summaryrefslogtreecommitdiffstats
path: root/clang/lib/CodeGen/CGOpenMPRuntimeNVPTX.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'clang/lib/CodeGen/CGOpenMPRuntimeNVPTX.cpp')
-rw-r--r--clang/lib/CodeGen/CGOpenMPRuntimeNVPTX.cpp1008
1 files changed, 1008 insertions, 0 deletions
diff --git a/clang/lib/CodeGen/CGOpenMPRuntimeNVPTX.cpp b/clang/lib/CodeGen/CGOpenMPRuntimeNVPTX.cpp
index 2f6546514c2..87a8e625e50 100644
--- a/clang/lib/CodeGen/CGOpenMPRuntimeNVPTX.cpp
+++ b/clang/lib/CodeGen/CGOpenMPRuntimeNVPTX.cpp
@@ -44,6 +44,20 @@ enum OpenMPRTLFunctionNVPTX {
/// Call to void __kmpc_end_serialized_parallel(ident_t *loc, kmp_int32
/// global_tid);
OMPRTL_NVPTX__kmpc_end_serialized_parallel,
+ /// \brief Call to int32_t __kmpc_shuffle_int32(int32_t element,
+ /// int16_t lane_offset, int16_t warp_size);
+ OMPRTL_NVPTX__kmpc_shuffle_int32,
+ /// \brief Call to int64_t __kmpc_shuffle_int64(int64_t element,
+ /// int16_t lane_offset, int16_t warp_size);
+ OMPRTL_NVPTX__kmpc_shuffle_int64,
+ /// \brief Call to __kmpc_nvptx_parallel_reduce_nowait(kmp_int32
+ /// global_tid, kmp_int32 num_vars, size_t reduce_size, void* reduce_data,
+ /// void (*kmp_ShuffleReductFctPtr)(void *rhsData, int16_t lane_id, int16_t
+ /// lane_offset, int16_t shortCircuit),
+ /// void (*kmp_InterWarpCopyFctPtr)(void* src, int32_t warp_num));
+ OMPRTL_NVPTX__kmpc_parallel_reduce_nowait,
+ /// \brief Call to __kmpc_nvptx_end_reduce_nowait(int32_t global_tid);
+ OMPRTL_NVPTX__kmpc_end_reduce_nowait
};
/// Pre(post)-action for different OpenMP constructs specialized for NVPTX.
@@ -100,6 +114,25 @@ public:
}
~ExecutionModeRAII() { Mode = SavedMode; }
};
+
+/// GPU Configuration: This information can be derived from cuda registers,
+/// however, providing compile time constants helps generate more efficient
+/// code. For all practical purposes this is fine because the configuration
+/// is the same for all known NVPTX architectures.
+enum MachineConfiguration : unsigned {
+ WarpSize = 32,
+ /// Number of bits required to represent a lane identifier, which is
+ /// computed as log_2(WarpSize).
+ LaneIDBits = 5,
+ LaneIDMask = WarpSize - 1,
+};
+
+enum NamedBarrier : unsigned {
+ /// Synchronize on this barrier #ID using a named barrier primitive.
+ /// Only the subset of active threads in a parallel region arrive at the
+ /// barrier.
+ NB_Parallel = 1,
+};
} // anonymous namespace
/// Get the GPU warp size.
@@ -120,6 +153,23 @@ static llvm::Value *getNVPTXThreadID(CodeGenFunction &CGF) {
llvm::None, "nvptx_tid");
}
+/// Get the id of the warp in the block.
+/// We assume that the warp size is 32, which is always the case
+/// on the NVPTX device, to generate more efficient code.
+static llvm::Value *getNVPTXWarpID(CodeGenFunction &CGF) {
+ CGBuilderTy &Bld = CGF.Builder;
+ return Bld.CreateAShr(getNVPTXThreadID(CGF), LaneIDBits, "nvptx_warp_id");
+}
+
+/// Get the id of the current lane in the Warp.
+/// We assume that the warp size is 32, which is always the case
+/// on the NVPTX device, to generate more efficient code.
+static llvm::Value *getNVPTXLaneID(CodeGenFunction &CGF) {
+ CGBuilderTy &Bld = CGF.Builder;
+ return Bld.CreateAnd(getNVPTXThreadID(CGF), Bld.getInt32(LaneIDMask),
+ "nvptx_lane_id");
+}
+
/// Get the maximum number of threads in a block of the GPU.
static llvm::Value *getNVPTXNumThreads(CodeGenFunction &CGF) {
CGBuilderTy &Bld = CGF.Builder;
@@ -136,9 +186,25 @@ static void getNVPTXCTABarrier(CodeGenFunction &CGF) {
&CGF.CGM.getModule(), llvm::Intrinsic::nvvm_barrier0));
}
+/// Get barrier #ID to synchronize selected (multiple of warp size) threads in
+/// a CTA.
+static void getNVPTXBarrier(CodeGenFunction &CGF, int ID,
+ llvm::Value *NumThreads) {
+ CGBuilderTy &Bld = CGF.Builder;
+ llvm::Value *Args[] = {Bld.getInt32(ID), NumThreads};
+ Bld.CreateCall(llvm::Intrinsic::getDeclaration(&CGF.CGM.getModule(),
+ llvm::Intrinsic::nvvm_barrier),
+ Args);
+}
+
/// Synchronize all GPU threads in a block.
static void syncCTAThreads(CodeGenFunction &CGF) { getNVPTXCTABarrier(CGF); }
+/// Synchronize worker threads in a parallel region.
+static void syncParallelThreads(CodeGenFunction &CGF, llvm::Value *NumThreads) {
+ return getNVPTXBarrier(CGF, NB_Parallel, NumThreads);
+}
+
/// Get the value of the thread_limit clause in the teams directive.
