diff options
-rw-r--r-- | llvm/include/llvm/Target/TargetOptions.h | 7 | ||||
-rw-r--r-- | llvm/lib/Target/PowerPC/PPC32ISelSimple.cpp | 3924 | ||||
-rw-r--r-- | llvm/lib/Target/PowerPC/PowerPC.h | 1 | ||||
-rw-r--r-- | llvm/lib/Target/PowerPC/PowerPCTargetMachine.cpp | 17 | ||||
-rw-r--r-- | llvm/lib/Target/TargetMachine.cpp | 5 | ||||
-rw-r--r-- | llvm/lib/Target/X86/X86.h | 6 | ||||
-rw-r--r-- | llvm/lib/Target/X86/X86ISelSimple.cpp | 4148 | ||||
-rw-r--r-- | llvm/lib/Target/X86/X86TargetMachine.cpp | 14 |
8 files changed, 8 insertions, 8114 deletions
diff --git a/llvm/include/llvm/Target/TargetOptions.h b/llvm/include/llvm/Target/TargetOptions.h index 0018377c0f6..e208eba6418 100644 --- a/llvm/include/llvm/Target/TargetOptions.h +++ b/llvm/include/llvm/Target/TargetOptions.h @@ -34,13 +34,6 @@ namespace llvm { /// over the place. extern bool NoExcessFPPrecision; - /// PatternISelTriState - This flag is enabled when -pattern-isel=X is - /// specified on the command line. The default value is 2, in which case the - /// target chooses what is best for it. Setting X to 0 forces the use of - /// a simple ISel if available, while setting it to 1 forces the use of a - /// pattern ISel if available. - extern int PatternISelTriState; - /// UnsafeFPMath - This flag is enabled when the /// -enable-unsafe-fp-math flag is specified on the command line. When /// this flag is off (the default), the code generator is not allowed to diff --git a/llvm/lib/Target/PowerPC/PPC32ISelSimple.cpp b/llvm/lib/Target/PowerPC/PPC32ISelSimple.cpp deleted file mode 100644 index 742b92016de..00000000000 --- a/llvm/lib/Target/PowerPC/PPC32ISelSimple.cpp +++ /dev/null @@ -1,3924 +0,0 @@ -//===-- PPC32ISelSimple.cpp - A simple instruction selector PowerPC32 -----===// -// -// The LLVM Compiler Infrastructure -// -// This file was developed by the LLVM research group and is distributed under -// the University of Illinois Open Source License. See LICENSE.TXT for details. -// -//===----------------------------------------------------------------------===// - -#define DEBUG_TYPE "isel" -#include "PowerPC.h" -#include "PowerPCInstrBuilder.h" -#include "PowerPCInstrInfo.h" -#include "PPC32TargetMachine.h" -#include "llvm/Constants.h" -#include "llvm/DerivedTypes.h" -#include "llvm/Function.h" -#include "llvm/Instructions.h" -#include "llvm/Pass.h" -#include "llvm/CodeGen/IntrinsicLowering.h" -#include "llvm/CodeGen/MachineConstantPool.h" -#include "llvm/CodeGen/MachineFrameInfo.h" -#include "llvm/CodeGen/MachineFunction.h" -#include "llvm/CodeGen/SSARegMap.h" -#include "llvm/Target/MRegisterInfo.h" -#include "llvm/Target/TargetMachine.h" -#include "llvm/Support/GetElementPtrTypeIterator.h" -#include "llvm/Support/InstVisitor.h" -#include "llvm/Support/MathExtras.h" -#include "llvm/Support/Debug.h" -#include "llvm/ADT/Statistic.h" -#include <vector> -using namespace llvm; - - -// IsRunOfOnes - returns true if Val consists of one contiguous run of 1's with -// any number of 0's on either side. the 1's are allowed to wrap from LSB to -// MSB. so 0x000FFF0, 0x0000FFFF, and 0xFF0000FF are all runs. 0x0F0F0000 is -// not, since all 1's are not contiguous. -static bool IsRunOfOnes(unsigned Val, unsigned &MB, unsigned &ME) { - if (isShiftedMask_32(Val)) { - // look for the first non-zero bit - MB = CountLeadingZeros_32(Val); - // look for the first zero bit after the run of ones - ME = CountLeadingZeros_32((Val - 1) ^ Val); - return true; - } else if (isShiftedMask_32(Val = ~Val)) { // invert mask - // effectively look for the first zero bit - ME = CountLeadingZeros_32(Val) - 1; - // effectively look for the first one bit after the run of zeros - MB = CountLeadingZeros_32((Val - 1) ^ Val) + 1; - return true; - } - // no run present - return false; -} - -namespace { - /// TypeClass - Used by the PowerPC backend to group LLVM types by their basic - /// PPC Representation. - /// - enum TypeClass { - cByte, cShort, cInt, cFP32, cFP64, cLong - }; -} - -/// getClass - Turn a primitive type into a "class" number which is based on the -/// size of the type, and whether or not it is floating point. -/// -static inline TypeClass getClass(const Type *Ty) { - switch (Ty->getTypeID()) { - case Type::SByteTyID: - case Type::UByteTyID: return cByte; // Byte operands are class #0 - case Type::ShortTyID: - case Type::UShortTyID: return cShort; // Short operands are class #1 - case Type::IntTyID: - case Type::UIntTyID: - case Type::PointerTyID: return cInt; // Ints and pointers are class #2 - - case Type::FloatTyID: return cFP32; // Single float is #3 - case Type::DoubleTyID: return cFP64; // Double Point is #4 - - case Type::LongTyID: - case Type::ULongTyID: return cLong; // Longs are class #5 - default: - assert(0 && "Invalid type to getClass!"); - return cByte; // not reached - } -} - -// getClassB - Just like getClass, but treat boolean values as ints. -static inline TypeClass getClassB(const Type *Ty) { - if (Ty == Type::BoolTy) return cByte; - return getClass(Ty); -} - -namespace { - struct PPC32ISel : public FunctionPass, InstVisitor<PPC32ISel> { - PPC32TargetMachine &TM; - MachineFunction *F; // The function we are compiling into - MachineBasicBlock *BB; // The current MBB we are compiling - int VarArgsFrameIndex; // FrameIndex for start of varargs area - - /// CollapsedGepOp - This struct is for recording the intermediate results - /// used to calculate the base, index, and offset of a GEP instruction. - struct CollapsedGepOp { - ConstantSInt *offset; // the current offset into the struct/array - Value *index; // the index of the array element - ConstantUInt *size; // the size of each array element - CollapsedGepOp(ConstantSInt *o, Value *i, ConstantUInt *s) : - offset(o), index(i), size(s) {} - }; - - /// FoldedGEP - This struct is for recording the necessary information to - /// emit the GEP in a load or store instruction, used by emitGEPOperation. - struct FoldedGEP { - unsigned base; - unsigned index; - ConstantSInt *offset; - FoldedGEP() : base(0), index(0), offset(0) {} - FoldedGEP(unsigned b, unsigned i, ConstantSInt *o) : - base(b), index(i), offset(o) {} - }; - - /// RlwimiRec - This struct is for recording the arguments to a PowerPC - /// rlwimi instruction to be output for a particular Instruction::Or when - /// we recognize the pattern for rlwimi, starting with a shift or and. - struct RlwimiRec { - Value *Target, *Insert; - unsigned Shift, MB, ME; - RlwimiRec() : Target(0), Insert(0), Shift(0), MB(0), ME(0) {} - RlwimiRec(Value *tgt, Value *ins, unsigned s, unsigned b, unsigned e) : - Target(tgt), Insert(ins), Shift(s), MB(b), ME(e) {} - }; - - // External functions we may use in compiling the Module - Function *fmodfFn, *fmodFn, *__cmpdi2Fn, *__moddi3Fn, *__divdi3Fn, - *__umoddi3Fn, *__udivdi3Fn, *__fixsfdiFn, *__fixdfdiFn, *__fixunssfdiFn, - *__fixunsdfdiFn, *__floatdisfFn, *__floatdidfFn, *mallocFn, *freeFn; - - // Mapping between Values and SSA Regs - std::map<Value*, unsigned> RegMap; - - // MBBMap - Mapping between LLVM BB -> Machine BB - std::map<const BasicBlock*, MachineBasicBlock*> MBBMap; - - // AllocaMap - Mapping from fixed sized alloca instructions to the - // FrameIndex for the alloca. - std::map<AllocaInst*, unsigned> AllocaMap; - - // GEPMap - Mapping between basic blocks and GEP definitions - std::map<GetElementPtrInst*, FoldedGEP> GEPMap; - - // RlwimiMap - Mapping between BinaryOperand (Or) instructions and info - // needed to properly emit a rlwimi instruction in its place. - std::map<Instruction *, RlwimiRec> InsertMap; - - // A rlwimi instruction is the combination of at least three instructions. - // Keep a vector of instructions to skip around so that we do not try to - // emit instructions that were folded into a rlwimi. - std::vector<Instruction *> SkipList; - - // A Reg to hold the base address used for global loads and stores, and a - // flag to set whether or not we need to emit it for this function. - unsigned GlobalBaseReg; - bool GlobalBaseInitialized; - - PPC32ISel(TargetMachine &tm):TM(reinterpret_cast<PPC32TargetMachine&>(tm)), - F(0), BB(0) {} - - bool doInitialization(Module &M) { - // Add external functions that we may call - Type *i = Type::IntTy; - Type *d = Type::DoubleTy; - Type *f = Type::FloatTy; - Type *l = Type::LongTy; - Type *ul = Type::ULongTy; - Type *voidPtr = PointerType::get(Type::SByteTy); - // float fmodf(float, float); - fmodfFn = M.getOrInsertFunction("fmodf", f, f, f, 0); - // double fmod(double, double); - fmodFn = M.getOrInsertFunction("fmod", d, d, d, 0); - // int __cmpdi2(long, long); - __cmpdi2Fn = M.getOrInsertFunction("__cmpdi2", i, l, l, 0); - // long __moddi3(long, long); - __moddi3Fn = M.getOrInsertFunction("__moddi3", l, l, l, 0); - // long __divdi3(long, long); - __divdi3Fn = M.getOrInsertFunction("__divdi3", l, l, l, 0); - // unsigned long __umoddi3(unsigned long, unsigned long); - __umoddi3Fn = M.getOrInsertFunction("__umoddi3", ul, ul, ul, 0); - // unsigned long __udivdi3(unsigned long, unsigned long); - __udivdi3Fn = M.getOrInsertFunction("__udivdi3", ul, ul, ul, 0); - // long __fixsfdi(float) - __fixsfdiFn = M.getOrInsertFunction("__fixsfdi", l, f, 0); - // long __fixdfdi(double) - __fixdfdiFn = M.getOrInsertFunction("__fixdfdi", l, d, 0); - // unsigned long __fixunssfdi(float) - __fixunssfdiFn = M.getOrInsertFunction("__fixunssfdi", ul, f, 0); - // unsigned long __fixunsdfdi(double) - __fixunsdfdiFn = M.getOrInsertFunction("__fixunsdfdi", ul, d, 0); - // float __floatdisf(long) - __floatdisfFn = M.getOrInsertFunction("__floatdisf", f, l, 0); - // double __floatdidf(long) - __floatdidfFn = M.getOrInsertFunction("__floatdidf", d, l, 0); - // void* malloc(size_t) - mallocFn = M.getOrInsertFunction("malloc", voidPtr, Type::UIntTy, 0); - // void free(void*) - freeFn = M.getOrInsertFunction("free", Type::VoidTy, voidPtr, 0); - return true; - } - - /// runOnFunction - Top level implementation of instruction selection for - /// the entire function. - /// - bool runOnFunction(Function &Fn) { - // First pass over the function, lower any unknown intrinsic functions - // with the IntrinsicLowering class. - LowerUnknownIntrinsicFunctionCalls(Fn); - - F = &MachineFunction::construct(&Fn, TM); - - // Create all of the machine basic blocks for the function... - for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I) - F->getBasicBlockList().push_back(MBBMap[I] = new MachineBasicBlock(I)); - - BB = &F->front(); - - // Make sure we re-emit a set of the global base reg if necessary - GlobalBaseInitialized = false; - - // Copy incoming arguments off of the stack... - LoadArgumentsToVirtualRegs(Fn); - - // Instruction select everything except PHI nodes - visit(Fn); - - // Select the PHI nodes - SelectPHINodes(); - - GEPMap.clear(); - RegMap.clear(); - MBBMap.clear(); - InsertMap.clear(); - AllocaMap.clear(); - SkipList.clear(); - F = 0; - // We always build a machine code representation for the function - return true; - } - - virtual const char *getPassName() const { - return "PowerPC Simple Instruction Selection"; - } - - /// visitBasicBlock - This method is called when we are visiting a new basic - /// block. This simply creates a new MachineBasicBlock to emit code into - /// and adds it to the current MachineFunction. Subsequent visit* for - /// instructions will be invoked for all instructions in the basic block. - /// - void visitBasicBlock(BasicBlock &LLVM_BB) { - BB = MBBMap[&LLVM_BB]; - } - - /// LowerUnknownIntrinsicFunctionCalls - This performs a prepass over the - /// function, lowering any calls to unknown intrinsic functions into the - /// equivalent LLVM code. - /// - void LowerUnknownIntrinsicFunctionCalls(Function &F); - - /// LoadArgumentsToVirtualRegs - Load all of the arguments to this function - /// from the stack into virtual registers. - /// - void LoadArgumentsToVirtualRegs(Function &F); - - /// SelectPHINodes - Insert machine code to generate phis. This is tricky - /// because we have to generate our sources into the source basic blocks, - /// not the current one. - /// - void SelectPHINodes(); - - // Visitation methods for various instructions. These methods simply emit - // fixed PowerPC code for each instruction. - - // Control flow operators. - void visitReturnInst(ReturnInst &RI); - void visitBranchInst(BranchInst &BI); - void visitUnreachableInst(UnreachableInst &UI) {} - - struct ValueRecord { - Value *Val; - unsigned Reg; - const Type *Ty; - ValueRecord(unsigned R, const Type *T) : Val(0), Reg(R), Ty(T) {} - ValueRecord(Value *V) : Val(V), Reg(0), Ty(V->getType()) {} - }; - - void doCall(const ValueRecord &Ret, MachineInstr *CallMI, - const std::vector<ValueRecord> &Args, bool isVarArg); - void visitCallInst(CallInst &I); - void visitIntrinsicCall(Intrinsic::ID ID, CallInst &I); - - // Arithmetic operators - void visitSimpleBinary(BinaryOperator &B, unsigned OpcodeClass); - void visitAdd(BinaryOperator &B) { visitSimpleBinary(B, 0); } - void visitSub(BinaryOperator &B) { visitSimpleBinary(B, 1); } - void visitMul(BinaryOperator &B); - - void visitDiv(BinaryOperator &B) { visitDivRem(B); } - void visitRem(BinaryOperator &B) { visitDivRem(B); } - void visitDivRem(BinaryOperator &B); - - // Bitwise operators - void visitAnd(BinaryOperator &B) { visitSimpleBinary(B, 2); } - void visitOr (BinaryOperator &B) { visitSimpleBinary(B, 3); } - void visitXor(BinaryOperator &B) { visitSimpleBinary(B, 4); } - - // Comparison operators... - void visitSetCondInst(SetCondInst &I); - void EmitComparison(unsigned OpNum, Value *Op0, Value *Op1, - MachineBasicBlock *MBB, - MachineBasicBlock::iterator MBBI); - void visitSelectInst(SelectInst &SI); - - - // Memory Instructions - void visitLoadInst(LoadInst &I); - void visitStoreInst(StoreInst &I); - void visitGetElementPtrInst(GetElementPtrInst &I); - void visitAllocaInst(AllocaInst &I); - void visitMallocInst(MallocInst &I); - void visitFreeInst(FreeInst &I); - - // Other operators - void visitShiftInst(ShiftInst &I); - void visitPHINode(PHINode &I) {} // PHI nodes handled by second pass - void visitCastInst(CastInst &I); - void visitVAArgInst(VAArgInst &I); - - void visitInstruction(Instruction &I) { - std::cerr << "Cannot instruction select: " << I; - abort(); - } - - unsigned ExtendOrClear(MachineBasicBlock *MBB, - MachineBasicBlock::iterator IP, - Value *Op0); - - /// promote32 - Make a value 32-bits wide, and put it somewhere. - /// - void promote32(unsigned targetReg, const ValueRecord &VR); - - /// emitGEPOperation - Common code shared between visitGetElementPtrInst and - /// constant expression GEP support. - /// - void emitGEPOperation(MachineBasicBlock *BB, MachineBasicBlock::iterator IP, - GetElementPtrInst *GEPI, bool foldGEP); - - /// emitCastOperation - Common code shared between visitCastInst and - /// constant expression cast support. - /// - void emitCastOperation(MachineBasicBlock *BB,MachineBasicBlock::iterator IP, - Value *Src, const Type *DestTy, unsigned TargetReg); - - - /// emitBitfieldInsert - return true if we were able to fold the sequence of - /// instructions into a bitfield insert (rlwimi). - bool emitBitfieldInsert(User *OpUser, unsigned DestReg); - - /// emitBitfieldExtract - return true if we were able to fold the sequence - /// of instructions into a bitfield extract (rlwinm). - bool emitBitfieldExtract(MachineBasicBlock *MBB, - MachineBasicBlock::iterator IP, - User *OpUser, unsigned DestReg); - - /// emitBinaryConstOperation - Used by several functions to emit simple - /// arithmetic and logical operations with constants on a register rather - /// than a Value. - /// - void emitBinaryConstOperation(MachineBasicBlock *MBB, - MachineBasicBlock::iterator IP, - unsigned Op0Reg, ConstantInt *Op1, - unsigned Opcode, unsigned DestReg); - - /// emitSimpleBinaryOperation - Implement simple binary operators for - /// integral types. OperatorClass is one of: 0 for Add, 1 for Sub, - /// 2 for And, 3 for Or, 4 for Xor. - /// - void emitSimpleBinaryOperation(MachineBasicBlock *BB, - MachineBasicBlock::iterator IP, - BinaryOperator *BO, Value *Op0, Value *Op1, - unsigned OperatorClass, unsigned TargetReg); - - /// emitBinaryFPOperation - This method handles emission of floating point - /// Add (0), Sub (1), Mul (2), and Div (3) operations. - void emitBinaryFPOperation(MachineBasicBlock *BB, - MachineBasicBlock::iterator IP, - Value *Op0, Value *Op1, - unsigned OperatorClass, unsigned TargetReg); - - void emitMultiply(MachineBasicBlock *BB, MachineBasicBlock::iterator IP, - Value *Op0, Value *Op1, unsigned TargetReg); - - void doMultiply(MachineBasicBlock *MBB, - MachineBasicBlock::iterator IP, - unsigned DestReg, Value *Op0, Value *Op1); - - /// doMultiplyConst - This method will multiply the value in Op0Reg by the - /// value of the ContantInt *CI - void doMultiplyConst(MachineBasicBlock *MBB, - MachineBasicBlock::iterator IP, - unsigned DestReg, Value *Op0, ConstantInt *CI); - - void emitDivRemOperation(MachineBasicBlock *BB, - MachineBasicBlock::iterator IP, - Value *Op0, Value *Op1, bool isDiv, - unsigned TargetReg); - - /// emitSetCCOperation - Common code shared between visitSetCondInst and - /// constant expression support. - /// - void emitSetCCOperation(MachineBasicBlock *BB, - MachineBasicBlock::iterator IP, - Value *Op0, Value *Op1, unsigned Opcode, - unsigned TargetReg); - - /// emitShiftOperation - Common code shared between visitShiftInst and - /// constant expression support. - /// - void emitShiftOperation(MachineBasicBlock *MBB, - MachineBasicBlock::iterator IP, - Value *Op, Value *ShiftAmount, bool isLeftShift, - const Type *ResultTy, ShiftInst *SI, - unsigned DestReg); - - /// emitSelectOperation - Common code shared between visitSelectInst and the - /// constant expression support. - /// - void emitSelectOperation(MachineBasicBlock *MBB, - MachineBasicBlock::iterator IP, - Value *Cond, Value *TrueVal, Value *FalseVal, - unsigned DestReg); - - /// getGlobalBaseReg - Output the instructions required to put the - /// base address to use for accessing globals into a register. Returns the - /// register containing the base address. - /// - unsigned getGlobalBaseReg(); - - /// copyConstantToRegister - Output the instructions required to put the - /// specified constant into the specified register. - /// - void copyConstantToRegister(MachineBasicBlock *MBB, - MachineBasicBlock::iterator MBBI, - Constant *C, unsigned Reg); - - void emitUCOM(MachineBasicBlock *MBB, MachineBasicBlock::iterator MBBI, - unsigned LHS, unsigned RHS); - - /// makeAnotherReg - This method returns the next register number we haven't - /// yet used. - /// - /// Long values are handled somewhat specially. They are always allocated - /// as pairs of 32 bit integer values. The register number returned is the - /// high 32 bits of the long value, and the regNum+1 is the low 32 bits. - /// - unsigned makeAnotherReg(const Type *Ty) { - assert(dynamic_cast<const PPC32RegisterInfo*>(TM.getRegisterInfo()) && - "Current target doesn't have PPC reg info??"); - const PPC32RegisterInfo *PPCRI = - static_cast<const PPC32RegisterInfo*>(TM.getRegisterInfo()); - if (Ty == Type::LongTy || Ty == Type::ULongTy) { - const TargetRegisterClass *RC = PPCRI->getRegClassForType(Type::IntTy); - // Create the upper part - F->getSSARegMap()->createVirtualRegister(RC); - // Create the lower part. - return F->getSSARegMap()->createVirtualRegister(RC)-1; - } - - // Add the mapping of regnumber => reg class to MachineFunction - const TargetRegisterClass *RC = PPCRI->getRegClassForType(Ty); - return F->getSSARegMap()->createVirtualRegister(RC); - } - - /// getReg - This method turns an LLVM value into a register number. - /// - unsigned getReg(Value &V) { return getReg(&V); } // Allow references - unsigned getReg(Value *V) { - // Just append to the end of the current bb. - MachineBasicBlock::iterator It = BB->end(); - return getReg(V, BB, It); - } - unsigned getReg(Value *V, MachineBasicBlock *MBB, - MachineBasicBlock::iterator IPt); - - /// canUseAsImmediateForOpcode - This method returns whether a ConstantInt - /// is okay to use as an immediate argument to a certain binary operation - bool canUseAsImmediateForOpcode(ConstantInt *CI, unsigned Opcode, - bool Shifted); - - /// getFixedSizedAllocaFI - Return the frame index for a fixed sized alloca - /// that is to be statically allocated with the initial stack frame - /// adjustment. - unsigned getFixedSizedAllocaFI(AllocaInst *AI); - }; -} - -/// dyn_castFixedAlloca - If the specified value is a fixed size alloca -/// instruction in the entry block, return it. Otherwise, return a null -/// pointer. -static AllocaInst *dyn_castFixedAlloca(Value *V) { - if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) { - BasicBlock *BB = AI->getParent(); - if (isa<ConstantUInt>(AI->getArraySize()) && BB ==&BB->getParent()->front()) - return AI; - } - return 0; -} - -/// getReg - This method turns an LLVM value into a register number. -/// -unsigned PPC32ISel::getReg(Value *V, MachineBasicBlock *MBB, - MachineBasicBlock::iterator IPt) { - if (Constant *C = dyn_cast<Constant>(V)) { - unsigned Reg = makeAnotherReg(V->getType()); - copyConstantToRegister(MBB, IPt, C, Reg); - return Reg; - } else if (CastInst *CI = dyn_cast<CastInst>(V)) { - // Do not emit noop casts at all, unless it's a double -> float cast. - if (getClassB(CI->getType()) == getClassB(CI->getOperand(0)->getType())) - return getReg(CI->getOperand(0), MBB, IPt); - } else if (AllocaInst *AI = dyn_castFixedAlloca(V)) { - unsigned Reg = makeAnotherReg(V->getType()); - unsigned FI = getFixedSizedAllocaFI(AI); - addFrameReference(BuildMI(*MBB, IPt, PPC::ADDI, 2, Reg), FI, 0, false); - return Reg; - } - - unsigned &Reg = RegMap[V]; - if (Reg == 0) { - Reg = makeAnotherReg(V->getType()); - RegMap[V] = Reg; - } - - return Reg; -} - -/// canUseAsImmediateForOpcode - This method returns whether a ConstantInt -/// is okay to use as an immediate argument to a certain binary operator. -/// The shifted argument determines if the immediate is suitable to be used with -/// the PowerPC instructions such as addis which concatenate 16 bits of the -/// immediate with 16 bits of zeroes. -/// -bool PPC32ISel::canUseAsImmediateForOpcode(ConstantInt *CI, unsigned Opcode, - bool Shifted) { - ConstantSInt *Op1Cs; - ConstantUInt *Op1Cu; - - // For shifted immediates, any value with the low halfword cleared may be used - if (Shifted) { - if (((int32_t)CI->getRawValue() & 0x0000FFFF) == 0) - return true; - else - return false; - } - - // Treat subfic like addi for the purposes of constant validation - if (Opcode == 5) Opcode = 0; - - // addi, subfic, compare, and non-indexed load take SIMM - bool cond1 = (Opcode < 2) - && ((int32_t)CI->getRawValue() <= 32767) - && ((int32_t)CI->getRawValue() >= -32768); - - // ANDIo, ORI, and XORI take unsigned values - bool cond2 = (Opcode >= 2) - && (Op1Cs = dyn_cast<ConstantSInt>(CI)) - && (Op1Cs->getValue() >= 0) - && (Op1Cs->getValue() <= 65535); - - // ANDIo, ORI, and XORI take UIMMs, so they can be larger - bool cond3 = (Opcode >= 2) - && (Op1Cu = dyn_cast<ConstantUInt>(CI)) - && (Op1Cu->getValue() <= 65535); - - if (cond1 || cond2 || cond3) - return true; - - return false; -} - -/// getFixedSizedAllocaFI - Return the frame index for a fixed sized alloca -/// that is to be statically allocated with the initial stack frame -/// adjustment. -unsigned PPC32ISel::getFixedSizedAllocaFI(AllocaInst *AI) { - // Already computed this? - std::map<AllocaInst*, unsigned>::iterator I = AllocaMap.lower_bound(AI); - if (I != AllocaMap.end() && I->first == AI) return I->second; - - const Type *Ty = AI->getAllocatedType(); - ConstantUInt *CUI = cast<ConstantUInt>(AI->getArraySize()); - unsigned TySize = TM.getTargetData().getTypeSize(Ty); - TySize *= CUI->getValue(); // Get total allocated size... - unsigned Alignment = TM.getTargetData().getTypeAlignment(Ty); - - // Create a new stack object using the frame manager... - int FrameIdx = F->getFrameInfo()->CreateStackObject(TySize, Alignment); - AllocaMap.insert(I, std::make_pair(AI, FrameIdx)); - return FrameIdx; -} - - -/// getGlobalBaseReg - Output the instructions required to put the -/// base address to use for accessing globals into a register. -/// -unsigned PPC32ISel::getGlobalBaseReg() { - if (!GlobalBaseInitialized) { - // Insert the set of GlobalBaseReg into the first MBB of the function - MachineBasicBlock &FirstMBB = F->front(); - MachineBasicBlock::iterator MBBI = FirstMBB.begin(); - GlobalBaseReg = makeAnotherReg(Type::IntTy); - BuildMI(FirstMBB, MBBI, PPC::MovePCtoLR, 0, PPC::LR); - BuildMI(FirstMBB, MBBI, PPC::MFLR, 1, GlobalBaseReg); - GlobalBaseInitialized = true; - } - return GlobalBaseReg; -} - -/// copyConstantToRegister - Output the instructions required to put the -/// specified constant into the specified register. -/// -void PPC32ISel::copyConstantToRegister(MachineBasicBlock *MBB, - MachineBasicBlock::iterator IP, - Constant *C, unsigned R) { - if (isa<UndefValue>(C)) { - BuildMI(*MBB, IP, PPC::IMPLICIT_DEF, 0, R); - if (getClassB(C->getType()) == cLong) - BuildMI(*MBB, IP, PPC::IMPLICIT_DEF, 0, R+1); - return; - } - if (C->getType()->isIntegral()) { - unsigned Class = getClassB(C->getType()); - - if (Class == cLong) { - if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(C)) { - uint64_t uval = CUI->getValue(); - unsigned hiUVal = uval >> 32; - unsigned loUVal = uval; - ConstantUInt *CUHi = ConstantUInt::get(Type::UIntTy, hiUVal); - ConstantUInt *CULo = ConstantUInt::get(Type::UIntTy, loUVal); - copyConstantToRegister(MBB, IP, CUHi, R); - copyConstantToRegister(MBB, IP, CULo, R+1); - return; - } else if (ConstantSInt *CSI = dyn_cast<ConstantSInt>(C)) { - int64_t sval = CSI->getValue(); - int hiSVal = sval >> 32; - int loSVal = sval; - ConstantSInt *CSHi = ConstantSInt::get(Type::IntTy, hiSVal); - ConstantSInt *CSLo = ConstantSInt::get(Type::IntTy, loSVal); - copyConstantToRegister(MBB, IP, CSHi, R); - copyConstantToRegister(MBB, IP, CSLo, R+1); - return; - } else { - std::cerr << "Unhandled long constant type!