diff options
Diffstat (limited to 'clang/lib/CodeGen/CGOpenMPRuntimeNVPTX.cpp')
-rw-r--r-- | clang/lib/CodeGen/CGOpenMPRuntimeNVPTX.cpp | 1008 |
1 files changed, 1008 insertions, 0 deletions
diff --git a/clang/lib/CodeGen/CGOpenMPRuntimeNVPTX.cpp b/clang/lib/CodeGen/CGOpenMPRuntimeNVPTX.cpp index 2f6546514c2..87a8e625e50 100644 --- a/clang/lib/CodeGen/CGOpenMPRuntimeNVPTX.cpp +++ b/clang/lib/CodeGen/CGOpenMPRuntimeNVPTX.cpp @@ -44,6 +44,20 @@ enum OpenMPRTLFunctionNVPTX { /// Call to void __kmpc_end_serialized_parallel(ident_t *loc, kmp_int32 /// global_tid); OMPRTL_NVPTX__kmpc_end_serialized_parallel, + /// \brief Call to int32_t __kmpc_shuffle_int32(int32_t element, + /// int16_t lane_offset, int16_t warp_size); + OMPRTL_NVPTX__kmpc_shuffle_int32, + /// \brief Call to int64_t __kmpc_shuffle_int64(int64_t element, + /// int16_t lane_offset, int16_t warp_size); + OMPRTL_NVPTX__kmpc_shuffle_int64, + /// \brief Call to __kmpc_nvptx_parallel_reduce_nowait(kmp_int32 + /// global_tid, kmp_int32 num_vars, size_t reduce_size, void* reduce_data, + /// void (*kmp_ShuffleReductFctPtr)(void *rhsData, int16_t lane_id, int16_t + /// lane_offset, int16_t shortCircuit), + /// void (*kmp_InterWarpCopyFctPtr)(void* src, int32_t warp_num)); + OMPRTL_NVPTX__kmpc_parallel_reduce_nowait, + /// \brief Call to __kmpc_nvptx_end_reduce_nowait(int32_t global_tid); + OMPRTL_NVPTX__kmpc_end_reduce_nowait }; /// Pre(post)-action for different OpenMP constructs specialized for NVPTX. @@ -100,6 +114,25 @@ public: } ~ExecutionModeRAII() { Mode = SavedMode; } }; + +/// GPU Configuration: This information can be derived from cuda registers, +/// however, providing compile time constants helps generate more efficient +/// code. For all practical purposes this is fine because the configuration +/// is the same for all known NVPTX architectures. +enum MachineConfiguration : unsigned { + WarpSize = 32, + /// Number of bits required to represent a lane identifier, which is + /// computed as log_2(WarpSize). + LaneIDBits = 5, + LaneIDMask = WarpSize - 1, +}; + +enum NamedBarrier : unsigned { + /// Synchronize on this barrier #ID using a named barrier primitive. + /// Only the subset of active threads in a parallel region arrive at the + /// barrier. + NB_Parallel = 1, +}; } // anonymous namespace /// Get the GPU warp size. @@ -120,6 +153,23 @@ static llvm::Value *getNVPTXThreadID(CodeGenFunction &CGF) { llvm::None, "nvptx_tid"); } +/// Get the id of the warp in the block. +/// We assume that the warp size is 32, which is always the case +/// on the NVPTX device, to generate more efficient code. +static llvm::Value *getNVPTXWarpID(CodeGenFunction &CGF) { + CGBuilderTy &Bld = CGF.Builder; + return Bld.CreateAShr(getNVPTXThreadID(CGF), LaneIDBits, "nvptx_warp_id"); +} + +/// Get the id of the current lane in the Warp. +/// We assume that the warp size is 32, which is always the case +/// on the NVPTX device, to generate more efficient code. +static llvm::Value *getNVPTXLaneID(CodeGenFunction &CGF) { + CGBuilderTy &Bld = CGF.Builder; + return Bld.CreateAnd(getNVPTXThreadID(CGF), Bld.getInt32(LaneIDMask), + "nvptx_lane_id"); +} + /// Get the maximum number of threads in a block of the GPU. static llvm::Value *getNVPTXNumThreads(CodeGenFunction &CGF) { CGBuilderTy &Bld = CGF.Builder; @@ -136,9 +186,25 @@ static void getNVPTXCTABarrier(CodeGenFunction &CGF) { &CGF.CGM.getModule(), llvm::Intrinsic::nvvm_barrier0)); } +/// Get barrier #ID to synchronize selected (multiple of warp size) threads in +/// a CTA. +static void getNVPTXBarrier(CodeGenFunction &CGF, int ID, + llvm::Value *NumThreads) { + CGBuilderTy &Bld = CGF.Builder; + llvm::Value *Args[] = {Bld.getInt32(ID), NumThreads}; + Bld.CreateCall(llvm::Intrinsic::getDeclaration(&CGF.CGM.getModule(), + llvm::Intrinsic::nvvm_barrier), + Args); +} + /// Synchronize all GPU threads in a block. static void syncCTAThreads(CodeGenFunction &CGF) { getNVPTXCTABarrier(CGF); } +/// Synchronize worker threads in a parallel region. +static void syncParallelThreads(CodeGenFunction &CGF, llvm::Value *NumThreads) { + return getNVPTXBarrier(CGF, NB_Parallel, NumThreads); +} + /// Get the value of the thread_limit clause in the teams directive. /// For the 'generic' execution mode, the runtime encodes thread_limit in /// the launch parameters, always starting thread_limit+warpSize threads per @@ -583,6 +649,60 @@ CGOpenMPRuntimeNVPTX::createNVPTXRuntimeFunction(unsigned Function) { RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_end_serialized_parallel"); break; } + case OMPRTL_NVPTX__kmpc_shuffle_int32: { + // Build int32_t __kmpc_shuffle_int32(int32_t element, + // int16_t lane_offset, int16_t warp_size); + llvm::Type *TypeParams[] = {CGM.Int32Ty, CGM.Int16Ty, CGM.Int16Ty}; + llvm::FunctionType *FnTy = + llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg*/ false); + RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_shuffle_int32"); + break; + } + case OMPRTL_NVPTX__kmpc_shuffle_int64: { + // Build int64_t __kmpc_shuffle_int64(int64_t element, + // int16_t lane_offset, int16_t warp_size); + llvm::Type *TypeParams[] = {CGM.Int64Ty, CGM.Int16Ty, CGM.Int16Ty}; + llvm::FunctionType *FnTy = + llvm::FunctionType::get(CGM.Int64Ty, TypeParams, /*isVarArg*/ false); + RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_shuffle_int64"); + break; + } + case OMPRTL_NVPTX__kmpc_parallel_reduce_nowait: { + // Build int32_t kmpc_nvptx_parallel_reduce_nowait(kmp_int32 global_tid, + // kmp_int32 num_vars, size_t reduce_size, void* reduce_data, + // void (*kmp_ShuffleReductFctPtr)(void *rhsData, int16_t lane_id, int16_t + // lane_offset, int16_t Algorithm Version), + // void (*kmp_InterWarpCopyFctPtr)(void* src, int warp_num)); + llvm::Type *ShuffleReduceTypeParams[] = {CGM.VoidPtrTy, CGM.Int16Ty, + CGM.Int16Ty, CGM.Int16Ty}; + auto *ShuffleReduceFnTy = + llvm::FunctionType::get(CGM.VoidTy, ShuffleReduceTypeParams, + /*isVarArg=*/false); + llvm::Type *InterWarpCopyTypeParams[] = {CGM.VoidPtrTy, CGM.Int32Ty}; + auto *InterWarpCopyFnTy = + llvm::FunctionType::get(CGM.VoidTy, InterWarpCopyTypeParams, + /*isVarArg=*/false); + llvm::Type *TypeParams[] = {CGM.Int32Ty, + CGM.Int32Ty, + CGM.SizeTy, + CGM.VoidPtrTy, + ShuffleReduceFnTy->getPointerTo(), + InterWarpCopyFnTy->getPointerTo()}; + llvm::FunctionType *FnTy = + llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg=*/false); + RTLFn = CGM.CreateRuntimeFunction( + FnTy, /*Name=*/"__kmpc_nvptx_parallel_reduce_nowait"); + break; + } + case OMPRTL_NVPTX__kmpc_end_reduce_nowait: { + // Build __kmpc_end_reduce_nowait(kmp_int32 global_tid); + llvm::Type *TypeParams[] = {CGM.Int32Ty}; + llvm::FunctionType *FnTy = + llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false); + RTLFn = CGM.CreateRuntimeFunction( + FnTy, /*Name=*/"__kmpc_nvptx_end_reduce_nowait"); + break; + } } return RTLFn; } @@ -805,3 +925,891 @@ void CGOpenMPRuntimeNVPTX::emitSpmdParallelCall( OutlinedFnArgs.append(CapturedVars.begin(), CapturedVars.end()); CGF.EmitCallOrInvoke(OutlinedFn, OutlinedFnArgs); } + +/// This function creates calls to one of two shuffle functions to copy +/// variables between lanes in a warp. +static llvm::Value *createRuntimeShuffleFunction(CodeGenFunction &CGF, + QualType ElemTy, + llvm::Value *Elem, + llvm::Value *Offset) { + auto &CGM = CGF.CGM; + auto &C = CGM.getContext(); + auto &Bld = CGF.Builder; + CGOpenMPRuntimeNVPTX &RT = + *(static_cast<CGOpenMPRuntimeNVPTX *>(&CGM.getOpenMPRuntime())); + + unsigned Size = CGM.getContext().getTypeSizeInChars(ElemTy).getQuantity(); + assert(Size <= 8 && "Unsupported bitwidth in shuffle instruction."); + + OpenMPRTLFunctionNVPTX ShuffleFn = Size <= 4 + ? OMPRTL_NVPTX__kmpc_shuffle_int32 + : OMPRTL_NVPTX__kmpc_shuffle_int64; + + // Cast all types to 32- or 64-bit values before calling shuffle routines. + auto CastTy = Size <= 4 ? CGM.Int32Ty : CGM.Int64Ty; + auto *ElemCast = Bld.CreateSExtOrBitCast(Elem, CastTy); + auto *WarpSize = CGF.EmitScalarConversion( + getNVPTXWarpSize(CGF), C.getIntTypeForBitwidth(32, /* Signed */ true), + C.getIntTypeForBitwidth(16, /* Signed */ true), SourceLocation()); + + auto *ShuffledVal = + CGF.EmitRuntimeCall(RT.createNVPTXRuntimeFunction(ShuffleFn), + {ElemCast, Offset, WarpSize}); + + return Bld.CreateTruncOrBitCast(ShuffledVal, CGF.ConvertTypeForMem(ElemTy)); +} + +namespace { +enum CopyAction : unsigned { + // RemoteLaneToThread: Copy over a Reduce list from a remote lane in + // the warp using shuffle instructions. + RemoteLaneToThread, + // ThreadCopy: Make a copy of a Reduce list on the thread's stack. + ThreadCopy, +}; +} // namespace + +/// Emit instructions to copy a Reduce list, which contains partially +/// aggregated values, in the specified direction. +static void emitReductionListCopy(CopyAction Action, CodeGenFunction &CGF, + QualType ReductionArrayTy, + ArrayRef<const Expr *> Privates, + Address SrcBase, Address DestBase, + llvm::Value *RemoteLaneOffset = nullptr) { + + auto &CGM = CGF.CGM; + auto &C = CGM.getContext(); + auto &Bld = CGF.Builder; + + // Iterates, element-by-element, through the source Reduce list and + // make a copy. + unsigned Idx = 0; + for (auto &Private : Privates) { + Address SrcElementAddr = Address::invalid(); + Address DestElementAddr = Address::invalid(); + Address DestElementPtrAddr = Address::invalid(); + // Should we shuffle in an element from a remote lane? + bool ShuffleInElement = false; + // Set to true to update the pointer in the dest Reduce list to a + // newly created element. + bool UpdateDestListPtr = false; + + switch (Action) { + case RemoteLaneToThread: { + // Step 1.1: Get the address for the src element in the Reduce list. + Address SrcElementPtrAddr = + Bld.CreateConstArrayGEP(SrcBase, Idx, CGF.getPointerSize()); + llvm::Value *SrcElementPtrPtr = CGF.EmitLoadOfScalar( + SrcElementPtrAddr, /*Volatile=*/false, C.VoidPtrTy, SourceLocation()); + SrcElementAddr = + Address(SrcElementPtrPtr, C.getTypeAlignInChars(Private->getType())); + + // Step 1.2: Create a temporary to store the element in the destination + // Reduce list. + DestElementPtrAddr = + Bld.CreateConstArrayGEP(DestBase, Idx, CGF.getPointerSize()); + DestElementAddr = + CGF.CreateMemTemp(Private->getType(), ".omp.reduction.element"); + ShuffleInElement = true; + UpdateDestListPtr = true; + break; + } + case ThreadCopy: { + // Step 1.1: Get the address for the src element in the Reduce list. + Address SrcElementPtrAddr = + Bld.CreateConstArrayGEP(SrcBase, Idx, CGF.getPointerSize()); + llvm::Value *SrcElementPtrPtr = CGF.EmitLoadOfScalar( + SrcElementPtrAddr, /*Volatile=*/false, C.VoidPtrTy, SourceLocation()); + SrcElementAddr = + Address(SrcElementPtrPtr, C.getTypeAlignInChars(Private->getType())); + + // Step 1.2: Get the address for dest element. The destination + // element has already been created on the thread's stack. + DestElementPtrAddr = + Bld.CreateConstArrayGEP(DestBase, Idx, CGF.getPointerSize()); + llvm::Value *DestElementPtr = + CGF.EmitLoadOfScalar(DestElementPtrAddr, /*Volatile=*/false, + C.VoidPtrTy, SourceLocation()); + Address DestElemAddr = + Address(DestElementPtr, C.getTypeAlignInChars(Private->getType())); + DestElementAddr = Bld.CreateElementBitCast( + DestElemAddr, CGF.ConvertTypeForMem(Private->getType())); + break; + } + } + + // Regardless of src and dest of copy, we emit the load of src + // element as this is required in all directions + SrcElementAddr = Bld.CreateElementBitCast( + SrcElementAddr, CGF.ConvertTypeForMem(Private->getType())); + llvm::Value *Elem = + CGF.EmitLoadOfScalar(SrcElementAddr, /*Volatile=*/false, + Private->getType(), SourceLocation()); + + // Now that all active lanes have read the element in the + // Reduce list, shuffle over the value from the remote lane. + if (ShuffleInElement) { + Elem = createRuntimeShuffleFunction(CGF, Private->getType(), Elem, + RemoteLaneOffset); + } + + // Store the source element value to the dest element address. + CGF.EmitStoreOfScalar(Elem, DestElementAddr, /*Volatile=*/false, + Private->getType()); + + // Step 3.1: Modify reference in dest Reduce list as needed. + // Modifying the reference in Reduce list to point to the newly + // created element. The element is live in the current function + // scope and that of functions it invokes (i.e., reduce_function). + // RemoteReduceData[i] = (void*)&RemoteElem + if (UpdateDestListPtr) { + CGF.EmitStoreOfScalar(Bld.CreatePointerBitCastOrAddrSpaceCast( + DestElementAddr.getPointer(), CGF.VoidPtrTy), + DestElementPtrAddr, /*Volatile=*/false, + C.VoidPtrTy); + } + + Idx++; + } +} + +/// This function emits a helper that gathers Reduce lists from the first +/// lane of every active warp to lanes in the first warp. +/// +/// void inter_warp_copy_func(void* reduce_data, num_warps) +/// shared smem[warp_size]; +/// For all data entries D in reduce_data: +/// If (I am the first lane in each warp) +/// Copy my local D to smem[warp_id] +/// sync +/// if (I am the first warp) +/// Copy smem[thread_id] to my local D +/// sync +static llvm::Value *emitInterWarpCopyFunction(CodeGenModule &CGM, + ArrayRef<const Expr *> Privates, + QualType ReductionArrayTy) { + auto &C = CGM.getContext(); + auto &M = CGM.getModule(); + + // ReduceList: thread local Reduce list. + // At the stage of the computation when this function is called, partially + // aggregated values reside in the first lane of every active warp. + ImplicitParamDecl ReduceListArg(C, /*DC=*/nullptr, SourceLocation(), + /*Id=*/nullptr, C.VoidPtrTy); + // NumWarps: number of warps active in the parallel region. This could + // be smaller than 32 (max warps in a CTA) for partial block reduction. + ImplicitParamDecl NumWarpsArg(C, /*DC=*/nullptr, SourceLocation(), + /*Id=*/nullptr, + C.getIntTypeForBitwidth(32, /* Signed */ true)); + FunctionArgList Args; + Args.push_back(&ReduceListArg); + Args.push_back(&NumWarpsArg); + + auto &CGFI = CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args); + auto *Fn = llvm::Function::Create( + CGM.getTypes().GetFunctionType(CGFI), llvm::GlobalValue::InternalLinkage, + "_omp_reduction_inter_warp_copy_func", &CGM.getModule()); + CGM.SetInternalFunctionAttributes(/*DC=*/nullptr, Fn, CGFI); + CodeGenFunction CGF(CGM); + // We don't need debug information in this function as nothing here refers to + // user code. + CGF.disableDebugInfo(); + CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args); + + auto &Bld = CGF.Builder; + + // This array is used as a medium to transfer, one reduce element at a time, + // the data from the first lane of every warp to lanes in the first warp + // in order to perform the final step of a reduction in a parallel region + // (reduction across warps). The array is placed in NVPTX __shared__ memory + // for reduced latency, as well as to have a distinct copy for concurrently + // executing target regions. The array is declared with common linkage so + // as to be shared across compilation units. + const char *TransferMediumName = + "__openmp_nvptx_data_transfer_temporary_storage"; + llvm::GlobalVariable *TransferMedium = + M.getGlobalVariable(TransferMediumName); + if (!TransferMedium) { + auto *Ty = llvm::ArrayType::get(CGM.Int64Ty, WarpSize); + unsigned SharedAddressSpace = C.getTargetAddressSpace(LangAS::cuda_shared); + TransferMedium = new llvm::GlobalVariable( + M, Ty, + /*isConstant=*/false, llvm::GlobalVariable::CommonLinkage, + llvm::Constant::getNullValue(Ty), TransferMediumName, + /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, + SharedAddressSpace); + } + + // Get the CUDA thread id of the current OpenMP thread on the GPU. + auto *ThreadID = getNVPTXThreadID(CGF); + // nvptx_lane_id = nvptx_id % warpsize + auto *LaneID = getNVPTXLaneID(CGF); + // nvptx_warp_id = nvptx_id / warpsize + auto *WarpID = getNVPTXWarpID(CGF); + + Address AddrReduceListArg = CGF.GetAddrOfLocalVar(&ReduceListArg); + Address