/// For the 'generic' execution mode, the runtime encodes thread_limit in
/// the launch parameters, always starting thread_limit+warpSize threads per
@@ -583,6 +649,60 @@ CGOpenMPRuntimeNVPTX::createNVPTXRuntimeFunction(unsigned Function) {
RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_end_serialized_parallel");
break;
}
+ case OMPRTL_NVPTX__kmpc_shuffle_int32: {
+ // Build int32_t __kmpc_shuffle_int32(int32_t element,
+ // int16_t lane_offset, int16_t warp_size);
+ llvm::Type *TypeParams[] = {CGM.Int32Ty, CGM.Int16Ty, CGM.Int16Ty};
+ llvm::FunctionType *FnTy =
+ llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg*/ false);
+ RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_shuffle_int32");
+ break;
+ }
+ case OMPRTL_NVPTX__kmpc_shuffle_int64: {
+ // Build int64_t __kmpc_shuffle_int64(int64_t element,
+ // int16_t lane_offset, int16_t warp_size);
+ llvm::Type *TypeParams[] = {CGM.Int64Ty, CGM.Int16Ty, CGM.Int16Ty};
+ llvm::FunctionType *FnTy =
+ llvm::FunctionType::get(CGM.Int64Ty, TypeParams, /*isVarArg*/ false);
+ RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_shuffle_int64");
+ break;
+ }
+ case OMPRTL_NVPTX__kmpc_parallel_reduce_nowait: {
+ // Build int32_t kmpc_nvptx_parallel_reduce_nowait(kmp_int32 global_tid,
+ // kmp_int32 num_vars, size_t reduce_size, void* reduce_data,
+ // void (*kmp_ShuffleReductFctPtr)(void *rhsData, int16_t lane_id, int16_t
+ // lane_offset, int16_t Algorithm Version),
+ // void (*kmp_InterWarpCopyFctPtr)(void* src, int warp_num));
+ llvm::Type *ShuffleReduceTypeParams[] = {CGM.VoidPtrTy, CGM.Int16Ty,
+ CGM.Int16Ty, CGM.Int16Ty};
+ auto *ShuffleReduceFnTy =
+ llvm::FunctionType::get(CGM.VoidTy, ShuffleReduceTypeParams,
+ /*isVarArg=*/false);
+ llvm::Type *InterWarpCopyTypeParams[] = {CGM.VoidPtrTy, CGM.Int32Ty};
+ auto *InterWarpCopyFnTy =
+ llvm::FunctionType::get(CGM.VoidTy, InterWarpCopyTypeParams,
+ /*isVarArg=*/false);
+ llvm::Type *TypeParams[] = {CGM.Int32Ty,
+ CGM.Int32Ty,
+ CGM.SizeTy,
+ CGM.VoidPtrTy,
+ ShuffleReduceFnTy->getPointerTo(),
+ InterWarpCopyFnTy->getPointerTo()};
+ llvm::FunctionType *FnTy =
+ llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg=*/false);
+ RTLFn = CGM.CreateRuntimeFunction(
+ FnTy, /*Name=*/"__kmpc_nvptx_parallel_reduce_nowait");
+ break;
+ }
+ case OMPRTL_NVPTX__kmpc_end_reduce_nowait: {
+ // Build __kmpc_end_reduce_nowait(kmp_int32 global_tid);
+ llvm::Type *TypeParams[] = {CGM.Int32Ty};
+ llvm::FunctionType *FnTy =
+ llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false);
+ RTLFn = CGM.CreateRuntimeFunction(
+ FnTy, /*Name=*/"__kmpc_nvptx_end_reduce_nowait");
+ break;
+ }
}
return RTLFn;
}
@@ -805,3 +925,891 @@ void CGOpenMPRuntimeNVPTX::emitSpmdParallelCall(
OutlinedFnArgs.append(CapturedVars.begin(), CapturedVars.end());
CGF.EmitCallOrInvoke(OutlinedFn, OutlinedFnArgs);
}
+
+/// This function creates calls to one of two shuffle functions to copy
+/// variables between lanes in a warp.
+static llvm::Value *createRuntimeShuffleFunction(CodeGenFunction &CGF,
+ QualType ElemTy,
+ llvm::Value *Elem,
+ llvm::Value *Offset) {
+ auto &CGM = CGF.CGM;
+ auto &C = CGM.getContext();
+ auto &Bld = CGF.Builder;
+ CGOpenMPRuntimeNVPTX &RT =
+ *(static_cast<CGOpenMPRuntimeNVPTX *>(&CGM.getOpenMPRuntime()));
+
+ unsigned Size = CGM.getContext().getTypeSizeInChars(ElemTy).getQuantity();
+ assert(Size <= 8 && "Unsupported bitwidth in shuffle instruction.");
+
+ OpenMPRTLFunctionNVPTX ShuffleFn = Size <= 4
+ ? OMPRTL_NVPTX__kmpc_shuffle_int32
+ : OMPRTL_NVPTX__kmpc_shuffle_int64;
+
+ // Cast all types to 32- or 64-bit values before calling shuffle routines.
+ auto CastTy = Size <= 4 ? CGM.Int32Ty : CGM.Int64Ty;
+ auto *ElemCast = Bld.CreateSExtOrBitCast(Elem, CastTy);
+ auto *WarpSize = CGF.EmitScalarConversion(
+ getNVPTXWarpSize(CGF), C.getIntTypeForBitwidth(32, /* Signed */ true),
+ C.getIntTypeForBitwidth(16, /* Signed */ true), SourceLocation());
+
+ auto *ShuffledVal =
+ CGF.EmitRuntimeCall(RT.createNVPTXRuntimeFunction(ShuffleFn),
+ {ElemCast, Offset, WarpSize});
+
+ return Bld.CreateTruncOrBitCast(ShuffledVal, CGF.ConvertTypeForMem(ElemTy));
+}
+
+namespace {
+enum CopyAction : unsigned {
+ // RemoteLaneToThread: Copy over a Reduce list from a remote lane in
+ // the warp using shuffle instructions.
+ RemoteLaneToThread,
+ // ThreadCopy: Make a copy of a Reduce list on the thread's stack.
+ ThreadCopy,
+};
+} // namespace
+
+/// Emit instructions to copy a Reduce list, which contains partially
+/// aggregated values, in the specified direction.
+static void emitReductionListCopy(CopyAction Action, CodeGenFunction &CGF,
+ QualType ReductionArrayTy,
+ ArrayRef<const Expr *> Privates,
+ Address SrcBase, Address DestBase,
+ llvm::Value *RemoteLaneOffset = nullptr) {
+
+ auto &CGM = CGF.CGM;
+ auto &C = CGM.getContext();
+ auto &Bld = CGF.Builder;
+
+ // Iterates, element-by-element, through the source Reduce list and
+ // make a copy.
+ unsigned Idx = 0;
+ for (auto &Private : Privates) {
+ Address SrcElementAddr = Address::invalid();
+ Address DestElementAddr = Address::invalid();
+ Address DestElementPtrAddr = Address::invalid();
+ // Should we shuffle in an element from a remote lane?
+ bool ShuffleInElement = false;
+ // Set to true to update the pointer in the dest Reduce list to a
+ // newly created element.
+ bool UpdateDestListPtr = false;
+
+ switch (Action) {
+ case RemoteLaneToThread: {
+ // Step 1.1: Get the address for the src element in the Reduce list.
+ Address SrcElementPtrAddr =
+ Bld.CreateConstArrayGEP(SrcBase, Idx, CGF.getPointerSize());
+ llvm::Value *SrcElementPtrPtr = CGF.EmitLoadOfScalar(
+ SrcElementPtrAddr, /*Volatile=*/false, C.VoidPtrTy, SourceLocation());
+ SrcElementAddr =
+ Address(SrcElementPtrPtr, C.getTypeAlignInChars(Private->getType()));
+
+ // Step 1.2: Create a temporary to store the element in the destination
+ // Reduce list.