\n"; - abort(); - } - } - - assert(Class <= cInt && "Type not handled yet!"); - - // Handle bool - if (C->getType() == Type::BoolTy) { - BuildMI(*MBB, IP, PPC::LI, 1, R).addSImm(C == ConstantBool::True); - return; - } - - // Handle int - if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(C)) { - unsigned uval = CUI->getValue(); - if (uval < 32768) { - BuildMI(*MBB, IP, PPC::LI, 1, R).addSImm(uval); - } else { - unsigned Temp = makeAnotherReg(Type::IntTy); - BuildMI(*MBB, IP, PPC::LIS, 1, Temp).addSImm(uval >> 16); - BuildMI(*MBB, IP, PPC::ORI, 2, R).addReg(Temp).addImm(uval & 0xFFFF); - } - return; - } else if (ConstantSInt *CSI = dyn_cast<ConstantSInt>(C)) { - int sval = CSI->getValue(); - if (sval < 32768 && sval >= -32768) { - BuildMI(*MBB, IP, PPC::LI, 1, R).addSImm(sval); - } else { - unsigned Temp = makeAnotherReg(Type::IntTy); - BuildMI(*MBB, IP, PPC::LIS, 1, Temp).addSImm(sval >> 16); - BuildMI(*MBB, IP, PPC::ORI, 2, R).addReg(Temp).addImm(sval & 0xFFFF); - } - return; - } - std::cerr << "Unhandled integer constant!\n"; - abort(); - } else if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { - // We need to spill the constant to memory... - MachineConstantPool *CP = F->getConstantPool(); - unsigned CPI = CP->getConstantPoolIndex(CFP); - const Type *Ty = CFP->getType(); - - assert(Ty == Type::FloatTy || Ty == Type::DoubleTy && "Unknown FP type!"); - - // Load addr of constant to reg; constant is located at base + distance - unsigned Reg1 = makeAnotherReg(Type::IntTy); - unsigned Opcode = (Ty == Type::FloatTy) ? PPC::LFS : PPC::LFD; - // Move value at base + distance into return reg - BuildMI(*MBB, IP, PPC::ADDIS, 2, Reg1) - .addReg(getGlobalBaseReg()).addConstantPoolIndex(CPI); - BuildMI(*MBB, IP, Opcode, 2, R).addConstantPoolIndex(CPI).addReg(Reg1); - } else if (isa<ConstantPointerNull>(C)) { - // Copy zero (null pointer) to the register. - BuildMI(*MBB, IP, PPC::LI, 1, R).addSImm(0); - } else if (GlobalValue *GV = dyn_cast<GlobalValue>(C)) { - // GV is located at base + distance - unsigned TmpReg = makeAnotherReg(GV->getType()); - - // Move value at base + distance into return reg - BuildMI(*MBB, IP, PPC::ADDIS, 2, TmpReg) - .addReg(getGlobalBaseReg()).addGlobalAddress(GV); - - if (GV->hasWeakLinkage() || GV->isExternal()) { - BuildMI(*MBB, IP, PPC::LWZ, 2, R).addGlobalAddress(GV).addReg(TmpReg); - } else { - BuildMI(*MBB, IP, PPC::LA, 2, R).addReg(TmpReg).addGlobalAddress(GV); - } - } else { - std::cerr << "Offending constant: " << *C << "\n"; - assert(0 && "Type not handled yet!"); - } -} - -/// LoadArgumentsToVirtualRegs - Load all of the arguments to this function from -/// the stack into virtual registers. -void PPC32ISel::LoadArgumentsToVirtualRegs(Function &Fn) { - unsigned ArgOffset = 24; - unsigned GPR_remaining = 8; - unsigned FPR_remaining = 13; - unsigned GPR_idx = 0, FPR_idx = 0; - static const unsigned GPR[] = { - PPC::R3, PPC::R4, PPC::R5, PPC::R6, - PPC::R7, PPC::R8, PPC::R9, PPC::R10, - }; - static const unsigned FPR[] = { - PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7, - PPC::F8, PPC::F9, PPC::F10, PPC::F11, PPC::F12, PPC::F13 - }; - - MachineFrameInfo *MFI = F->getFrameInfo(); - - for (Function::arg_iterator I = Fn.arg_begin(), E = Fn.arg_end(); - I != E; ++I) { - bool ArgLive = !I->use_empty(); - unsigned Reg = ArgLive ? getReg(*I) : 0; - int FI; // Frame object index - - switch (getClassB(I->getType())) { - case cByte: - if (ArgLive) { - FI = MFI->CreateFixedObject(4, ArgOffset); - if (GPR_remaining > 0) { - F->addLiveIn(GPR[GPR_idx]); - BuildMI(BB, PPC::OR, 2, Reg).addReg(GPR[GPR_idx]) - .addReg(GPR[GPR_idx]); - } else { - addFrameReference(BuildMI(BB, PPC::LBZ, 2, Reg), FI); - } - } - break; - case cShort: - if (ArgLive) { - FI = MFI->CreateFixedObject(4, ArgOffset); - if (GPR_remaining > 0) { - F->addLiveIn(GPR[GPR_idx]); - BuildMI(BB, PPC::OR, 2, Reg).addReg(GPR[GPR_idx]) - .addReg(GPR[GPR_idx]); - } else { - addFrameReference(BuildMI(BB, PPC::LHZ, 2, Reg), FI); - } - } - break; - case cInt: - if (ArgLive) { - FI = MFI->CreateFixedObject(4, ArgOffset); - if (GPR_remaining > 0) { - F->addLiveIn(GPR[GPR_idx]); - BuildMI(BB, PPC::OR, 2, Reg).addReg(GPR[GPR_idx]) - .addReg(GPR[GPR_idx]); - } else { - addFrameReference(BuildMI(BB, PPC::LWZ, 2, Reg), FI); - } - } - break; - case cLong: - if (ArgLive) { - FI = MFI->CreateFixedObject(8, ArgOffset); - if (GPR_remaining > 1) { - F->addLiveIn(GPR[GPR_idx]); - F->addLiveIn(GPR[GPR_idx+1]); - BuildMI(BB, PPC::OR, 2, Reg).addReg(GPR[GPR_idx]) - .addReg(GPR[GPR_idx]); - BuildMI(BB, PPC::OR, 2, Reg+1).addReg(GPR[GPR_idx+1]) - .addReg(GPR[GPR_idx+1]); - } else { - addFrameReference(BuildMI(BB, PPC::LWZ, 2, Reg), FI); - addFrameReference(BuildMI(BB, PPC::LWZ, 2, Reg+1), FI, 4); - } - } - // longs require 4 additional bytes and use 2 GPRs - ArgOffset += 4; - if (GPR_remaining > 1) { - GPR_remaining--; - GPR_idx++; - } - break; - case cFP32: - if (ArgLive) { - FI = MFI->CreateFixedObject(4, ArgOffset); - - if (FPR_remaining > 0) { - F->addLiveIn(FPR[FPR_idx]); - BuildMI(BB, PPC::FMR, 1, Reg).addReg(FPR[FPR_idx]); - FPR_remaining--; - FPR_idx++; - } else { - addFrameReference(BuildMI(BB, PPC::LFS, 2, Reg), FI); - } - } - break; - case cFP64: - if (ArgLive) { - FI = MFI->CreateFixedObject(8, ArgOffset); - - if (FPR_remaining > 0) { - F->addLiveIn(FPR[FPR_idx]); - BuildMI(BB, PPC::FMR, 1, Reg).addReg(FPR[FPR_idx]); - FPR_remaining--; - FPR_idx++; - } else { - addFrameReference(BuildMI(BB, PPC::LFD, 2, Reg), FI); - } - } - - // doubles require 4 additional bytes and use 2 GPRs of param space - ArgOffset += 4; - if (GPR_remaining > 0) { - GPR_remaining--; - GPR_idx++; - } - break; - default: - assert(0 && "Unhandled argument type!"); - } - ArgOffset += 4; // Each argument takes at least 4 bytes on the stack... - if (GPR_remaining > 0) { - GPR_remaining--; // uses up 2 GPRs - GPR_idx++; - } - } - - // If the function takes variable number of arguments, add a frame offset for - // the start of the first vararg value... this is used to expand - // llvm.va_start. - if (Fn.getFunctionType()->isVarArg()) - VarArgsFrameIndex = MFI->CreateFixedObject(4, ArgOffset); - - if (Fn.getReturnType() != Type::VoidTy) - switch (getClassB(Fn.getReturnType())) { - case cByte: - case cShort: - case cInt: - F->addLiveOut(PPC::R3); - break; - case cLong: - F->addLiveOut(PPC::R3); - F->addLiveOut(PPC::R4); - break; - case cFP32: - case cFP64: - F->addLiveOut(PPC::F1); - break; - } -} - - -/// SelectPHINodes - Insert machine code to generate phis. This is tricky -/// because we have to generate our sources into the source basic blocks, not -/// the current one. -/// -void PPC32ISel::SelectPHINodes() { - const TargetInstrInfo &TII = *TM.getInstrInfo(); - const Function &LF = *F->getFunction(); // The LLVM function... - - MachineBasicBlock::iterator MFLRIt = F->begin()->begin(); - if (GlobalBaseInitialized) { - // If we emitted a MFLR for the global base reg, get an iterator to an - // instruction after it. - while (MFLRIt->getOpcode() != PPC::MFLR) - ++MFLRIt; - ++MFLRIt; // step one MI past it. - } - - for (Function::const_iterator I = LF.begin(), E = LF.end(); I != E; ++I) { - const BasicBlock *BB = I; - MachineBasicBlock &MBB = *MBBMap[I]; - - // Loop over all of the PHI nodes in the LLVM basic block... - MachineBasicBlock::iterator PHIInsertPoint = MBB.begin(); - for (BasicBlock::const_iterator I = BB->begin(); - PHINode *PN = const_cast<PHINode*>(dyn_cast<PHINode>(I)); ++I) { - - // Create a new machine instr PHI node, and insert it. - unsigned PHIReg = getReg(*PN); - MachineInstr *PhiMI = BuildMI(MBB, PHIInsertPoint, - PPC::PHI, PN->getNumOperands(), PHIReg); - - MachineInstr *LongPhiMI = 0; - if (PN->getType() == Type::LongTy || PN->getType() == Type::ULongTy) - LongPhiMI = BuildMI(MBB, PHIInsertPoint, - PPC::PHI, PN->getNumOperands(), PHIReg+1); - - // PHIValues - Map of blocks to incoming virtual registers. We use this - // so that we only initialize one incoming value for a particular block, - // even if the block has multiple entries in the PHI node. - // - std::map<MachineBasicBlock*, unsigned> PHIValues; - - for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { - MachineBasicBlock *PredMBB = 0; - for (MachineBasicBlock::pred_iterator PI = MBB.pred_begin (), - PE = MBB.pred_end (); PI != PE; ++PI) - if (PN->getIncomingBlock(i) == (*PI)->getBasicBlock()) { - PredMBB = *PI; - break; - } - assert (PredMBB && "Couldn't find incoming machine-cfg edge for phi"); - - unsigned ValReg; - std::map<MachineBasicBlock*, unsigned>::iterator EntryIt = - PHIValues.lower_bound(PredMBB); - - if (EntryIt != PHIValues.end() && EntryIt->first == PredMBB) { - // We already inserted an initialization of the register for this - // predecessor. Recycle it. - ValReg = EntryIt->second; - } else { - // Get the incoming value into a virtual register. - // - Value *Val = PN->getIncomingValue(i); - - // If this is a constant or GlobalValue, we may have to insert code - // into the basic block to compute it into a virtual register. - if ((isa<Constant>(Val) && !isa<ConstantExpr>(Val)) || - isa<GlobalValue>(Val)) { - // Simple constants get emitted at the end of the basic block, - // before any terminator instructions. We "know" that the code to - // move a constant into a register will never clobber any flags. - ValReg = getReg(Val, PredMBB, PredMBB->getFirstTerminator()); - } else { - // Because we don't want to clobber any values which might be in - // physical registers with the computation of this constant (which - // might be arbitrarily complex if it is a constant expression), - // just insert the computation at the top of the basic block. - MachineBasicBlock::iterator PI = PredMBB->begin(); - - // Skip over any PHI nodes though! - while (PI != PredMBB->end() && PI->getOpcode() == PPC::PHI) - ++PI; - - // If this is the entry block, and if the entry block contains a - // MFLR instruction, emit this operation after it. This is needed - // because global addresses use it. - if (PredMBB == F->begin()) - PI = MFLRIt; - - ValReg = getReg(Val, PredMBB, PI); - } - - // Remember that we inserted a value for this PHI for this predecessor - PHIValues.insert(EntryIt, std::make_pair(PredMBB, ValReg)); - } - - PhiMI->addRegOperand(ValReg); - PhiMI->addMachineBasicBlockOperand(PredMBB); - if (LongPhiMI) { - LongPhiMI->addRegOperand(ValReg+1); - LongPhiMI->addMachineBasicBlockOperand(PredMBB); - } - } - - // Now that we emitted all of the incoming values for the PHI node, make - // sure to reposition the InsertPoint after the PHI that we just added. - // This is needed because we might have inserted a constant into this - // block, right after the PHI's which is before the old insert point! - PHIInsertPoint = LongPhiMI ? LongPhiMI : PhiMI; - ++PHIInsertPoint; - } - } -} - - -// canFoldSetCCIntoBranchOrSelect - Return the setcc instruction if we can fold -// it into the conditional branch or select instruction which is the only user -// of the cc instruction. This is the case if the conditional branch is the -// only user of the setcc, and if the setcc is in the same basic block as the -// conditional branch. -// -static SetCondInst *canFoldSetCCIntoBranchOrSelect(Value *V) { - if (SetCondInst *SCI = dyn_cast<SetCondInst>(V)) - if (SCI->hasOneUse()) { - Instruction *User = cast<Instruction>(SCI->use_back()); - if ((isa<BranchInst>(User) || - (isa<SelectInst>(User) && User->getOperand(0) == V)) && - SCI->getParent() == User->getParent()) - return SCI; - } - return 0; -} - -// canFoldGEPIntoLoadOrStore - Return the GEP instruction if we can fold it into -// the load or store instruction that is the only user of the GEP. -// -static GetElementPtrInst *canFoldGEPIntoLoadOrStore(Value *V) { - if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(V)) { - bool AllUsesAreMem = true; - for (Value::use_iterator I = GEPI->use_begin(), E = GEPI->use_end(); - I != E; ++I) { - Instruction *User = cast<Instruction>(*I); - - // If the GEP is the target of a store, but not the source, then we are ok - // to fold it. - if (isa<StoreInst>(User) && - GEPI->getParent() == User->getParent() && - User->getOperand(0) != GEPI && - User->getOperand(1) == GEPI) - continue; - - // If the GEP is the source of a load, then we're always ok to fold it - if (isa<LoadInst>(User) && - GEPI->getParent() == User->getParent() && - User->getOperand(0) == GEPI) - continue; - - // if we got to this point, than the instruction was not a load or store - // that we are capable of folding the GEP into. - AllUsesAreMem = false; - break; - } - if (AllUsesAreMem) - return GEPI; - } - return 0; -} - - -// Return a fixed numbering for setcc instructions which does not depend on the -// order of the opcodes. -// -static unsigned getSetCCNumber(unsigned Opcode) { - switch (Opcode) { - default: assert(0 && "Unknown setcc instruction!"); - case Instruction::SetEQ: return 0; - case Instruction::SetNE: return 1; - case Instruction::SetLT: return 2; - case Instruction::SetGE: return 3; - case Instruction::SetGT: return 4; - case Instruction::SetLE: return 5; - } -} - -static unsigned getPPCOpcodeForSetCCOpcode(unsigned Opcode) { - switch (Opcode) { - default: assert(0 && "Unknown setcc instruction!"); - case Instruction::SetEQ: return PPC::BEQ; - case Instruction::SetNE: return PPC::BNE; - case Instruction::SetLT: return PPC::BLT; - case Instruction::SetGE: return PPC::BGE; - case Instruction::SetGT: return PPC::BGT; - case Instruction::SetLE: return PPC::BLE; - } -} - -/// emitUCOM - emits an unordered FP compare. -void PPC32ISel::emitUCOM(MachineBasicBlock *MBB, MachineBasicBlock::iterator IP, - unsigned LHS, unsigned RHS) { - BuildMI(*MBB, IP, PPC::FCMPU, 2, PPC::CR0).addReg(LHS).addReg(RHS); -} - -unsigned PPC32ISel::ExtendOrClear(MachineBasicBlock *MBB, - MachineBasicBlock::iterator IP, - Value *Op0) { - const Type *CompTy = Op0->getType(); - unsigned Reg = getReg(Op0, MBB, IP); - unsigned Class = getClassB(CompTy); - - // Since we know that boolean values will be either zero or one, we don't - // have to extend or clear them. - if (CompTy == Type::BoolTy) - return Reg; - - // Before we do a comparison or SetCC, we have to make sure that we truncate - // the source registers appropriately. - if (Class == cByte) { - unsigned TmpReg = makeAnotherReg(CompTy); - if (CompTy->isSigned()) - BuildMI(*MBB, IP, PPC::EXTSB, 1, TmpReg).addReg(Reg); - else - BuildMI(*MBB, IP, PPC::RLWINM, 4, TmpReg).addReg(Reg).addImm(0) - .addImm(24).addImm(31); - Reg = TmpReg; - } else if (Class == cShort) { - unsigned TmpReg = makeAnotherReg(CompTy); - if (CompTy->isSigned()) - BuildMI(*MBB, IP, PPC::EXTSH, 1, TmpReg).addReg(Reg); - else - BuildMI(*MBB, IP, PPC::RLWINM, 4, TmpReg).addReg(Reg).addImm(0) - .addImm(16).addImm(31); - Reg = TmpReg; - } - return Reg; -} - -/// EmitComparison - emits a comparison of the two operands. The result is in -/// CR0. -/// -void PPC32ISel::EmitComparison(unsigned OpNum, Value *Op0, Value *Op1, - MachineBasicBlock *MBB, - MachineBasicBlock::iterator IP) { - // The arguments are already supposed to be of the same type. - const Type *CompTy = Op0->getType(); - unsigned Class = getClassB(CompTy); - unsigned Op0r = ExtendOrClear(MBB, IP, Op0); - - // Use crand for lt, gt and crandc for le, ge - unsigned CROpcode = (OpNum == 2 || OpNum == 4) ? PPC::CRAND : PPC::CRANDC; - // ? cr1[lt] : cr1[gt] - unsigned CR1field = (OpNum == 2 || OpNum == 3) ? 0 : 1; - // ? cr0[lt] : cr0[gt] - unsigned CR0field = (OpNum == 2 || OpNum == 5) ? 0 : 1; - unsigned Opcode = CompTy->isSigned() ? PPC::CMPW : PPC::CMPLW; - unsigned OpcodeImm = CompTy->isSigned() ? PPC::CMPWI : PPC::CMPLWI; - - // Special case handling of: cmp R, i - if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) { - if (Class == cByte || Class == cShort || Class == cInt) { - unsigned Op1v = CI->getRawValue() & 0xFFFF; - unsigned OpClass = (CompTy->isSigned()) ? 0 : 2; - - // Treat compare like ADDI for the purposes of immediate suitability - if (canUseAsImmediateForOpcode(CI, OpClass, false)) { - BuildMI(*MBB, IP, OpcodeImm, 2, PPC::CR0).addReg(Op0r).addSImm(Op1v); - } else { - unsigned Op1r = getReg(Op1, MBB, IP); - BuildMI(*MBB, IP, Opcode, 2, PPC::CR0).addReg(Op0r).addReg(Op1r); - } - return; - } else { - assert(Class == cLong && "Unknown integer class!"); - unsigned LowCst = CI->getRawValue(); - unsigned HiCst = CI->getRawValue() >> 32; - if (OpNum < 2) { // seteq, setne - unsigned LoLow = makeAnotherReg(Type::IntTy); - unsigned LoTmp = makeAnotherReg(Type::IntTy); - unsigned HiLow = makeAnotherReg(Type::IntTy); - unsigned HiTmp = makeAnotherReg(Type::IntTy); - unsigned FinalTmp = makeAnotherReg(Type::IntTy); - - BuildMI(*MBB, IP, PPC::XORI, 2, LoLow).addReg(Op0r+1) - .addImm(LowCst & 0xFFFF); - BuildMI(*MBB, IP, PPC::XORIS, 2, LoTmp).addReg(LoLow) - .addImm(LowCst >> 16); - BuildMI(*MBB, IP, PPC::XORI, 2, HiLow).addReg(Op0r) - .addImm(HiCst & 0xFFFF); - BuildMI(*MBB, IP, PPC::XORIS, 2, HiTmp).addReg(HiLow) - .addImm(HiCst >> 16); - BuildMI(*MBB, IP, PPC::ORo, 2, FinalTmp).addReg(LoTmp).addReg(HiTmp); - return; - } else { - unsigned ConstReg = makeAnotherReg(CompTy); - copyConstantToRegister(MBB, IP, CI, ConstReg); - - // cr0 = r3 ccOpcode r5 or (r3 == r5 AND r4 ccOpcode r6) - BuildMI(*MBB, IP, Opcode, 2, PPC::CR0).addReg(Op0r) - .addReg(ConstReg); - BuildMI(*MBB, IP, Opcode, 2, PPC::CR1).addReg(Op0r+1) - .addReg(ConstReg+1); - BuildMI(*MBB, IP, PPC::CRAND, 5, PPC::CR0).addImm(2) - .addReg(PPC::CR0).addImm(2).addReg(PPC::CR1).addImm(CR1field); - BuildMI(*MBB, IP, PPC::CROR, 5, PPC::CR0).addImm(CR0field) - .addReg(PPC::CR0).addImm(CR0field).addReg(PPC::CR0).addImm(2); - return; - } - } - } - - unsigned Op1r = getReg(Op1, MBB, IP); - - switch (Class) { - default: assert(0 && "Unknown type class!"); - case cByte: - case cShort: - case cInt: - BuildMI(*MBB, IP, Opcode, 2, PPC::CR0).addReg(Op0r).addReg(Op1r); - break; - - case cFP32: - case cFP64: - emitUCOM(MBB, IP, Op0r, Op1r); - break; - - case cLong: - if (OpNum < 2) { // seteq, setne - unsigned LoTmp = makeAnotherReg(Type::IntTy); - unsigned HiTmp = makeAnotherReg(Type::IntTy); - unsigned FinalTmp = makeAnotherReg(Type::IntTy); - BuildMI(*MBB, IP, PPC::XOR, 2, HiTmp).addReg(Op0r).addReg(Op1r); - BuildMI(*MBB, IP, PPC::XOR, 2, LoTmp).addReg(Op0r+1).addReg(Op1r+1); - BuildMI(*MBB, IP, PPC::ORo, 2, FinalTmp).addReg(LoTmp).addReg(HiTmp); - break; // Allow the sete or setne to be generated from flags set by OR - } else { - unsigned TmpReg1 = makeAnotherReg(Type::IntTy); - unsigned TmpReg2 = makeAnotherReg(Type::IntTy); - - // cr0 = r3 ccOpcode r5 or (r3 == r5 AND r4 ccOpcode r6) - BuildMI(*MBB, IP, Opcode, 2, PPC::CR0).addReg(Op0r).addReg(Op1r); - BuildMI(*MBB, IP, Opcode, 2, PPC::CR1).addReg(Op0r+1).addReg(Op1r+1); - BuildMI(*MBB, IP, PPC::CRAND, 5, PPC::CR0).addImm(2) - .addReg(PPC::CR0).addImm(2).addReg(PPC::CR1).addImm(CR1field); - BuildMI(*MBB, IP, PPC::CROR, 5, PPC::CR0).addImm(CR0field) - .addReg(PPC::CR0).addImm(CR0field).addReg(PPC::CR0).addImm(2); - return; - } - } - return; -} - -/// visitSetCondInst - emit code to calculate the condition via -/// EmitComparison(), and possibly store a 0 or 1 to a register as a result -/// -void PPC32ISel::visitSetCondInst(SetCondInst &I) { - if (canFoldSetCCIntoBranchOrSelect(&I)) - return; - - MachineBasicBlock::iterator MI = BB->end(); - Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); - const Type *Ty = Op0->getType(); - unsigned Class = getClassB(Ty); - unsigned Opcode = I.getOpcode(); - unsigned OpNum = getSetCCNumber(Opcode); - unsigned DestReg = getReg(I); - - // If the comparison type is byte, short, or int, then we can emit a - // branchless version of the SetCC that puts 0 (false) or 1 (true) in the - // destination register. - if (Class <= cInt) { - ConstantInt *CI = dyn_cast<ConstantInt>(Op1); - - if (CI && CI->getRawValue() == 0) { - unsigned Op0Reg = ExtendOrClear(BB, MI, Op0); - - // comparisons against constant zero and negative one often have shorter - // and/or faster sequences than the set-and-branch general case, handled - // below. - switch(OpNum) { - case 0: { // eq0 - unsigned TempReg = makeAnotherReg(Type::IntTy); - BuildMI(*BB, MI, PPC::CNTLZW, 1, TempReg).addReg(Op0Reg); - BuildMI(*BB, MI, PPC::RLWINM, 4, DestReg).addReg(TempReg).addImm(27) - .addImm(5).addImm(31); - break; - } - case 1: { // ne0 - unsigned TempReg = makeAnotherReg(Type::IntTy); - BuildMI(*BB, MI, PPC::ADDIC, 2, TempReg).addReg(Op0Reg).addSImm(-1); - BuildMI(*BB, MI, PPC::SUBFE, 2, DestReg).addReg(TempReg).addReg(Op0Reg); - break; - } - case 2: { // lt0, always false if unsigned - if (Ty->isSigned()) - BuildMI(*BB, MI, PPC::RLWINM, 4, DestReg).addReg(Op0Reg).addImm(1) - .addImm(31).addImm(31); - else - BuildMI(*BB, MI, PPC::LI, 1, DestReg).addSImm(0); - break; - } - case 3: { // ge0, always true if unsigned - if (Ty->isSigned()) { - unsigned TempReg = makeAnotherReg(Type::IntTy); - BuildMI(*BB, MI, PPC::RLWINM, 4, TempReg).addReg(Op0Reg).addImm(1) - .addImm(31).addImm(31); - BuildMI(*BB, MI, PPC::XORI, 2, DestReg).addReg(TempReg).addImm(1); - } else { - BuildMI(*BB, MI, PPC::LI, 1, DestReg).addSImm(1); - } - break; - } - case 4: { // gt0, equivalent to ne0 if unsigned - unsigned Temp1 = makeAnotherReg(Type::IntTy); - unsigned Temp2 = makeAnotherReg(Type::IntTy); - if (Ty->isSigned()) { - BuildMI(*BB, MI, PPC::NEG, 2, Temp1).addReg(Op0Reg); - BuildMI(*BB, MI, PPC::ANDC, 2, Temp2).addReg(Temp1).addReg(Op0Reg); - BuildMI(*BB, MI, PPC::RLWINM, 4, DestReg).addReg(Temp2).addImm(1) - .addImm(31).addImm(31); - } else { - BuildMI(*BB, MI, PPC::ADDIC, 2, Temp1).addReg(Op0Reg).addSImm(-1); - BuildMI(*BB, MI, PPC::SUBFE, 2, DestReg).addReg(Temp1).addReg(Op0Reg); - } - break; - } - case 5: { // le0, equivalent to eq0 if unsigned - unsigned Temp1 = makeAnotherReg(Type::IntTy); - unsigned Temp2 = makeAnotherReg(Type::IntTy); - if (Ty->isSigned()) { - BuildMI(*BB, MI, PPC::NEG, 2, Temp1).addReg(Op0Reg); - BuildMI(*BB, MI, PPC::ORC, 2, Temp2).addReg(Op0Reg).addReg(Temp1); - BuildMI(*BB, MI, PPC::RLWINM, 4, DestReg).addReg(Temp2).addImm(1) - .addImm(31).addImm(31); - } else { - BuildMI(*BB, MI, PPC::CNTLZW, 1, Temp1).addReg(Op0Reg); - BuildMI(*BB, MI, PPC::RLWINM, 4, DestReg).addReg(Temp1).addImm(27) - .addImm(5).addImm(31); - } - break; - } - } // switch - return; - } - } - unsigned PPCOpcode = getPPCOpcodeForSetCCOpcode(Opcode); - - // Create an iterator with which to insert the MBB for copying the false value - // and the MBB to hold the PHI instruction for this SetCC. - MachineBasicBlock *thisMBB = BB; - const BasicBlock *LLVM_BB = BB->getBasicBlock(); - ilist<MachineBasicBlock>::iterator It = BB; - ++It; - - // thisMBB: - // ... - // cmpTY cr0, r1, r2 - // %TrueValue = li 1 - // bCC sinkMBB - EmitComparison(OpNum, Op0, Op1, BB, BB->end()); - unsigned TrueValue = makeAnotherReg(I.getType()); - BuildMI(BB, PPC::LI, 1, TrueValue).addSImm(1); - MachineBasicBlock *copy0MBB = new MachineBasicBlock(LLVM_BB); - MachineBasicBlock *sinkMBB = new MachineBasicBlock(LLVM_BB); - BuildMI(BB, PPCOpcode, 2).addReg(PPC::CR0).addMBB(sinkMBB); - F->getBasicBlockList().insert(It, copy0MBB); - F->getBasicBlockList().insert(It, sinkMBB); - // Update machine-CFG edges - BB->addSuccessor(copy0MBB); - BB->addSuccessor(sinkMBB); - - // copy0MBB: - // %FalseValue = li 0 - // fallthrough - BB = copy0MBB; - unsigned FalseValue = makeAnotherReg(I.getType()); - BuildMI(BB, PPC::LI, 1, FalseValue).addSImm(0); - // Update machine-CFG edges - BB->addSuccessor(sinkMBB); - - // sinkMBB: - // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ] - // ... - BB = sinkMBB; - BuildMI(BB, PPC::PHI, 4, DestReg).addReg(FalseValue) - .addMBB(copy0MBB).addReg(TrueValue).addMBB(thisMBB); -} - -void PPC32ISel::visitSelectInst(SelectInst &SI) { - unsigned DestReg = getReg(SI); - MachineBasicBlock::iterator MII = BB->end(); - emitSelectOperation(BB, MII, SI.getCondition(), SI.getTrueValue(), - SI.getFalseValue(), DestReg); -} - -/// emitSelect - Common code shared between visitSelectInst and the constant -/// expression support. -void PPC32ISel::emitSelectOperation(MachineBasicBlock *MBB, - MachineBasicBlock::iterator IP, - Value *Cond, Value *TrueVal, - Value *FalseVal, unsigned DestReg) { - unsigned SelectClass = getClassB(TrueVal->getType()); - unsigned Opcode; - - // See if we can fold the setcc into the select instruction, or if we have - // to get the register of the Cond value - if (SetCondInst *SCI = canFoldSetCCIntoBranchOrSelect(Cond)) { - // We successfully folded the setcc into the select instruction. - unsigned OpNum = getSetCCNumber(SCI->getOpcode()); - if (OpNum >= 2 && OpNum <= 5) { - unsigned SetCondClass = getClassB(SCI->getOperand(0)->getType()); - if ((SetCondClass == cFP32 || SetCondClass == cFP64) && - (SelectClass == cFP32 || SelectClass == cFP64)) { - unsigned CondReg = getReg(SCI->getOperand(0), MBB, IP); - unsigned TrueReg = getReg(TrueVal, MBB, IP); - unsigned FalseReg = getReg(FalseVal, MBB, IP); - // if the comparison of the floating point value used to for the select - // is against 0, then we can emit an fsel without subtraction. - ConstantFP *Op1C = dyn_cast<ConstantFP>(SCI->getOperand(1)); - if (Op1C && (Op1C->isExactlyValue(-0.0) || Op1C->isExactlyValue(0.0))) { - switch(OpNum) { - case 2: // LT - BuildMI(*MBB, IP, PPC::FSEL, 3, DestReg).addReg(CondReg) - .addReg(FalseReg).addReg(TrueReg); - break; - case 3: // GE == !LT - BuildMI(*MBB, IP, PPC::FSEL, 3, DestReg).addReg(CondReg) - .addReg(TrueReg).addReg(FalseReg); - break; - case 4: { // GT - unsigned NegatedReg = makeAnotherReg(SCI->getOperand(0)->getType()); - BuildMI(*MBB, IP, PPC::FNEG, 1, NegatedReg).addReg(CondReg); - BuildMI(*MBB, IP, PPC::FSEL, 3, DestReg).addReg(NegatedReg) - .addReg(FalseReg).addReg(TrueReg); - } - break; - case 5: { // LE == !GT - unsigned NegatedReg = makeAnotherReg(SCI->getOperand(0)->getType()); - BuildMI(*MBB, IP, PPC::FNEG, 1, NegatedReg).addReg(CondReg); - BuildMI(*MBB, IP, PPC::FSEL, 3, DestReg).addReg(NegatedReg) - .addReg(TrueReg).addReg(FalseReg); - } - break; - default: - assert(0 && "Invalid SetCC opcode to fsel"); - abort(); - break; - } - } else { - unsigned OtherCondReg = getReg(SCI->getOperand(1), MBB, IP); - unsigned SelectReg = makeAnotherReg(SCI->getOperand(0)->getType()); - switch(OpNum) { - case 2: // LT - BuildMI(*MBB, IP, PPC::FSUB, 2, SelectReg).addReg(CondReg) - .addReg(OtherCondReg); - BuildMI(*MBB, IP, PPC::FSEL, 3, DestReg).addReg(SelectReg) - .addReg(FalseReg).addReg(TrueReg); - break; - case 3: // GE == !LT - BuildMI(*MBB, IP, PPC::FSUB, 2, SelectReg).addReg(CondReg) - .addReg(OtherCondReg); - BuildMI(*MBB, IP, PPC::FSEL, 3, DestReg).addReg(SelectReg) - .addReg(TrueReg).addReg(FalseReg); - break; - case 4: // GT - BuildMI(*MBB, IP, PPC::FSUB, 2, SelectReg).addReg(OtherCondReg) - .addReg(CondReg); - BuildMI(*MBB, IP, PPC::FSEL, 3, DestReg).addReg(SelectReg) - .addReg(FalseReg).addReg(TrueReg); - break; - case 5: // LE == !GT - BuildMI(*MBB, IP, PPC::FSUB, 2, SelectReg).addReg(OtherCondReg) - .addReg(CondReg); - BuildMI(*MBB, IP, PPC::FSEL, 3, DestReg).addReg(SelectReg) - .addReg(TrueReg).addReg(FalseReg); - break; - default: - assert(0 && "Invalid SetCC opcode to fsel"); - abort(); - break; - } - } - return; - } - } - EmitComparison(OpNum, SCI->getOperand(0),SCI->getOperand(1),MBB,IP); - Opcode = getPPCOpcodeForSetCCOpcode(SCI->getOpcode()); - } else { - unsigned CondReg = getReg(Cond, MBB, IP); - BuildMI(*MBB, IP, PPC::CMPWI, 2, PPC::CR0).addReg(CondReg).addSImm(0); - Opcode = getPPCOpcodeForSetCCOpcode(Instruction::SetNE); - } - - MachineBasicBlock *thisMBB = BB; - const BasicBlock *LLVM_BB = BB->getBasicBlock(); - ilist<MachineBasicBlock>::iterator It = BB; - ++It; - - // thisMBB: - // ... - // TrueVal = ... - // cmpTY cr0, r1, r2 - // bCC copy1MBB - // fallthrough --> copy0MBB - MachineBasicBlock *copy0MBB = new MachineBasicBlock(LLVM_BB); - MachineBasicBlock *sinkMBB = new MachineBasicBlock(LLVM_BB); - unsigned TrueValue = getReg(TrueVal); - BuildMI(BB, Opcode, 2).addReg(PPC::CR0).addMBB(sinkMBB); - F->getBasicBlockList().insert(It, copy0MBB); - F->getBasicBlockList().insert(It, sinkMBB); - // Update machine-CFG edges - BB->addSuccessor(copy0MBB); - BB->addSuccessor(sinkMBB); - - // copy0MBB: - // %FalseValue = ... - // # fallthrough to sinkMBB - BB = copy0MBB; - unsigned FalseValue = getReg(FalseVal); - // Update machine-CFG edges - BB->addSuccessor(sinkMBB); - - // sinkMBB: - // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ] - // ... - BB = sinkMBB; - BuildMI(BB, PPC::PHI, 4, DestReg).addReg(FalseValue) - .addMBB(copy0MBB).addReg(TrueValue).addMBB(thisMBB); - - // For a register pair representing a long value, define the top part. - if (getClassB(TrueVal->getType()) == cLong) - BuildMI(BB, PPC::PHI, 4, DestReg+1).addReg(FalseValue+1) - .addMBB(copy0MBB).addReg(TrueValue+1).addMBB(thisMBB); -} - - - -/// promote32 - Emit instructions to turn a narrow operand into a 32-bit-wide -/// operand, in the specified target register. -/// -void PPC32ISel::promote32(unsigned targetReg, const ValueRecord &VR) { - bool isUnsigned = VR.Ty->isUnsigned() || VR.Ty == Type::BoolTy; - - Value *Val = VR.Val; - const Type *Ty = VR.Ty; - if (Val) { - if (Constant *C = dyn_cast<Constant>(Val)) { - Val = ConstantExpr::getCast(C, Type::IntTy); - if (isa<ConstantExpr>(Val)) // Could not fold - Val = C; - else - Ty = Type::IntTy; // Folded! - } - - // If this is a simple constant, just emit a load directly to avoid the copy - if (ConstantInt *CI = dyn_cast<ConstantInt>(Val)) { - copyConstantToRegister(BB, BB->end(), CI, targetReg); - return; - } - } - - // Make sure we have the register number for this value... - unsigned Reg = Val ? getReg(Val) : VR.Reg; - switch (getClassB(Ty)) { - case cByte: - // Extend value into target register (8->32) - if (Ty == Type::BoolTy) - BuildMI(BB, PPC::OR, 2, targetReg).addReg(Reg).addReg(Reg); - else if (isUnsigned) - BuildMI(BB, PPC::RLWINM, 4, targetReg).addReg(Reg).addZImm(0) - .addZImm(24).addZImm(31); - else - BuildMI(BB, PPC::EXTSB, 1, targetReg).addReg(Reg); - break; - case cShort: - // Extend value into target register (16->32) - if (isUnsigned) - BuildMI(BB, PPC::RLWINM, 4, targetReg).addReg(Reg).addZImm(0) - .addZImm(16).addZImm(31); - else - BuildMI(BB, PPC::EXTSH, 1, targetReg).addReg(Reg); - break; - case cInt: - // Move value into target register (32->32) - BuildMI(BB, PPC::OR, 2, targetReg).addReg(Reg).addReg(Reg); - break; - default: - assert(0 && "Unpromotable operand class in promote32"); - } -} - -/// visitReturnInst - implemented with BLR -/// -void PPC32ISel::visitReturnInst(ReturnInst &I) { - // Only do the processing if this is a non-void return - if (I.getNumOperands() > 0) { - Value *RetVal = I.getOperand(0); - switch (getClassB(RetVal->getType())) { - case cByte: // integral return values: extend or move into r3 and return - case cShort: - case cInt: - promote32(PPC::R3, ValueRecord(RetVal)); - break; - case cFP32: - case cFP64: { // Floats & Doubles: Return in f1 - unsigned RetReg = getReg(RetVal); - BuildMI(BB, PPC::FMR, 1, PPC::F1).addReg(RetReg); - break; - } - case cLong: { - unsigned RetReg = getReg(RetVal); - BuildMI(BB, PPC::OR, 2, PPC::R3).addReg(RetReg).addReg(RetReg); - BuildMI(BB, PPC::OR, 2, PPC::R4).addReg(RetReg+1).addReg(RetReg+1); - break; - } - default: - visitInstruction(I); - } - } - BuildMI(BB, PPC::BLR, 1).addImm(0); -} - -// getBlockAfter - Return the basic block which occurs lexically after the -// specified one. -static inline BasicBlock *getBlockAfter(BasicBlock *BB) { - Function::iterator I = BB; ++I; // Get iterator to next block - return I != BB->getParent()->end() ? &*I : 0; -} - -/// visitBranchInst - Handle conditional and unconditional branches here. Note -/// that since code layout is frozen at this point, that if we are trying to -/// jump to a block that is the immediate successor of the current block, we can -/// just make a fall-through (but we don't currently). -/// -void PPC32ISel::visitBranchInst(BranchInst &BI) { - // Update machine-CFG edges - BB->addSuccessor(MBBMap[BI.getSuccessor(0)]); - if (BI.isConditional()) - BB->addSuccessor(MBBMap[BI.getSuccessor(1)]); - - BasicBlock *NextBB = getBlockAfter(BI.getParent()); // BB after current one - - if (!BI.isConditional()) { // Unconditional branch? - if (BI.getSuccessor(0) != NextBB) - BuildMI(BB, PPC::B, 1).addMBB(MBBMap[BI.getSuccessor(0)]); - return; - } - - // See if we can fold the setcc into the branch itself... - SetCondInst *SCI = canFoldSetCCIntoBranchOrSelect(BI.getCondition()); - if (SCI == 0) { - // Nope, cannot fold setcc into this branch. Emit a branch on a condition - // computed some other way... - unsigned condReg = getReg(BI.getCondition()); - BuildMI(BB, PPC::CMPLI, 3, PPC::CR0).addImm(0).addReg(condReg) - .addImm(0); - if (BI.getSuccessor(1) == NextBB) { - if (BI.getSuccessor(0) != NextBB) - BuildMI(BB, PPC::COND_BRANCH, 4).addReg(PPC::CR0).addImm(PPC::BNE) - .addMBB(MBBMap[BI.getSuccessor(0)]) - .addMBB(MBBMap[BI.getSuccessor(1)]); - } else { - BuildMI(BB, PPC::COND_BRANCH, 4).addReg(PPC::CR0).addImm(PPC::BEQ) - .addMBB(MBBMap[BI.getSuccessor(1)]) - .addMBB(MBBMap[BI.getSuccessor(0)]); - if (BI.getSuccessor(0) != NextBB) - BuildMI(BB, PPC::B, 1).addMBB(MBBMap[BI.getSuccessor(0)]); - } - return; - } - - unsigned OpNum = getSetCCNumber(SCI->getOpcode()); - unsigned Opcode = getPPCOpcodeForSetCCOpcode(SCI->getOpcode()); - MachineBasicBlock::iterator MII = BB->end(); - EmitComparison(OpNum, SCI->getOperand(0), SCI->getOperand(1), BB,MII); - - if (BI.getSuccessor(0) != NextBB) { - BuildMI(BB, PPC::COND_BRANCH, 4).addReg(PPC::CR0).addImm(Opcode) - .addMBB(MBBMap[BI.getSuccessor(0)]) - .addMBB(MBBMap[BI.getSuccessor(1)]); - if (BI.getSuccessor(1) != NextBB) - BuildMI(BB, PPC::B, 1).addMBB(MBBMap[BI.getSuccessor(1)]); - } else { - // Change to the inverse condition... - if (BI.getSuccessor(1) != NextBB) { - Opcode = PPC32InstrInfo::invertPPCBranchOpcode(Opcode); - BuildMI(BB, PPC::COND_BRANCH, 4).addReg(PPC::CR0).addImm(Opcode) - .addMBB(MBBMap[BI.getSuccessor(1)]) - .addMBB(MBBMap[BI.getSuccessor(0)]); - } - } -} - -/// doCall - This emits an abstract call instruction, setting up the arguments -/// and the return value as appropriate. For the actual function call itself, -/// it inserts the specified CallMI instruction into the stream. -/// -/// FIXME: See Documentation at the following URL for "correct" behavior -/// <http://developer.apple.com/documentation/DeveloperTools/Conceptual/MachORuntime/PowerPCConventions/chapter_3_section_5.html> -void PPC32ISel::doCall(const ValueRecord &Ret, MachineInstr *CallMI, - const std::vector<ValueRecord> &Args, bool isVarArg) { - // Count how many bytes are to be pushed on the stack, including the linkage - // area, and parameter passing area. - unsigned NumBytes = 24; - unsigned ArgOffset = 24; - - if (!Args.empty()) { - for (unsigned i = 0, e = Args.size(); i != e; ++i) - switch (getClassB(Args[i].Ty)) { - case cByte: case cShort: case cInt: - NumBytes += 4; break; - case cLong: - NumBytes += 8; break; - case cFP32: - NumBytes += 4; break; - case cFP64: - NumBytes += 8; break; - break; - default: assert(0 && "Unknown class!"); - } - - // Just to be safe, we'll always reserve the full 24 bytes of linkage area - // plus 32 bytes of argument space in case any called code gets funky on us. - if (NumBytes < 56) NumBytes = 56; - - // Adjust the stack pointer for the new arguments... - // These operations are automatically eliminated by the prolog/epilog pass - BuildMI(BB, PPC::ADJCALLSTACKDOWN, 1).addImm(NumBytes); - - // Arguments go on the stack in reverse order, as specified by the ABI. - // Offset to the paramater area on the stack is 24. - int GPR_remaining = 8, FPR_remaining = 13; - unsigned GPR_idx = 0, FPR_idx = 0; - static const unsigned GPR[] = { - PPC::R3, PPC::R4, PPC::R5, PPC::R6, - PPC::R7, PPC::R8, PPC::R9, PPC::R10, - }; - static const unsigned FPR[] = { - PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, - PPC::F7, PPC::F8, PPC::F9, PPC::F10, PPC::F11, PPC::F12, - PPC::F13 - }; - - for (unsigned i = 0, e = Args.size(); i != e; ++i) { - unsigned ArgReg; - switch (getClassB(Args[i].Ty)) { - case cByte: - case cShort: - // Promote arg to 32 bits wide into a temporary register... - ArgReg = makeAnotherReg(Type::UIntTy); - promote32(ArgReg, Args[i]); - - // Reg or stack? - if (GPR_remaining > 0) { - BuildMI(BB, PPC::OR, 2, GPR[GPR_idx]).addReg(ArgReg) - .addReg(ArgReg); - CallMI->addRegOperand(GPR[GPR_idx], MachineOperand::Use); - } - if (GPR_remaining <= 0 || isVarArg) { - BuildMI(BB, PPC::STW, 3).addReg(ArgReg).addSImm(ArgOffset) - .addReg(PPC::R1); - } - break; - case cInt: - ArgReg = Args[i].Val ? getReg(Args[i].Val) : Args[i].Reg; - - // Reg or stack? - if (GPR_remaining > 0) { - BuildMI(BB, PPC::OR, 2, GPR[GPR_idx]).addReg(ArgReg) - .addReg(ArgReg); - CallMI->addRegOperand(GPR[GPR_idx], MachineOperand::Use); - } - if (GPR_remaining <= 0 || isVarArg) { - BuildMI(BB, PPC::STW, 3).addReg(ArgReg).addSImm(ArgOffset) - .addReg(PPC::R1); - } - break; - case cLong: - ArgReg = Args[i].Val ? getReg(Args[i].Val) : Args[i].Reg; - - // Reg or stack? Note that PPC calling conventions state that long args - // are passed rN = hi, rN+1 = lo, opposite of LLVM. - if (GPR_remaining > 1) { - BuildMI(BB, PPC::OR, 2, GPR[GPR_idx]).addReg(ArgReg) - .addReg(ArgReg); - BuildMI(BB, PPC::OR, 2, GPR[GPR_idx+1]).addReg(ArgReg+1) - .addReg(ArgReg+1); - CallMI->addRegOperand(GPR[GPR_idx], MachineOperand::Use); - CallMI->addRegOperand(GPR[GPR_idx+1], MachineOperand::Use); - } - if (GPR_remaining <= 1 || isVarArg) { - BuildMI(BB, PPC::STW, 3).addReg(ArgReg).addSImm(ArgOffset) - .addReg(PPC::R1); - BuildMI(BB, PPC::STW, 3).addReg(ArgReg+1).addSImm(ArgOffset+4) - .addReg(PPC::R1); - } - - ArgOffset += 4; // 8 byte entry, not 4. - GPR_remaining -= 1; // uses up 2 GPRs - GPR_idx += 1; - break; - case cFP32: - ArgReg = Args[i].Val ? getReg(Args[i].Val) : Args[i].Reg; - // Reg or stack? - if (FPR_remaining > 0) { - BuildMI(BB, PPC::FMR, 1, FPR[FPR_idx]).addReg(ArgReg); - CallMI->addRegOperand(FPR[FPR_idx], MachineOperand::Use); - FPR_remaining--; - FPR_idx++; - - // If this is a vararg function, and there are GPRs left, also - // pass the float in an int. Otherwise, put it on the stack. - if (isVarArg) { - BuildMI(BB, PPC::STFS, 3).addReg(ArgReg).addSImm(ArgOffset) - .addReg(PPC::R1); - if (GPR_remaining > 0) { - BuildMI(BB, PPC::LWZ, 2, GPR[GPR_idx]) - .addSImm(ArgOffset).addReg(PPC::R1); - CallMI->addRegOperand(GPR[GPR_idx], MachineOperand::Use); - } - } - } else { - BuildMI(BB, PPC::STFS, 3).addReg(ArgReg).addSImm(ArgOffset) - .addReg(PPC::R1); - } - break; - case cFP64: - ArgReg = Args[i].Val ? getReg(Args[i].Val) : Args[i].Reg; - // Reg or stack? - if (FPR_remaining > 0) { - BuildMI(BB, PPC::FMR, 1, FPR[FPR_idx]).addReg(ArgReg); - CallMI->addRegOperand(FPR[FPR_idx], MachineOperand::Use); - FPR_remaining--; - FPR_idx++; - // For vararg functions, must pass doubles via int regs as well - if (isVarArg) { - BuildMI(BB, PPC::STFD, 3).addReg(ArgReg).addSImm(ArgOffset) - .addReg(PPC::R1); - - // Doubles can be split across reg + stack for varargs - if (GPR_remaining > 0) { - BuildMI(BB, PPC::LWZ, 2, GPR[GPR_idx]).addSImm(ArgOffset) - .addReg(PPC::R1); - CallMI->addRegOperand(GPR[GPR_idx], MachineOperand::Use); - } - if (GPR_remaining > 1) { - BuildMI(BB, PPC::LWZ, 2, GPR[GPR_idx+1]) - .addSImm(ArgOffset+4).addReg(PPC::R1); - CallMI->addRegOperand(GPR[GPR_idx+1], MachineOperand::Use); - } - } - } else { - BuildMI(BB, PPC::STFD, 3).addReg(ArgReg).addSImm(ArgOffset) - .addReg(PPC::R1); - } - // Doubles use 8 bytes, and 2 GPRs worth of param space - ArgOffset += 4; - GPR_remaining--; - GPR_idx++; - break; - - default: assert(0 && "Unknown class!"); - } - ArgOffset += 4; - GPR_remaining--; - GPR_idx++; - } - } else { - BuildMI(BB, PPC::ADJCALLSTACKDOWN, 1).addImm(NumBytes); - } - - BuildMI(BB, PPC::IMPLICIT_DEF, 0, PPC::LR); - BB->push_back(CallMI); - - // These functions are automatically eliminated by the prolog/epilog pass - BuildMI(BB, PPC::ADJCALLSTACKUP, 1).addImm(NumBytes); - - // If there is a return value, scavenge the result from the location the call - // leaves it in... - // - if (Ret.Ty != Type::VoidTy) { - unsigned DestClass = getClassB(Ret.Ty); - switch (DestClass) { - case cByte: - case cShort: - case cInt: - // Integral results are in r3 - BuildMI(BB, PPC::OR, 2, Ret.Reg).addReg(PPC::R3).addReg(PPC::R3); - break; - case cFP32: // Floating-point return values live in f1 - case cFP64: - BuildMI(BB, PPC::FMR, 1, Ret.Reg).addReg(PPC::F1); - break; - case cLong: // Long values are in r3:r4 - BuildMI(BB, PPC::OR, 2, Ret.Reg).addReg(PPC::R3).addReg(PPC::R3); - BuildMI(BB, PPC::OR, 2, Ret.Reg+1).addReg(PPC::R4).addReg(PPC::R4); - break; - default: assert(0 && "Unknown class!"); - } - } -} - - -/// visitCallInst - Push args on stack and do a procedure call instruction. -void PPC32ISel::visitCallInst(CallInst &CI) { - MachineInstr *TheCall; - Function *F = CI.getCalledFunction(); - if (F) { - // Is it an intrinsic function call? - if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID()) { - visitIntrinsicCall(ID, CI); // Special intrinsics are not handled here - return; - } - // Emit a CALL instruction with PC-relative displacement. - TheCall = BuildMI(PPC::CALLpcrel, 1).addGlobalAddress(F, true); - } else { // Emit an indirect call through the CTR - unsigned Reg = getReg(CI.getCalledValue()); - BuildMI(BB, PPC::OR, 2, PPC::R12).addReg(Reg).addReg(Reg); - BuildMI(BB, PPC::MTCTR, 1).addReg(PPC::R12); - TheCall = BuildMI(PPC::CALLindirect, 3).addZImm(20).addZImm(0) - .addReg(PPC::R12); - } - - std::vector<ValueRecord> Args; - for (unsigned i = 1, e = CI.getNumOperands(); i != e; ++i) - Args.push_back(ValueRecord(CI.getOperand(i))); - - unsigned DestReg = CI.getType() != Type::VoidTy ? getReg(CI) : 0; - bool isVarArg = F ? F->getFunctionType()->isVarArg() : true; - doCall(ValueRecord(DestReg, CI.getType()), TheCall, Args, isVarArg); -} - - -/// dyncastIsNan - Return the operand of an isnan operation if this is an isnan. -/// -static Value *dyncastIsNan(Value *V) { - if (CallInst *CI = dyn_cast<CallInst>(V)) - if (Function *F = CI->getCalledFunction()) - if (F->getIntrinsicID() == Intrinsic::isunordered) - return CI->getOperand(1); - return 0; -} - -/// isOnlyUsedByUnorderedComparisons - Return true if this value is only used by -/// or's whos operands are all calls to the isnan predicate. -static bool isOnlyUsedByUnorderedComparisons(Value *V) { - assert(dyncastIsNan(V) && "The value isn't an isnan call!"); - - // Check all uses, which will be or's of isnans if this predicate is true. - for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E;++UI){ - Instruction *I = cast<Instruction>(*UI); - if (I->getOpcode() != Instruction::Or) return false; - if (I->getOperand(0) != V && !dyncastIsNan(I->getOperand(0))) return false; - if (I->getOperand(1) != V && !dyncastIsNan(I->getOperand(1))) return false; - } - - return true; -} - -/// LowerUnknownIntrinsicFunctionCalls - This performs a prepass over the -/// function, lowering any calls to unknown intrinsic functions into the -/// equivalent LLVM code. -/// -void PPC32ISel::LowerUnknownIntrinsicFunctionCalls(Function &F) { - for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) - for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ) - if (CallInst *CI = dyn_cast<CallInst>(I++)) - if (Function *F = CI->getCalledFunction()) - switch (F->getIntrinsicID()) { - case Intrinsic::not_intrinsic: - case Intrinsic::vastart: - case Intrinsic::vacopy: - case Intrinsic::vaend: - case Intrinsic::returnaddress: - case Intrinsic::frameaddress: - // FIXME: should lower these ourselves - // case Intrinsic::isunordered: - // case Intrinsic::memcpy: -> doCall(). system memcpy almost - // guaranteed to be faster than anything we generate ourselves - // We directly implement these intrinsics - break; - case Intrinsic::readio: { - // On PPC, memory operations are in-order. Lower this intrinsic - // into a volatile load. - LoadInst * LI = new LoadInst(CI->getOperand(1), "", true, CI); - CI->replaceAllUsesWith(LI); - BB->getInstList().erase(CI); - break; - } - case Intrinsic::writeio: { - // On PPC, memory operations are in-order. Lower this intrinsic - // into a volatile store. - StoreInst *SI = new StoreInst(CI->getOperand(1), - CI->getOperand(2), true, CI); - CI->replaceAllUsesWith(SI); - BB->getInstList().erase(CI); - break; - } - default: { - // All other intrinsic calls we must lower. - BasicBlock::iterator me(CI); - bool atBegin(BB->begin() == me); - if (!atBegin) - --me; - TM.getIntrinsicLowering().LowerIntrinsicCall(CI); - // Move iterator to instruction after call - I = atBegin ? BB->begin() : ++me; - } - } -} - -void PPC32ISel::visitIntrinsicCall(Intrinsic::ID ID, CallInst &CI) { - unsigned TmpReg1, TmpReg2, TmpReg3; - switch (ID) { - case Intrinsic::vastart: - //FIXME: need to store, not return a value - // Get the address of the first vararg value... - TmpReg1 = getReg(CI); - addFrameReference(BuildMI(BB, PPC::ADDI, 2, TmpReg1), VarArgsFrameIndex, - 0, false); - return; - - case Intrinsic::vacopy: - //FIXME: need to store into first arg the value of the second - TmpReg1 = getReg(CI); - TmpReg2 = getReg(CI.getOperand(1)); - BuildMI(BB, PPC::OR, 2, TmpReg1).addReg(TmpReg2).addReg(TmpReg2); - return; - case Intrinsic::vaend: return; - - case Intrinsic::returnaddress: - TmpReg1 = getReg(CI); - if (cast<Constant>(CI.getOperand(1))->isNullValue()) { - MachineFrameInfo *MFI = F->getFrameInfo(); - unsigned NumBytes = MFI->getStackSize(); - - BuildMI(BB, PPC::LWZ, 2, TmpReg1).addSImm(NumBytes+8) - .addReg(PPC::R1); - } else { - // Values other than zero are not implemented yet. - BuildMI(BB, PPC::LI, 1, TmpReg1).addSImm(0); - } - return; - - case Intrinsic::frameaddress: - TmpReg1 = getReg(CI); - if (cast<Constant>(CI.getOperand(1))->isNullValue()) { - BuildMI(BB, PPC::OR, 2, TmpReg1).addReg(PPC::R1).addReg(PPC::R1); - } else { - // Values other than zero are not implemented yet. - BuildMI(BB, PPC::LI, 1, TmpReg1).addSImm(0); - } - return; - -#if 0 - // This may be useful for supporting isunordered - case Intrinsic::isnan: - // If this is only used by 'isunordered' style comparisons, don't emit it. - if (isOnlyUsedByUnorderedComparisons(&CI)) return; - TmpReg1 = getReg(CI.getOperand(1)); - emitUCOM(BB, BB->end(), TmpReg1, TmpReg1); - TmpReg2 = makeAnotherReg(Type::IntTy); - BuildMI(BB, PPC::MFCR, TmpReg2); - TmpReg3 = getReg(CI); - BuildMI(BB, PPC::RLWINM, 4, TmpReg3).addReg(TmpReg2).addImm(4).addImm(31).addImm(31); - return; -#endif - - default: assert(0 && "Error: unknown intrinsics should have been lowered!"); - } -} - -/// visitSimpleBinary - Implement simple binary operators for integral types... -/// OperatorClass is one of: 0 for Add, 1 for Sub, 2 for And, 3 for Or, 4 for -/// Xor. -/// -void PPC32ISel::visitSimpleBinary(BinaryOperator &B, unsigned OperatorClass) { - if (std::find(SkipList.begin(), SkipList.end(), &B) != SkipList.end()) - return; - - unsigned DestReg = getReg(B); - MachineBasicBlock::iterator MI = BB->end(); - RlwimiRec RR = InsertMap[&B]; - if (RR.Target != 0) { - unsigned TargetReg = getReg(RR.Target, BB, MI); - unsigned InsertReg = getReg(RR.Insert, BB, MI); - BuildMI(*BB, MI, PPC::RLWIMI, 5, DestReg).addReg(TargetReg) - .addReg(InsertReg).addImm(RR.Shift).addImm(RR.MB).addImm(RR.ME); - return; - } - - unsigned Class = getClassB(B.getType()); - Value *Op0 = B.getOperand(0), *Op1 = B.getOperand(1); - emitSimpleBinaryOperation(BB, MI, &B, Op0, Op1, OperatorClass, DestReg); -} - -/// emitBinaryFPOperation - This method handles emission of floating point -/// Add (0), Sub (1), Mul (2), and Div (3) operations. -void PPC32ISel::emitBinaryFPOperation(MachineBasicBlock *BB, - MachineBasicBlock::iterator IP, - Value *Op0, Value *Op1, - unsigned OperatorClass, unsigned DestReg){ - - static const unsigned OpcodeTab[][4] = { - { PPC::FADDS, PPC::FSUBS, PPC::FMULS, PPC::FDIVS }, // Float - { PPC::FADD, PPC::FSUB, PPC::FMUL, PPC::FDIV }, // Double - }; - - // Special case: R1 = op <const fp>, R2 - if (ConstantFP *Op0C = dyn_cast<ConstantFP>(Op0)) - if (Op0C->isExactlyValue(-0.0) && OperatorClass == 1) { - // -0.0 - X === -X - unsigned op1Reg = getReg(Op1, BB, IP); - BuildMI(*BB, IP, PPC::FNEG, 1, DestReg).addReg(op1Reg); - return; - } - - unsigned Opcode = OpcodeTab[Op0->getType() == Type::DoubleTy][OperatorClass]; - unsigned Op0r = getReg(Op0, BB, IP); - unsigned Op1r = getReg(Op1, BB, IP); - BuildMI(*BB, IP, Opcode, 2, DestReg).addReg(Op0r).addReg(Op1r); -} - -/// isInsertAndHalf - Helper function for emitBitfieldInsert. Returns true if -/// OpUser has one use, is used by an or instruction, and is itself an and whose -/// second operand is a constant int. Optionally, set OrI to the Or instruction -/// that is the sole user of OpUser, and Op1User to the other operand of the Or -/// instruction. -static bool isInsertAndHalf(User *OpUser, Instruction **Op1User, - Instruction **OrI, unsigned &Mask) { - // If this instruction doesn't have one use, then return false. - if (!OpUser->hasOneUse()) - return false; - - Mask = 0xFFFFFFFF; - if (BinaryOperator *BO = dyn_cast<BinaryOperator>(OpUser)) - if (BO->getOpcode() == Instruction::And) { - Value *AndUse = *(OpUser->use_begin()); - if (BinaryOperator *Or = dyn_cast<BinaryOperator>(AndUse)) { - if (Or->getOpcode() == Instruction::Or) { - if (ConstantInt *CI = dyn_cast<ConstantInt>(OpUser->getOperand(1))) { - if (OrI) *OrI = Or; - if (Op1User) { - if (Or->getOperand(0) == OpUser) - *Op1User = dyn_cast<Instruction>(Or->getOperand(1)); - else - *Op1User = dyn_cast<Instruction>(Or->getOperand(0)); - } - Mask &= CI->getRawValue(); - return true; - } - } - } - } - return false; -} - -/// isInsertShiftHalf - Helper function for emitBitfieldInsert. Returns true if -/// OpUser has one use, is used by an or instruction, and is itself a shift -/// instruction that is either used directly by the or instruction, or is used -/// by an and instruction whose second operand is a constant int, and which is -/// used by the or instruction. -static bool isInsertShiftHalf(User *OpUser, Instruction **Op1User, - Instruction **OrI, Instruction **OptAndI, - unsigned &Shift, unsigned &Mask) { - // If this instruction doesn't have one use, then return false. - if (!OpUser->hasOneUse()) - return false; - - Mask = 0xFFFFFFFF; - if (ShiftInst *SI = dyn_cast<ShiftInst>(OpUser)) { - if (ConstantInt *CI = dyn_cast<ConstantInt>(SI->getOperand(1))) { - Shift = CI->getRawValue(); - if (SI->getOpcode() == Instruction::Shl) - Mask <<= Shift; - else if (!SI->getOperand(0)->getType()->isSigned()) { - Mask >>= Shift; - Shift = 32 - Shift; - } - - // Now check to see if the shift instruction is used by an or. - Value *ShiftUse = *(OpUser->use_begin()); - Value *OptAndICopy = 0; - if (BinaryOperator *BO = dyn_cast<BinaryOperator>(ShiftUse)) { - if (BO->getOpcode() == Instruction::And && BO->hasOneUse()) { - if (ConstantInt *ACI = dyn_cast<ConstantInt>(BO->getOperand(1))) { - if (OptAndI) *OptAndI = BO; - OptAndICopy = BO; - Mask &= ACI->getRawValue(); - BO = dyn_cast<BinaryOperator>(*(BO->use_begin())); - } - } - if (BO && BO->getOpcode() == Instruction::Or) { - if (OrI) *OrI = BO; - if (Op1User) { - if (BO->getOperand(0) == OpUser || BO->getOperand(0) == OptAndICopy) - *Op1User = dyn_cast<Instruction>(BO->getOperand(1)); - else - *Op1User = dyn_cast<Instruction>(BO->getOperand(0)); - } - return true; - } - } - } - } - return false; -} - -/// emitBitfieldInsert - turn a shift used only by an and with immediate into -/// the rotate left word immediate then mask insert (rlwimi) instruction. -/// Patterns matched: -/// 1. or shl, and 5. or (shl-and), and 9. or and, and -/// 2. or and, shl 6. or and, (shl-and) -/// 3. or shr, and 7. or (shr-and), and -/// 4. or and, shr 8. or and, (shr-and) -bool PPC32ISel::emitBitfieldInsert(User *OpUser, unsigned DestReg) { - // Instructions to skip if we match any of the patterns - Instruction *Op0User, *Op1User = 0, *OptAndI = 0, *OrI = 0; - unsigned TgtMask, InsMask, Amount = 0; - bool matched = false; - - // We require OpUser to be an instruction to continue - Op0User = dyn_cast<Instruction>(OpUser); - if (0 == Op0User) - return false; - - // Look for cases 2, 4, 6, 8, and 9 - if (isInsertAndHalf(Op0User, &Op1User, &OrI, TgtMask)) - if (Op1User) - if (isInsertAndHalf(Op1User, 0, 0, InsMask)) - matched = true; - else if (isInsertShiftHalf(Op1User, 0, 0, &OptAndI, Amount, InsMask)) - matched = true; - - // Look for cases 1, 3, 5, and 7. Force the shift argument to be the one - // inserted into the target, since rlwimi can only rotate the value inserted, - // not the value being inserted into. - if (matched == false) - if (isInsertShiftHalf(Op0User, &Op1User, &OrI, &OptAndI, Amount, InsMask)) - if (Op1User && isInsertAndHalf(Op1User, 0, 0, TgtMask)) { - std::swap(Op0User, Op1User); - matched = true; - } - - // We didn't succeed in matching one of the patterns, so return false - if (matched == false) - return false; - - // If the masks xor to -1, and the insert mask is a run of ones, then we have - // succeeded in matching one of the cases for generating rlwimi. Update the - // skip lists and users of the Instruction::Or. - unsigned MB, ME; - if (((TgtMask ^ InsMask) == 0xFFFFFFFF) && IsRunOfOnes(InsMask, MB, ME)) { - SkipList.push_back(Op0User); - SkipList.push_back(Op1User); - SkipList.push_back(OptAndI); - InsertMap[OrI] = RlwimiRec(Op0User->getOperand(0), Op1User->getOperand(0), - Amount, MB, ME); - return true; - } - return false; -} - -/// emitBitfieldExtract - turn a shift used only by an and with immediate into the -/// rotate left word immediate then and with mask (rlwinm) instruction. -bool PPC32ISel::emitBitfieldExtract(MachineBasicBlock *MBB, - MachineBasicBlock::iterator IP, - User *OpUser, unsigned DestReg) { - return false; - /* - // Instructions to skip if we match any of the patterns - Instruction *Op0User, *Op1User = 0; - unsigned ShiftMask, AndMask, Amount = 0; - bool matched = false; - - // We require OpUser to be an instruction to continue - Op0User = dyn_cast<Instruction>(OpUser); - if (0 == Op0User) - return false; - - if (isExtractShiftHalf) - if (isExtractAndHalf) - matched = true; - - if (matched == false && isExtractAndHalf) - if (isExtractShiftHalf) - matched = true; - - if (matched == false) - return false; - - if (IsRunOfOnes(Imm, MB, ME)) { - unsigned SrcReg = getReg(Op, MBB, IP); - BuildMI(*MBB, IP, PPC::RLWINM, 4, DestReg).addReg(SrcReg).addImm(Rotate) - .addImm(MB).addImm(ME); - Op1User->replaceAllUsesWith(Op0User); - SkipList.push_back(BO); - return true; - } - */ -} - -/// emitBinaryConstOperation - Implement simple binary operators for integral -/// types with a constant operand. Opcode is one of: 0 for Add, 1 for Sub, -/// 2 for And, 3 for Or, 4 for Xor, and 5 for Subtract-From. -/// -void PPC32ISel::emitBinaryConstOperation(MachineBasicBlock *MBB, - MachineBasicBlock::iterator IP, - unsigned Op0Reg, ConstantInt *Op1, - unsigned Opcode, unsigned DestReg) { - static const unsigned OpTab[] = { - PPC::ADD, PPC::SUB, PPC::AND, PPC::OR, PPC::XOR, PPC::SUBF - }; - static const unsigned ImmOpTab[2][6] = { - { PPC::ADDI, PPC::ADDI, PPC::ANDIo, PPC::ORI, PPC::XORI, PPC::SUBFIC }, - { PPC::ADDIS, PPC::ADDIS, PPC::ANDISo, PPC::ORIS, PPC::XORIS, PPC::SUBFIC } - }; - - // Handle subtract now by inverting the constant value: X-4 == X+(-4) - if (Opcode == 1) { - Op1 = cast<ConstantInt>(ConstantExpr::getNeg(Op1)); - Opcode = 0; - } - - // xor X, -1 -> not X - if (Opcode == 4 && Op1->isAllOnesValue()) { - BuildMI(*MBB, IP, PPC::NOR, 2, DestReg).addReg(Op0Reg).addReg(Op0Reg); - return; - } - - if (Opcode == 2 && !Op1->isNullValue()) { - unsigned MB, ME, mask = Op1->getRawValue(); - if (IsRunOfOnes(mask, MB, ME)) { - BuildMI(*MBB, IP, PPC::RLWINM, 4, DestReg).addReg(Op0Reg).addImm(0) - .addImm(MB).addImm(ME); - return; - } - } - - // PowerPC 16 bit signed immediates are sign extended before use by the - // instruction. Therefore, we can only split up an add of a reg with a 32 bit - // immediate into addis and addi if the sign bit of the low 16 bits is cleared - // so that for register A, const imm X, we don't end up with - // A + XXXX0000 + FFFFXXXX. - bool WontSignExtend = (0 == (Op1->getRawValue() & 0x8000)); - - // For Add, Sub, and SubF the instruction takes a signed immediate. For And, - // Or, and Xor, the instruction takes an unsigned immediate. There is no - // shifted immediate form of SubF so disallow its opcode for those constants. - if (canUseAsImmediateForOpcode(Op1, Opcode, false)) { - if (Opcode < 2 || Opcode == 5) - BuildMI(*MBB, IP, ImmOpTab[0][Opcode], 2, DestReg).addReg(Op0Reg) - .addSImm(Op1->getRawValue()); - else - BuildMI(*MBB, IP, ImmOpTab[0][Opcode], 2, DestReg).addReg(Op0Reg) - .addZImm(Op1->getRawValue()); - } else if (canUseAsImmediateForOpcode(Op1, Opcode, true) && (Opcode < 5)) { - if (Opcode < 2) - BuildMI(*MBB, IP, ImmOpTab[1][Opcode], 2, DestReg).addReg(Op0Reg) - .addSImm(Op1->getRawValue() >> 16); - else - BuildMI(*MBB, IP, ImmOpTab[1][Opcode], 2, DestReg).addReg(Op0Reg) - .addZImm(Op1->getRawValue() >> 16); - } else if ((Opcode < 2 && WontSignExtend) || Opcode == 3 || Opcode == 4) { - unsigned TmpReg = makeAnotherReg(Op1->getType()); - if (Opcode < 2) { - BuildMI(*MBB, IP, ImmOpTab[1][Opcode], 2, TmpReg).addReg(Op0Reg) - .addSImm(Op1->getRawValue() >> 16); - BuildMI(*MBB, IP, ImmOpTab[0][Opcode], 2, DestReg).addReg(TmpReg) - .addSImm(Op1->getRawValue()); - } else { - BuildMI(*MBB, IP, ImmOpTab[1][Opcode], 2, TmpReg).addReg(Op0Reg) - .addZImm(Op1->getRawValue() >> 16); - BuildMI(*MBB, IP, ImmOpTab[0][Opcode], 2, DestReg).addReg(TmpReg) - .addZImm(Op1->getRawValue()); - } - } else { - unsigned Op1Reg = getReg(Op1, MBB, IP); - BuildMI(*MBB, IP, OpTab[Opcode], 2, DestReg).addReg(Op0Reg).addReg(Op1Reg); - } -} - -/// emitSimpleBinaryOperation - Implement simple binary operators for integral -/// types... OperatorClass is one of: 0 for Add, 1 for Sub, 2 for And, 3 for -/// Or, 4 for Xor. -/// -void PPC32ISel::emitSimpleBinaryOperation(MachineBasicBlock *MBB, - MachineBasicBlock::iterator IP, - BinaryOperator *BO, - Value *Op0, Value *Op1, - unsigned OperatorClass, - unsigned DestReg) { - // Arithmetic and Bitwise operators - static const unsigned OpcodeTab[] = { - PPC::ADD, PPC::SUBF, PPC::AND, PPC::OR, PPC::XOR - }; - static const unsigned LongOpTab[2][5] = { - { PPC::ADDC, PPC::SUBFC, PPC::AND, PPC::OR, PPC::XOR }, - { PPC::ADDE, PPC::SUBFE, PPC::AND, PPC::OR, PPC::XOR } - }; - - unsigned Class = getClassB(Op0->getType()); - - if (Class == cFP32 || Class == cFP64) { - assert(OperatorClass < 2 && "No logical ops for FP!"); - emitBinaryFPOperation(MBB, IP, Op0, Op1, OperatorClass, DestReg); - return; - } - - if (Op0->getType() == Type::BoolTy) { - if (OperatorClass == 3) - // If this is an or of two isnan's, emit an FP comparison directly instead - // of or'ing two isnan's together. - if (Value *LHS = dyncastIsNan(Op0)) - if (Value *RHS = dyncastIsNan(Op1)) { - unsigned Op0Reg = getReg(RHS, MBB, IP), Op1Reg = getReg(LHS, MBB, IP); - unsigned TmpReg = makeAnotherReg(Type::IntTy); - emitUCOM(MBB, IP, Op0Reg, Op1Reg); - BuildMI(*MBB, IP, PPC::MFCR, TmpReg); - BuildMI(*MBB, IP, PPC::RLWINM, 4, DestReg).addReg(TmpReg).addImm(4) - .addImm(31).addImm(31); - return; - } - } - - // Special case: op <const int>, Reg - if (ConstantInt *CI = dyn_cast<ConstantInt>(Op0)) - if (Class != cLong) { - unsigned Opcode = (OperatorClass == 1) ? 5 : OperatorClass; - unsigned Op1r = getReg(Op1, MBB, IP); - emitBinaryConstOperation(MBB, IP, Op1r, CI, Opcode, DestReg); - return; - } - // Special case: op Reg, <const int> - if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) - if (Class != cLong) { - if (emitBitfieldInsert(BO, DestReg)) - return; - - unsigned Op0r = getReg(Op0, MBB, IP); - emitBinaryConstOperation(MBB, IP, Op0r, CI, OperatorClass, DestReg); - return; - } - - // We couldn't generate an immediate variant of the op, load both halves into - // registers and emit the appropriate opcode. - unsigned Op0r = getReg(Op0, MBB, IP); - unsigned Op1r = getReg(Op1, MBB, IP); - - // Subtracts have their operands swapped - if (OperatorClass == 1) { - if (Class != cLong) { - BuildMI(*MBB, IP, PPC::SUBF, 2, DestReg).addReg(Op1r).addReg(Op0r); - } else { - BuildMI(*MBB, IP, PPC::SUBFC, 2, DestReg+1).addReg(Op1r+1).addReg(Op0r+1); - BuildMI(*MBB, IP, PPC::SUBFE, 2, DestReg).addReg(Op1r).addReg(Op0r); - } - return; - } - - if (Class != cLong) { - unsigned Opcode = OpcodeTab[OperatorClass]; - BuildMI(*MBB, IP, Opcode, 2, DestReg).addReg(Op0r).addReg(Op1r); - } else { - BuildMI(*MBB, IP, LongOpTab[0][OperatorClass], 2, DestReg+1).addReg(Op0r+1) - .addReg(Op1r+1); - BuildMI(*MBB, IP, LongOpTab[1][OperatorClass], 2, DestReg).addReg(Op0r) - .addReg(Op1r); - } - return; -} - -/// doMultiply - Emit appropriate instructions to multiply together the -/// Values Op0 and Op1, and put the result in DestReg. -/// -void PPC32ISel::doMultiply(MachineBasicBlock *MBB, - MachineBasicBlock::iterator IP, - unsigned DestReg, Value *Op0, Value *Op1) { - unsigned Class0 = getClass(Op0->getType()); - unsigned Class1 = getClass(Op1->getType()); - - unsigned Op0r = getReg(Op0, MBB, IP); - unsigned Op1r = getReg(Op1, MBB, IP); - - // 64 x 64 -> 64 - if (Class0 == cLong && Class1 == cLong) { - unsigned Tmp1 = makeAnotherReg(Type::IntTy); - unsigned Tmp2 = makeAnotherReg(Type::IntTy); - unsigned Tmp3 = makeAnotherReg(Type::IntTy); - unsigned Tmp4 = makeAnotherReg(Type::IntTy); - BuildMI(*MBB, IP, PPC::MULHWU, 2, Tmp1).addReg(Op0r+1).addReg(Op1r+1); - BuildMI(*MBB, IP, PPC::MULLW, 2, DestReg+1).addReg(Op0r+1).addReg(Op1r+1); - BuildMI(*MBB, IP, PPC::MULLW, 2, Tmp2).addReg(Op0r+1).addReg(Op1r); - BuildMI(*MBB, IP, PPC::ADD, 2, Tmp3).addReg(Tmp1).addReg(Tmp2); - BuildMI(*MBB, IP, PPC::MULLW, 2, Tmp4).addReg(Op0r).addReg(Op1r+1); - BuildMI(*MBB, IP, PPC::ADD, 2, DestReg).addReg(Tmp3).addReg(Tmp4); - return; - } - - // 64 x 32 or less, promote 32 to 64 and do a 64 x 64 - if (Class0 == cLong && Class1 <= cInt) { - unsigned Tmp0 = makeAnotherReg(Type::IntTy); - unsigned Tmp1 = makeAnotherReg(Type::IntTy); - unsigned Tmp2 = makeAnotherReg(Type::IntTy); - unsigned Tmp3 = makeAnotherReg(Type::IntTy); - unsigned Tmp4 = makeAnotherReg(Type::IntTy); - if (Op1->getType()->isSigned()) - BuildMI(*MBB, IP, PPC::SRAWI, 2, Tmp0).addReg(Op1r).addImm(31); - else - BuildMI(*MBB, IP, PPC::LI, 2, Tmp0).addSImm(0); - BuildMI(*MBB, IP, PPC::MULHWU, 2, Tmp1).addReg(Op0r+1).addReg(Op1r); - BuildMI(*MBB, IP, PPC::MULLW, 2, DestReg+1).addReg(Op0r+1).addReg(Op1r); - BuildMI(*MBB, IP, PPC::MULLW, 2, Tmp2).addReg(Op0r+1).addReg(Tmp0); - BuildMI(*MBB, IP, PPC::ADD, 2, Tmp3).addReg(Tmp1).addReg(Tmp2); - BuildMI(*MBB, IP, PPC::MULLW, 2, Tmp4).addReg(Op0r).addReg(Op1r); - BuildMI(*MBB, IP, PPC::ADD, 2, DestReg).addReg(Tmp3).addReg(Tmp4); - return; - } - - // 32 x 32 -> 32 - if (Class0 <= cInt && Class1 <= cInt) { - BuildMI(*MBB, IP, PPC::MULLW, 2, DestReg).addReg(Op0r).addReg(Op1r); - return; - } - - assert(0 && "doMultiply cannot operate on unknown type!"); -} - -/// doMultiplyConst - This method will multiply the value in Op0 by the -/// value of the ContantInt *CI -void PPC32ISel::doMultiplyConst(MachineBasicBlock *MBB, - MachineBasicBlock::iterator IP, - unsigned DestReg, Value *Op0, ConstantInt *CI) { - unsigned Class = getClass(Op0->getType()); - - // Mul op0, 0 ==> 0 - if (CI->isNullValue()) { - BuildMI(*MBB, IP, PPC::LI, 1, DestReg).addSImm(0); - if (Class == cLong) - BuildMI(*MBB, IP, PPC::LI, 1, DestReg+1).addSImm(0); - return; - } - - // Mul op0, 1 ==> op0 - if (CI->equalsInt(1)) { - unsigned Op0r = getReg(Op0, MBB, IP); - BuildMI(*MBB, IP, PPC::OR, 2, DestReg).addReg(Op0r).addReg(Op0r); - if (Class == cLong) - BuildMI(*MBB, IP, PPC::OR, 2, DestReg+1).addReg(Op0r+1).addReg(Op0r+1); - return; - } - - // If the element size is exactly a power of 2, use a shift to get it. - uint64_t C = CI->getRawValue(); - if (isPowerOf2_64(C)) { - unsigned Shift = Log2_64(C); - ConstantUInt *ShiftCI = ConstantUInt::get(Type::UByteTy, Shift); - emitShiftOperation(MBB, IP, Op0, ShiftCI, true, Op0->getType(), 0, DestReg); - return; - } - - // If 32 bits or less and immediate is in right range, emit mul by immediate - if (Class == cByte || Class == cShort || Class == cInt) { - if (canUseAsImmediateForOpcode(CI, 0, false)) { - unsigned Op0r = getReg(Op0, MBB, IP); - unsigned imm = CI->getRawValue() & 0xFFFF; - BuildMI(*MBB, IP, PPC::MULLI, 2, DestReg).addReg(Op0r).addSImm(imm); - return; - } - } - - doMultiply(MBB, IP, DestReg, Op0, CI); -} - -void PPC32ISel::visitMul(BinaryOperator &I) { - unsigned ResultReg = getReg(I); - - Value *Op0 = I.getOperand(0); - Value *Op1 = I.getOperand(1); - - MachineBasicBlock::iterator IP = BB->end(); - emitMultiply(BB, IP, Op0, Op1, ResultReg); -} - -void PPC32ISel::emitMultiply(MachineBasicBlock *MBB, - MachineBasicBlock::iterator IP, - Value *Op0, Value *Op1, unsigned DestReg) { - TypeClass Class = getClass(Op0->getType()); - - switch (Class) { - case cByte: - case cShort: - case cInt: - case cLong: - if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) { - doMultiplyConst(MBB, IP, DestReg, Op0, CI); - } else { - doMultiply(MBB, IP, DestReg, Op0, Op1); - } - return; - case cFP32: - case cFP64: - emitBinaryFPOperation(MBB, IP, Op0, Op1, 2, DestReg); - return; - break; - } -} - - -/// visitDivRem - Handle division and remainder instructions... these -/// instruction both require the same instructions to be generated, they just -/// select the result from a different register. Note that both of these -/// instructions work differently for signed and unsigned operands. -/// -void PPC32ISel::visitDivRem(BinaryOperator &I) { - unsigned ResultReg = getReg(I); - Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); - - MachineBasicBlock::iterator IP = BB->end(); - emitDivRemOperation(BB, IP, Op0, Op1, I.getOpcode() == Instruction::Div, - ResultReg); -} - -void PPC32ISel::emitDivRemOperation(MachineBasicBlock *MBB, - MachineBasicBlock::iterator IP, - Value *Op0, Value *Op1, bool isDiv, - unsigned ResultReg) { - const Type *Ty = Op0->getType(); - unsigned Class = getClass(Ty); - switch (Class) { - case cFP32: - if (isDiv) { - // Floating point divide... - emitBinaryFPOperation(MBB, IP, Op0, Op1, 3, ResultReg); - return; - } else { - // Floating point remainder via fmodf(float x, float y); - unsigned Op0Reg = getReg(Op0, MBB, IP); - unsigned Op1Reg = getReg(Op1, MBB, IP); - MachineInstr *TheCall = - BuildMI(PPC::CALLpcrel, 1).addGlobalAddress(fmodfFn, true); - std::vector<ValueRecord> Args; - Args.push_back(ValueRecord(Op0Reg, Type::FloatTy)); - Args.push_back(ValueRecord(Op1Reg, Type::FloatTy)); - doCall(ValueRecord(ResultReg, Type::FloatTy), TheCall, Args, false); - } - return; - case cFP64: - if (isDiv) { - // Floating point divide... - emitBinaryFPOperation(MBB, IP, Op0, Op1, 3, ResultReg); - return; - } else { - // Floating point remainder via fmod(double x, double y); - unsigned Op0Reg = getReg(Op0, MBB, IP); - unsigned Op1Reg = getReg(Op1, MBB, IP); - MachineInstr *TheCall = - BuildMI(PPC::CALLpcrel, 1).addGlobalAddress(fmodFn, true); - std::vector<ValueRecord> Args; - Args.push_back(ValueRecord(Op0Reg, Type::DoubleTy)); - Args.push_back(ValueRecord(Op1Reg, Type::DoubleTy)); - doCall(ValueRecord(ResultReg, Type::DoubleTy), TheCall, Args, false); - } - return; - case cLong: { - static Function* const Funcs[] = - { __moddi3Fn, __divdi3Fn, __umoddi3Fn, __udivdi3Fn }; - unsigned Op0Reg = getReg(Op0, MBB, IP); - unsigned Op1Reg = getReg(Op1, MBB, IP); - unsigned NameIdx = Ty->isUnsigned()*2 + isDiv; - MachineInstr *TheCall = - BuildMI(PPC::CALLpcrel, 1).addGlobalAddress(Funcs[NameIdx], true); - - std::vector<ValueRecord> Args; - Args.push_back(ValueRecord(Op0Reg, Type::LongTy)); - Args.push_back(ValueRecord(Op1Reg, Type::LongTy)); - doCall(ValueRecord(ResultReg, Type::LongTy), TheCall, Args, false); - return; - } - case cByte: case cShort: case cInt: - break; // Small integrals, handled below... - default: assert(0 && "Unknown class!"); - } - - // Special case signed division by power of 2. - if (isDiv) - if (ConstantSInt *CI = dyn_cast<ConstantSInt>(Op1)) { - assert(Class != cLong && "This doesn't handle 64-bit divides!"); - int V = CI->getValue(); - - if (V == 1) { // X /s 1 => X - unsigned Op0Reg = getReg(Op0, MBB, IP); - BuildMI(*MBB, IP, PPC::OR, 2, ResultReg).addReg(Op0Reg).addReg(Op0Reg); - return; - } - - if (V == -1) { // X /s -1 => -X - unsigned