize = Ctx.getTypeSize(Ty) / 8;
+
+ // All stack slots are 8 bytes
+ StackSize = llvm::RoundUpToAlignment(StackSize, 8);
+
+ llvm::Value *StackSizeC = llvm::ConstantInt::get(CGF.Int32Ty, StackSize);
+ llvm::Value *NewStack =
+ CGF.Builder.CreateGEP(OnStackAddr, StackSizeC, "new_stack");
+
+ // Write the new value of __stack for the next call to va_arg
+ CGF.Builder.CreateStore(NewStack, stack_p);
+
+ if (CGF.CGM.getDataLayout().isBigEndian() && !isAggregateTypeForABI(Ty) &&
+ Ctx.getTypeSize(Ty) < 64) {
+ int Offset = 8 - Ctx.getTypeSize(Ty) / 8;
+ OnStackAddr = CGF.Builder.CreatePtrToInt(OnStackAddr, CGF.Int64Ty);
+
+ OnStackAddr = CGF.Builder.CreateAdd(
+ OnStackAddr, llvm::ConstantInt::get(CGF.Int64Ty, Offset), "align_be");
+
+ OnStackAddr = CGF.Builder.CreateIntToPtr(OnStackAddr, CGF.Int8PtrTy);
+ }
+
+ OnStackAddr = CGF.Builder.CreateBitCast(OnStackAddr, MemTy);
+
+ CGF.EmitBranch(ContBlock);
+
+ //=======================================
+ // Tidy up
+ //=======================================
+ CGF.EmitBlock(ContBlock);
+
+ llvm::PHINode *ResAddr = CGF.Builder.CreatePHI(MemTy, 2, "vaarg.addr");
+ ResAddr->addIncoming(RegAddr, InRegBlock);
+ ResAddr->addIncoming(OnStackAddr, OnStackBlock);
+
+ if (IsIndirect)
+ return CGF.Builder.CreateLoad(ResAddr, "vaarg.addr");
+
+ return ResAddr;
+}
+
+llvm::Value *ARM64ABIInfo::EmitAAPCSVAArg(llvm::Value *VAListAddr, QualType Ty,
+ CodeGenFunction &CGF) const {
+
+ unsigned AllocatedGPR = 0, AllocatedVFP = 0;
+ bool IsHA = false, IsSmallAggr = false;
+ ABIArgInfo AI =
+ classifyArgumentType(Ty, AllocatedVFP, IsHA, AllocatedGPR, IsSmallAggr);
+
+ return EmitAArch64VAArg(VAListAddr, Ty, AllocatedGPR, AllocatedVFP,
+ AI.isIndirect(), CGF);
+}
+
+llvm::Value *ARM64ABIInfo::EmitDarwinVAArg(llvm::Value *VAListAddr, QualType Ty,
+ CodeGenFunction &CGF) const {
+ // We do not support va_arg for aggregates or illegal vector types.
+ // Lower VAArg here for these cases and use the LLVM va_arg instruction for
+ // other cases.
+ if (!isAggregateTypeForABI(Ty) && !isIllegalVectorType(Ty))
+ return 0;
+
+ uint64_t Size = CGF.getContext().getTypeSize(Ty) / 8;
+ uint64_t Align = CGF.getContext().getTypeAlign(Ty) / 8;
+
+ const Type *Base = 0;
+ bool isHA = isHomogeneousAggregate(Ty, Base, getContext());
+
+ bool isIndirect = false;
+ // Arguments bigger than 16 bytes which aren't homogeneous aggregates should
+ // be passed indirectly.
+ if (Size > 16 && !isHA) {
+ isIndirect = true;
+ Size = 8;
+ Align = 8;
+ }
+
+ llvm::Type *BP = llvm::Type::getInt8PtrTy(CGF.getLLVMContext());
+ llvm::Type *BPP = llvm::PointerType::getUnqual(BP);
+
+ CGBuilderTy &Builder = CGF.Builder;
+ llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap");
+ llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
+
+ if (isEmptyRecord(getContext(), Ty, true)) {
+ // These are ignored for parameter passing purposes.
+ llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
+ return Builder.CreateBitCast(Addr, PTy);
+ }
+
+ const uint64_t MinABIAlign = 8;
+ if (Align > MinABIAlign) {
+ llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, Align - 1);
+ Addr = Builder.CreateGEP(Addr, Offset);
+ llvm::Value *AsInt = Builder.CreatePtrToInt(Addr, CGF.Int64Ty);
+ llvm::Value *Mask = llvm::ConstantInt::get(CGF.Int64Ty, ~(Align - 1));
+ llvm::Value *Aligned = Builder.CreateAnd(AsInt, Mask);
+ Addr = Builder.CreateIntToPtr(Aligned, BP, "ap.align");
+ }
+
+ uint64_t Offset = llvm::RoundUpToAlignment(Size, MinABIAlign);
+ llvm::Value *NextAddr = Builder.CreateGEP(
+ Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset), "ap.next");
+ Builder.CreateStore(NextAddr, VAListAddrAsBPP);
+
+ if (isIndirect)
+ Addr = Builder.CreateLoad(Builder.CreateBitCast(Addr, BPP));
+ llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
+ llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy);
+
+ return AddrTyped;
+}
+
+//===----------------------------------------------------------------------===//
// ARM ABI Implementation
//===----------------------------------------------------------------------===//
@@ -3372,8 +3935,7 @@ void ARMABIInfo::setRuntimeCC() {
/// contained in the type is returned through it; this is used for the
/// recursive calls that check aggregate component types.
static bool isHomogeneousAggregate(QualType Ty, const Type *&Base,
- ASTContext &Context,
- uint64_t *HAMembers = 0) {
+ ASTContext &Context, uint64_t *HAMembers) {
uint64_t Members = 0;
if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) {
if (!isHomogeneousAggregate(AT->getElementType(), Base, Context, &Members))
@@ -4168,237 +4730,12 @@ ABIArgInfo AArch64ABIInfo::classifyGenericType(QualType Ty,
llvm::Value *AArch64ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
CodeGenFunction &CGF) const {
- // The AArch64 va_list type and handling is specified in the Procedure Call
- // Standard, section B.4:
- //
- // struct {
- // void *__stack;
- // void *__gr_top;
- // void *__vr_top;
- // int __gr_offs;
- // int __vr_offs;
- // };
-
int FreeIntRegs = 8, FreeVFPRegs = 8;
Ty = CGF.getContext().getCanonicalType(Ty);
ABIArgInfo AI = classifyGenericType(Ty, FreeIntRegs, FreeVFPRegs);
- llvm::BasicBlock *MaybeRegBlock = CGF.createBasicBlock("vaarg.maybe_reg");
- llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
- llvm::BasicBlock *OnStackBlock = CGF.createBasicBlock("vaarg.on_stack");
- llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
-
- llvm::Value *reg_offs_p = 0, *reg_offs = 0;
- int reg_top_index;
- int RegSize;
- if (FreeIntRegs < 8) {
- assert(FreeVFPRegs == 8 && "Arguments never split between int & VFP regs");
- // 3 is the field number of __gr_offs
- reg_offs_p = CGF.Builder.CreateStructGEP(VAListAddr, 3, "gr_offs_p");
- reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "gr_offs");
- reg_top_index = 1; // field number for __gr_top
- RegSize = 8 * (8 - FreeIntRegs);
- } else {
- assert(FreeVFPRegs < 8 && "Argument must go in VFP or int regs");
- // 4 is the field number of __vr_offs.
- reg_offs_p = CGF.Builder.CreateStructGEP(VAListAddr, 4, "vr_offs_p");
- reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "vr_offs");
- reg_top_index = 2; // field number for __vr_top
- RegSize = 16 * (8 - FreeVFPRegs);
- }
-
- //=======================================
- // Find out where argument was passed
- //=======================================
-
- // If reg_offs >= 0 we're already using the stack for this type of
- // argument. We don't want to keep updating reg_offs (in case it overflows,
- // though anyone passing 2GB of arguments, each at most 16 bytes, deserves
- // whatever they get).
- llvm::Value *UsingStack = 0;
- UsingStack = CGF.Builder.CreateICmpSGE(reg_offs,
- llvm::ConstantInt::get(CGF.Int32Ty, 0));
-
- CGF.Builder.CreateCondBr(UsingStack, OnStackBlock, MaybeRegBlock);
-
- // Otherwise, at least some kind of argument could go in these registers, the
- // quesiton is whether this particular type is too big.
- CGF.EmitBlock(MaybeRegBlock);
-
- // Integer arguments may need to correct register alignment (for example a
- // "struct { __int128 a; };" gets passed in x_2N, x_{2N+1}). In this case we
- // align __gr_offs to calculate the potential address.