+ DestElementPtrAddr =
+ Bld.CreateConstArrayGEP(DestBase, Idx, CGF.getPointerSize());
+ DestElementAddr =
+ CGF.CreateMemTemp(Private->getType(), ".omp.reduction.element");
+ ShuffleInElement = true;
+ UpdateDestListPtr = true;
+ break;
+ }
+ case ThreadCopy: {
+ // Step 1.1: Get the address for the src element in the Reduce list.
+ Address SrcElementPtrAddr =
+ Bld.CreateConstArrayGEP(SrcBase, Idx, CGF.getPointerSize());
+ llvm::Value *SrcElementPtrPtr = CGF.EmitLoadOfScalar(
+ SrcElementPtrAddr, /*Volatile=*/false, C.VoidPtrTy, SourceLocation());
+ SrcElementAddr =
+ Address(SrcElementPtrPtr, C.getTypeAlignInChars(Private->getType()));
+
+ // Step 1.2: Get the address for dest element. The destination
+ // element has already been created on the thread's stack.
+ DestElementPtrAddr =
+ Bld.CreateConstArrayGEP(DestBase, Idx, CGF.getPointerSize());
+ llvm::Value *DestElementPtr =
+ CGF.EmitLoadOfScalar(DestElementPtrAddr, /*Volatile=*/false,
+ C.VoidPtrTy, SourceLocation());
+ Address DestElemAddr =
+ Address(DestElementPtr, C.getTypeAlignInChars(Private->getType()));
+ DestElementAddr = Bld.CreateElementBitCast(
+ DestElemAddr, CGF.ConvertTypeForMem(Private->getType()));
+ break;
+ }
+ }
+
+ // Regardless of src and dest of copy, we emit the load of src
+ // element as this is required in all directions
+ SrcElementAddr = Bld.CreateElementBitCast(
+ SrcElementAddr, CGF.ConvertTypeForMem(Private->getType()));
+ llvm::Value *Elem =
+ CGF.EmitLoadOfScalar(SrcElementAddr, /*Volatile=*/false,
+ Private->getType(), SourceLocation());
+
+ // Now that all active lanes have read the element in the
+ // Reduce list, shuffle over the value from the remote lane.
+ if (ShuffleInElement) {
+ Elem = createRuntimeShuffleFunction(CGF, Private->getType(), Elem,
+ RemoteLaneOffset);
+ }
+
+ // Store the source element value to the dest element address.
+ CGF.EmitStoreOfScalar(Elem, DestElementAddr, /*Volatile=*/false,
+ Private->getType());
+
+ // Step 3.1: Modify reference in dest Reduce list as needed.
+ // Modifying the reference in Reduce list to point to the newly
+ // created element. The element is live in the current function
+ // scope and that of functions it invokes (i.e., reduce_function).
+ // RemoteReduceData[i] = (void*)&RemoteElem
+ if (UpdateDestListPtr) {
+ CGF.EmitStoreOfScalar(Bld.CreatePointerBitCastOrAddrSpaceCast(
+ DestElementAddr.getPointer(), CGF.VoidPtrTy),
+ DestElementPtrAddr, /*Volatile=*/false,
+ C.VoidPtrTy);
+ }
+
+ Idx++;
+ }
+}
+
+/// This function emits a helper that gathers Reduce lists from the first
+/// lane of every active warp to lanes in the first warp.
+///
+/// void inter_warp_copy_func(void* reduce_data, num_warps)
+/// shared smem[warp_size];
+/// For all data entries D in reduce_data:
+/// If (I am the first lane in each warp)
+/// Copy my local D to smem[warp_id]
+/// sync
+/// if (I am the first warp)
+/// Copy smem[thread_id] to my local D
+/// sync
+static llvm::Value *emitInterWarpCopyFunction(CodeGenModule &CGM,
+ ArrayRef<const Expr *> Privates,
+ QualType ReductionArrayTy) {
+ auto &C = CGM.getContext();
+ auto &M = CGM.getModule();
+
+ // ReduceList: thread local Reduce list.
+ // At the stage of the computation when this function is called, partially
+ // aggregated values reside in the first lane of every active warp.
+ ImplicitParamDecl ReduceListArg(C, /*DC=*/nullptr, SourceLocation(),
+ /*Id=*/nullptr, C.VoidPtrTy);
+ // NumWarps: number of warps active in the parallel region. This could
+ // be smaller than 32 (max warps in a CTA) for partial block reduction.
+ ImplicitParamDecl NumWarpsArg(C, /*DC=*/nullptr, SourceLocation(),
+ /*Id=*/nullptr,
+ C.getIntTypeForBitwidth(32, /* Signed */ true));
+ FunctionArgList Args;
+ Args.push_back(&ReduceListArg);
+ Args.push_back(&NumWarpsArg);
+
+ auto &CGFI = CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args);
+ auto *Fn = llvm::Function::Create(
+ CGM.getTypes().GetFunctionType(CGFI), llvm::GlobalValue::InternalLinkage,
+ "_omp_reduction_inter_warp_copy_func", &CGM.getModule());
+ CGM.SetInternalFunctionAttributes(/*DC=*/nullptr, Fn, CGFI);
+ CodeGenFunction CGF(CGM);
+ // We don't need debug information in this function as nothing here refers to
+ // user code.
+ CGF.disableDebugInfo();
+ CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args);
+
+ auto &Bld = CGF.Builder;
+
+ // This array is used as a medium to transfer, one reduce element at a time,
+ // the data from the first lane of every warp to lanes in the first warp
+ // in order to perform the final step of a reduction in a parallel region
+ // (reduction across warps). The array is placed in NVPTX __shared__ memory
+ // for reduced latency, as well as to have a distinct copy for concurrently
+ // executing target regions. The array is declared with common linkage so
+ // as to be shared across compilation units.
+ const char *TransferMediumName =
+ "__openmp_nvptx_data_transfer_temporary_storage";
+ llvm::GlobalVariable *TransferMedium =
+ M.getGlobalVariable(TransferMediumName);
+ if (!TransferMedium) {
+ auto *Ty = llvm::ArrayType::get(CGM.Int64Ty, WarpSize);
+ unsigned SharedAddressSpace = C.getTargetAddressSpace(LangAS::cuda_shared);
+ TransferMedium = new llvm::GlobalVariable(
+ M, Ty,
+ /*isConstant=*/false, llvm::GlobalVariable::CommonLinkage,
+ llvm::Constant::getNullValue(Ty), TransferMediumName,
+ /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal,
+ SharedAddressSpace);
+ }
+
+ // Get the CUDA thread id of the current OpenMP thread on the GPU.