Op0Reg = getReg(Op0, MBB, IP); - BuildMI(*MBB, IP, PPC::NEG, 1, ResultReg).addReg(Op0Reg); - return; - } - - if (isPowerOf2_32(V) && Ty->isSigned()) { - unsigned log2V = Log2_32(V); - unsigned Op0Reg = getReg(Op0, MBB, IP); - unsigned TmpReg = makeAnotherReg(Op0->getType()); - - BuildMI(*MBB, IP, PPC::SRAWI, 2, TmpReg).addReg(Op0Reg).addImm(log2V); - BuildMI(*MBB, IP, PPC::ADDZE, 1, ResultReg).addReg(TmpReg); - return; - } - } - - unsigned Op0Reg = getReg(Op0, MBB, IP); - - if (isDiv) { - unsigned Op1Reg = getReg(Op1, MBB, IP); - unsigned Opcode = Ty->isSigned() ? PPC::DIVW : PPC::DIVWU; - BuildMI(*MBB, IP, Opcode, 2, ResultReg).addReg(Op0Reg).addReg(Op1Reg); - } else { // Remainder - // FIXME: don't load the CI part of a CI divide twice - ConstantInt *CI = dyn_cast<ConstantInt>(Op1); - unsigned TmpReg1 = makeAnotherReg(Op0->getType()); - unsigned TmpReg2 = makeAnotherReg(Op0->getType()); - emitDivRemOperation(MBB, IP, Op0, Op1, true, TmpReg1); - if (CI && canUseAsImmediateForOpcode(CI, 0, false)) { - BuildMI(*MBB, IP, PPC::MULLI, 2, TmpReg2).addReg(TmpReg1) - .addSImm(CI->getRawValue()); - } else { - unsigned Op1Reg = getReg(Op1, MBB, IP); - BuildMI(*MBB, IP, PPC::MULLW, 2, TmpReg2).addReg(TmpReg1).addReg(Op1Reg); - } - BuildMI(*MBB, IP, PPC::SUBF, 2, ResultReg).addReg(TmpReg2).addReg(Op0Reg); - } -} - - -/// Shift instructions: 'shl', 'sar', 'shr' - Some special cases here -/// for constant immediate shift values, and for constant immediate -/// shift values equal to 1. Even the general case is sort of special, -/// because the shift amount has to be in CL, not just any old register. -/// -void PPC32ISel::visitShiftInst(ShiftInst &I) { - if (std::find(SkipList.begin(), SkipList.end(), &I) != SkipList.end()) - return; - - MachineBasicBlock::iterator IP = BB->end(); - emitShiftOperation(BB, IP, I.getOperand(0), I.getOperand(1), - I.getOpcode() == Instruction::Shl, I.getType(), - &I, getReg(I)); -} - -/// emitShiftOperation - Common code shared between visitShiftInst and -/// constant expression support. -/// -void PPC32ISel::emitShiftOperation(MachineBasicBlock *MBB, - MachineBasicBlock::iterator IP, - Value *Op, Value *ShiftAmount, - bool isLeftShift, const Type *ResultTy, - ShiftInst *SI, unsigned DestReg) { - bool isSigned = ResultTy->isSigned (); - unsigned Class = getClass (ResultTy); - - // Longs, as usual, are handled specially... - if (Class == cLong) { - unsigned SrcReg = getReg (Op, MBB, IP); - // If we have a constant shift, we can generate much more efficient code - // than for a variable shift by using the rlwimi instruction. - if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(ShiftAmount)) { - unsigned Amount = CUI->getValue(); - if (Amount == 0) { - BuildMI(*MBB, IP, PPC::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg); - BuildMI(*MBB, IP, PPC::OR, 2, DestReg+1) - .addReg(SrcReg+1).addReg(SrcReg+1); - - } else if (Amount < 32) { - unsigned TempReg = makeAnotherReg(ResultTy); - if (isLeftShift) { - BuildMI(*MBB, IP, PPC::RLWINM, 4, TempReg).addReg(SrcReg) - .addImm(Amount).addImm(0).addImm(31-Amount); - BuildMI(*MBB, IP, PPC::RLWIMI, 5, DestReg).addReg(TempReg) - .addReg(SrcReg+1).addImm(Amount).addImm(32-Amount).addImm(31); - BuildMI(*MBB, IP, PPC::RLWINM, 4, DestReg+1).addReg(SrcReg+1) - .addImm(Amount).addImm(0).addImm(31-Amount); - } else { - BuildMI(*MBB, IP, PPC::RLWINM, 4, TempReg).addReg(SrcReg+1) - .addImm(32-Amount).addImm(Amount).addImm(31); - BuildMI(*MBB, IP, PPC::RLWIMI, 5, DestReg+1).addReg(TempReg) - .addReg(SrcReg).addImm(32-Amount).addImm(0).addImm(Amount-1); - if (isSigned) { - BuildMI(*MBB, IP, PPC::SRAWI, 2, DestReg).addReg(SrcReg) - .addImm(Amount); - } else { - BuildMI(*MBB, IP, PPC::RLWINM, 4, DestReg).addReg(SrcReg) - .addImm(32-Amount).addImm(Amount).addImm(31); - } - } - } else { // Shifting more than 32 bits - Amount -= 32; - if (isLeftShift) { - if (Amount != 0) { - BuildMI(*MBB, IP, PPC::RLWINM, 4, DestReg).addReg(SrcReg+1) - .addImm(Amount).addImm(0).addImm(31-Amount); - } else { - BuildMI(*MBB, IP, PPC::OR, 2, DestReg).addReg(SrcReg+1) - .addReg(SrcReg+1); - } - BuildMI(*MBB, IP, PPC::LI, 1, DestReg+1).addSImm(0); - } else { - if (Amount != 0) { - if (isSigned) - BuildMI(*MBB, IP, PPC::SRAWI, 2, DestReg+1).addReg(SrcReg) - .addImm(Amount); - else - BuildMI(*MBB, IP, PPC::RLWINM, 4, DestReg+1).addReg(SrcReg) - .addImm(32-Amount).addImm(Amount).addImm(31); - } else { - BuildMI(*MBB, IP, PPC::OR, 2, DestReg+1).addReg(SrcReg) - .addReg(SrcReg); - } - if (isSigned) - BuildMI(*MBB, IP, PPC::SRAWI, 2, DestReg).addReg(SrcReg) - .addImm(31); - else - BuildMI(*MBB, IP,PPC::LI, 1, DestReg).addSImm(0); - } - } - } else { - unsigned TmpReg1 = makeAnotherReg(Type::IntTy); - unsigned TmpReg2 = makeAnotherReg(Type::IntTy); - unsigned TmpReg3 = makeAnotherReg(Type::IntTy); - unsigned TmpReg4 = makeAnotherReg(Type::IntTy); - unsigned TmpReg5 = makeAnotherReg(Type::IntTy); - unsigned TmpReg6 = makeAnotherReg(Type::IntTy); - unsigned ShiftAmountReg = getReg (ShiftAmount, MBB, IP); - - if (isLeftShift) { - BuildMI(*MBB, IP, PPC::SUBFIC, 2, TmpReg1).addReg(ShiftAmountReg) - .addSImm(32); - BuildMI(*MBB, IP, PPC::SLW, 2, TmpReg2).addReg(SrcReg) - .addReg(ShiftAmountReg); - BuildMI(*MBB, IP, PPC::SRW, 2, TmpReg3).addReg(SrcReg+1) - .addReg(TmpReg1); - BuildMI(*MBB, IP, PPC::OR, 2,TmpReg4).addReg(TmpReg2).addReg(TmpReg3); - BuildMI(*MBB, IP, PPC::ADDI, 2, TmpReg5).addReg(ShiftAmountReg) - .addSImm(-32); - BuildMI(*MBB, IP, PPC::SLW, 2, TmpReg6).addReg(SrcReg+1) - .addReg(TmpReg5); - BuildMI(*MBB, IP, PPC::OR, 2, DestReg).addReg(TmpReg4) - .addReg(TmpReg6); - BuildMI(*MBB, IP, PPC::SLW, 2, DestReg+1).addReg(SrcReg+1) - .addReg(ShiftAmountReg); - } else { - if (isSigned) { // shift right algebraic - MachineBasicBlock *TmpMBB =new MachineBasicBlock(BB->getBasicBlock()); - MachineBasicBlock *PhiMBB =new MachineBasicBlock(BB->getBasicBlock()); - MachineBasicBlock *OldMBB = BB; - ilist<MachineBasicBlock>::iterator It = BB; ++It; - F->getBasicBlockList().insert(It, TmpMBB); - F->getBasicBlockList().insert(It, PhiMBB); - BB->addSuccessor(TmpMBB); - BB->addSuccessor(PhiMBB); - - BuildMI(*MBB, IP, PPC::SUBFIC, 2, TmpReg1).addReg(ShiftAmountReg) - .addSImm(32); - BuildMI(*MBB, IP, PPC::SRW, 2, TmpReg2).addReg(SrcReg+1) - .addReg(ShiftAmountReg); - BuildMI(*MBB, IP, PPC::SLW, 2, TmpReg3).addReg(SrcReg) - .addReg(TmpReg1); - BuildMI(*MBB, IP, PPC::OR, 2, TmpReg4).addReg(TmpReg2) - .addReg(TmpReg3); - BuildMI(*MBB, IP, PPC::ADDICo, 2, TmpReg5).addReg(ShiftAmountReg) - .addSImm(-32); - BuildMI(*MBB, IP, PPC::SRAW, 2, TmpReg6).addReg(SrcReg) - .addReg(TmpReg5); - BuildMI(*MBB, IP, PPC::SRAW, 2, DestReg).addReg(SrcReg) - .addReg(ShiftAmountReg); - BuildMI(*MBB, IP, PPC::BLE, 2).addReg(PPC::CR0).addMBB(PhiMBB); - - // OrMBB: - // Select correct least significant half if the shift amount > 32 - BB = TmpMBB; - unsigned OrReg = makeAnotherReg(Type::IntTy); - BuildMI(BB, PPC::OR, 2, OrReg).addReg(TmpReg6).addReg(TmpReg6); - TmpMBB->addSuccessor(PhiMBB); - - BB = PhiMBB; - BuildMI(BB, PPC::PHI, 4, DestReg+1).addReg(TmpReg4).addMBB(OldMBB) - .addReg(OrReg).addMBB(TmpMBB); - } else { // shift right logical - BuildMI(*MBB, IP, PPC::SUBFIC, 2, TmpReg1).addReg(ShiftAmountReg) - .addSImm(32); - BuildMI(*MBB, IP, PPC::SRW, 2, TmpReg2).addReg(SrcReg+1) - .addReg(ShiftAmountReg); - BuildMI(*MBB, IP, PPC::SLW, 2, TmpReg3).addReg(SrcReg) - .addReg(TmpReg1); - BuildMI(*MBB, IP, PPC::OR, 2, TmpReg4).addReg(TmpReg2) - .addReg(TmpReg3); - BuildMI(*MBB, IP, PPC::ADDI, 2, TmpReg5).addReg(ShiftAmountReg) - .addSImm(-32); - BuildMI(*MBB, IP, PPC::SRW, 2, TmpReg6).addReg(SrcReg) - .addReg(TmpReg5); - BuildMI(*MBB, IP, PPC::OR, 2, DestReg+1).addReg(TmpReg4) - .addReg(TmpReg6); - BuildMI(*MBB, IP, PPC::SRW, 2, DestReg).addReg(SrcReg) - .addReg(ShiftAmountReg); - } - } - } - return; - } - - if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(ShiftAmount)) { - // The shift amount is constant, guaranteed to be a ubyte. Get its value. - assert(CUI->getType() == Type::UByteTy && "Shift amount not a ubyte?"); - unsigned Amount = CUI->getValue(); - - // If this is a shift with one use, and that use is an And instruction, - // then attempt to emit a bitfield operation. - if (SI && emitBitfieldInsert(SI, DestReg)) - return; - - unsigned SrcReg = getReg (Op, MBB, IP); - if (Amount == 0) { - BuildMI(*MBB, IP, PPC::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg); - } else if (isLeftShift) { - BuildMI(*MBB, IP, PPC::RLWINM, 4, DestReg).addReg(SrcReg) - .addImm(Amount).addImm(0).addImm(31-Amount); - } else { - if (isSigned) { - BuildMI(*MBB, IP, PPC::SRAWI,2,DestReg).addReg(SrcReg).addImm(Amount); - } else { - BuildMI(*MBB, IP, PPC::RLWINM, 4, DestReg).addReg(SrcReg) - .addImm(32-Amount).addImm(Amount).addImm(31); - } - } - } else { // The shift amount is non-constant. - unsigned SrcReg = getReg (Op, MBB, IP); - unsigned ShiftAmountReg = getReg (ShiftAmount, MBB, IP); - - if (isLeftShift) { - BuildMI(*MBB, IP, PPC::SLW, 2, DestReg).addReg(SrcReg) - .addReg(ShiftAmountReg); - } else { - BuildMI(*MBB, IP, isSigned ? PPC::SRAW : PPC::SRW, 2, DestReg) - .addReg(SrcReg).addReg(ShiftAmountReg); - } - } -} - -/// LoadNeedsSignExtend - On PowerPC, there is no load byte with sign extend. -/// Therefore, if this is a byte load and the destination type is signed, we -/// would normally need to also emit a sign extend instruction after the load. -/// However, store instructions don't care whether a signed type was sign -/// extended across a whole register. Also, a SetCC instruction will emit its -/// own sign extension to force the value into the appropriate range, so we -/// need not emit it here. Ideally, this kind of thing wouldn't be necessary -/// once LLVM's type system is improved. -static bool LoadNeedsSignExtend(LoadInst &LI) { - if (cByte == getClassB(LI.getType()) && LI.getType()->isSigned()) { - bool AllUsesAreStoresOrSetCC = true; - for (Value::use_iterator I = LI.use_begin(), E = LI.use_end(); I != E; ++I){ - if (isa<SetCondInst>(*I)) - continue; - if (StoreInst *SI = dyn_cast<StoreInst>(*I)) - if (cByte == getClassB(SI->getOperand(0)->getType())) - continue; - AllUsesAreStoresOrSetCC = false; - break; - } - if (!AllUsesAreStoresOrSetCC) - return true; - } - return false; -} - -/// visitLoadInst - Implement LLVM load instructions. Pretty straightforward -/// mapping of LLVM classes to PPC load instructions, with the exception of -/// signed byte loads, which need a sign extension following them. -/// -void PPC32ISel::visitLoadInst(LoadInst &I) { - // Immediate opcodes, for reg+imm addressing - static const unsigned ImmOpcodes[] = { - PPC::LBZ, PPC::LHZ, PPC::LWZ, - PPC::LFS, PPC::LFD, PPC::LWZ - }; - // Indexed opcodes, for reg+reg addressing - static const unsigned IdxOpcodes[] = { - PPC::LBZX, PPC::LHZX, PPC::LWZX, - PPC::LFSX, PPC::LFDX, PPC::LWZX - }; - - unsigned Class = getClassB(I.getType()); - unsigned ImmOpcode = ImmOpcodes[Class]; - unsigned IdxOpcode = IdxOpcodes[Class]; - unsigned DestReg = getReg(I); - Value *SourceAddr = I.getOperand(0); - - if (Class == cShort && I.getType()->isSigned()) ImmOpcode = PPC::LHA; - if (Class == cShort && I.getType()->isSigned()) IdxOpcode = PPC::LHAX; - - // If this is a fixed size alloca, emit a load directly from the stack slot - // corresponding to it. - if (AllocaInst *AI = dyn_castFixedAlloca(SourceAddr)) { - unsigned FI = getFixedSizedAllocaFI(AI); - if (Class == cLong) { - addFrameReference(BuildMI(BB, ImmOpcode, 2, DestReg), FI); - addFrameReference(BuildMI(BB, ImmOpcode, 2, DestReg+1), FI, 4); - } else if (LoadNeedsSignExtend(I)) { - unsigned TmpReg = makeAnotherReg(I.getType()); - addFrameReference(BuildMI(BB, ImmOpcode, 2, TmpReg), FI); - BuildMI(BB, PPC::EXTSB, 1, DestReg).addReg(TmpReg); - } else { - addFrameReference(BuildMI(BB, ImmOpcode, 2, DestReg), FI); - } - return; - } - - // If the offset fits in 16 bits, we can emit a reg+imm load, otherwise, we - // use the index from the FoldedGEP struct and use reg+reg addressing. - if (GetElementPtrInst *GEPI = canFoldGEPIntoLoadOrStore(SourceAddr)) { - - // Generate the code for the GEP and get the components of the folded GEP - emitGEPOperation(BB, BB->end(), GEPI, true); - unsigned baseReg = GEPMap[GEPI].base; - unsigned indexReg = GEPMap[GEPI].index; - ConstantSInt *offset = GEPMap[GEPI].offset; - - if (Class != cLong) { - unsigned TmpReg = LoadNeedsSignExtend(I) ? makeAnotherReg(I.getType()) - : DestReg; - if (indexReg == 0) - BuildMI(BB, ImmOpcode, 2, TmpReg).addSImm(offset->getValue()) - .addReg(baseReg); - else - BuildMI(BB, IdxOpcode, 2, TmpReg).addReg(indexReg).addReg(baseReg); - if (LoadNeedsSignExtend(I)) - BuildMI(BB, PPC::EXTSB, 1, DestReg).addReg(TmpReg); - } else { - indexReg = (indexReg != 0) ? indexReg : getReg(offset); - unsigned indexPlus4 = makeAnotherReg(Type::IntTy); - BuildMI(BB, PPC::ADDI, 2, indexPlus4).addReg(indexReg).addSImm(4); - BuildMI(BB, IdxOpcode, 2, DestReg).addReg(indexReg).addReg(baseReg); - BuildMI(BB, IdxOpcode, 2, DestReg+1).addReg(indexPlus4).addReg(baseReg); - } - return; - } - - // The fallback case, where the load was from a source that could not be - // folded into the load instruction. - unsigned SrcAddrReg = getReg(SourceAddr); - - if (Class == cLong) { - BuildMI(BB, ImmOpcode, 2, DestReg).addSImm(0).addReg(SrcAddrReg); - BuildMI(BB, ImmOpcode, 2, DestReg+1).addSImm(4).addReg(SrcAddrReg); - } else if (LoadNeedsSignExtend(I)) { - unsigned TmpReg = makeAnotherReg(I.getType()); - BuildMI(BB, ImmOpcode, 2, TmpReg).addSImm(0).addReg(SrcAddrReg); - BuildMI(BB, PPC::EXTSB, 1, DestReg).addReg(TmpReg); - } else { - BuildMI(BB, ImmOpcode, 2, DestReg).addSImm(0).addReg(SrcAddrReg); - } -} - -/// visitStoreInst - Implement LLVM store instructions -/// -void PPC32ISel::visitStoreInst(StoreInst &I) { - // Immediate opcodes, for reg+imm addressing - static const unsigned ImmOpcodes[] = { - PPC::STB, PPC::STH, PPC::STW, - PPC::STFS, PPC::STFD, PPC::STW - }; - // Indexed opcodes, for reg+reg addressing - static const unsigned IdxOpcodes[] = { - PPC::STBX, PPC::STHX, PPC::STWX, - PPC::STFSX, PPC::STFDX, PPC::STWX - }; - - Value *SourceAddr = I.getOperand(1); - const Type *ValTy = I.getOperand(0)->getType(); - unsigned Class = getClassB(ValTy); - unsigned ImmOpcode = ImmOpcodes[Class]; - unsigned IdxOpcode = IdxOpcodes[Class]; - unsigned ValReg = getReg(I.getOperand(0)); - - // If this is a fixed size alloca, emit a store directly to the stack slot - // corresponding to it. - if (AllocaInst *AI = dyn_castFixedAlloca(SourceAddr)) { - unsigned FI = getFixedSizedAllocaFI(AI); - addFrameReference(BuildMI(BB, ImmOpcode, 3).addReg(ValReg), FI); - if (Class == cLong) - addFrameReference(BuildMI(BB, ImmOpcode, 3).addReg(ValReg+1), FI, 4); - return; - } - - // If the offset fits in 16 bits, we can emit a reg+imm store, otherwise, we - // use the index from the FoldedGEP struct and use reg+reg addressing. - if (GetElementPtrInst *GEPI = canFoldGEPIntoLoadOrStore(SourceAddr)) { - // Generate the code for the GEP and get the components of the folded GEP - emitGEPOperation(BB, BB->end(), GEPI, true); - unsigned baseReg = GEPMap[GEPI].base; - unsigned indexReg = GEPMap[GEPI].index; - ConstantSInt *offset = GEPMap[GEPI].offset; - - if (Class != cLong) { - if (indexReg == 0) - BuildMI(BB, ImmOpcode, 3).addReg(ValReg).addSImm(offset->getValue()) - .addReg(baseReg); - else - BuildMI(BB, IdxOpcode, 3).addReg(ValReg).addReg(indexReg) - .addReg(baseReg); - } else { - indexReg = (indexReg != 0) ? indexReg : getReg(offset); - unsigned indexPlus4 = makeAnotherReg(Type::IntTy); - BuildMI(BB, PPC::ADDI, 2, indexPlus4).addReg(indexReg).addSImm(4); - BuildMI(BB, IdxOpcode, 3).addReg(ValReg).addReg(indexReg).addReg(baseReg); - BuildMI(BB, IdxOpcode, 3).addReg(ValReg+1).addReg(indexPlus4) - .addReg(baseReg); - } - return; - } - - // If the store address wasn't the only use of a GEP, we fall back to the - // standard path: store the ValReg at the value in AddressReg. - unsigned AddressReg = getReg(I.getOperand(1)); - if (Class == cLong) { - BuildMI(BB, ImmOpcode, 3).addReg(ValReg).addSImm(0).addReg(AddressReg); - BuildMI(BB, ImmOpcode, 3).addReg(ValReg+1).addSImm(4).addReg(AddressReg); - return; - } - BuildMI(BB, ImmOpcode, 3).addReg(ValReg).addSImm(0).addReg(AddressReg); -} - - -/// visitCastInst - Here we have various kinds of copying with or without sign -/// extension going on. -/// -void PPC32ISel::visitCastInst(CastInst &CI) { - Value *Op = CI.getOperand(0); - - unsigned SrcClass = getClassB(Op->getType()); - unsigned DestClass = getClassB(CI.getType()); - - // Noop casts are not emitted: getReg will return the source operand as the - // register to use for any uses of the noop cast. - if (DestClass == SrcClass) return; - - // If this is a cast from a 32-bit integer to a Long type, and the only uses - // of the cast are GEP instructions, then the cast does not need to be - // generated explicitly, it will be folded into the GEP. - if (DestClass == cLong && SrcClass == cInt) { - bool AllUsesAreGEPs = true; - for (Value::use_iterator I = CI.use_begin(), E = CI.use_end(); I != E; ++I) - if (!isa<GetElementPtrInst>(*I)) { - AllUsesAreGEPs = false; - break; - } - if (AllUsesAreGEPs) return; - } - - unsigned DestReg = getReg(CI); - MachineBasicBlock::iterator MI = BB->end(); - - // If this is a cast from an integer type to a ubyte, with one use where the - // use is the shift amount argument of a shift instruction, just emit a move - // instead (since the shift instruction will only look at the low 5 bits - // regardless of how it is sign extended) - if (CI.getType() == Type::UByteTy && SrcClass <= cInt && CI.hasOneUse()) { - ShiftInst *SI = dyn_cast<ShiftInst>(*(CI.use_begin())); - if (SI && (SI->getOperand(1) == &CI)) { - unsigned SrcReg = getReg(Op, BB, MI); - BuildMI(*BB, MI, PPC::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg); - return; - } - } - - // If this is a cast from an byte, short, or int to an integer type of equal - // or lesser width, and all uses of the cast are store instructions then dont - // emit them, as the store instruction will implicitly not store the zero or - // sign extended bytes. - if (SrcClass <= cInt && SrcClass >= DestClass) { - bool AllUsesAreStores = true; - for (Value::use_iterator I = CI.use_begin(), E = CI.use_end(); I != E; ++I) - if (!isa<StoreInst>(*I)) { - AllUsesAreStores = false; - break; - } - // Turn this cast directly into a move instruction, which the register - // allocator will deal with. - if (AllUsesAreStores) { - unsigned SrcReg = getReg(Op, BB, MI); - BuildMI(*BB, MI, PPC::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg); - return; - } - } - emitCastOperation(BB, MI, Op, CI.getType(), DestReg); -} - -/// emitCastOperation - Common code shared between visitCastInst and constant -/// expression cast support. -/// -void PPC32ISel::emitCastOperation(MachineBasicBlock *MBB, - MachineBasicBlock::iterator IP, - Value *Src, const Type *DestTy, - unsigned DestReg) { - const Type *SrcTy = Src->getType(); - unsigned SrcClass = getClassB(SrcTy); - unsigned DestClass = getClassB(DestTy); - unsigned SrcReg = getReg(Src, MBB, IP); - - // Implement casts from bool to integer types as a move operation - if (SrcTy == Type::BoolTy) { - switch (DestClass) { - case cByte: - case cShort: - case cInt: - BuildMI(*MBB, IP, PPC::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg); - return; - case cLong: - BuildMI(*MBB, IP, PPC::LI, 1, DestReg).addImm(0); - BuildMI(*MBB, IP, PPC::OR, 2, DestReg+1).addReg(SrcReg).addReg(SrcReg); - return; - default: - break; - } - } - - // Implement casts to bool by using compare on the operand followed by set if - // not zero on the result. - if (DestTy == Type::BoolTy) { - switch (SrcClass) { - case cByte: - case cShort: - case cInt: { - unsigned TmpReg = makeAnotherReg(Type::IntTy); - BuildMI(*MBB, IP, PPC::ADDIC, 2, TmpReg).addReg(SrcReg).addSImm(-1); - BuildMI(*MBB, IP, PPC::SUBFE, 2, DestReg).addReg(TmpReg).addReg(SrcReg); - break; - } - case cLong: { - unsigned TmpReg = makeAnotherReg(Type::IntTy); - unsigned SrcReg2 = makeAnotherReg(Type::IntTy); - BuildMI(*MBB, IP, PPC::OR, 2, SrcReg2).addReg(SrcReg).addReg(SrcReg+1); - BuildMI(*MBB, IP, PPC::ADDIC, 2, TmpReg).addReg(SrcReg2).addSImm(-1); - BuildMI(*MBB, IP, PPC::SUBFE, 2, DestReg).addReg(TmpReg) - .addReg(SrcReg2); - break; - } - case cFP32: - case cFP64: - unsigned TmpReg = makeAnotherReg(Type::IntTy); - unsigned ConstZero = getReg(ConstantFP::get(Type::DoubleTy, 0.0), BB, IP); - BuildMI(*MBB, IP, PPC::FCMPU, PPC::CR7).addReg(SrcReg).addReg(ConstZero); - BuildMI(*MBB, IP, PPC::MFCR, TmpReg); - BuildMI(*MBB, IP, PPC::RLWINM, DestReg).addReg(TmpReg).addImm(31) - .addImm(31).addImm(31); - } - return; - } - - // Handle cast of Float -> Double - if (SrcClass == cFP32 && DestClass == cFP64) { - BuildMI(*MBB, IP, PPC::FMR, 1, DestReg).addReg(SrcReg); - return; - } - - // Handle cast of Double -> Float - if (SrcClass == cFP64 && DestClass == cFP32) { - BuildMI(*MBB, IP, PPC::FRSP, 1, DestReg).addReg(SrcReg); - return; - } - - // Handle casts from integer to floating point now... - if (DestClass == cFP32 || DestClass == cFP64) { - - // Emit a library call for long to float conversion - if (SrcClass == cLong) { - Function *floatFn = (DestClass == cFP32) ? __floatdisfFn : __floatdidfFn; - if (SrcTy->isSigned()) { - std::vector<ValueRecord> Args; - Args.push_back(ValueRecord(SrcReg, SrcTy)); - MachineInstr *TheCall = - BuildMI(PPC::CALLpcrel, 1).addGlobalAddress(floatFn, true); - doCall(ValueRecord(DestReg, DestTy), TheCall, Args, false); - } else { - std::vector<ValueRecord> CmpArgs, ClrArgs, SetArgs; - unsigned ZeroLong = getReg(ConstantUInt::get(SrcTy, 0)); - unsigned CondReg = makeAnotherReg(Type::IntTy); - - // Update machine-CFG edges - MachineBasicBlock *ClrMBB = new MachineBasicBlock(BB->getBasicBlock()); - MachineBasicBlock *SetMBB = new MachineBasicBlock(BB->getBasicBlock()); - MachineBasicBlock *PhiMBB = new MachineBasicBlock(BB->getBasicBlock()); - MachineBasicBlock *OldMBB = BB; - ilist<MachineBasicBlock>::iterator It = BB; ++It; - F->getBasicBlockList().insert(It, ClrMBB); - F->getBasicBlockList().insert(It, SetMBB); - F->getBasicBlockList().insert(It, PhiMBB); - BB->addSuccessor(ClrMBB); - BB->addSuccessor(SetMBB); - - CmpArgs.push_back(ValueRecord(SrcReg, SrcTy)); - CmpArgs.push_back(ValueRecord(ZeroLong, SrcTy)); - MachineInstr *TheCall = - BuildMI(PPC::CALLpcrel, 1).addGlobalAddress(__cmpdi2Fn, true); - doCall(ValueRecord(CondReg, Type::IntTy), TheCall, CmpArgs, false); - BuildMI(*MBB, IP, PPC::CMPWI, 2, PPC::CR0).addReg(CondReg).addSImm(0); - BuildMI(*MBB, IP, PPC::BLE, 2).addReg(PPC::CR0).addMBB(SetMBB); - - // ClrMBB - BB = ClrMBB; - unsigned ClrReg = makeAnotherReg(DestTy); - ClrArgs.push_back(ValueRecord(SrcReg, SrcTy)); - TheCall = BuildMI(PPC::CALLpcrel, 1).addGlobalAddress(floatFn, true); - doCall(ValueRecord(ClrReg, DestTy), TheCall, ClrArgs, false); - BuildMI(BB, PPC::B, 1).addMBB(PhiMBB); - BB->addSuccessor(PhiMBB); - - // SetMBB - BB = SetMBB; - unsigned SetReg = makeAnotherReg(DestTy); - unsigned CallReg = makeAnotherReg(DestTy); - unsigned ShiftedReg = makeAnotherReg(SrcTy); - ConstantSInt *Const1 = ConstantSInt::get(Type::IntTy, 1); - emitShiftOperation(BB, BB->end(), Src, Const1, false, SrcTy, 0, - ShiftedReg); - SetArgs.push_back(ValueRecord(ShiftedReg, SrcTy)); - TheCall = BuildMI(PPC::CALLpcrel, 1).addGlobalAddress(floatFn, true); - doCall(ValueRecord(CallReg, DestTy), TheCall, SetArgs, false); - unsigned SetOpcode = (DestClass == cFP32) ? PPC::FADDS : PPC::FADD; - BuildMI(BB, SetOpcode, 2, SetReg).addReg(CallReg).addReg(CallReg); - BB->addSuccessor(PhiMBB); - - // PhiMBB - BB = PhiMBB; - BuildMI(BB, PPC::PHI, 4, DestReg).addReg(ClrReg).addMBB(ClrMBB) - .addReg(SetReg).addMBB(SetMBB); - } - return; - } - - // Make sure we're dealing with a full 32 bits - if (SrcClass < cInt) { - unsigned TmpReg = makeAnotherReg(Type::IntTy); - promote32(TmpReg, ValueRecord(SrcReg, SrcTy)); - SrcReg = TmpReg; - } - - // Spill the integer to memory and reload it from there. - // Also spill room for a special conversion constant - int ValueFrameIdx = - F->getFrameInfo()->CreateStackObject(Type::DoubleTy, TM.getTargetData()); - - unsigned constantHi = makeAnotherReg(Type::IntTy); - unsigned TempF = makeAnotherReg(Type::DoubleTy); - - if (!SrcTy->isSigned()) { - ConstantFP *CFP = ConstantFP::get(Type::DoubleTy, 0x1.000000p52); - unsigned ConstF = getReg(CFP, BB, IP); - BuildMI(*MBB, IP, PPC::LIS, 1, constantHi).addSImm(0x4330); - addFrameReference(BuildMI(*MBB, IP, PPC::STW, 3).addReg(constantHi), - ValueFrameIdx); - addFrameReference(BuildMI(*MBB, IP, PPC::STW, 3).addReg(SrcReg), - ValueFrameIdx, 4); - addFrameReference(BuildMI(*MBB, IP, PPC::LFD, 2, TempF), ValueFrameIdx); - BuildMI(*MBB, IP, PPC::FSUB, 2, DestReg).addReg(TempF).addReg(ConstF); - } else { - ConstantFP *CFP = ConstantFP::get(Type::DoubleTy, 0x1.000008p52); - unsigned ConstF = getReg(CFP, BB, IP); - unsigned TempLo = makeAnotherReg(Type::IntTy); - BuildMI(*MBB, IP, PPC::LIS, 1, constantHi).addSImm(0x4330); - addFrameReference(BuildMI(*MBB, IP, PPC::STW, 3).addReg(constantHi), - ValueFrameIdx); - BuildMI(*MBB, IP, PPC::XORIS, 2, TempLo).addReg(SrcReg).addImm(0x8000); - addFrameReference(BuildMI(*MBB, IP, PPC::STW, 3).addReg(TempLo), - ValueFrameIdx, 4); - addFrameReference(BuildMI(*MBB, IP, PPC::LFD, 2, TempF), ValueFrameIdx); - BuildMI(*MBB, IP, PPC::FSUB, 2, DestReg).addReg(TempF).addReg(ConstF); - } - return; - } - - // Handle casts from floating point to integer now... - if (SrcClass == cFP32 || SrcClass == cFP64) { - static Function* const Funcs[] = - { __fixsfdiFn, __fixdfdiFn, __fixunssfdiFn, __fixunsdfdiFn }; - // emit library call - if (DestClass == cLong) { - bool isDouble = SrcClass == cFP64; - unsigned nameIndex = 2 * DestTy->isSigned() + isDouble; - std::vector<ValueRecord> Args; - Args.push_back(ValueRecord(SrcReg, SrcTy)); - Function *floatFn = Funcs[nameIndex]; - MachineInstr *TheCall = - BuildMI(PPC::CALLpcrel, 1).addGlobalAddress(floatFn, true); - doCall(ValueRecord(DestReg, DestTy), TheCall, Args, false); - return; - } - - int ValueFrameIdx = - F->getFrameInfo()->CreateStackObject(Type::DoubleTy, TM.getTargetData()); - - if (DestTy->isSigned()) { - unsigned TempReg = makeAnotherReg(Type::DoubleTy); - - // Convert to integer in the FP reg and store it to a stack slot - BuildMI(*MBB, IP, PPC::FCTIWZ, 1, TempReg).addReg(SrcReg); - addFrameReference(BuildMI(*MBB, IP, PPC::STFD, 3) - .addReg(TempReg), ValueFrameIdx); - - // There is no load signed byte opcode, so we must emit a sign extend for - // that particular size. Make sure to source the new integer from the - // correct offset. - if (DestClass == cByte) { - unsigned TempReg2 = makeAnotherReg(DestTy); - addFrameReference(BuildMI(*MBB, IP, PPC::LBZ, 2, TempReg2), - ValueFrameIdx, 7); - BuildMI(*MBB, IP, PPC::EXTSB, 1, DestReg).addReg(TempReg2); - } else { - int offset = (DestClass == cShort) ? 