LocalReduceList( + Bld.CreatePointerBitCastOrAddrSpaceCast( + CGF.EmitLoadOfScalar(AddrReduceListArg, /*Volatile=*/false, + C.VoidPtrTy, SourceLocation()), + CGF.ConvertTypeForMem(ReductionArrayTy)->getPointerTo()), + CGF.getPointerAlign()); + + unsigned Idx = 0; + for (auto &Private : Privates) { + // + // Warp master copies reduce element to transfer medium in __shared__ + // memory. + // + llvm::BasicBlock *ThenBB = CGF.createBasicBlock("then"); + llvm::BasicBlock *ElseBB = CGF.createBasicBlock("else"); + llvm::BasicBlock *MergeBB = CGF.createBasicBlock("ifcont"); + + // if (lane_id == 0) + auto IsWarpMaster = + Bld.CreateICmpEQ(LaneID, Bld.getInt32(0), "warp_master"); + Bld.CreateCondBr(IsWarpMaster, ThenBB, ElseBB); + CGF.EmitBlock(ThenBB); + + // Reduce element = LocalReduceList[i] + Address ElemPtrPtrAddr = + Bld.CreateConstArrayGEP(LocalReduceList, Idx, CGF.getPointerSize()); + llvm::Value *ElemPtrPtr = CGF.EmitLoadOfScalar( + ElemPtrPtrAddr, /*Volatile=*/false, C.VoidPtrTy, SourceLocation()); + // elemptr = (type[i]*)(elemptrptr) + Address ElemPtr = + Address(ElemPtrPtr, C.getTypeAlignInChars(Private->getType())); + ElemPtr = Bld.CreateElementBitCast( + ElemPtr, CGF.ConvertTypeForMem(Private->getType())); + // elem = *elemptr + llvm::Value *Elem = CGF.EmitLoadOfScalar( + ElemPtr, /*Volatile=*/false, Private->getType(), SourceLocation()); + + // Get pointer to location in transfer medium. + // MediumPtr = &medium[warp_id] + llvm::Value *MediumPtrVal = Bld.CreateInBoundsGEP( + TransferMedium, {llvm::Constant::getNullValue(CGM.Int64Ty), WarpID}); + Address MediumPtr(MediumPtrVal, C.getTypeAlignInChars(Private->getType())); + // Casting to actual data type. + // MediumPtr = (type[i]*)MediumPtrAddr; + MediumPtr = Bld.CreateElementBitCast( + MediumPtr, CGF.ConvertTypeForMem(Private->getType())); + + //*MediumPtr = elem + Bld.CreateStore(Elem, MediumPtr); + + Bld.CreateBr(MergeBB); + + CGF.EmitBlock(ElseBB); + Bld.CreateBr(MergeBB); + + CGF.EmitBlock(MergeBB); + + Address AddrNumWarpsArg = CGF.GetAddrOfLocalVar(&NumWarpsArg); + llvm::Value *NumWarpsVal = CGF.EmitLoadOfScalar( + AddrNumWarpsArg, /*Volatile=*/false, C.IntTy, SourceLocation()); + + auto *NumActiveThreads = Bld.CreateNSWMul( + NumWarpsVal, getNVPTXWarpSize(CGF), "num_active_threads"); + // named_barrier_sync(ParallelBarrierID, num_active_threads) + syncParallelThreads(CGF, NumActiveThreads); + + // + // Warp 0 copies reduce element from transfer medium. + // + llvm::BasicBlock *W0ThenBB = CGF.createBasicBlock("then"); + llvm::BasicBlock *W0ElseBB = CGF.createBasicBlock("else"); + llvm::BasicBlock *W0MergeBB = CGF.createBasicBlock("ifcont"); + + // Up to 32 threads in warp 0 are active. + auto IsActiveThread = + Bld.CreateICmpULT(ThreadID, NumWarpsVal, "is_active_thread"); + Bld.CreateCondBr(IsActiveThread, W0ThenBB, W0ElseBB); + + CGF.EmitBlock(W0ThenBB); + + // SrcMediumPtr = &medium[tid] + llvm::Value *SrcMediumPtrVal = Bld.CreateInBoundsGEP( + TransferMedium, {llvm::Constant::getNullValue(CGM.Int64Ty), ThreadID}); + Address SrcMediumPtr(SrcMediumPtrVal, + C.getTypeAlignInChars(Private->getType())); + // SrcMediumVal = *SrcMediumPtr; + SrcMediumPtr = Bld.CreateElementBitCast( + SrcMediumPtr, CGF.ConvertTypeForMem(Private->getType())); + llvm::Value *SrcMediumValue = CGF.EmitLoadOfScalar( + SrcMediumPtr, /*Volatile=*/false, Private->getType(), SourceLocation()); + + // TargetElemPtr = (type[i]*)(SrcDataAddr[i]) + Address TargetElemPtrPtr = + Bld.CreateConstArrayGEP(LocalReduceList, Idx, CGF.getPointerSize()); + llvm::Value *TargetElemPtrVal = CGF.EmitLoadOfScalar( + TargetElemPtrPtr, /*Volatile=*/false, C.VoidPtrTy, SourceLocation()); + Address TargetElemPtr = + Address(TargetElemPtrVal, C.getTypeAlignInChars(Private->getType())); + TargetElemPtr = Bld.CreateElementBitCast( + TargetElemPtr, CGF.ConvertTypeForMem(Private->getType())); + + // *TargetElemPtr = SrcMediumVal; + CGF.EmitStoreOfScalar(SrcMediumValue, TargetElemPtr, /*Volatile=*/false, + Private->getType()); + Bld.CreateBr(W0MergeBB); + + CGF.EmitBlock(W0ElseBB); + Bld.CreateBr(W0MergeBB); + + CGF.EmitBlock(W0MergeBB); + + // While warp 0 copies values from transfer medium, all other warps must + // wait. + syncParallelThreads(CGF, NumActiveThreads); + Idx++; + } + + CGF.FinishFunction(); + return Fn; +} + +/// Emit a helper that reduces data across two OpenMP threads (lanes) +/// in the same warp. It uses shuffle instructions to copy over data from +/// a remote lane's stack. The reduction algorithm performed is specified +/// by the fourth parameter. +/// +/// Algorithm Versions. +/// Full Warp Reduce (argument value 0): +/// This algorithm assumes that all 32 lanes are active and gathers +/// data from these 32 lanes, producing a single resultant value. +/// Contiguous Partial Warp Reduce (argument value 1): +/// This algorithm assumes that only a *contiguous* subset of lanes +/// are active. This happens for the last warp in a parallel region +/// when the user specified num_threads is not an integer multiple of +/// 32. This contiguous subset always starts with the zeroth lane. +/// Partial Warp Reduce (argument value 2): +/// This algorithm gathers data from any number of lanes at any position. +/// All reduced values are stored in the lowest possible lane. The set +/// of problems every algorithm addresses is a super set of those +/// addressable by algorithms with a lower version number. Overhead +/// increases as algorithm version increases. +/// +/// Terminology +/// Reduce element: +/// Reduce element refers to the individual data field with primitive +/// data types to be combined and reduced across threads. +/// Reduce list: +/// Reduce list refers to a collection of local, thread-private +/// reduce elements. +/// Remote Reduce list: +/// Remote Reduce list refers to a collection of remote (relative to +/// the current thread) reduce elements. +/// +/// We distinguish between three states of threads that are important to +/// the implementation of this function. +/// Alive threads: +/// Threads in a warp executing the SIMT instruction, as distinguished from +/// threads that are inactive due to divergent control flow. +/// Active threads: +/// The minimal set of threads that has to be alive upon entry to this +/// function. The computation is correct iff active threads are alive. +/// Some threads are alive but they are not active because they do not +/// contribute to the computation in any useful manner. Turning them off +/// may introduce control flow overheads without any tangible benefits. +/// Effective threads: +/// In order to comply with the argument requirements of the shuffle +/// function, we must keep all lanes holding data alive. But at most +/// half of them perform value aggregation; we refer to this half of +/// threads as effective. The other half is simply handing off their +/// data. +/// +/// Procedure +/// Value shuffle: +/// In this step active threads transfer data from higher lane positions +/// in the warp to lower lane positions, creating Remote Reduce list. +/// Value aggregation: +/// In this step, effective threads combine their thread local Reduce list +/// with Remote Reduce list and store the result in the thread local +/// Reduce list. +/// Value copy: +/// In this step, we deal with the assumption made by algorithm 2 +/// (i.e. contiguity assumption). When we have an odd number of lanes +/// active, say 2k+1, only k threads will be effective and therefore k +/// new values will be produced. However, the Reduce list owned by the +/// (2k+1)th thread is ignored in the value aggregation. Therefore +/// we copy the Reduce list from the (2k+1)th lane to (k+1)th lane so +/// that the contiguity assumption still holds. +static llvm::Value * +emitShuffleAndReduceFunction(CodeGenModule &CGM, + ArrayRef<const Expr *> Privates, + QualType ReductionArrayTy, llvm::Value *ReduceFn) { + auto &C = CGM.getContext(); + + // Thread local Reduce list used to host the values of data to be reduced. + ImplicitParamDecl ReduceListArg(C, /*DC=*/nullptr, SourceLocation(), + /*Id=*/nullptr, C.VoidPtrTy); + // Current lane id; could be logical. + ImplicitParamDecl LaneIDArg(C, /*DC=*/nullptr, SourceLocation(), + /*Id=*/nullptr, C.ShortTy); + // Offset of the remote source lane relative to the current lane. + ImplicitParamDecl RemoteLaneOffsetArg(C, /*DC=*/nullptr, SourceLocation(), + /*Id=*/nullptr, C.ShortTy); + // Algorithm version. This is expected to be known at compile time. + ImplicitParamDecl AlgoVerArg(C, /*DC=*/nullptr, SourceLocation(), + /*Id=*/nullptr, C.ShortTy); + FunctionArgList Args; + Args.push_back(&ReduceListArg); + Args.push_back(&LaneIDArg); + Args.push_back(&RemoteLaneOffsetArg); + Args.push_back(&AlgoVerArg); + + auto &CGFI = CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args); + auto *Fn = llvm::Function::Create( + CGM.getTypes().GetFunctionType(CGFI), llvm::GlobalValue::InternalLinkage, + "_omp_reduction_shuffle_and_reduce_func", &CGM.getModule()); + CGM.SetInternalFunctionAttributes(/*D=*/nullptr, Fn, CGFI); + CodeGenFunction CGF(CGM); + // We don't need debug information in this function as nothing here refers to + // user code. + CGF.disableDebugInfo(); + CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args); + + auto &Bld = CGF.Builder; + + Address AddrReduceListArg = CGF.GetAddrOfLocalVar(&ReduceListArg); + Address LocalReduceList( + Bld.CreatePointerBitCastOrAddrSpaceCast( + CGF.EmitLoadOfScalar(AddrReduceListArg, /*Volatile=*/false, + C.VoidPtrTy, SourceLocation()), + CGF.ConvertTypeForMem(ReductionArrayTy)->getPointerTo()), + CGF.getPointerAlign()); + + Address AddrLaneIDArg = CGF.GetAddrOfLocalVar(&LaneIDArg); + llvm::Value *LaneIDArgVal = CGF.EmitLoadOfScalar( + AddrLaneIDArg, /*Volatile=*/false, C.ShortTy, SourceLocation()); + + Address AddrRemoteLaneOffsetArg = CGF.GetAddrOfLocalVar(&RemoteLaneOffsetArg); + llvm::Value *RemoteLaneOffsetArgVal = CGF.EmitLoadOfScalar( + AddrRemoteLaneOffsetArg, /*Volatile=*/false, C.ShortTy, SourceLocation()); + + Address AddrAlgoVerArg = CGF.GetAddrOfLocalVar(&AlgoVerArg); + llvm::Value *AlgoVerArgVal = CGF.EmitLoadOfScalar( + AddrAlgoVerArg, /*Volatile=*/false, C.ShortTy, SourceLocation()); + + // Create a local thread-private variable to host the Reduce list + // from a remote lane. + Address RemoteReduceList = + CGF.CreateMemTemp(ReductionArrayTy, ".omp.reduction.remote_reduce_list"); + + // This loop iterates through the list of reduce elements and copies, + // element by element, from a remote lane in the warp to RemoteReduceList, + // hosted on the