+ auto *ThreadID = getNVPTXThreadID(CGF);
+ // nvptx_lane_id = nvptx_id % warpsize
+ auto *LaneID = getNVPTXLaneID(CGF);
+ // nvptx_warp_id = nvptx_id / warpsize
+ auto *WarpID = getNVPTXWarpID(CGF);
+
+ Address AddrReduceListArg = CGF.GetAddrOfLocalVar(&ReduceListArg);
+ Address LocalReduceList(
+ Bld.CreatePointerBitCastOrAddrSpaceCast(
+ CGF.EmitLoadOfScalar(AddrReduceListArg, /*Volatile=*/false,
+ C.VoidPtrTy, SourceLocation()),
+ CGF.ConvertTypeForMem(ReductionArrayTy)->getPointerTo()),
+ CGF.getPointerAlign());
+
+ unsigned Idx = 0;
+ for (auto &Private : Privates) {
+ //
+ // Warp master copies reduce element to transfer medium in __shared__
+ // memory.
+ //
+ llvm::BasicBlock *ThenBB = CGF.createBasicBlock("then");
+ llvm::BasicBlock *ElseBB = CGF.createBasicBlock("else");
+ llvm::BasicBlock *MergeBB = CGF.createBasicBlock("ifcont");
+
+ // if (lane_id == 0)
+ auto IsWarpMaster =
+ Bld.CreateICmpEQ(LaneID, Bld.getInt32(0), "warp_master");
+ Bld.CreateCondBr(IsWarpMaster, ThenBB, ElseBB);
+ CGF.EmitBlock(ThenBB);
+
+ // Reduce element = LocalReduceList[i]
+ Address ElemPtrPtrAddr =
+ Bld.CreateConstArrayGEP(LocalReduceList, Idx, CGF.getPointerSize());
+ llvm::Value *ElemPtrPtr = CGF.EmitLoadOfScalar(
+ ElemPtrPtrAddr, /*Volatile=*/false, C.VoidPtrTy, SourceLocation());
+ // elemptr = (type[i]*)(elemptrptr)
+ Address ElemPtr =
+ Address(ElemPtrPtr, C.getTypeAlignInChars(Private->getType()));
+ ElemPtr = Bld.CreateElementBitCast(
+ ElemPtr, CGF.ConvertTypeForMem(Private->getType()));
+ // elem = *elemptr
+ llvm::Value *Elem = CGF.EmitLoadOfScalar(
+ ElemPtr, /*Volatile=*/false, Private->getType(), SourceLocation());
+
+ // Get pointer to location in transfer medium.
+ // MediumPtr = &medium[warp_id]
+ llvm::Value *MediumPtrVal = Bld.CreateInBoundsGEP(
+ TransferMedium, {llvm::Constant::getNullValue(CGM.Int64Ty), WarpID});
+ Address MediumPtr(MediumPtrVal, C.getTypeAlignInChars(Private->getType()));
+ // Casting to actual data type.
+ // MediumPtr = (type[i]*)MediumPtrAddr;
+ MediumPtr = Bld.CreateElementBitCast(
+ MediumPtr, CGF.ConvertTypeForMem(Private->getType()));
+
+ //*MediumPtr = elem
+ Bld.CreateStore(Elem, MediumPtr);
+
+ Bld.CreateBr(MergeBB);
+
+ CGF.EmitBlock(ElseBB);
+ Bld.CreateBr(MergeBB);
+
+ CGF.EmitBlock(MergeBB);
+
+ Address AddrNumWarpsArg = CGF.GetAddrOfLocalVar(&NumWarpsArg);
+ llvm::Value *NumWarpsVal = CGF.EmitLoadOfScalar(
+ AddrNumWarpsArg, /*Volatile=*/false, C.IntTy, SourceLocation());
+
+ auto *NumActiveThreads = Bld.CreateNSWMul(
+ NumWarpsVal, getNVPTXWarpSize(CGF), "num_active_threads");
+ // named_barrier_sync(ParallelBarrierID, num_active_threads)
+ syncParallelThreads(CGF, NumActiveThreads);
+
+ //
+ // Warp 0 copies reduce element from transfer medium.
+ //
+ llvm::BasicBlock *W0ThenBB = CGF.createBasicBlock("then");
+ llvm::BasicBlock *W0ElseBB = CGF.createBasicBlock("else");
+ llvm::BasicBlock *W0MergeBB = CGF.createBasicBlock("ifcont");
+
+ // Up to 32 threads in warp 0 are active.
+ auto IsActiveThread =
+ Bld.CreateICmpULT(ThreadID, NumWarpsVal, "is_active_thread");
+ Bld.CreateCondBr(IsActiveThread, W0ThenBB, W0ElseBB);
+
+ CGF.EmitBlock(W0ThenBB);
+
+ // SrcMediumPtr = &medium[tid]
+ llvm::Value *SrcMediumPtrVal = Bld.CreateInBoundsGEP(
+ TransferMedium, {llvm::Constant::getNullValue(CGM.Int64Ty), ThreadID});
+ Address SrcMediumPtr(SrcMediumPtrVal,
+ C.getTypeAlignInChars(Private->getType()));
+ // SrcMediumVal = *SrcMediumPtr;
+ SrcMediumPtr = Bld.CreateElementBitCast(
+ SrcMediumPtr, CGF.ConvertTypeForMem(Private->getType()));
+ llvm::Value *SrcMediumValue = CGF.EmitLoadOfScalar(
+ SrcMediumPtr, /*Volatile=*/false, Private->getType(), SourceLocation());
+
+ // TargetElemPtr = (type[i]*)(SrcDataAddr[i])
+ Address TargetElemPtrPtr =
+ Bld.CreateConstArrayGEP(LocalReduceList, Idx, CGF.getPointerSize());
+ llvm::Value *TargetElemPtrVal = CGF.EmitLoadOfScalar(
+ TargetElemPtrPtr, /*Volatile=*/false, C.VoidPtrTy, SourceLocation());
+ Address TargetElemPtr =
+ Address(TargetElemPtrVal, C.getTypeAlignInChars(Private->getType()));
+ TargetElemPtr = Bld.CreateElementBitCast(
+ TargetElemPtr, CGF.ConvertTypeForMem(Private->getType()));
+
+ // *TargetElemPtr = SrcMediumVal;
+ CGF.EmitStoreOfScalar(SrcMediumValue, TargetElemPtr, /*Volatile=*/false,
+ Private->getType());
+ Bld.CreateBr(W0MergeBB);
+
+ CGF.EmitBlock(W0ElseBB);
+ Bld.CreateBr(W0MergeBB);
+
+ CGF.EmitBlock(W0MergeBB);
+
+ // While warp 0 copies values from transfer medium, all other warps must
+ // wait.