6 : 4; - unsigned LoadOp = (DestClass == cShort) ? PPC::LHA : PPC::LWZ; - addFrameReference(BuildMI(*MBB, IP, LoadOp, 2, DestReg), - ValueFrameIdx, offset); - } - } else { - unsigned Zero = getReg(ConstantFP::get(Type::DoubleTy, 0.0f)); - double maxInt = (1LL << 32) - 1; - unsigned MaxInt = getReg(ConstantFP::get(Type::DoubleTy, maxInt)); - double border = 1LL << 31; - unsigned Border = getReg(ConstantFP::get(Type::DoubleTy, border)); - unsigned UseZero = makeAnotherReg(Type::DoubleTy); - unsigned UseMaxInt = makeAnotherReg(Type::DoubleTy); - unsigned UseChoice = makeAnotherReg(Type::DoubleTy); - unsigned TmpReg = makeAnotherReg(Type::DoubleTy); - unsigned TmpReg2 = makeAnotherReg(Type::DoubleTy); - unsigned ConvReg = makeAnotherReg(Type::DoubleTy); - unsigned IntTmp = makeAnotherReg(Type::IntTy); - unsigned XorReg = makeAnotherReg(Type::IntTy); - int FrameIdx = - F->getFrameInfo()->CreateStackObject(SrcTy, TM.getTargetData()); - // Update machine-CFG edges - MachineBasicBlock *XorMBB = new MachineBasicBlock(BB->getBasicBlock()); - MachineBasicBlock *PhiMBB = new MachineBasicBlock(BB->getBasicBlock()); - MachineBasicBlock *OldMBB = BB; - ilist<MachineBasicBlock>::iterator It = BB; ++It; - F->getBasicBlockList().insert(It, XorMBB); - F->getBasicBlockList().insert(It, PhiMBB); - BB->addSuccessor(XorMBB); - BB->addSuccessor(PhiMBB); - - // Convert from floating point to unsigned 32-bit value - // Use 0 if incoming value is < 0.0 - BuildMI(*MBB, IP, PPC::FSEL, 3, UseZero).addReg(SrcReg).addReg(SrcReg) - .addReg(Zero); - // Use 2**32 - 1 if incoming value is >= 2**32 - BuildMI(*MBB, IP, PPC::FSUB, 2, UseMaxInt).addReg(MaxInt).addReg(SrcReg); - BuildMI(*MBB, IP, PPC::FSEL, 3, UseChoice).addReg(UseMaxInt) - .addReg(UseZero).addReg(MaxInt); - // Subtract 2**31 - BuildMI(*MBB, IP, PPC::FSUB, 2, TmpReg).addReg(UseChoice).addReg(Border); - // Use difference if >= 2**31 - BuildMI(*MBB, IP, PPC::FCMPU, 2, PPC::CR0).addReg(UseChoice) - .addReg(Border); - BuildMI(*MBB, IP, PPC::FSEL, 3, TmpReg2).addReg(TmpReg).addReg(TmpReg) - .addReg(UseChoice); - // Convert to integer - BuildMI(*MBB, IP, PPC::FCTIWZ, 1, ConvReg).addReg(TmpReg2); - addFrameReference(BuildMI(*MBB, IP, PPC::STFD, 3).addReg(ConvReg), - FrameIdx); - if (DestClass == cByte) { - addFrameReference(BuildMI(*MBB, IP, PPC::LBZ, 2, DestReg), - FrameIdx, 7); - } else if (DestClass == cShort) { - addFrameReference(BuildMI(*MBB, IP, PPC::LHZ, 2, DestReg), - FrameIdx, 6); - } if (DestClass == cInt) { - addFrameReference(BuildMI(*MBB, IP, PPC::LWZ, 2, IntTmp), - FrameIdx, 4); - BuildMI(*MBB, IP, PPC::BLT, 2).addReg(PPC::CR0).addMBB(PhiMBB); - BuildMI(*MBB, IP, PPC::B, 1).addMBB(XorMBB); - - // XorMBB: - // add 2**31 if input was >= 2**31 - BB = XorMBB; - BuildMI(BB, PPC::XORIS, 2, XorReg).addReg(IntTmp).addImm(0x8000); - XorMBB->addSuccessor(PhiMBB); - - // PhiMBB: - // DestReg = phi [ IntTmp, OldMBB ], [ XorReg, XorMBB ] - BB = PhiMBB; - BuildMI(BB, PPC::PHI, 4, DestReg).addReg(IntTmp).addMBB(OldMBB) - .addReg(XorReg).addMBB(XorMBB); - } - } - return; - } - - // Check our invariants - assert((SrcClass <= cInt || SrcClass == cLong) && - "Unhandled source class for cast operation!"); - assert((DestClass <= cInt || DestClass == cLong) && - "Unhandled destination class for cast operation!"); - - bool sourceUnsigned = SrcTy->isUnsigned() || SrcTy == Type::BoolTy; - bool destUnsigned = DestTy->isUnsigned(); - - // Unsigned -> Unsigned, clear if larger, - if (sourceUnsigned && destUnsigned) { - // handle long dest class now to keep switch clean - if (DestClass == cLong) { - BuildMI(*MBB, IP, PPC::LI, 1, DestReg).addSImm(0); - BuildMI(*MBB, IP, PPC::OR, 2, DestReg+1).addReg(SrcReg) - .addReg(SrcReg); - return; - } - - // handle u{ byte, short, int } x u{ byte, short, int } - unsigned clearBits = (SrcClass == cByte || DestClass == cByte) ? 24 : 16; - switch (SrcClass) { - case cByte: - case cShort: - BuildMI(*MBB, IP, PPC::RLWINM, 4, DestReg).addReg(SrcReg) - .addImm(0).addImm(clearBits).addImm(31); - break; - case cLong: - ++SrcReg; - // Fall through - case cInt: - BuildMI(*MBB, IP, PPC::RLWINM, 4, DestReg).addReg(SrcReg) - .addImm(0).addImm(clearBits).addImm(31); - break; - } - return; - } - - // Signed -> Signed - if (!sourceUnsigned && !destUnsigned) { - // handle long dest class now to keep switch clean - if (DestClass == cLong) { - BuildMI(*MBB, IP, PPC::SRAWI, 2, DestReg).addReg(SrcReg).addImm(31); - BuildMI(*MBB, IP, PPC::OR, 2, DestReg+1).addReg(SrcReg) - .addReg(SrcReg); - return; - } - - // handle { byte, short, int } x { byte, short, int } - switch (SrcClass) { - case cByte: - BuildMI(*MBB, IP, PPC::EXTSB, 1, DestReg).addReg(SrcReg); - break; - case cShort: - if (DestClass == cByte) - BuildMI(*MBB, IP, PPC::EXTSB, 1, DestReg).addReg(SrcReg); - else - BuildMI(*MBB, IP, PPC::EXTSH, 1, DestReg).addReg(SrcReg); - break; - case cLong: - ++SrcReg; - // Fall through - case cInt: - if (DestClass == cByte) - BuildMI(*MBB, IP, PPC::EXTSB, 1, DestReg).addReg(SrcReg); - else if (DestClass == cShort) - BuildMI(*MBB, IP, PPC::EXTSH, 1, DestReg).addReg(SrcReg); - else - BuildMI(*MBB, IP, PPC::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg); - break; - } - return; - } - - // Unsigned -> Signed - if (sourceUnsigned && !destUnsigned) { - // handle long dest class now to keep switch clean - if (DestClass == cLong) { - BuildMI(*MBB, IP, PPC::LI, 1, DestReg).addSImm(0); - BuildMI(*MBB, IP, PPC::OR, 2, DestReg+1).addReg(SrcReg) - .addReg(SrcReg); - return; - } - - // handle u{ byte, short, int } -> { byte, short, int } - switch (SrcClass) { - case cByte: - // uByte 255 -> signed short/int == 255 - BuildMI(*MBB, IP, PPC::RLWINM, 4, DestReg).addReg(SrcReg).addImm(0) - .addImm(24).addImm(31); - break; - case cShort: - if (DestClass == cByte) - BuildMI(*MBB, IP, PPC::EXTSB, 1, DestReg).addReg(SrcReg); - else - BuildMI(*MBB, IP, PPC::RLWINM, 4, DestReg).addReg(SrcReg).addImm(0) - .addImm(16).addImm(31); - break; - case cLong: - ++SrcReg; - // Fall through - case cInt: - if (DestClass == cByte) - BuildMI(*MBB, IP, PPC::EXTSB, 1, DestReg).addReg(SrcReg); - else if (DestClass == cShort) - BuildMI(*MBB, IP, PPC::EXTSH, 1, DestReg).addReg(SrcReg); - else - BuildMI(*MBB, IP, PPC::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg); - break; - } - return; - } - - // Signed -> Unsigned - if (!sourceUnsigned && destUnsigned) { - // handle long dest class now to keep switch clean - if (DestClass == cLong) { - BuildMI(*MBB, IP, PPC::SRAWI, 2, DestReg).addReg(SrcReg).addImm(31); - BuildMI(*MBB, IP, PPC::OR, 2, DestReg+1).addReg(SrcReg) - .addReg(SrcReg); - return; - } - - // handle { byte, short, int } -> u{ byte, short, int } - unsigned clearBits = (DestClass == cByte) ? 24 : 16; - switch (SrcClass) { - case cByte: - BuildMI(*MBB, IP, PPC::EXTSB, 1, DestReg).addReg(SrcReg); - break; - case cShort: - if (DestClass == cByte) - BuildMI(*MBB, IP, PPC::RLWINM, 4, DestReg).addReg(SrcReg) - .addImm(0).addImm(clearBits).addImm(31); - else - BuildMI(*MBB, IP, PPC::EXTSH, 1, DestReg).addReg(SrcReg); - break; - case cLong: - ++SrcReg; - // Fall through - case cInt: - if (DestClass == cInt) - BuildMI(*MBB, IP, PPC::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg); - else - BuildMI(*MBB, IP, PPC::RLWINM, 4, DestReg).addReg(SrcReg) - .addImm(0).addImm(clearBits).addImm(31); - break; - } - return; - } - - // Anything we haven't handled already, we can't (yet) handle at all. - std::cerr << "Unhandled cast from " << SrcTy->getDescription() - << "to " << DestTy->getDescription() << '\n'; - abort(); -} - -void PPC32ISel::visitVAArgInst(VAArgInst &I) { - unsigned VAListPtr = getReg(I.getOperand(0)); - unsigned DestReg = getReg(I); - unsigned VAList = makeAnotherReg(Type::IntTy); - BuildMI(BB, PPC::LWZ, 2, VAList).addSImm(0).addReg(VAListPtr); - int Size; - - switch (I.getType()->getTypeID()) { - default: - std::cerr << I; - assert(0 && "Error: bad type for va_next instruction!"); - return; - case Type::PointerTyID: - case Type::UIntTyID: - case Type::IntTyID: - Size = 4; - BuildMI(BB, PPC::LWZ, 2, DestReg).addSImm(0).addReg(VAList); - break; - case Type::ULongTyID: - case Type::LongTyID: - Size = 8; - BuildMI(BB, PPC::LWZ, 2, DestReg).addSImm(0).addReg(VAList); - BuildMI(BB, PPC::LWZ, 2, DestReg+1).addSImm(4).addReg(VAList); - break; - case Type::FloatTyID: - Size = 4; //?? Bad value? - BuildMI(BB, PPC::LFS, 2, DestReg).addSImm(0).addReg(VAList); - break; - case Type::DoubleTyID: - Size = 8; - BuildMI(BB, PPC::LFD, 2, DestReg).addSImm(0).addReg(VAList); - break; - } - // Increment the VAList pointer... - unsigned NP = makeAnotherReg(Type::IntTy); - BuildMI(BB, PPC::ADDI, 2, NP).addReg(VAList).addSImm(Size); - BuildMI(BB, PPC::STW, 3).addReg(NP).addSImm(0).addReg(VAListPtr); -} - -/// visitGetElementPtrInst - instruction-select GEP instructions -/// -void PPC32ISel::visitGetElementPtrInst(GetElementPtrInst &I) { - if (canFoldGEPIntoLoadOrStore(&I)) - return; - - emitGEPOperation(BB, BB->end(), &I, false); -} - -/// emitGEPOperation - Common code shared between visitGetElementPtrInst and -/// constant expression GEP support. -/// -void PPC32ISel::emitGEPOperation(MachineBasicBlock *MBB, - MachineBasicBlock::iterator IP, - GetElementPtrInst *GEPI, bool GEPIsFolded) { - // If we've already emitted this particular GEP, just return to avoid - // multiple definitions of the base register. - if (GEPIsFolded && (GEPMap[GEPI].base != 0)) - return; - - Value *Src = GEPI->getOperand(0); - User::op_iterator IdxBegin = GEPI->op_begin()+1; - User::op_iterator IdxEnd = GEPI->op_end(); - const TargetData &TD = TM.getTargetData(); - const Type *Ty = Src->getType(); - int32_t constValue = 0; - - // Record the operations to emit the GEP in a vector so that we can emit them - // after having analyzed the entire instruction. - std::vector<CollapsedGepOp> ops; - - // GEPs have zero or more indices; we must perform a struct access - // or array access for each one. - for (GetElementPtrInst::op_iterator oi = IdxBegin, oe = IdxEnd; oi != oe; - ++oi) { - Value *idx = *oi; - if (const StructType *StTy = dyn_cast<StructType>(Ty)) { - // It's a struct access. idx is the index into the structure, - // which names the field. Use the TargetData structure to - // pick out what the layout of the structure is in memory. - // Use the (constant) structure index's value to find the - // right byte offset from the StructLayout class's list of - // structure member offsets. - unsigned fieldIndex = cast<ConstantUInt>(idx)->getValue(); - - // StructType member offsets are always constant values. Add it to the - // running total. - constValue += TD.getStructLayout(StTy)->MemberOffsets[fieldIndex]; - - // The next type is the member of the structure selected by the index. - Ty = StTy->getElementType (fieldIndex); - } else if (const SequentialType *SqTy = dyn_cast<SequentialType>(Ty)) { - // Many GEP instructions use a [cast (int/uint) to LongTy] as their - // operand. Handle this case directly now... - if (CastInst *CI = dyn_cast<CastInst>(idx)) - if (CI->getOperand(0)->getType() == Type::IntTy || - CI->getOperand(0)->getType() == Type::UIntTy) - idx = CI->getOperand(0); - - // It's an array or pointer access: [ArraySize x ElementType]. - // We want to add basePtrReg to (idxReg * sizeof ElementType). First, we - // must find the size of the pointed-to type (Not coincidentally, the next - // type is the type of the elements in the array). - Ty = SqTy->getElementType(); - unsigned elementSize = TD.getTypeSize(Ty); - - if (ConstantInt *C = dyn_cast<ConstantInt>(idx)) { - if (ConstantSInt *CS = dyn_cast<ConstantSInt>(C)) - constValue += CS->getValue() * elementSize; - else if (ConstantUInt *CU = dyn_cast<ConstantUInt>(C)) - constValue += CU->getValue() * elementSize; - else - assert(0 && "Invalid ConstantInt GEP index type!"); - } else { - // Push current gep state to this point as an add and multiply - ops.push_back(CollapsedGepOp( - ConstantSInt::get(Type::IntTy, constValue), - idx, ConstantUInt::get(Type::UIntTy, elementSize))); - - constValue = 0; - } - } - } - // Emit instructions for all the collapsed ops - unsigned indexReg = 0; - for(std::vector<CollapsedGepOp>::iterator cgo_i = ops.begin(), - cgo_e = ops.end(); cgo_i != cgo_e; ++cgo_i) { - CollapsedGepOp& cgo = *cgo_i; - - // Avoid emitting known move instructions here for the register allocator - // to deal with later. val * 1 == val. val + 0 == val. - unsigned TmpReg1; - if (cgo.size->getValue() == 1) { - TmpReg1 = getReg(cgo.index, MBB, IP); - } else { - TmpReg1 = makeAnotherReg(Type::IntTy); - doMultiplyConst(MBB, IP, TmpReg1, cgo.index, cgo.size); - } - - unsigned TmpReg2; - if (cgo.offset->isNullValue()) { - TmpReg2 = TmpReg1; - } else { - TmpReg2 = makeAnotherReg(Type::IntTy); - emitBinaryConstOperation(MBB, IP, TmpReg1, cgo.offset, 0, TmpReg2); - } - - if (indexReg == 0) - indexReg = TmpReg2; - else { - unsigned TmpReg3 = makeAnotherReg(Type::IntTy); - BuildMI(*MBB, IP, PPC::ADD, 2, TmpReg3).addReg(indexReg).addReg(TmpReg2); - indexReg = TmpReg3; - } - } - - // We now have a base register, an index register, and possibly a constant - // remainder. If the GEP is going to be folded, we try to generate the - // optimal addressing mode. - ConstantSInt *remainder = ConstantSInt::get(Type::IntTy, constValue); - - // If we are emitting this during a fold, copy the current base register to - // the target, and save the current constant offset so the folding load or - // store can try and use it as an immediate. - if (GEPIsFolded) { - if (indexReg == 0) { - if (!canUseAsImmediateForOpcode(remainder, 0, false)) { - indexReg = getReg(remainder, MBB, IP); - remainder = 0; - } - } else if (!remainder->isNullValue()) { - unsigned TmpReg = makeAnotherReg(Type::IntTy); - emitBinaryConstOperation(MBB, IP, indexReg, remainder, 0, TmpReg); - indexReg = TmpReg; - remainder = 0; - } - unsigned basePtrReg = getReg(Src, MBB, IP); - GEPMap[GEPI] = FoldedGEP(basePtrReg, indexReg, remainder); - return; - } - - // We're not folding, so collapse the base, index, and any remainder into the - // destination register. - unsigned TargetReg = getReg(GEPI, MBB, IP); - unsigned basePtrReg = getReg(Src, MBB, IP); - - if ((indexReg == 0) && remainder->isNullValue()) { - BuildMI(*MBB, IP, PPC::OR, 2, TargetReg).addReg(basePtrReg) - .addReg(basePtrReg); - return; - } - if (!remainder->isNullValue()) { - unsigned TmpReg = (indexReg == 0) ? TargetReg : makeAnotherReg(Type::IntTy); - emitBinaryConstOperation(MBB, IP, basePtrReg, remainder, 0, TmpReg); - basePtrReg = TmpReg; - } - if (indexReg != 0) - BuildMI(*MBB, IP, PPC::ADD, 2, TargetReg).addReg(indexReg) - .addReg(basePtrReg); -} - -/// visitAllocaInst - If this is a fixed size alloca, allocate space from the -/// frame manager, otherwise do it the hard way. -/// -void PPC32ISel::visitAllocaInst(AllocaInst &I) { - // If this is a fixed size alloca in the entry block for the function, we - // statically stack allocate the space, so we don't need to do anything here. - // - if (dyn_castFixedAlloca(&I)) return; - - // Find the data size of the alloca inst's getAllocatedType. - const Type *Ty = I.getAllocatedType(); - unsigned TySize = TM.getTargetData().getTypeSize(Ty); - - // Create a register to hold the temporary result of multiplying the type size - // constant by the variable amount. - unsigned TotalSizeReg = makeAnotherReg(Type::UIntTy); - - // TotalSizeReg = mul <numelements>, <TypeSize> - MachineBasicBlock::iterator MBBI = BB->end(); - ConstantUInt *CUI = ConstantUInt::get(Type::UIntTy, TySize); - doMultiplyConst(BB, MBBI, TotalSizeReg, I.getArraySize(), CUI); - - // AddedSize = add <TotalSizeReg>, 15 - unsigned AddedSizeReg = makeAnotherReg(Type::UIntTy); - BuildMI(BB, PPC::ADDI, 2, AddedSizeReg).addReg(TotalSizeReg).addSImm(15); - - // AlignedSize = and <AddedSize>, ~15 - unsigned AlignedSize = makeAnotherReg(Type::UIntTy); - BuildMI(BB, PPC::RLWINM, 4, AlignedSize).addReg(AddedSizeReg).addImm(0) - .addImm(0).addImm(27); - - // Subtract size from stack pointer, thereby allocating some space. - BuildMI(BB, PPC::SUBF, 2, PPC::R1).addReg(AlignedSize).addReg(PPC::R1); - - // Put a pointer to the space into the result register, by copying - // the stack pointer. - BuildMI(BB, PPC::OR, 2, getReg(I)).addReg(PPC::R1).addReg(PPC::R1); - - // Inform the Frame Information that we have just allocated a variable-sized - // object. - F->getFrameInfo()->CreateVariableSizedObject(); -} - -/// visitMallocInst - Malloc instructions are code generated into direct calls -/// to the library malloc. -/// -void PPC32ISel::visitMallocInst(MallocInst &I) { - unsigned AllocSize = TM.getTargetData().getTypeSize(I.getAllocatedType()); - unsigned Arg; - - if (ConstantUInt *C = dyn_cast<ConstantUInt>(I.getOperand(0))) { - Arg = getReg(ConstantUInt::get(Type::UIntTy, C->getValue() * AllocSize)); - } else { - Arg = makeAnotherReg(Type::UIntTy); - MachineBasicBlock::iterator MBBI = BB->end(); - ConstantUInt *CUI = ConstantUInt::get(Type::UIntTy, AllocSize); - doMultiplyConst(BB, MBBI, Arg, I.getOperand(0), CUI); - } - - std::vector<ValueRecord> Args; - Args.push_back(ValueRecord(Arg, Type::UIntTy)); - MachineInstr *TheCall = - BuildMI(PPC::CALLpcrel, 1).addGlobalAddress(mallocFn, true); - doCall(ValueRecord(getReg(I), I.getType()), TheCall, Args, false); -} - -/// visitFreeInst - Free instructions are code gen'd to call the free libc -/// function. -/// -void PPC32ISel::visitFreeInst(FreeInst &I) { - std::vector<ValueRecord> Args; - Args.push_back(ValueRecord(I.getOperand(0))); - MachineInstr *TheCall = - BuildMI(PPC::CALLpcrel, 1).addGlobalAddress(freeFn, true); - doCall(ValueRecord(0, Type::VoidTy), TheCall, Args, false); -} - -/// createPPC32ISelSimple - This pass converts an LLVM function into a machine -/// code representation is a very simple peep-hole fashion. -/// -FunctionPass *llvm::createPPC32ISelSimple(TargetMachine &TM) { - return new PPC32ISel(TM); -} diff --git a/llvm/lib/Target/PowerPC/PowerPC.h b/llvm/lib/Target/PowerPC/PowerPC.h index 6b9f906f162..b8adc250389 100644 --- a/llvm/lib/Target/PowerPC/PowerPC.h +++ b/llvm/lib/Target/PowerPC/PowerPC.h @@ -27,7 +27,6 @@ enum PPCTargetEnum { }; FunctionPass *createPPCBranchSelectionPass(); -FunctionPass *createPPC32ISelSimple(TargetMachine &TM); FunctionPass *createPPC32ISelPattern(TargetMachine &TM); FunctionPass *createPPC32ISelDag(TargetMachine &TM); FunctionPass *createDarwinAsmPrinter(std::ostream &OS, TargetMachine &TM); diff --git a/llvm/lib/Target/PowerPC/PowerPCTargetMachine.cpp b/llvm/lib/Target/PowerPC/PowerPCTargetMachine.cpp index 18c7fdc9048..936629a5abc 100644 --- a/llvm/lib/Target/PowerPC/PowerPCTargetMachine.cpp +++ b/llvm/lib/Target/PowerPC/PowerPCTargetMachine.cpp @@ -85,13 +85,9 @@ bool PowerPCTargetMachine::addPassesToEmitFile(PassManager &PM, PM.add(createUnreachableBlockEliminationPass()); // Install an instruction selector. - if (EnablePPCDAGDAG) { + if (EnablePPCDAGDAG) PM.add(createPPC32ISelDag(*this)); - - } else if (PatternISelTriState == 0) { - PM.add(createLowerConstantExpressionsPass()); - PM.add(createPPC32ISelSimple(*this)); - } else + else PM.add(createPPC32ISelPattern(*this)); if (PrintMachineCode) @@ -143,13 +139,8 @@ void PowerPCJITInfo::addPassesToJITCompile(FunctionPassManager &PM) { // Make sure that no unreachable blocks are instruction selected. PM.add(createUnreachableBlockEliminationPass()); - // Default to pattern ISel - if (PatternISelTriState == 0) { - PM.add(createLowerConstantExpressionsPass()); - PM.add(createPPC32ISelSimple(TM)); - } else { - PM.add(createPPC32ISelPattern(TM)); - } + // Install an instruction selector. + PM.add(createPPC32ISelPattern(TM)); PM.add(createRegisterAllocator()); PM.add(createPrologEpilogCodeInserter()); diff --git a/llvm/lib/Target/TargetMachine.cpp b/llvm/lib/Target/TargetMachine.cpp index 90f10c1fccb..82759e8280c 100644 --- a/llvm/lib/Target/TargetMachine.cpp +++ b/llvm/lib/Target/TargetMachine.cpp @@ -25,7 +25,6 @@ namespace llvm { bool PrintMachineCode; bool NoFramePointerElim; bool NoExcessFPPrecision; - int PatternISelTriState; bool UnsafeFPMath; bool PICEnabled; }; @@ -44,10 +43,6 @@ namespace { cl::desc("Disable optimizations that may increase FP precision"), cl::location(NoExcessFPPrecision), cl::init(false)); - cl::opt<int, true> PatternISel("enable-pattern-isel", - cl::desc("Turn the pattern ISel