- if (FreeIntRegs < 8 && AI.isDirect() && getContext().getTypeAlign(Ty) > 64) {
- int Align = getContext().getTypeAlign(Ty) / 8;
-
- reg_offs = CGF.Builder.CreateAdd(reg_offs,
- llvm::ConstantInt::get(CGF.Int32Ty, Align - 1),
- "align_regoffs");
- reg_offs = CGF.Builder.CreateAnd(reg_offs,
- llvm::ConstantInt::get(CGF.Int32Ty, -Align),
- "aligned_regoffs");
- }
-
- // Update the gr_offs/vr_offs pointer for next call to va_arg on this va_list.
- llvm::Value *NewOffset = 0;
- NewOffset = CGF.Builder.CreateAdd(reg_offs,
- llvm::ConstantInt::get(CGF.Int32Ty, RegSize),
- "new_reg_offs");
- CGF.Builder.CreateStore(NewOffset, reg_offs_p);
-
- // Now we're in a position to decide whether this argument really was in
- // registers or not.
- llvm::Value *InRegs = 0;
- InRegs = CGF.Builder.CreateICmpSLE(NewOffset,
- llvm::ConstantInt::get(CGF.Int32Ty, 0),
- "inreg");
-
- CGF.Builder.CreateCondBr(InRegs, InRegBlock, OnStackBlock);
-
- //=======================================
- // Argument was in registers
- //=======================================
-
- // Now we emit the code for if the argument was originally passed in
- // registers. First start the appropriate block:
- CGF.EmitBlock(InRegBlock);
-
- llvm::Value *reg_top_p = 0, *reg_top = 0;
- reg_top_p = CGF.Builder.CreateStructGEP(VAListAddr, reg_top_index, "reg_top_p");
- reg_top = CGF.Builder.CreateLoad(reg_top_p, "reg_top");
- llvm::Value *BaseAddr = CGF.Builder.CreateGEP(reg_top, reg_offs);
- llvm::Value *RegAddr = 0;
- llvm::Type *MemTy = llvm::PointerType::getUnqual(CGF.ConvertTypeForMem(Ty));
-
- if (!AI.isDirect()) {
- // If it's been passed indirectly (actually a struct), whatever we find from
- // stored registers or on the stack will actually be a struct **.
- MemTy = llvm::PointerType::getUnqual(MemTy);
- }
-
- const Type *Base = 0;
- uint64_t NumMembers;
- if (isHomogeneousAggregate(Ty, Base, getContext(), &NumMembers)
- && NumMembers > 1) {
- // Homogeneous aggregates passed in registers will have their elements split
- // and stored 16-bytes apart regardless of size (they're notionally in qN,
- // qN+1, ...). We reload and store into a temporary local variable
- // contiguously.
- assert(AI.isDirect() && "Homogeneous aggregates should be passed directly");
- llvm::Type *BaseTy = CGF.ConvertType(QualType(Base, 0));
- llvm::Type *HFATy = llvm::ArrayType::get(BaseTy, NumMembers);
- llvm::Value *Tmp = CGF.CreateTempAlloca(HFATy);
- int Offset = 0;
-
- if (CGF.CGM.getDataLayout().isBigEndian() &&
- getContext().getTypeSize(Base) < 128)
- Offset = 16 - getContext().getTypeSize(Base)/8;
- for (unsigned i = 0; i < NumMembers; ++i) {
- llvm::Value *BaseOffset = llvm::ConstantInt::get(CGF.Int32Ty,
- 16 * i + Offset);
- llvm::Value *LoadAddr = CGF.Builder.CreateGEP(BaseAddr, BaseOffset);
- LoadAddr = CGF.Builder.CreateBitCast(LoadAddr,
- llvm::PointerType::getUnqual(BaseTy));
- llvm::Value *StoreAddr = CGF.Builder.CreateStructGEP(Tmp, i);
-
- llvm::Value *Elem = CGF.Builder.CreateLoad(LoadAddr);
- CGF.Builder.CreateStore(Elem, StoreAddr);
- }
-
- RegAddr = CGF.Builder.CreateBitCast(Tmp, MemTy);
- } else {
- // Otherwise the object is contiguous in memory
- unsigned BeAlign = reg_top_index == 2 ? 16 : 8;
- if (CGF.CGM.getDataLayout().isBigEndian() && !isAggregateTypeForABI(Ty) &&
- getContext().getTypeSize(Ty) < (BeAlign * 8)) {
- int Offset = BeAlign - getContext().getTypeSize(Ty)/8;
- BaseAddr = CGF.Builder.CreatePtrToInt(BaseAddr, CGF.Int64Ty);
-
- BaseAddr = CGF.Builder.CreateAdd(BaseAddr,
- llvm::ConstantInt::get(CGF.Int64Ty,
- Offset),
- "align_be");
-
- BaseAddr = CGF.Builder.CreateIntToPtr(BaseAddr, CGF.Int8PtrTy);
- }
-
- RegAddr = CGF.Builder.CreateBitCast(BaseAddr, MemTy);
- }
-
- CGF.EmitBranch(ContBlock);
-
- //=======================================
- // Argument was on the stack
- //=======================================
- CGF.EmitBlock(OnStackBlock);
-
- llvm::Value *stack_p = 0, *OnStackAddr = 0;
- stack_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, "stack_p");
- OnStackAddr = CGF.Builder.CreateLoad(stack_p, "stack");
-
- // Again, stack arguments may need realigmnent. In this case both integer and
- // floating-point ones might be affected.