+ syncParallelThreads(CGF, NumActiveThreads);
+ Idx++;
+ }
+
+ CGF.FinishFunction();
+ return Fn;
+}
+
+/// Emit a helper that reduces data across two OpenMP threads (lanes)
+/// in the same warp. It uses shuffle instructions to copy over data from
+/// a remote lane's stack. The reduction algorithm performed is specified
+/// by the fourth parameter.
+///
+/// Algorithm Versions.
+/// Full Warp Reduce (argument value 0):
+/// This algorithm assumes that all 32 lanes are active and gathers
+/// data from these 32 lanes, producing a single resultant value.
+/// Contiguous Partial Warp Reduce (argument value 1):
+/// This algorithm assumes that only a *contiguous* subset of lanes
+/// are active. This happens for the last warp in a parallel region
+/// when the user specified num_threads is not an integer multiple of
+/// 32. This contiguous subset always starts with the zeroth lane.
+/// Partial Warp Reduce (argument value 2):
+/// This algorithm gathers data from any number of lanes at any position.
+/// All reduced values are stored in the lowest possible lane. The set
+/// of problems every algorithm addresses is a super set of those
+/// addressable by algorithms with a lower version number. Overhead
+/// increases as algorithm version increases.
+///
+/// Terminology
+/// Reduce element:
+/// Reduce element refers to the individual data field with primitive
+/// data types to be combined and reduced across threads.
+/// Reduce list:
+/// Reduce list refers to a collection of local, thread-private
+/// reduce elements.
+/// Remote Reduce list:
+/// Remote Reduce list refers to a collection of remote (relative to
+/// the current thread) reduce elements.
+///
+/// We distinguish between three states of threads that are important to
+/// the implementation of this function.
+/// Alive threads:
+/// Threads in a warp executing the SIMT instruction, as distinguished from
+/// threads that are inactive due to divergent control flow.
+/// Active threads:
+/// The minimal set of threads that has to be alive upon entry to this
+/// function. The computation is correct iff active threads are alive.
+/// Some threads are alive but they are not active because they do not
+/// contribute to the computation in any useful manner. Turning them off
+/// may introduce control flow overheads without any tangible benefits.
+/// Effective threads:
+/// In order to comply with the argument requirements of the shuffle
+/// function, we must keep all lanes holding data alive. But at most
+/// half of them perform value aggregation; we refer to this half of
+/// threads as effective. The other half is simply handing off their
+/// data.
+///
+/// Procedure
+/// Value shuffle:
+/// In this step active threads transfer data from higher lane positions
+/// in the warp to lower lane positions, creating Remote Reduce list.
+/// Value aggregation:
+/// In this step, effective threads combine their thread local Reduce list
+/// with Remote Reduce list and store the result in the thread local
+/// Reduce list.
+/// Value copy:
+/// In this step, we deal with the assumption made by algorithm 2
+/// (i.e. contiguity assumption). When we have an odd number of lanes
+/// active, say 2k+1, only k threads will be effective and therefore k
+/// new values will be produced. However, the Reduce list owned by the
+/// (2k+1)th thread is ignored in the value aggregation. Therefore
+/// we copy the Reduce list from the (2k+1)th lane to (k+1)th lane so
+/// that the contiguity assumption still holds.
+static llvm::Value *
+emitShuffleAndReduceFunction(CodeGenModule &CGM,
+ ArrayRef<const Expr *> Privates,
+ QualType ReductionArrayTy, llvm::Value *ReduceFn) {
+ auto &C = CGM.getContext();
+
+ // Thread local Reduce list used to host the values of data to be reduced.
+ ImplicitParamDecl ReduceListArg(C, /*DC=*/nullptr, SourceLocation(),
+ /*Id=*/nullptr, C.VoidPtrTy);
+ // Current lane id; could be logical.
+ ImplicitParamDecl LaneIDArg(C, /*DC=*/nullptr, SourceLocation(),
+ /*Id=*/nullptr, C.ShortTy);
+ // Offset of the remote source lane relative to the current lane.
+ ImplicitParamDecl RemoteLaneOffsetArg(C, /*DC=*/nullptr, SourceLocation(),
+ /*Id=*/nullptr, C.ShortTy);
+ // Algorithm version. This is expected to be known at compile time.
+ ImplicitParamDecl AlgoVerArg(C, /*DC=*/nullptr, SourceLocation(),
+ /*Id=*/nullptr, C.ShortTy);
+ FunctionArgList Args;
+ Args.push_back(&ReduceListArg);
+ Args.push_back(&LaneIDArg);
+ Args.push_back(&RemoteLaneOffsetArg);
+ Args.push_back(&AlgoVerArg);
+
+ auto &CGFI = CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args);
+ auto *Fn = llvm::Function::Create(
+ CGM.getTypes().GetFunctionType(CGFI), llvm::GlobalValue::InternalLinkage,
+ "_omp_reduction_shuffle_and_reduce_func", &CGM.getModule());
+ CGM.SetInternalFunctionAttributes(/*D=*/nullptr, Fn, CGFI);
+ CodeGenFunction CGF(CGM);
+ // We don't need debug information in this function as nothing here refers to
+ // user code.
+ CGF.disableDebugInfo();
+ CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args);
+
+ auto &Bld = CGF.Builder;
+
+ Address AddrReduceListArg = CGF.GetAddrOfLocalVar(&ReduceListArg);
+ Address LocalReduceList(
+ Bld.CreatePointerBitCastOrAddrSpaceCast(
+ CGF.EmitLoadOfScalar(AddrReduceListArg, /*Volatile=*/false,
+ C.VoidPtrTy, SourceLocation()),
+ CGF.ConvertTypeForMem(ReductionArrayTy)->getPointerTo()),
+ CGF.getPointerAlign());
+
+ Address AddrLaneIDArg = CGF.GetAddrOfLocalVar(&LaneIDArg);
+ llvm::Value *LaneIDArgVal = CGF.EmitLoadOfScalar(
+ AddrLaneIDArg, /*Volatile=*/false, C.ShortTy, SourceLocation());
+
+ Address AddrRemoteLaneOffsetArg = CGF.GetAddrOfLocalVar(&RemoteLaneOffsetArg);
+ llvm::Value *RemoteLaneOffsetArgVal = CGF.EmitLoadOfScalar(
+ AddrRemoteLaneOffsetArg, /*Volatile=*/false, C.ShortTy, SourceLocation());
+
+ Address AddrAlgoVerArg = CGF.GetAddrOfLocalVar(&AlgoVerArg);
+ llvm::Value *AlgoVerArgVal = CGF.EmitLoadOfScalar(
+ AddrAlgoVerArg, /*Volatile=*/false, C.ShortTy, SourceLocation());
+
+ // Create a local thread-private variable to host the Reduce list
+ // from a remote lane.