off(0), on(1), default(2)"), - cl::location(PatternISelTriState), - cl::init(2)); cl::opt<bool, true> EnableUnsafeFPMath("enable-unsafe-fp-math", cl::desc("Enable optimizations that may decrease FP precision"), diff --git a/llvm/lib/Target/X86/X86.h b/llvm/lib/Target/X86/X86.h index 69f887afd8e..f17dd8b4957 100644 --- a/llvm/lib/Target/X86/X86.h +++ b/llvm/lib/Target/X86/X86.h @@ -32,12 +32,6 @@ enum X86VectorEnum { extern X86VectorEnum X86Vector; extern bool X86ScalarSSE; -/// createX86SimpleInstructionSelector - This pass converts an LLVM function -/// into a machine code representation in a very simple peep-hole fashion. The -/// generated code sucks but the implementation is nice and simple. -/// -FunctionPass *createX86SimpleInstructionSelector(TargetMachine &TM); - /// createX86PatternInstructionSelector - This pass converts an LLVM function /// into a machine code representation in a more aggressive way. /// diff --git a/llvm/lib/Target/X86/X86ISelSimple.cpp b/llvm/lib/Target/X86/X86ISelSimple.cpp deleted file mode 100644 index 80cfb2b4c19..00000000000 --- a/llvm/lib/Target/X86/X86ISelSimple.cpp +++ /dev/null @@ -1,4148 +0,0 @@ -//===-- X86ISelSimple.cpp - A simple instruction selector for x86 ---------===// -// -// The LLVM Compiler Infrastructure -// -// This file was developed by the LLVM research group and is distributed under -// the University of Illinois Open Source License. See LICENSE.TXT for details. -// -//===----------------------------------------------------------------------===// -// -// This file defines a simple peephole instruction selector for the x86 target -// -//===----------------------------------------------------------------------===// - -#include "X86.h" -#include "X86InstrBuilder.h" -#include "X86InstrInfo.h" -#include "llvm/Constants.h" -#include "llvm/DerivedTypes.h" -#include "llvm/Function.h" -#include "llvm/Instructions.h" -#include "llvm/Pass.h" -#include "llvm/CodeGen/IntrinsicLowering.h" -#include "llvm/CodeGen/MachineConstantPool.h" -#include "llvm/CodeGen/MachineFrameInfo.h" -#include "llvm/CodeGen/MachineFunction.h" -#include "llvm/CodeGen/SSARegMap.h" -#include "llvm/Target/MRegisterInfo.h" -#include "llvm/Target/TargetMachine.h" -#include "llvm/Target/TargetOptions.h" -#include "llvm/Support/GetElementPtrTypeIterator.h" -#include "llvm/Support/InstVisitor.h" -#include "llvm/Support/MathExtras.h" -#include "llvm/ADT/Statistic.h" -using namespace llvm; - -namespace { - Statistic<> - NumFPKill("x86-codegen", "Number of FP_REG_KILL instructions added"); - - /// TypeClass - Used by the X86 backend to group LLVM types by their basic X86 - /// Representation. - /// - enum TypeClass { - cByte, cShort, cInt, cFP, cLong - }; -} - -/// getClass - Turn a primitive type into a "class" number which is based on the -/// size of the type, and whether or not it is floating point. -/// -static inline TypeClass getClass(const Type *Ty) { - switch (Ty->getTypeID()) { - case Type::SByteTyID: - case Type::UByteTyID: return cByte; // Byte operands are class #0 - case Type::ShortTyID: - case Type::UShortTyID: return cShort; // Short operands are class #1 - case Type::IntTyID: - case Type::UIntTyID: - case Type::PointerTyID: return cInt; // Int's and pointers are class #2 - - case Type::FloatTyID: - case Type::DoubleTyID: return cFP; // Floating Point is #3 - - case Type::LongTyID: - case Type::ULongTyID: return cLong; // Longs are class #4 - default: - assert(0 && "Invalid type to getClass!"); - return cByte; // not reached - } -} - -// getClassB - Just like getClass, but treat boolean values as bytes. -static inline TypeClass getClassB(const Type *Ty) { - if (Ty == Type::BoolTy) return cByte; - return getClass(Ty); -} - -namespace { - struct X86ISel : public FunctionPass, InstVisitor<X86ISel> { - TargetMachine &TM; - MachineFunction *F; // The function we are compiling into - MachineBasicBlock *BB; // The current MBB we are compiling - int VarArgsFrameIndex; // FrameIndex for start of varargs area - int ReturnAddressIndex; // FrameIndex for the return address - - std::map<Value*, unsigned> RegMap; // Mapping between Val's and SSA Regs - - // MBBMap - Mapping between LLVM BB -> Machine BB - std::map<const BasicBlock*, MachineBasicBlock*> MBBMap; - - // AllocaMap - Mapping from fixed sized alloca instructions to the - // FrameIndex for the alloca. - std::map<AllocaInst*, unsigned> AllocaMap; - - X86ISel(TargetMachine &tm) : TM(tm), F(0), BB(0) {} - - /// runOnFunction - Top level implementation of instruction selection for - /// the entire function. - /// - bool runOnFunction(Function &Fn) { - // Lazily create a stack slot for the return address if needed. - ReturnAddressIndex = 0; - - // First pass over the function, lower any unknown intrinsic functions - // with the IntrinsicLowering class. - LowerUnknownIntrinsicFunctionCalls(Fn); - - F = &MachineFunction::construct(&Fn, TM); - - // Create all of the machine basic blocks for the function... - for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I) - F->getBasicBlockList().push_back(MBBMap[I] = new MachineBasicBlock(I)); - - BB = &F->front(); - - // Copy incoming arguments off of the stack... - LoadArgumentsToVirtualRegs(Fn); - - // If this is main, emit special code. - if (Fn.hasExternalLinkage() && Fn.getName() == "main") - EmitSpecialCodeForMain(); - - // Instruction select everything except PHI nodes - visit(Fn); - - // Select the PHI nodes - SelectPHINodes(); - - // Insert the FP_REG_KILL instructions into blocks that need them. - InsertFPRegKills(); - - RegMap.clear(); - MBBMap.clear(); - AllocaMap.clear(); - F = 0; - // We always build a machine code representation for the function - return true; - } - - virtual const char *getPassName() const { - return "X86 Simple Instruction Selection"; - } - - /// EmitSpecialCodeForMain - Emit any code that needs to be executed only in - /// the main function. - void EmitSpecialCodeForMain(); - - /// visitBasicBlock - This method is called when we are visiting a new basic - /// block. This simply creates a new MachineBasicBlock to emit code into - /// and adds it to the current MachineFunction. Subsequent visit* for - /// instructions will be invoked for all instructions in the basic block. - /// - void visitBasicBlock(BasicBlock &LLVM_BB) { - BB = MBBMap[&LLVM_BB]; - } - - /// LowerUnknownIntrinsicFunctionCalls - This performs a prepass over the - /// function, lowering any calls to unknown intrinsic functions into the - /// equivalent LLVM code. - /// - void LowerUnknownIntrinsicFunctionCalls(Function &F); - - /// LoadArgumentsToVirtualRegs - Load all of the arguments to this function - /// from the stack into virtual registers. - /// - void LoadArgumentsToVirtualRegs(Function &F); - - /// SelectPHINodes - Insert machine code to generate phis. This is tricky - /// because we have to generate our sources into the source basic blocks, - /// not the current one. - /// - void SelectPHINodes(); - - /// InsertFPRegKills - Insert FP_REG_KILL instructions into basic blocks - /// that need them. This only occurs due to the floating point stackifier - /// not being aggressive enough to handle arbitrary global stackification. - /// - void InsertFPRegKills(); - - // Visitation methods for various instructions. These methods simply emit - // fixed X86 code for each instruction. - // - - // Control flow operators - void visitReturnInst(ReturnInst &RI); - void visitBranchInst(BranchInst &BI); - void visitUnreachableInst(UnreachableInst &UI) {} - - struct ValueRecord { - Value *Val; - unsigned Reg; - const Type *Ty; - ValueRecord(unsigned R, const Type *T) : Val(0), Reg(R), Ty(T) {} - ValueRecord(Value *V) : Val(V), Reg(0), Ty(V->getType()) {} - }; - void doCall(const ValueRecord &Ret, MachineInstr *CallMI, - const std::vector<ValueRecord> &Args); - void visitCallInst(CallInst &I); - void visitIntrinsicCall(Intrinsic::ID ID, CallInst &I); - - // Arithmetic operators - void visitSimpleBinary(BinaryOperator &B, unsigned OpcodeClass); - void visitAdd(BinaryOperator &B) { visitSimpleBinary(B, 0); } - void visitSub(BinaryOperator &B) { visitSimpleBinary(B, 1); } - void visitMul(BinaryOperator &B); - - void visitDiv(BinaryOperator &B) { visitDivRem(B); } - void visitRem(BinaryOperator &B) { visitDivRem(B); } - void visitDivRem(BinaryOperator &B); - - // Bitwise operators - void visitAnd(BinaryOperator &B) { visitSimpleBinary(B, 2); } - void visitOr (BinaryOperator &B) { visitSimpleBinary(B, 3); } - void visitXor(BinaryOperator &B) { visitSimpleBinary(B, 4); } - - // Comparison operators... - void visitSetCondInst(SetCondInst &I); - unsigned EmitComparison(unsigned OpNum, Value *Op0, Value *Op1, - MachineBasicBlock *MBB, - MachineBasicBlock::iterator MBBI); - void visitSelectInst(SelectInst &SI); - - - // Memory Instructions - void visitLoadInst(LoadInst &I); - void visitStoreInst(StoreInst &I); - void visitGetElementPtrInst(GetElementPtrInst &I); - void visitAllocaInst(AllocaInst &I); - void visitMallocInst(MallocInst &I); - void visitFreeInst(FreeInst &I); - - // Other operators - void visitShiftInst(ShiftInst &I); - void visitPHINode(PHINode &I) {} // PHI nodes handled by second pass - void visitCastInst(CastInst &I); - void visitVAArgInst(VAArgInst &I); - - void visitInstruction(Instruction &I) { - std::cerr << "Cannot instruction select: " << I; - abort(); - } - - /// promote32 - Make a value 32-bits wide, and put it somewhere. - /// - void promote32(unsigned targetReg, const ValueRecord &VR); - - /// getAddressingMode - Get the addressing mode to use to address the - /// specified value. The returned value should be used with addFullAddress. - void getAddressingMode(Value *Addr, X86AddressMode &AM); - - - /// getGEPIndex - This is used to fold GEP instructions into X86 addressing - /// expressions. - void getGEPIndex(MachineBasicBlock *MBB, MachineBasicBlock::iterator IP, - std::vector<Value*> &GEPOps, - std::vector<const Type*> &GEPTypes, - X86AddressMode &AM); - - /// isGEPFoldable - Return true if the specified GEP can be completely - /// folded into the addressing mode of a load/store or lea instruction. - bool isGEPFoldable(MachineBasicBlock *MBB, - Value *Src, User::op_iterator IdxBegin, - User::op_iterator IdxEnd, X86AddressMode &AM); - - /// emitGEPOperation - Common code shared between visitGetElementPtrInst and - /// constant expression GEP support. - /// - void emitGEPOperation(MachineBasicBlock *BB, MachineBasicBlock::iterator IP, - Value *Src, User::op_iterator IdxBegin, - User::op_iterator IdxEnd, unsigned TargetReg); - - /// emitCastOperation - Common code shared between visitCastInst and - /// constant expression cast support. - /// - void emitCastOperation(MachineBasicBlock *BB,MachineBasicBlock::iterator IP, - Value *Src, const Type *DestTy, unsigned TargetReg); - - /// emitSimpleBinaryOperation - Common code shared between visitSimpleBinary - /// and constant expression support. - /// - void emitSimpleBinaryOperation(MachineBasicBlock *BB, - MachineBasicBlock::iterator IP, - Value *Op0, Value *Op1, - unsigned OperatorClass, unsigned TargetReg); - - /// emitBinaryFPOperation - This method handles emission of floating point - /// Add (0), Sub (1), Mul (2), and Div (3) operations. - void emitBinaryFPOperation(MachineBasicBlock *BB, - MachineBasicBlock::iterator IP, - Value *Op0, Value *Op1, - unsigned OperatorClass, unsigned TargetReg); - - void emitMultiply(MachineBasicBlock *BB, MachineBasicBlock::iterator IP, - Value *Op0, Value *Op1, unsigned TargetReg); - - void doMultiply(MachineBasicBlock *MBB, MachineBasicBlock::iterator MBBI, - unsigned DestReg, const Type *DestTy, - unsigned Op0Reg, unsigned Op1Reg); - void doMultiplyConst(MachineBasicBlock *MBB, - MachineBasicBlock::iterator MBBI, - unsigned DestReg, const Type *DestTy, - unsigned Op0Reg, unsigned Op1Val); - - void emitDivRemOperation(MachineBasicBlock *BB, - MachineBasicBlock::iterator IP, - Value *Op0, Value *Op1, bool isDiv, - unsigned TargetReg); - - /// emitSetCCOperation - Common code shared between visitSetCondInst and - /// constant expression support. - /// - void emitSetCCOperation(MachineBasicBlock *BB, - MachineBasicBlock::iterator IP, - Value *Op0, Value *Op1, unsigned Opcode, - unsigned TargetReg); - - /// emitShiftOperation - Common code shared between visitShiftInst and - /// constant expression support. - /// - void emitShiftOperation(MachineBasicBlock *MBB, - MachineBasicBlock::iterator IP, - Value *Op, Value *ShiftAmount, bool isLeftShift, - const Type *ResultTy, unsigned DestReg); - - // Emit code for a 'SHLD DestReg, Op0, Op1, Amt' operation, where Amt is a - // constant. - void doSHLDConst(MachineBasicBlock *MBB, - MachineBasicBlock::iterator MBBI, - unsigned DestReg, unsigned Op0Reg, unsigned Op1Reg, - unsigned Op1Val); - - /// emitSelectOperation - Common code shared between visitSelectInst and the - /// constant expression support. - void emitSelectOperation(MachineBasicBlock *MBB, - MachineBasicBlock::iterator IP, - Value *Cond, Value *TrueVal, Value *FalseVal, - unsigned DestReg); - - /// copyConstantToRegister - Output the instructions required to put the - /// specified constant into the specified register. - /// - void copyConstantToRegister(MachineBasicBlock *MBB, - MachineBasicBlock::iterator MBBI, - Constant *C, unsigned Reg); - - void emitUCOMr(MachineBasicBlock *MBB, MachineBasicBlock::iterator MBBI, - unsigned LHS, unsigned RHS); - - /// makeAnotherReg - This method returns the next register number we haven't - /// yet used. - /// - /// Long values are handled somewhat specially. They are always allocated - /// as pairs of 32 bit integer values. The register number returned is the - /// lower 32 bits of the long value, and the regNum+1 is the upper 32 bits - /// of the long value. - /// - unsigned makeAnotherReg(const Type *Ty) { - assert(dynamic_cast<const X86RegisterInfo*>(TM.getRegisterInfo()) && - "Current target doesn't have X86 reg info??"); - const X86RegisterInfo *MRI = - static_cast<const X86RegisterInfo*>(TM.getRegisterInfo()); - if (Ty == Type::LongTy || Ty == Type::ULongTy) { - const TargetRegisterClass *RC = MRI->getRegClassForType(Type::IntTy); - // Create the lower part - F->getSSARegMap()->createVirtualRegister(RC); - // Create the upper part. - return F->getSSARegMap()->createVirtualRegister(RC)-1; - } - - // Add the mapping of regnumber => reg class to MachineFunction - const TargetRegisterClass *RC = MRI->getRegClassForType(Ty); - return F->getSSARegMap()->createVirtualRegister(RC); - } - - /// getReg - This method turns an LLVM value into a register number. - /// - unsigned getReg(Value &V) { return getReg(&V); } // Allow references - unsigned getReg(Value *V) { - // Just append to the end of the current bb. - MachineBasicBlock::iterator It = BB->end(); - return getReg(V, BB, It); - } - unsigned getReg(Value *V, MachineBasicBlock *MBB, - MachineBasicBlock::iterator IPt); - - /// getFixedSizedAllocaFI - Return the frame index for a fixed sized alloca - /// that is to be statically allocated with the initial stack frame - /// adjustment. - unsigned getFixedSizedAllocaFI(AllocaInst *AI); - }; -} - -/// dyn_castFixedAlloca - If the specified value is a fixed size alloca -/// instruction in the entry block, return it. Otherwise, return a null -/// pointer. -static AllocaInst *dyn_castFixedAlloca(Value *V) { - if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) { - BasicBlock *BB = AI->getParent(); - if (isa<ConstantUInt>(AI->getArraySize()) && BB ==&BB->getParent()->front()) - return AI; - } - return 0; -} - -/// getReg - This method turns an LLVM value into a register number. -/// -unsigned X86ISel::getReg(Value *V, MachineBasicBlock *MBB, - MachineBasicBlock::iterator IPt) { - // If this operand is a constant, emit the code to copy the constant into - // the register here... - if (Constant *C = dyn_cast<Constant>(V)) { - unsigned Reg = makeAnotherReg(V->getType()); - copyConstantToRegister(MBB, IPt, C, Reg); - return Reg; - } else if (CastInst *CI = dyn_cast<CastInst>(V)) { - // Do not emit noop casts at all, unless it's a double -> float cast. - if (getClassB(CI->getType()) == getClassB(CI->getOperand(0)->getType()) && - (CI->getType() != Type::FloatTy || - CI->getOperand(0)->getType() != Type::DoubleTy)) - return getReg(CI->getOperand(0), MBB, IPt); - } else if (AllocaInst *AI = dyn_castFixedAlloca(V)) { - // If the alloca address couldn't be folded into the instruction addressing, - // emit an explicit LEA as appropriate. - unsigned Reg = makeAnotherReg(V->getType()); - unsigned FI = getFixedSizedAllocaFI(AI); - addFrameReference(BuildMI(*MBB, IPt, X86::LEA32r, 4, Reg), FI); - return Reg; - } - - unsigned &Reg = RegMap[V]; - if (Reg == 0) { - Reg = makeAnotherReg(V->getType()); - RegMap[V] = Reg; - } - - return Reg; -} - -/// getFixedSizedAllocaFI - Return the frame index for a fixed sized alloca -/// that is to be statically allocated with the initial stack frame -/// adjustment. -unsigned X86ISel::getFixedSizedAllocaFI(AllocaInst *AI) { - // Already computed this? - std::map<AllocaInst*, unsigned>::iterator I = AllocaMap.lower_bound(AI); - if (I != AllocaMap.end() && I->first == AI) return I->second; - - const Type *Ty = AI->getAllocatedType(); - ConstantUInt *CUI = cast<ConstantUInt>(AI->getArraySize()); - unsigned TySize = TM.getTargetData().getTypeSize(Ty); - TySize *= CUI->getValue(); // Get total allocated size... - unsigned Alignment = TM.getTargetData().getTypeAlignment(Ty); - - // Create a new stack object using the frame manager... - int FrameIdx = F->getFrameInfo()->CreateStackObject(TySize, Alignment); - AllocaMap.insert(I, std::make_pair(AI, FrameIdx)); - return FrameIdx; -} - - -/// copyConstantToRegister - Output the instructions required to put the -/// specified constant into the specified register. -/// -void X86ISel::copyConstantToRegister(MachineBasicBlock *MBB, - MachineBasicBlock::iterator IP, - Constant *C, unsigned R) { - if (isa<UndefValue>(C)) { - switch (getClassB(C->getType())) { - case cFP: - // FIXME: SHOULD TEACH STACKIFIER ABOUT UNDEF VALUES! - BuildMI(*MBB, IP, X86::FLD0, 0, R); - return; - case cLong: - BuildMI(*MBB, IP, X86::IMPLICIT_DEF, 0, R+1); - // FALL THROUGH - default: - BuildMI(*MBB, IP, X86::IMPLICIT_DEF, 0, R); - return; - } - } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { - unsigned Class = 0; - switch (CE->getOpcode()) { - case Instruction::GetElementPtr: - emitGEPOperation(MBB, IP, CE->getOperand(0), - CE->op_begin()+1, CE->op_end(), R); - return; - case Instruction::Cast: - emitCastOperation(MBB, IP, CE->getOperand(0), CE->getType(), R); - return; - - case Instruction::Xor: ++Class; // FALL THROUGH - case Instruction::Or: ++Class; // FALL THROUGH - case Instruction::And: ++Class; // FALL THROUGH - case Instruction::Sub: ++Class; // FALL THROUGH - case Instruction::Add: - emitSimpleBinaryOperation(MBB, IP, CE->getOperand(0), CE->getOperand(1), - Class, R); - return; - - case Instruction::Mul: - emitMultiply(MBB, IP, CE->getOperand(0), CE->getOperand(1), R); - return; - - case Instruction::Div: - case Instruction::Rem: - emitDivRemOperation(MBB, IP, CE->getOperand(0), CE->getOperand(1), - CE->getOpcode() == Instruction::Div, R); - return; - - case Instruction::SetNE: - case Instruction::SetEQ: - case Instruction::SetLT: - case Instruction::SetGT: - case Instruction::SetLE: - case Instruction::SetGE: - emitSetCCOperation(MBB, IP, CE->getOperand(0), CE->getOperand(1), - CE->getOpcode(), R); - return; - - case Instruction::Shl: - case Instruction::Shr: - emitShiftOperation(MBB, IP, CE->getOperand(0), CE->getOperand(1), - CE->getOpcode() == Instruction::Shl, CE->getType(), R); - return; - - case Instruction::Select: - emitSelectOperation(MBB, IP, CE->getOperand(0), CE->getOperand(1), - CE->getOperand(2), R); - return; - - default: - std::cerr << "Offending expr: " << *C << "\n"; - assert(0 && "Constant expression not yet handled!\n"); - } - } - - if (C->getType()->isIntegral()) { - unsigned Class = getClassB(C->getType()); - - if (Class == cLong) { - // Copy the value into the register pair. - uint64_t Val = cast<ConstantInt>(C)->getRawValue(); - BuildMI(*MBB, IP, X86::MOV32ri, 1, R).addImm(Val & 0xFFFFFFFF); - BuildMI(*MBB, IP, X86::MOV32ri, 1, R+1).addImm(Val >> 32); - return; - } - - assert(Class <= cInt && "Type not handled yet!"); - - static const unsigned IntegralOpcodeTab[] = { - X86::MOV8ri, X86::MOV16ri, X86::MOV32ri - }; - - if (C->getType() == Type::BoolTy) { - BuildMI(*MBB, IP, X86::MOV8ri, 1, R).addImm(C == ConstantBool::True); - } else { - ConstantInt *CI = cast<ConstantInt>(C); - BuildMI(*MBB, IP, IntegralOpcodeTab[Class],1,R).addImm(CI->getRawValue()); - } - } else if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { - if (CFP->isExactlyValue(+0.0)) - BuildMI(*MBB, IP, X86::FLD0, 0, R); - else if (CFP->isExactlyValue(+1.0)) - BuildMI(*MBB, IP, X86::FLD1, 0, R); - else if (CFP->isExactlyValue(-0.0)) { - unsigned Tmp = makeAnotherReg(Type::DoubleTy); - BuildMI(*MBB, IP, X86::FLD0, 0, Tmp); - BuildMI(*MBB, IP, X86::FCHS, 1, R).addReg(Tmp); - } else if (CFP->isExactlyValue(-1.0)) { - unsigned Tmp = makeAnotherReg(Type::DoubleTy); - BuildMI(*MBB, IP, X86::FLD1, 0, Tmp); - BuildMI(*MBB, IP, X86::FCHS, 1, R).addReg(Tmp); - } else { // FIXME: PI, other native values - // FIXME: 2*PI -> LDPI + FADD - - // Otherwise we need to spill the constant to memory. - MachineConstantPool *CP = F->getConstantPool(); - - const Type *Ty = CFP->getType(); - - // If a FP immediate is precise when represented as a float, we put it - // into the constant pool as a float, even if it's is statically typed as - // a double. - if (Ty == Type::DoubleTy) - if (CFP->isExactlyValue((float)CFP->getValue())) { - Ty = Type::FloatTy; - CFP = cast<ConstantFP>(ConstantExpr::getCast(CFP, Ty)); - } - - unsigned CPI = CP->getConstantPoolIndex(CFP); - - assert(Ty == Type::FloatTy || Ty == Type::DoubleTy && "Unknown FP type!"); - unsigned LoadOpcode = Ty == Type::FloatTy ? X86::FLD32m : X86::FLD64m; - addConstantPoolReference(BuildMI(*MBB, IP, LoadOpcode, 4, R), CPI); - } - - } else if (isa<ConstantPointerNull>(C)) { - // Copy zero (null pointer) to the register. - BuildMI(*MBB, IP, X86::MOV32ri, 1, R).addImm(0); - } else if (GlobalValue *GV = dyn_cast<GlobalValue>(C)) { - BuildMI(*MBB, IP, X86::MOV32ri, 1, R).addGlobalAddress(GV); - } else { - std::cerr << "Offending constant: " << *C << "\n"; - assert(0 && "Type not handled yet!"); - } -} - -/// LoadArgumentsToVirtualRegs - Load all of the arguments to this function from -/// the stack into virtual registers. -/// -void X86ISel::LoadArgumentsToVirtualRegs(Function &Fn) { - // Emit instructions to load the arguments... On entry to a function on the - // X86, the stack frame looks like this: - // - // [ESP] -- return address - // [ESP + 4] -- first argument (leftmost lexically) - // [ESP + 8] -- second argument, if first argument is four bytes in size - // ... - // - unsigned ArgOffset = 0; // Frame mechanisms handle retaddr slot - MachineFrameInfo *MFI = F->getFrameInfo(); - - for (Function::arg_iterator I = Fn.arg_begin(), E = Fn.arg_end(); - I != E; ++I) { - bool ArgLive = !I->use_empty(); - unsigned Reg = ArgLive ? getReg(*I) : 0; - int FI; // Frame object index - - switch (getClassB(I->getType())) { - case cByte: - if (ArgLive) { - FI = MFI->CreateFixedObject(1, ArgOffset); - addFrameReference(BuildMI(BB, X86::MOV8rm, 4, Reg), FI); - } - break; - case cShort: - if (ArgLive) { - FI = MFI->CreateFixedObject(2, ArgOffset); - addFrameReference(BuildMI(BB, X86::MOV16rm, 4, Reg), FI); - } - break; - case cInt: - if (ArgLive) { - FI = MFI->CreateFixedObject(4, ArgOffset); - addFrameReference(BuildMI(BB, X86::MOV32rm, 