- if (AI.isDirect() && getContext().getTypeAlign(Ty) > 64) {
- int Align = getContext().getTypeAlign(Ty) / 8;
-
- OnStackAddr = CGF.Builder.CreatePtrToInt(OnStackAddr, CGF.Int64Ty);
-
- OnStackAddr = CGF.Builder.CreateAdd(OnStackAddr,
- llvm::ConstantInt::get(CGF.Int64Ty, Align - 1),
- "align_stack");
- OnStackAddr = CGF.Builder.CreateAnd(OnStackAddr,
- llvm::ConstantInt::get(CGF.Int64Ty, -Align),
- "align_stack");
-
- OnStackAddr = CGF.Builder.CreateIntToPtr(OnStackAddr, CGF.Int8PtrTy);
- }
-
- uint64_t StackSize;
- if (AI.isDirect())
- StackSize = getContext().getTypeSize(Ty) / 8;
- else
- StackSize = 8;
-
- // All stack slots are 8 bytes
- StackSize = llvm::RoundUpToAlignment(StackSize, 8);
-
- llvm::Value *StackSizeC = llvm::ConstantInt::get(CGF.Int32Ty, StackSize);
- llvm::Value *NewStack = CGF.Builder.CreateGEP(OnStackAddr, StackSizeC,
- "new_stack");
-
- // Write the new value of __stack for the next call to va_arg
- CGF.Builder.CreateStore(NewStack, stack_p);
-
- if (CGF.CGM.getDataLayout().isBigEndian() && !isAggregateTypeForABI(Ty) &&
- getContext().getTypeSize(Ty) < 64 ) {
- int Offset = 8 - getContext().getTypeSize(Ty)/8;
- OnStackAddr = CGF.Builder.CreatePtrToInt(OnStackAddr, CGF.Int64Ty);
-
- OnStackAddr = CGF.Builder.CreateAdd(OnStackAddr,
- llvm::ConstantInt::get(CGF.Int64Ty,
- Offset),
- "align_be");
-
- OnStackAddr = CGF.Builder.CreateIntToPtr(OnStackAddr, CGF.Int8PtrTy);
- }
-
- OnStackAddr = CGF.Builder.CreateBitCast(OnStackAddr, MemTy);
-
- CGF.EmitBranch(ContBlock);
-
- //=======================================
- // Tidy up
- //=======================================
- CGF.EmitBlock(ContBlock);
-
- llvm::PHINode *ResAddr = CGF.Builder.CreatePHI(MemTy, 2, "vaarg.addr");
- ResAddr->addIncoming(RegAddr, InRegBlock);
- ResAddr->addIncoming(OnStackAddr, OnStackBlock);
-
- if (AI.isDirect())
- return ResAddr;
-
- return CGF.Builder.CreateLoad(ResAddr, "vaarg.addr");
+ return EmitAArch64VAArg(VAListAddr, Ty, 8 - FreeIntRegs, 8 - FreeVFPRegs,
+ AI.isIndirect(), CGF);
}
//===----------------------------------------------------------------------===//
@@ -5801,6 +6138,14 @@ const TargetCodeGenInfo &CodeGenModule::getTargetCodeGenInfo() {
case llvm::Triple::mips64el:
return *(TheTargetCodeGenInfo = new MIPSTargetCodeGenInfo(Types, false));
+ case llvm::Triple::arm64: {
+ ARM64ABIInfo::ABIKind Kind = ARM64ABIInfo::AAPCS;
+ if (strcmp(getTarget().getABI(), "darwinpcs") == 0)
+ Kind = ARM64ABIInfo::DarwinPCS;
+
+ return *(TheTargetCodeGenInfo = new ARM64TargetCodeGenInfo(Types, Kind));
+ }
+
case llvm::Triple::aarch64:
case llvm::Triple::aarch64_be:
return *(TheTargetCodeGenInfo = new AArch64TargetCodeGenInfo(Types));
OpenPOWER on IntegriCloud