+ Address RemoteReduceList =
+ CGF.CreateMemTemp(ReductionArrayTy, ".omp.reduction.remote_reduce_list");
+
+ // This loop iterates through the list of reduce elements and copies,
+ // element by element, from a remote lane in the warp to RemoteReduceList,
+ // hosted on the thread's stack.
+ emitReductionListCopy(RemoteLaneToThread, CGF, ReductionArrayTy, Privates,
+ LocalReduceList, RemoteReduceList,
+ RemoteLaneOffsetArgVal);
+
+ // The actions to be performed on the Remote Reduce list is dependent
+ // on the algorithm version.
+ //
+ // if (AlgoVer==0) || (AlgoVer==1 && (LaneId < Offset)) || (AlgoVer==2 &&
+ // LaneId % 2 == 0 && Offset > 0):
+ // do the reduction value aggregation
+ //
+ // The thread local variable Reduce list is mutated in place to host the
+ // reduced data, which is the aggregated value produced from local and
+ // remote lanes.
+ //
+ // Note that AlgoVer is expected to be a constant integer known at compile
+ // time.
+ // When AlgoVer==0, the first conjunction evaluates to true, making
+ // the entire predicate true during compile time.
+ // When AlgoVer==1, the second conjunction has only the second part to be
+ // evaluated during runtime. Other conjunctions evaluates to false
+ // during compile time.
+ // When AlgoVer==2, the third conjunction has only the second part to be
+ // evaluated during runtime. Other conjunctions evaluates to false
+ // during compile time.
+ auto CondAlgo0 = Bld.CreateICmpEQ(AlgoVerArgVal, Bld.getInt16(0));
+
+ auto CondAlgo1 =
+ Bld.CreateAnd(Bld.CreateICmpEQ(AlgoVerArgVal, Bld.getInt16(1)),
+ Bld.CreateICmpULT(LaneIDArgVal, RemoteLaneOffsetArgVal));
+
+ auto CondAlgo2 = Bld.CreateAnd(
+ Bld.CreateICmpEQ(AlgoVerArgVal, Bld.getInt16(2)),
+ Bld.CreateICmpEQ(Bld.CreateAnd(LaneIDArgVal, Bld.getInt16(1)),
+ Bld.getInt16(0)));
+ CondAlgo2 = Bld.CreateAnd(
+ CondAlgo2, Bld.CreateICmpSGT(RemoteLaneOffsetArgVal, Bld.getInt16(0)));
+
+ auto CondReduce = Bld.CreateOr(CondAlgo0, CondAlgo1);
+ CondReduce = Bld.CreateOr(CondReduce, CondAlgo2);
+
+ llvm::BasicBlock *ThenBB = CGF.createBasicBlock("then");
+ llvm::BasicBlock *ElseBB = CGF.createBasicBlock("else");
+ llvm::BasicBlock *MergeBB = CGF.createBasicBlock("ifcont");
+ Bld.CreateCondBr(CondReduce, ThenBB, ElseBB);
+
+ CGF.EmitBlock(ThenBB);
+ // reduce_function(LocalReduceList, RemoteReduceList)
+ llvm::Value *LocalReduceListPtr = Bld.CreatePointerBitCastOrAddrSpaceCast(
+ LocalReduceList.getPointer(), CGF.VoidPtrTy);
+ llvm::Value *RemoteReduceListPtr = Bld.CreatePointerBitCastOrAddrSpaceCast(
+ RemoteReduceList.getPointer(), CGF.VoidPtrTy);
+ CGF.EmitCallOrInvoke(ReduceFn, {LocalReduceListPtr, RemoteReduceListPtr});
+ Bld.CreateBr(MergeBB);
+
+ CGF.EmitBlock(ElseBB);
+ Bld.CreateBr(MergeBB);
+
+ CGF.EmitBlock(MergeBB);
+
+ // if (AlgoVer==1 && (LaneId >= Offset)) copy Remote Reduce list to local
+ // Reduce list.
+ auto CondCopy =
+ Bld.CreateAnd(Bld.CreateICmpEQ(AlgoVerArgVal, Bld.getInt16(1)),
+ Bld.CreateICmpUGE(LaneIDArgVal, RemoteLaneOffsetArgVal));
+
+ llvm::BasicBlock *CpyThenBB = CGF.createBasicBlock("then");
+ llvm::BasicBlock *CpyElseBB = CGF.createBasicBlock("else");
+ llvm::BasicBlock *CpyMergeBB = CGF.createBasicBlock("ifcont");
+ Bld.CreateCondBr(CondCopy, CpyThenBB, CpyElseBB);
+
+ CGF.EmitBlock(CpyThenBB);
+ emitReductionListCopy(ThreadCopy, CGF, ReductionArrayTy, Privates,
+ RemoteReduceList, LocalReduceList);
+ Bld.CreateBr(CpyMergeBB);
+
+ CGF.EmitBlock(CpyElseBB);
+ Bld.CreateBr(CpyMergeBB);
+
+ CGF.EmitBlock(CpyMergeBB);
+
+ CGF.FinishFunction();
+ return Fn;
+}
+
+///
+/// Design of OpenMP reductions on the GPU
+///
+/// Consider a typical OpenMP program with one or more reduction
+/// clauses:
+///
+/// float foo;
+/// double bar;
+/// #pragma omp target teams distribute parallel for \
+/// reduction(+:foo) reduction(*:bar)
+/// for (int i = 0; i < N; i++) {
+/// foo += A[i]; bar *= B[i];
+/// }
+///
+/// where 'foo' and 'bar' are reduced across all OpenMP threads in
+/// all teams. In our OpenMP implementation on the NVPTX device an
+/// OpenMP team is mapped to a CUDA threadblock and OpenMP threads
+/// within a team are mapped to CUDA threads within a threadblock.
+/// Our goal is to efficiently aggregate values across all OpenMP
+/// threads such that:
+///
+/// - the compiler and runtime are logically concise, and
+/// - the reduction is performed efficiently in a hierarchical
+/// manner as follows: within OpenMP threads in the same warp,
+/// across warps in a threadblock, and finally across teams on
+/// the NVPTX device.
+///
+/// Introduction to Decoupling
+///
+/// We would like to decouple the compiler and the runtime so that the
+/// latter is ignorant of the reduction variables (number, data types)
+/// and the reduction operators. This allows a simpler interface
+/// and implementation while still attaining good performance.
+///
+/// Pseudocode for the aforementioned OpenMP program generated by the
+/// compiler is as follows:
+///
+/// 1. Create private copies of reduction variables on each OpenMP
+/// thread: 'foo_private', 'bar_private'
+/// 2. Each OpenMP thread reduces the chunk of 'A' and 'B' assigned
+/// to it and writes the result in 'foo_private' and 'bar_private'
+/// respectively.