thread's stack. + emitReductionListCopy(RemoteLaneToThread, CGF, ReductionArrayTy, Privates, + LocalReduceList, RemoteReduceList, + RemoteLaneOffsetArgVal); + + // The actions to be performed on the Remote Reduce list is dependent + // on the algorithm version. + // + // if (AlgoVer==0) || (AlgoVer==1 && (LaneId < Offset)) || (AlgoVer==2 && + // LaneId % 2 == 0 && Offset > 0): + // do the reduction value aggregation + // + // The thread local variable Reduce list is mutated in place to host the + // reduced data, which is the aggregated value produced from local and + // remote lanes. + // + // Note that AlgoVer is expected to be a constant integer known at compile + // time. + // When AlgoVer==0, the first conjunction evaluates to true, making + // the entire predicate true during compile time. + // When AlgoVer==1, the second conjunction has only the second part to be + // evaluated during runtime. Other conjunctions evaluates to false + // during compile time. + // When AlgoVer==2, the third conjunction has only the second part to be + // evaluated during runtime. Other conjunctions evaluates to false + // during compile time. + auto CondAlgo0 = Bld.CreateICmpEQ(AlgoVerArgVal, Bld.getInt16(0)); + + auto CondAlgo1 = + Bld.CreateAnd(Bld.CreateICmpEQ(AlgoVerArgVal, Bld.getInt16(1)), + Bld.CreateICmpULT(LaneIDArgVal, RemoteLaneOffsetArgVal)); + + auto CondAlgo2 = Bld.CreateAnd( + Bld.CreateICmpEQ(AlgoVerArgVal, Bld.getInt16(2)), + Bld.CreateICmpEQ(Bld.CreateAnd(LaneIDArgVal, Bld.getInt16(1)), + Bld.getInt16(0))); + CondAlgo2 = Bld.CreateAnd( + CondAlgo2, Bld.CreateICmpSGT(RemoteLaneOffsetArgVal, Bld.getInt16(0))); + + auto CondReduce = Bld.CreateOr(CondAlgo0, CondAlgo1); + CondReduce = Bld.CreateOr(CondReduce, CondAlgo2); + + llvm::BasicBlock *ThenBB = CGF.createBasicBlock("then"); + llvm::BasicBlock *ElseBB = CGF.createBasicBlock("else"); + llvm::BasicBlock *MergeBB = CGF.createBasicBlock("ifcont"); + Bld.CreateCondBr(CondReduce, ThenBB, ElseBB); + + CGF.EmitBlock(ThenBB); + // reduce_function(LocalReduceList, RemoteReduceList) + llvm::Value *LocalReduceListPtr = Bld.CreatePointerBitCastOrAddrSpaceCast( + LocalReduceList.getPointer(), CGF.VoidPtrTy); + llvm::Value *RemoteReduceListPtr = Bld.CreatePointerBitCastOrAddrSpaceCast( + RemoteReduceList.getPointer(), CGF.VoidPtrTy); + CGF.EmitCallOrInvoke(ReduceFn, {LocalReduceListPtr, RemoteReduceListPtr}); + Bld.CreateBr(MergeBB); + + CGF.EmitBlock(ElseBB); + Bld.CreateBr(MergeBB); + + CGF.EmitBlock(MergeBB); + + // if (AlgoVer==1 && (LaneId >= Offset)) copy Remote Reduce list to local + // Reduce list. + auto CondCopy = + Bld.CreateAnd(Bld.CreateICmpEQ(AlgoVerArgVal, Bld.getInt16(1)), + Bld.CreateICmpUGE(LaneIDArgVal, RemoteLaneOffsetArgVal)); + + llvm::BasicBlock *CpyThenBB = CGF.createBasicBlock("then"); + llvm::BasicBlock *CpyElseBB = CGF.createBasicBlock("else"); + llvm::BasicBlock *CpyMergeBB = CGF.createBasicBlock("ifcont"); + Bld.CreateCondBr(CondCopy, CpyThenBB, CpyElseBB); + + CGF.EmitBlock(CpyThenBB); + emitReductionListCopy(ThreadCopy, CGF, ReductionArrayTy, Privates, + RemoteReduceList, LocalReduceList); + Bld.CreateBr(CpyMergeBB); + + CGF.EmitBlock(CpyElseBB); + Bld.CreateBr(CpyMergeBB); + + CGF.EmitBlock(CpyMergeBB); + + CGF.FinishFunction(); + return Fn; +} + +/// +/// Design of OpenMP reductions on the GPU +/// +/// Consider a typical OpenMP program with one or more reduction +/// clauses: +/// +/// float foo; +/// double bar; +/// #pragma omp target teams distribute parallel for \ +/// reduction(+:foo) reduction(*:bar) +/// for (int i = 0; i < N; i++) { +/// foo += A[i]; bar *= B[i]; +/// } +/// +/// where 'foo' and 'bar' are reduced across all OpenMP threads in +/// all teams. In our OpenMP implementation on the NVPTX device an +/// OpenMP team is mapped to a CUDA threadblock and OpenMP threads +/// within a team are mapped to CUDA threads within a threadblock. +/// Our goal is to efficiently aggregate values across all OpenMP +/// threads such that: +/// +/// - the compiler and runtime are logically concise, and +/// - the reduction is performed efficiently in a hierarchical +/// manner as follows: within OpenMP threads in the same warp, +/// across warps in a threadblock, and finally across teams on +/// the NVPTX device. +/// +/// Introduction to Decoupling +/// +/// We would like to decouple the compiler and the runtime so that the +/// latter is ignorant of the reduction variables (number, data types) +/// and the reduction operators. This allows a simpler interface +/// and implementation while still attaining good performance. +/// +/// Pseudocode for the aforementioned OpenMP program generated by the +/// compiler is as follows: +/// +/// 1. Create private copies of reduction variables on each OpenMP +/// thread: 'foo_private', 'bar_private' +/// 2. Each OpenMP thread reduces the chunk of 'A' and 'B' assigned +/// to it and writes the result in 'foo_private' and 'bar_private' +/// respectively. +/// 3. Call the OpenMP runtime on the GPU to reduce within a team +/// and store the result on the team master: +/// +/// __kmpc_nvptx_parallel_reduce_nowait(..., +/// reduceData, shuffleReduceFn, interWarpCpyFn) +/// +/// where: +/// struct ReduceData { +/// double *foo; +/// double *bar; +/// } reduceData +/// reduceData.foo = &foo_private +/// reduceData.bar = &bar_private +/// +/// 'shuffleReduceFn' and 'interWarpCpyFn' are pointers to two +/// auxiliary functions generated by the compiler that operate on +/// variables of type 'ReduceData'. They aid the runtime perform +/// algorithmic steps in a data agnostic manner. +/// +/// 'shuffleReduceFn' is a pointer to a function that reduces data +/// of type 'ReduceData' across two OpenMP threads (lanes) in the +/// same warp. It takes the following arguments as input: +/// +/// a. variable of type 'ReduceData' on the calling lane, +/// b. its lane_id, +/// c. an offset relative to the current lane_id to generate a +/// remote_lane_id. The remote lane contains the second +/// variable of type 'ReduceData' that is to be reduced. +/// d. an algorithm version parameter determining which reduction +/// algorithm to use. +/// +/// 'shuffleReduceFn' retrieves data from the remote lane using +/// efficient GPU shuffle intrinsics and reduces, using the +/// algorithm specified by the 4th parameter, the two operands +/// element-wise. The result is written to the first operand. +/// +/// Different reduction algorithms are implemented in different +/// runtime functions, all calling 'shuffleReduceFn' to perform +/// the essential reduction step. Therefore, based on the 4th +/// parameter, this function behaves slightly differently to +/// cooperate with the runtime to ensure correctness under +/// different circumstances. +/// +/// 'InterWarpCpyFn' is a pointer to a function that transfers +/// reduced variables across warps. It tunnels, through CUDA +/// shared memory, the thread-private data of type 'ReduceData' +/// from lane 0 of each warp to a lane in the first warp. +/// 5. if ret == 1: +/// The team master of the last team stores the reduced +/// result to the globals in memory. +/// foo += reduceData.foo; bar *= reduceData.bar +/// +/// +/// Warp Reduction Algorithms +/// +/// On the warp level, we have three algorithms implemented in the +/// OpenMP runtime depending on the number of active lanes: +/// +/// Full Warp Reduction +/// +/// The reduce algorithm within a warp where all lanes are active +/// is implemented in the runtime as follows: +/// +/// full_warp_reduce(void *reduce_data, +/// kmp_ShuffleReductFctPtr ShuffleReduceFn) { +/// for (int offset = WARPSIZE/2; offset > 0; offset /= 2) +/// ShuffleReduceFn(reduce_data, 0, offset, 0); +/// } +/// +/// The algorithm completes in log(2, WARPSIZE) steps. +/// +/// 'ShuffleReduceFn' is used here with lane_id set to 0 because it is +/// not used therefore we save instructions by not retrieving lane_id +/// from the corresponding special registers. The 4th parameter, which +/// represents the version of the algorithm being used, is set to 0 to +/// signify full warp reduction. +/// +/// In this version, 'ShuffleReduceFn' behaves, per element, as follows: +/// +/// #reduce_elem refers to an element in the local lane's data structure +/// #remote_elem is retrieved from a remote lane +/// remote_elem = shuffle_down(reduce_elem, offset, WARPSIZE); +/// reduce_elem = reduce_elem REDUCE_OP remote_elem; +/// +/// Contiguous Partial Warp Reduction +/// +/// This reduce algorithm is used within a warp where only the first +/// 'n' (n <= WARPSIZE) lanes are active. It is typically used when the +/// number of OpenMP threads in a parallel region is not a multiple of +/// WARPSIZE. The algorithm is implemented in the runtime as follows: +/// +/// void +/// contiguous_partial_reduce(void *reduce_data, +/// kmp_ShuffleReductFctPtr ShuffleReduceFn, +/// int size, int lane_id) { +/// int curr_size; +/// int offset; +/// curr_size = size; +/// mask = curr_size/2; +/// while (offset>0) { +/// ShuffleReduceFn(reduce_data, lane_id, offset, 1); +/// curr_size = (curr_size+1)/2; +/// offset = curr_size/2; +/// } +/// } +/// +/// In this version, 'ShuffleReduceFn' behaves, per element, as follows: +/// +/// remote_elem = shuffle_down(reduce_elem, offset, WARPSIZE); +/// if (lane_id < offset) +/// reduce_elem = reduce_elem REDUCE_OP remote_elem +/// else +/// reduce_elem = remote_elem +/// +/// This algorithm assumes that the data to be reduced are located in a +/// contiguous subset of lanes starting from the first. When there is +/// an odd number of active lanes, the data in the last lane is not +/// aggregated with any other lane's dat but is instead copied over. +/// +/// Dispersed Partial Warp Reduction +/// +/// This algorithm is used within a warp when any discontiguous subset of +/// lanes are active. It is used to implement the reduction operation +/// across lanes in an OpenMP simd region or in a nested parallel region. +/// +/// void +/// dispersed_partial_reduce(void *reduce_data, +/// kmp_ShuffleReductFctPtr ShuffleReduceFn) { +/// int size, remote_id; +/// int logical_lane_id = number_of_active_lanes_before_me() * 2; +/// do { +/// remote_id = next_active_lane_id_right_after_me(); +/// # the above function returns 0 of no active lane +/// # is present right after the current lane. +/// size = number_of_active_lanes_in_this_warp(); +/// logical_lane_id /= 2; +/// ShuffleReduceFn(reduce_data, logical_lane_id, +/// remote_id-1-threadIdx.x, 2); +/// } while (logical_lane_id % 2 == 0 && size > 1); +/// } +/// +/// There is no assumption made about