+/// 3. Call the OpenMP runtime on the GPU to reduce within a team
+/// and store the result on the team master:
+///
+/// __kmpc_nvptx_parallel_reduce_nowait(...,
+/// reduceData, shuffleReduceFn, interWarpCpyFn)
+///
+/// where:
+/// struct ReduceData {
+/// double *foo;
+/// double *bar;
+/// } reduceData
+/// reduceData.foo = &foo_private
+/// reduceData.bar = &bar_private
+///
+/// 'shuffleReduceFn' and 'interWarpCpyFn' are pointers to two
+/// auxiliary functions generated by the compiler that operate on
+/// variables of type 'ReduceData'. They aid the runtime perform
+/// algorithmic steps in a data agnostic manner.
+///
+/// 'shuffleReduceFn' is a pointer to a function that reduces data
+/// of type 'ReduceData' across two OpenMP threads (lanes) in the
+/// same warp. It takes the following arguments as input:
+///
+/// a. variable of type 'ReduceData' on the calling lane,
+/// b. its lane_id,
+/// c. an offset relative to the current lane_id to generate a
+/// remote_lane_id. The remote lane contains the second
+/// variable of type 'ReduceData' that is to be reduced.
+/// d. an algorithm version parameter determining which reduction
+/// algorithm to use.
+///
+/// 'shuffleReduceFn' retrieves data from the remote lane using
+/// efficient GPU shuffle intrinsics and reduces, using the
+/// algorithm specified by the 4th parameter, the two operands
+/// element-wise. The result is written to the first operand.
+///
+/// Different reduction algorithms are implemented in different
+/// runtime functions, all calling 'shuffleReduceFn' to perform
+/// the essential reduction step. Therefore, based on the 4th
+/// parameter, this function behaves slightly differently to
+/// cooperate with the runtime to ensure correctness under
+/// different circumstances.
+///
+/// 'InterWarpCpyFn' is a pointer to a function that transfers
+/// reduced variables across warps. It tunnels, through CUDA
+/// shared memory, the thread-private data of type 'ReduceData'
+/// from lane 0 of each warp to a lane in the first warp.
+/// 5. if ret == 1:
+/// The team master of the last team stores the reduced
+/// result to the globals in memory.
+/// foo += reduceData.foo; bar *= reduceData.bar
+///
+///
+/// Warp Reduction Algorithms
+///
+/// On the warp level, we have three algorithms implemented in the
+/// OpenMP runtime depending on the number of active lanes:
+///
+/// Full Warp Reduction
+///
+/// The reduce algorithm within a warp where all lanes are active
+/// is implemented in the runtime as follows:
+///
+/// full_warp_reduce(void *reduce_data,
+/// kmp_ShuffleReductFctPtr ShuffleReduceFn) {
+/// for (int offset = WARPSIZE/2; offset > 0; offset /= 2)
+/// ShuffleReduceFn(reduce_data, 0, offset, 0);
+/// }
+///
+/// The algorithm completes in log(2, WARPSIZE) steps.
+///
+/// 'ShuffleReduceFn' is used here with lane_id set to 0 because it is
+/// not used therefore we save instructions by not retrieving lane_id
+/// from the corresponding special registers. The 4th parameter, which
+/// represents the version of the algorithm being used, is set to 0 to
+/// signify full warp reduction.
+///
+/// In this version, 'ShuffleReduceFn' behaves, per element, as follows:
+///
+/// #reduce_elem refers to an element in the local lane's data structure
+/// #remote_elem is retrieved from a remote lane
+/// remote_elem = shuffle_down(reduce_elem, offset, WARPSIZE);
+/// reduce_elem = reduce_elem REDUCE_OP remote_elem;
+///
+/// Contiguous Partial Warp Reduction
+///
+/// This reduce algorithm is used within a warp where only the first
+/// 'n' (n <= WARPSIZE) lanes are active. It is typically used when the
+/// number of OpenMP threads in a parallel region is not a multiple of
+/// WARPSIZE. The algorithm is implemented in the runtime as follows:
+///
+/// void
+/// contiguous_partial_reduce(void *reduce_data,
+/// kmp_ShuffleReductFctPtr ShuffleReduceFn,
+/// int size, int lane_id) {
+/// int curr_size;
+/// int offset;
+/// curr_size = size;
+/// mask = curr_size/2;
+/// while (offset>0) {
+/// ShuffleReduceFn(reduce_data, lane_id, offset, 1);
+/// curr_size = (curr_size+1)/2;
+/// offset = curr_size/2;
+/// }
+/// }
+///
+/// In this version, 'ShuffleReduceFn' behaves, per element, as follows:
+///
+/// remote_elem = shuffle_down(reduce_elem, offset, WARPSIZE);
+/// if (lane_id < offset)
+/// reduce_elem = reduce_elem REDUCE_OP remote_elem
+/// else
+/// reduce_elem = remote_elem
+///
+/// This algorithm assumes that the data to be reduced are located in a
+/// contiguous subset of lanes starting from the first. When there is
+/// an odd number of active lanes, the data in the last lane is not
+/// aggregated with any other lane's dat but is instead copied over.
+///
+/// Dispersed Partial Warp Reduction
+///
+/// This algorithm is used within a warp when any discontiguous subset of
+/// lanes are active. It is used to implement the reduction operation
+/// across lanes in an OpenMP simd region or in a nested parallel region.
+///
+/// void
+/// dispersed_partial_reduce(void *reduce_data,
+/// kmp_ShuffleReductFctPtr ShuffleReduceFn) {
+/// int size, remote_id;
+/// int logical_lane_id = number_of_active_lanes_before_me() * 2;
+/// do {
+/// remote_id = next_active_lane_id_right_after_me();
+/// # the above function returns 0 of no active lane
+/// # is present right after the current lane.
+/// size = number_of_active_lanes_in_this_warp();
+/// logical_lane_id /= 2;
+/// ShuffleReduceFn(reduce_data, logical_lane_id,
+/// remote_id-1-threadIdx.x, 2);
+/// } while (logical_lane_id % 2 == 0 && size > 1);
+/// }
+///
+/// There is no assumption made about the initial state of the reduction.
+/// Any number of lanes (>=1) could be active at any position. The reduction
+/// result is returned in the first active lane.
+///
+/// In this version, 'ShuffleReduceFn' behaves, per element, as follows:
+///
+/// remote_elem = shuffle_down(reduce_elem, offset, WARPSIZE);
+/// if (lane_id % 2 == 0 && offset > 0)
+/// reduce_elem = reduce_elem REDUCE_OP remote_elem
+/// else
+/// reduce_elem = remote_elem
+///
+///
+/// Intra-Team Reduction
+///
+/// This function, as implemented in the runtime call
+/// '__kmpc_nvptx_parallel_reduce_nowait', aggregates data across OpenMP
+/// threads in a team. It first reduces within a warp using the
+/// aforementioned algorithms. We then proceed to gather all such
+/// reduced values at the first warp.
+///
+/// The runtime makes use of the function 'InterWarpCpyFn', which copies
+/// data from each of the "warp master" (zeroth lane of each warp, where
+/// warp-reduced data is held) to the zeroth warp. This step reduces (in
+/// a mathematical sense) the problem of reduction across warp masters in
+/// a block to the problem of warp reduction.
+///
+void CGOpenMPRuntimeNVPTX::emitReduction(
+ CodeGenFunction &CGF, SourceLocation Loc, ArrayRef<const Expr *> Privates,
+ ArrayRef<const Expr *> LHSExprs, ArrayRef<const Expr *> RHSExprs,
+ ArrayRef<const Expr *> ReductionOps, ReductionOptionsTy Options) {
+ if (!CGF.HaveInsertPoint())
+ return;
+
+ bool ParallelReduction = isOpenMPParallelDirective(Options.ReductionKind);
+ assert(ParallelReduction && "Invalid reduction selection in emitReduction.");
+
+ auto &C = CGM.getContext();
+
+ // 1. Build a list of reduction variables.
+ // void *RedList[<n>] = {<ReductionVars>[0], ..., <ReductionVars>[<n>-1]};
+ auto Size = RHSExprs.size();
+ for (auto *E : Privates) {
+ if (E->getType()->isVariablyModifiedType())
+ // Reserve place for array size.
+ ++Size;
+ }
+ llvm::APInt ArraySize(/*unsigned int numBits=*/32, Size);
+ QualType ReductionArrayTy =
+ C.getConstantArrayType(C.VoidPtrTy, ArraySize, ArrayType::Normal,
+ /*IndexTypeQuals=*/0);
+ Address ReductionList =
+ CGF.CreateMemTemp(ReductionArrayTy, ".omp.reduction.red_list");
+ auto IPriv = Privates.begin();
+ unsigned Idx = 0;
+ for (unsigned I = 0, E = RHSExprs.size(); I < E; ++I, ++IPriv, ++Idx) {
+ Address Elem = CGF.Builder.CreateConstArrayGEP(ReductionList, Idx,
+ CGF.getPointerSize());
+ CGF.Builder.CreateStore(
+ CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
+ CGF.EmitLValue(RHSExprs[I]).getPointer(), CGF.VoidPtrTy),
+ Elem);
+ if ((*IPriv)->getType()->isVariablyModifiedType()) {
+ // Store array size.
+ ++Idx;
+ Elem = CGF.Builder.CreateConstArrayGEP(ReductionList, Idx,
+ CGF.getPointerSize());
+ llvm::Value *Size = CGF.Builder.CreateIntCast(
+ CGF.getVLASize(
+ CGF.getContext().getAsVariableArrayType((*IPriv)->getType()))
+ .first,
+ CGF.SizeTy, /*isSigned=*/false);
+ CGF.Builder.CreateStore(CGF.Builder.CreateIntToPtr(Size, CGF.VoidPtrTy),
+ Elem);
+ }
+ }
+
+ // 2. Emit reduce_func().
+ auto *ReductionFn = emitReductionFunction(
+ CGM, CGF.ConvertTypeForMem(ReductionArrayTy)->getPointerTo(), Privates,
+ LHSExprs, RHSExprs, ReductionOps);
+
+ // 4. Build res = __kmpc_reduce{_nowait}(<gtid>, <n>, sizeof(RedList),
+ // RedList, shuffle_reduce_func, interwarp_copy_func);
+ auto *ThreadId = getThreadID(CGF, Loc);
+ auto *ReductionArrayTySize = CGF.getTypeSize(ReductionArrayTy);
+ auto *RL = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
+ ReductionList.getPointer(), CGF.VoidPtrTy);
+
+ auto *ShuffleAndReduceFn = emitShuffleAndReduceFunction(
+ CGM, Privates, ReductionArrayTy, ReductionFn);
+ auto *InterWarpCopyFn =
+ emitInterWarpCopyFunction(CGM, Privates, ReductionArrayTy);
+
+ llvm::Value *Res = nullptr;
+ if (ParallelReduction) {
+ llvm::Value *Args[] = {ThreadId,
+ CGF.Builder.getInt32(RHSExprs.size()),
+ ReductionArrayTySize,
+ RL,
+ ShuffleAndReduceFn,
+ InterWarpCopyFn};
+
+ Res = CGF.EmitRuntimeCall(
+ createNVPTXRuntimeFunction(OMPRTL_NVPTX__kmpc_parallel_reduce_nowait),
+ Args);
+ }
+
+ // 5. Build switch(res)
+ auto *DefaultBB = CGF.createBasicBlock(".omp.reduction.default");
+ auto *SwInst = CGF.Builder.CreateSwitch(Res, DefaultBB, /*NumCases=*/1);
+
+ // 6. Build case 1: where we have reduced values in the master
+ // thread in each team.
+ // __kmpc_end_reduce{_nowait}(<gtid>);
+ // break;
+ auto *Case1BB = CGF.createBasicBlock(".omp.reduction.case1");
+ SwInst->addCase(CGF.Builder.getInt32(1), Case1BB);
+ CGF.EmitBlock(Case1BB);
+
+ // Add emission of __kmpc_end_reduce{_nowait}(<gtid>);
+ llvm::Value *EndArgs[] = {ThreadId};
+ auto &&CodeGen = [&Privates, &LHSExprs, &RHSExprs, &ReductionOps,
+ this](CodeGenFunction &CGF, PrePostActionTy &Action) {
+ auto IPriv = Privates.begin();
+ auto ILHS = LHSExprs.begin();
+ auto IRHS = RHSExprs.begin();
+ for (auto *E : ReductionOps) {
+ emitSingleReductionCombiner(CGF, E, *IPriv, cast<DeclRefExpr>(*ILHS),
+ cast<DeclRefExpr>(*IRHS));
+ ++IPriv;
+ ++ILHS;
+ ++IRHS;
+ }
+ };
+ RegionCodeGenTy RCG(CodeGen);
+ NVPTXActionTy Action(
+ nullptr, llvm::None,
+ createNVPTXRuntimeFunction(OMPRTL_NVPTX__kmpc_end_reduce_nowait),
+ EndArgs);
+ RCG.setAction(Action);
+ RCG(CGF);
+ CGF.EmitBranch(DefaultBB);
+ CGF.EmitBlock(DefaultBB, /*IsFinished=*/true);
+}
OpenPOWER on IntegriCloud