the initial state of the reduction. +/// Any number of lanes (>=1) could be active at any position. The reduction +/// result is returned in the first active lane. +/// +/// In this version, 'ShuffleReduceFn' behaves, per element, as follows: +/// +/// remote_elem = shuffle_down(reduce_elem, offset, WARPSIZE); +/// if (lane_id % 2 == 0 && offset > 0) +/// reduce_elem = reduce_elem REDUCE_OP remote_elem +/// else +/// reduce_elem = remote_elem +/// +/// +/// Intra-Team Reduction +/// +/// This function, as implemented in the runtime call +/// '__kmpc_nvptx_parallel_reduce_nowait', aggregates data across OpenMP +/// threads in a team. It first reduces within a warp using the +/// aforementioned algorithms. We then proceed to gather all such +/// reduced values at the first warp. +/// +/// The runtime makes use of the function 'InterWarpCpyFn', which copies +/// data from each of the "warp master" (zeroth lane of each warp, where +/// warp-reduced data is held) to the zeroth warp. This step reduces (in +/// a mathematical sense) the problem of reduction across warp masters in +/// a block to the problem of warp reduction. +/// +void CGOpenMPRuntimeNVPTX::emitReduction( + CodeGenFunction &CGF, SourceLocation Loc, ArrayRef<const Expr *> Privates, + ArrayRef<const Expr *> LHSExprs, ArrayRef<const Expr *> RHSExprs, + ArrayRef<const Expr *> ReductionOps, ReductionOptionsTy Options) { + if (!CGF.HaveInsertPoint()) + return; + + bool ParallelReduction = isOpenMPParallelDirective(Options.ReductionKind); + assert(ParallelReduction && "Invalid reduction selection in emitReduction."); + + auto &C = CGM.getContext(); + + // 1. Build a list of reduction variables. + // void *RedList[<n>] = {<ReductionVars>[0], ..., <ReductionVars>[<n>-1]}; + auto Size = RHSExprs.size(); + for (auto *E : Privates) { + if (E->getType()->isVariablyModifiedType()) + // Reserve place for array size. + ++Size; + } + llvm::APInt ArraySize(/*unsigned int numBits=*/32, Size); + QualType ReductionArrayTy = + C.getConstantArrayType(C.VoidPtrTy, ArraySize, ArrayType::Normal, + /*IndexTypeQuals=*/0); + Address ReductionList = + CGF.CreateMemTemp(ReductionArrayTy, ".omp.reduction.red_list"); + auto IPriv = Privates.begin(); + unsigned Idx = 0; + for (unsigned I = 0, E = RHSExprs.size(); I < E; ++I, ++IPriv, ++Idx) { + Address Elem = CGF.Builder.CreateConstArrayGEP(ReductionList, Idx, + CGF.getPointerSize()); + CGF.Builder.CreateStore( + CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( + CGF.EmitLValue(RHSExprs[I]).getPointer(), CGF.VoidPtrTy), + Elem); + if ((*IPriv)->getType()->isVariablyModifiedType()) { + // Store array size. + ++Idx; + Elem = CGF.Builder.CreateConstArrayGEP(ReductionList, Idx, + CGF.getPointerSize()); + llvm::Value *Size = CGF.Builder.CreateIntCast( + CGF.getVLASize( + CGF.getContext().getAsVariableArrayType((*IPriv)->getType())) + .first, + CGF.SizeTy, /*isSigned=*/false); + CGF.Builder.CreateStore(CGF.Builder.CreateIntToPtr(Size, CGF.VoidPtrTy), + Elem); + } + } + + // 2. Emit reduce_func(). + auto *ReductionFn = emitReductionFunction( + CGM, CGF.ConvertTypeForMem(ReductionArrayTy)->getPointerTo(), Privates, + LHSExprs, RHSExprs, ReductionOps); + + // 4. Build res = __kmpc_reduce{_nowait}(<gtid>, <n>, sizeof(RedList), + // RedList, shuffle_reduce_func, interwarp_copy_func); + auto *ThreadId = getThreadID(CGF, Loc); + auto *ReductionArrayTySize = CGF.getTypeSize(ReductionArrayTy); + auto *RL = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( + ReductionList.getPointer(), CGF.VoidPtrTy); + + auto *ShuffleAndReduceFn = emitShuffleAndReduceFunction( + CGM, Privates, ReductionArrayTy, ReductionFn); + auto *InterWarpCopyFn = + emitInterWarpCopyFunction(CGM, Privates, ReductionArrayTy); + + llvm::Value *Res = nullptr; + if (ParallelReduction) { + llvm::Value *Args[] = {ThreadId, + CGF.Builder.getInt32(RHSExprs.size()), + ReductionArrayTySize, + RL, + ShuffleAndReduceFn, + InterWarpCopyFn}; + + Res = CGF.EmitRuntimeCall( + createNVPTXRuntimeFunction(OMPRTL_NVPTX__kmpc_parallel_reduce_nowait), + Args); + } + + // 5. Build switch(res) + auto *DefaultBB = CGF.createBasicBlock(".omp.reduction.default"); + auto *SwInst = CGF.Builder.CreateSwitch(Res, DefaultBB, /*NumCases=*/1); + + // 6. Build case 1: where we have reduced values in the master + // thread in each team. + // __kmpc_end_reduce{_nowait}(<gtid>); + // break; + auto *Case1BB = CGF.createBasicBlock(".omp.reduction.case1"); + SwInst->addCase(CGF.Builder.getInt32(1), Case1BB); + CGF.EmitBlock(Case1BB); + + // Add emission of __kmpc_end_reduce{_nowait}(<gtid>); + llvm::Value *EndArgs[] = {ThreadId}; + auto &&CodeGen = [&Privates, &LHSExprs, &RHSExprs, &ReductionOps, + this](CodeGenFunction &CGF, PrePostActionTy &Action) { + auto IPriv = Privates.begin(); + auto ILHS = LHSExprs.begin(); + auto IRHS = RHSExprs.begin(); + for (auto *E : ReductionOps) { + emitSingleReductionCombiner(CGF, E, *IPriv, cast<DeclRefExpr>(*ILHS), + cast<DeclRefExpr>(*IRHS)); + ++IPriv; + ++ILHS; + ++IRHS; + } + }; + RegionCodeGenTy RCG(CodeGen); + NVPTXActionTy Action( + nullptr, llvm::None, + createNVPTXRuntimeFunction(OMPRTL_NVPTX__kmpc_end_reduce_nowait), + EndArgs); + RCG.setAction(Action); + RCG(CGF); + CGF.EmitBranch(DefaultBB); + CGF.EmitBlock(DefaultBB, /*IsFinished=*/true); +} |