4, Reg), FI); - } - break; - case cLong: - if (ArgLive) { - FI = MFI->CreateFixedObject(8, ArgOffset); - addFrameReference(BuildMI(BB, X86::MOV32rm, 4, Reg), FI); - addFrameReference(BuildMI(BB, X86::MOV32rm, 4, Reg+1), FI, 4); - } - ArgOffset += 4; // longs require 4 additional bytes - break; - case cFP: - if (ArgLive) { - unsigned Opcode; - if (I->getType() == Type::FloatTy) { - Opcode = X86::FLD32m; - FI = MFI->CreateFixedObject(4, ArgOffset); - } else { - Opcode = X86::FLD64m; - FI = MFI->CreateFixedObject(8, ArgOffset); - } - addFrameReference(BuildMI(BB, Opcode, 4, Reg), FI); - } - if (I->getType() == Type::DoubleTy) - ArgOffset += 4; // doubles require 4 additional bytes - break; - default: - assert(0 && "Unhandled argument type!"); - } - ArgOffset += 4; // Each argument takes at least 4 bytes on the stack... - } - - // If the function takes variable number of arguments, add a frame offset for - // the start of the first vararg value... this is used to expand - // llvm.va_start. - if (Fn.getFunctionType()->isVarArg()) - VarArgsFrameIndex = MFI->CreateFixedObject(1, ArgOffset); - - // Finally, inform the compiler what our live-outs will be, aka, what we will - // be returning in registers. - if (Fn.getReturnType() != Type::VoidTy) - switch (getClassB(Fn.getReturnType())) { - default: assert(0 && "Unknown type!"); - case cByte: - case cShort: - case cInt: - F->addLiveOut(X86::EAX); - break; - case cLong: - F->addLiveOut(X86::EAX); - F->addLiveOut(X86::EDX); - break; - case cFP: - F->addLiveOut(X86::ST0); - break; - } -} - -/// EmitSpecialCodeForMain - Emit any code that needs to be executed only in -/// the main function. -void X86ISel::EmitSpecialCodeForMain() { - // Switch the FPU to 64-bit precision mode for better compatibility and speed. - int CWFrameIdx = F->getFrameInfo()->CreateStackObject(2, 2); - addFrameReference(BuildMI(BB, X86::FNSTCW16m, 4), CWFrameIdx); - - // Set the high part to be 64-bit precision. - addFrameReference(BuildMI(BB, X86::MOV8mi, 5), - CWFrameIdx, 1).addImm(2); - - // Reload the modified control word now. - addFrameReference(BuildMI(BB, X86::FLDCW16m, 4), CWFrameIdx); -} - -/// SelectPHINodes - Insert machine code to generate phis. This is tricky -/// because we have to generate our sources into the source basic blocks, not -/// the current one. -/// -void X86ISel::SelectPHINodes() { - const TargetInstrInfo &TII = *TM.getInstrInfo(); - const Function &LF = *F->getFunction(); // The LLVM function... - for (Function::const_iterator I = LF.begin(), E = LF.end(); I != E; ++I) { - const BasicBlock *BB = I; - MachineBasicBlock &MBB = *MBBMap[I]; - - // Loop over all of the PHI nodes in the LLVM basic block... - MachineBasicBlock::iterator PHIInsertPoint = MBB.begin(); - for (BasicBlock::const_iterator I = BB->begin(); isa<PHINode>(I); ++I) { - PHINode *PN = const_cast<PHINode*>(dyn_cast<PHINode>(I)); - - // Create a new machine instr PHI node, and insert it. - unsigned PHIReg = getReg(*PN); - MachineInstr *PhiMI = BuildMI(MBB, PHIInsertPoint, - X86::PHI, PN->getNumOperands(), PHIReg); - - MachineInstr *LongPhiMI = 0; - if (PN->getType() == Type::LongTy || PN->getType() == Type::ULongTy) - LongPhiMI = BuildMI(MBB, PHIInsertPoint, - X86::PHI, PN->getNumOperands(), PHIReg+1); - - // PHIValues - Map of blocks to incoming virtual registers. We use this - // so that we only initialize one incoming value for a particular block, - // even if the block has multiple entries in the PHI node. - // - std::map<MachineBasicBlock*, unsigned> PHIValues; - - for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { - MachineBasicBlock *PredMBB = MBBMap[PN->getIncomingBlock(i)]; - unsigned ValReg; - std::map<MachineBasicBlock*, unsigned>::iterator EntryIt = - PHIValues.lower_bound(PredMBB); - - if (EntryIt != PHIValues.end() && EntryIt->first == PredMBB) { - // We already inserted an initialization of the register for this - // predecessor. Recycle it. - ValReg = EntryIt->second; - - } else { - // Get the incoming value into a virtual register. - // - Value *Val = PN->getIncomingValue(i); - - // If this is a constant or GlobalValue, we may have to insert code - // into the basic block to compute it into a virtual register. - if ((isa<Constant>(Val) && !isa<ConstantExpr>(Val))) { - // Simple constants get emitted at the end of the basic block, - // before any terminator instructions. We "know" that the code to - // move a constant into a register will never clobber any flags. - ValReg = getReg(Val, PredMBB, PredMBB->getFirstTerminator()); - } else { - // Because we don't want to clobber any values which might be in - // physical registers with the computation of this constant (which - // might be arbitrarily complex if it is a constant expression), - // just insert the computation at the top of the basic block. - MachineBasicBlock::iterator PI = PredMBB->begin(); - - // Skip over any PHI nodes though! - while (PI != PredMBB->end() && PI->getOpcode() == X86::PHI) - ++PI; - - ValReg = getReg(Val, PredMBB, PI); - } - - // Remember that we inserted a value for this PHI for this predecessor - PHIValues.insert(EntryIt, std::make_pair(PredMBB, ValReg)); - } - - PhiMI->addRegOperand(ValReg); - PhiMI->addMachineBasicBlockOperand(PredMBB); - if (LongPhiMI) { - LongPhiMI->addRegOperand(ValReg+1); - LongPhiMI->addMachineBasicBlockOperand(PredMBB); - } - } - - // Now that we emitted all of the incoming values for the PHI node, make - // sure to reposition the InsertPoint after the PHI that we just added. - // This is needed because we might have inserted a constant into this - // block, right after the PHI's which is before the old insert point! - PHIInsertPoint = LongPhiMI ? LongPhiMI : PhiMI; - ++PHIInsertPoint; - } - } -} - -/// RequiresFPRegKill - The floating point stackifier pass cannot insert -/// compensation code on critical edges. As such, it requires that we kill all -/// FP registers on the exit from any blocks that either ARE critical edges, or -/// branch to a block that has incoming critical edges. -/// -/// Note that this kill instruction will eventually be eliminated when -/// restrictions in the stackifier are relaxed. -/// -static bool RequiresFPRegKill(const MachineBasicBlock *MBB) { -#if 0 - const BasicBlock *BB = MBB->getBasicBlock (); - for (succ_const_iterator SI = succ_begin(BB), E = succ_end(BB); SI!=E; ++SI) { - const BasicBlock *Succ = *SI; - pred_const_iterator PI = pred_begin(Succ), PE = pred_end(Succ); - ++PI; // Block have at least one predecessory - if (PI != PE) { // If it has exactly one, this isn't crit edge - // If this block has more than one predecessor, check all of the - // predecessors to see if they have multiple successors. If so, then the - // block we are analyzing needs an FPRegKill. - for (PI = pred_begin(Succ); PI != PE; ++PI) { - const BasicBlock *Pred = *PI; - succ_const_iterator SI2 = succ_begin(Pred); - ++SI2; // There must be at least one successor of this block. - if (SI2 != succ_end(Pred)) - return true; // Yes, we must insert the kill on this edge. - } - } - } - // If we got this far, there is no need to insert the kill instruction. - return false; -#else - return true; -#endif -} - -// InsertFPRegKills - Insert FP_REG_KILL instructions into basic blocks that -// need them. This only occurs due to the floating point stackifier not being -// aggressive enough to handle arbitrary global stackification. -// -// Currently we insert an FP_REG_KILL instruction into each block that uses or -// defines a floating point virtual register. -// -// When the global register allocators (like linear scan) finally update live -// variable analysis, we can keep floating point values in registers across -// portions of the CFG that do not involve critical edges. This will be a big -// win, but we are waiting on the global allocators before we can do this. -// -// With a bit of work, the floating point stackifier pass can be enhanced to -// break critical edges as needed (to make a place to put compensation code), -// but this will require some infrastructure improvements as well. -// -void X86ISel::InsertFPRegKills() { - SSARegMap &RegMap = *F->getSSARegMap(); - - for (MachineFunction::iterator BB = F->begin(), E = F->end(); BB != E; ++BB) { - for (MachineBasicBlock::iterator I = BB->begin(), E = BB->end(); I!=E; ++I) - for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { - MachineOperand& MO = I->getOperand(i); - if (MO.isRegister() && MO.getReg()) { - unsigned Reg = MO.getReg(); - if (MRegisterInfo::isVirtualRegister(Reg)) { - unsigned RegSize = RegMap.getRegClass(Reg)->getSize(); - if (RegSize == 10 || RegSize == 8) - goto UsesFPReg; - } - } - } - // If we haven't found an FP register use or def in this basic block, check - // to see if any of our successors has an FP PHI node, which will cause a - // copy to be inserted into this block. - for (MachineBasicBlock::const_succ_iterator SI = BB->succ_begin(), - SE = BB->succ_end(); SI != SE; ++SI) { - MachineBasicBlock *SBB = *SI; - for (MachineBasicBlock::iterator I = SBB->begin(); - I != SBB->end() && I->getOpcode() == X86::PHI; ++I) { - const TargetRegisterClass *RC = - RegMap.getRegClass(I->getOperand(0).getReg()); - if (RC->getSize() == 10 || RC->getSize() == 8) - goto UsesFPReg; - } - } - continue; - UsesFPReg: - // Okay, this block uses an FP register. If the block has successors (ie, - // it's not an unwind/return), insert the FP_REG_KILL instruction. - if (BB->succ_size() && RequiresFPRegKill(BB)) { - BuildMI(*BB, BB->getFirstTerminator(), X86::FP_REG_KILL, 0); - ++NumFPKill; - } - } -} - - -void X86ISel::getAddressingMode(Value *Addr, X86AddressMode &AM) { - AM.BaseType = X86AddressMode::RegBase; - AM.Base.Reg = 0; AM.Scale = 1; AM.IndexReg = 0; AM.Disp = 0; - if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Addr)) { - if (isGEPFoldable(BB, GEP->getOperand(0), GEP->op_begin()+1, GEP->op_end(), - AM)) - return; - } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Addr)) { - if (CE->getOpcode() == Instruction::GetElementPtr) - if (isGEPFoldable(BB, CE->getOperand(0), CE->op_begin()+1, CE->op_end(), - AM)) - return; - } else if (AllocaInst *AI = dyn_castFixedAlloca(Addr)) { - AM.BaseType = X86AddressMode::FrameIndexBase; - AM.Base.FrameIndex = getFixedSizedAllocaFI(AI); - return; - } else if (GlobalValue *GV = dyn_cast<GlobalValue>(Addr)) { - AM.GV = GV; - return; - } - - // If it's not foldable, reset addr mode. - AM.BaseType = X86AddressMode::RegBase; - AM.Base.Reg = getReg(Addr); - AM.Scale = 1; AM.IndexReg = 0; AM.Disp = 0; -} - -// canFoldSetCCIntoBranchOrSelect - Return the setcc instruction if we can fold -// it into the conditional branch or select instruction which is the only user -// of the cc instruction. This is the case if the conditional branch is the -// only user of the setcc. We also don't handle long arguments below, so we -// reject them here as well. -// -static SetCondInst *canFoldSetCCIntoBranchOrSelect(Value *V) { - if (SetCondInst *SCI = dyn_cast<SetCondInst>(V)) - if (SCI->hasOneUse()) { - Instruction *User = cast<Instruction>(SCI->use_back()); - if ((isa<BranchInst>(User) || isa<SelectInst>(User)) && - (getClassB(SCI->getOperand(0)->getType()) != cLong || - SCI->getOpcode() == Instruction::SetEQ || - SCI->getOpcode() == Instruction::SetNE) && - (isa<BranchInst>(User) || User->getOperand(0) == V)) - return SCI; - } - return 0; -} - -// Return a fixed numbering for setcc instructions which does not depend on the -// order of the opcodes. -// -static unsigned getSetCCNumber(unsigned Opcode) { - switch(Opcode) { - default: assert(0 && "Unknown setcc instruction!"); - case Instruction::SetEQ: return 0; - case Instruction::SetNE: return 1; - case Instruction::SetLT: return 2; - case Instruction::SetGE: return 3; - case Instruction::SetGT: return 4; - case Instruction::SetLE: return 5; - } -} - -// LLVM -> X86 signed X86 unsigned -// ----- ---------- ------------ -// seteq -> sete sete -// setne -> setne setne -// setlt -> setl setb -// setge -> setge setae -// setgt -> setg seta -// setle -> setle setbe -// ---- -// sets // Used by comparison with 0 optimization -// setns -static const unsigned SetCCOpcodeTab[2][8] = { - { X86::SETEr, X86::SETNEr, X86::SETBr, X86::SETAEr, X86::SETAr, X86::SETBEr, - 0, 0 }, - { X86::SETEr, X86::SETNEr, X86::SETLr, X86::SETGEr, X86::SETGr, X86::SETLEr, - X86::SETSr, X86::SETNSr }, -}; - -/// emitUCOMr - In the future when we support processors before the P6, this -/// wraps the logic for emitting an FUCOMr vs FUCOMIr. -void X86ISel::emitUCOMr(MachineBasicBlock *MBB, MachineBasicBlock::iterator IP, - unsigned LHS, unsigned RHS) { - if (0) { // for processors prior to the P6 - BuildMI(*MBB, IP, X86::FUCOMr, 2).addReg(LHS).addReg(RHS); - BuildMI(*MBB, IP, X86::FNSTSW8r, 0); - BuildMI(*MBB, IP, X86::SAHF, 1); - } else { - BuildMI(*MBB, IP, X86::FUCOMIr, 2).addReg(LHS).addReg(RHS); - } -} - -// EmitComparison - This function emits a comparison of the two operands, -// returning the extended setcc code to use. -unsigned X86ISel::EmitComparison(unsigned OpNum, Value *Op0, Value *Op1, - MachineBasicBlock *MBB, - MachineBasicBlock::iterator IP) { - // The arguments are already supposed to be of the same type. - const Type *CompTy = Op0->getType(); - unsigned Class = getClassB(CompTy); - - // Special case handling of: cmp R, i - if (isa<ConstantPointerNull>(Op1)) { - unsigned Op0r = getReg(Op0, MBB, IP); - if (OpNum < 2) // seteq/setne -> test - BuildMI(*MBB, IP, X86::TEST32rr, 2).addReg(Op0r).addReg(Op0r); - else - BuildMI(*MBB, IP, X86::CMP32ri, 2).addReg(Op0r).addImm(0); - return OpNum; - - } else if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) { - if (Class == cByte || Class == cShort || Class == cInt) { - unsigned Op1v = CI->getRawValue(); - - // Mask off any upper bits of the constant, if there are any... - Op1v &= (1ULL << (8 << Class)) - 1; - - // If this is a comparison against zero, emit more efficient code. We - // can't handle unsigned comparisons against zero unless they are == or - // !=. These should have been strength reduced already anyway. - if (Op1v == 0 && (CompTy->isSigned() || OpNum < 2)) { - - // If this is a comparison against zero and the LHS is an and of a - // register with a constant, use the test to do the and. - if (Instruction *Op0I = dyn_cast<Instruction>(Op0)) - if (Op0I->getOpcode() == Instruction::And && Op0->hasOneUse() && - isa<ConstantInt>(Op0I->getOperand(1))) { - static const unsigned TESTTab[] = { - X86::TEST8ri, X86::TEST16ri, X86::TEST32ri - }; - - // Emit test X, i - unsigned LHS = getReg(Op0I->getOperand(0), MBB, IP); - unsigned Imm = - cast<ConstantInt>(Op0I->getOperand(1))->getRawValue(); - BuildMI(*MBB, IP, TESTTab[Class], 2).addReg(LHS).addImm(Imm); - - if (OpNum == 2) return 6; // Map jl -> js - if (OpNum == 3) return 7; // Map jg -> jns - return OpNum; - } - - unsigned Op0r = getReg(Op0, MBB, IP); - static const unsigned TESTTab[] = { - X86::TEST8rr, X86::TEST16rr, X86::TEST32rr - }; - BuildMI(*MBB, IP, TESTTab[Class], 2).addReg(Op0r).addReg(Op0r); - - if (OpNum == 2) return 6; // Map jl -> js - if (OpNum == 3) return 7; // Map jg -> jns - return OpNum; - } - - static const unsigned CMPTab[] = { - X86::CMP8ri, X86::CMP16ri, X86::CMP32ri - }; - - unsigned Op0r = getReg(Op0, MBB, IP); - BuildMI(*MBB, IP, CMPTab[Class], 2).addReg(Op0r).addImm(Op1v); - return OpNum; - } else { - unsigned Op0r = getReg(Op0, MBB, IP); - assert(Class == cLong && "Unknown integer class!"); - unsigned LowCst = CI->getRawValue(); - unsigned HiCst = CI->getRawValue() >> 32; - if (OpNum < 2) { // seteq, setne - unsigned LoTmp = Op0r; - if (LowCst != 0) { - LoTmp = makeAnotherReg(Type::IntTy); - BuildMI(*MBB, IP, X86::XOR32ri, 2, LoTmp).addReg(Op0r).addImm(LowCst); - } - unsigned HiTmp = Op0r+1; - if (HiCst != 0) { - HiTmp = makeAnotherReg(Type::IntTy); - BuildMI(*MBB, IP, X86::XOR32ri, 2,HiTmp).addReg(Op0r+1).addImm(HiCst); - } - unsigned FinalTmp = makeAnotherReg(Type::IntTy); - BuildMI(*MBB, IP, X86::OR32rr, 2, FinalTmp).addReg(LoTmp).addReg(HiTmp); - return OpNum; - } else { - // Emit a sequence of code which compares the high and low parts once - // each, then uses a conditional move to handle the overflow case. For - // example, a setlt for long would generate code like this: - // - // AL = lo(op1) < lo(op2) // Always unsigned comparison - // BL = hi(op1) < hi(op2) // Signedness depends on operands - // dest = hi(op1) == hi(op2) ? BL : AL; - // - - // FIXME: This would be much better if we had hierarchical register - // classes! Until then, hardcode registers so that we can deal with - // their aliases (because we don't have conditional byte moves). - // - BuildMI(*MBB, IP, X86::CMP32ri, 2).addReg(Op0r).addImm(LowCst); - BuildMI(*MBB, IP, SetCCOpcodeTab[0][OpNum], 0, X86::AL); - BuildMI(*MBB, IP, X86::CMP32ri, 2).addReg(Op0r+1).addImm(HiCst); - BuildMI(*MBB, IP, SetCCOpcodeTab[CompTy->isSigned()][OpNum], 0,X86::BL); - BuildMI(*MBB, IP, X86::IMPLICIT_DEF, 0, X86::BH); - BuildMI(*MBB, IP, X86::IMPLICIT_DEF, 0, X86::AH); - BuildMI(*MBB, IP, X86::CMOVE16rr, 2, X86::BX).addReg(X86::BX) - .addReg(X86::AX); - // NOTE: visitSetCondInst knows that the value is dumped into the BL - // register at this point for long values... - return OpNum; - } - } - } - - unsigned Op0r = getReg(Op0, MBB, IP); - - // Special case handling of comparison against +/- 0.0 - if (ConstantFP *CFP = dyn_cast<ConstantFP>(Op1)) - if (CFP->isExactlyValue(+0.0) || CFP->isExactlyValue(-0.0)) { - BuildMI(*MBB, IP, X86::FTST, 1).addReg(Op0r); - BuildMI(*MBB, IP, X86::FNSTSW8r, 0); - BuildMI(*MBB, IP, X86::SAHF, 1); - return OpNum; - } - - unsigned Op1r = getReg(Op1, MBB, IP); - switch (Class) { - default: assert(0 && "Unknown type class!"); - // Emit: cmp <var1>, <var2> (do the comparison). We can - // compare 8-bit with 8-bit, 16-bit with 16-bit, 32-bit with - // 32-bit. - case cByte: - BuildMI(*MBB, IP, X86::CMP8rr, 2).addReg(Op0r).addReg(Op1r); - break; - case cShort: - BuildMI(*MBB, IP, X86::CMP16rr, 2).addReg(Op0r).addReg(Op1r); - break; - case cInt: - BuildMI(*MBB, IP, X86::CMP32rr, 2).addReg(Op0r).addReg(Op1r); - break; - case cFP: - emitUCOMr(MBB, IP, Op0r, Op1r); - break; - - case cLong: - if (OpNum < 2) { // seteq, setne - unsigned LoTmp = makeAnotherReg(Type::IntTy); - unsigned HiTmp = makeAnotherReg(Type::IntTy); - unsigned FinalTmp = makeAnotherReg(Type::IntTy); - BuildMI(*MBB, IP, X86::XOR32rr, 2, LoTmp).addReg(Op0r).addReg(Op1r); - BuildMI(*MBB, IP, X86::XOR32rr, 2, HiTmp).addReg(Op0r+1).addReg(Op1r+1); - BuildMI(*MBB, IP, X86::OR32rr, 2, FinalTmp).addReg(LoTmp).addReg(HiTmp); - break; // Allow the sete or setne to be generated from flags set by OR - } else { - // Emit a sequence of code which compares the high and low parts once - // each, then uses a conditional move to handle the overflow case. For - // example, a setlt for long would generate code like this: - // - // AL = lo(op1) < lo(op2) // Signedness depends on operands - // BL = hi(op1) < hi(op2) // Always unsigned comparison - // dest = hi(op1) == hi(op2) ? BL : AL; - // - - // FIXME: This would be much better if we had hierarchical register - // classes! Until then, hardcode registers so that we can deal with their - // aliases (because we don't have conditional byte moves). - // - BuildMI(*MBB, IP, X86::CMP32rr, 2).addReg(Op0r).addReg(Op1r); - BuildMI(*MBB, IP, SetCCOpcodeTab[0][OpNum], 0, X86::AL); - BuildMI(*MBB, IP, X86::CMP32rr, 2).addReg(Op0r+1).addReg(Op1r+1); - BuildMI(*MBB, IP, SetCCOpcodeTab[CompTy->isSigned()][OpNum], 0, X86::BL); - BuildMI(*MBB, IP, X86::IMPLICIT_DEF, 0, X86::BH); - BuildMI(*MBB, IP, X86::IMPLICIT_DEF, 0, X86::AH); - BuildMI(*MBB, IP, X86::CMOVE16rr, 2, X86::BX).addReg(X86::BX) - .addReg(X86::AX); - // NOTE: visitSetCondInst knows that the value is dumped into the BL - // register at this point for long values... - return OpNum; - } - } - return OpNum; -} - -/// SetCC instructions - Here we just emit boilerplate code to set a byte-sized -/// register, then move it to wherever the result should be. -/// -void X86ISel::visitSetCondInst(SetCondInst &I) { - if (canFoldSetCCIntoBranchOrSelect(&I)) - return; // Fold this into a branch or select. - - unsigned DestReg = getReg(I); - MachineBasicBlock::iterator MII = BB->end(); - emitSetCCOperation(BB, MII, I.getOperand(0), I.getOperand(1), I.getOpcode(), - DestReg); -} - -/// emitSetCCOperation - Common code shared between visitSetCondInst and -/// constant expression support. -/// -void X86ISel::emitSetCCOperation(MachineBasicBlock *MBB, - MachineBasicBlock::iterator IP, - Value *Op0, Value *Op1, unsigned Opcode, - unsigned TargetReg) { - unsigned OpNum = getSetCCNumber(Opcode); - OpNum = EmitComparison(OpNum, Op0, Op1, MBB, IP); - - const Type *CompTy = Op0->getType(); - unsigned CompClass = getClassB(CompTy); - bool isSigned = CompTy->isSigned() && CompClass != cFP; - - if (CompClass != cLong || OpNum < 2) { - // Handle normal comparisons with a setcc instruction... - BuildMI(*MBB, IP, SetCCOpcodeTab[isSigned][OpNum], 0, TargetReg); - } else { - // Handle long comparisons by copying the value which is already in BL into - // the register we want... - BuildMI(*MBB, IP, X86::MOV8rr, 1, TargetReg).addReg(X86::BL); - } -} - -void X86ISel::visitSelectInst(SelectInst &SI) { - unsigned DestReg = getReg(SI); - MachineBasicBlock::iterator MII = BB->end(); - emitSelectOperation(BB, MII, SI.getCondition(), SI.getTrueValue(), - SI.getFalseValue(), DestReg); -} - -/// emitSelect - Common code shared between visitSelectInst and the constant -/// expression support. -void X86ISel::emitSelectOperation(MachineBasicBlock *MBB, - MachineBasicBlock::iterator IP, - Value *Cond, Value *TrueVal, Value *FalseVal, - unsigned DestReg) { - unsigned SelectClass = getClassB(TrueVal->getType()); - - // We don't support 8-bit conditional moves. If we have incoming constants, - // transform them into 16-bit constants to avoid having a run-time conversion. - if (SelectClass == cByte) { - if (Constant *T = dyn_cast<Constant>(TrueVal)) - TrueVal = ConstantExpr::getCast(T, Type::ShortTy); - if (Constant *F = dyn_cast<Constant>(FalseVal)) - FalseVal = ConstantExpr::getCast(F, Type::ShortTy); - } - - unsigned TrueReg = getReg(TrueVal, MBB, IP); - unsigned FalseReg = getReg(FalseVal, MBB, IP); - if (TrueReg == FalseReg) { - static const unsigned Opcode[] = { - X86::MOV8rr, X86::MOV16rr, X86::MOV32rr, X86::FpMOV, X86::MOV32rr - }; - BuildMI(*MBB, IP, Opcode[SelectClass], 1, DestReg).addReg(TrueReg); - if (SelectClass == cLong) - BuildMI(*MBB, IP, X86::MOV32rr, 1, DestReg+1).addReg(TrueReg+1); - return; - } - - unsigned Opcode; - if (SetCondInst *SCI = canFoldSetCCIntoBranchOrSelect(Cond)) { - // We successfully folded the setcc into the select instruction. - - unsigned OpNum = getSetCCNumber(SCI->getOpcode()); - OpNum = EmitComparison(OpNum, SCI->getOperand(0), SCI->getOperand(1), MBB, - IP); - - const Type *CompTy = SCI->getOperand(0)->getType(); - bool isSigned = CompTy->isSigned() && getClassB(CompTy) != cFP; - - // LLVM -> X86 signed X86 unsigned - // ----- ---------- ------------ - // seteq -> cmovNE cmovNE - // setne -> cmovE cmovE - // setlt -> cmovGE cmovAE - // setge -> cmovL cmovB - // setgt -> cmovLE cmovBE - // setle -> cmovG cmovA - // ---- - // cmovNS // Used by comparison with 0 optimization - // cmovS - - switch (SelectClass) { - default: assert(0 && "Unknown value class!"); - case cFP: { - // Annoyingly, we don't have a full set of floating point conditional - // moves. :( - static const unsigned OpcodeTab[2][8] = { - { X86::FCMOVNE, X86::FCMOVE, X86::FCMOVAE, X86::FCMOVB, - X86::FCMOVBE, X86::FCMOVA, 0, 0 }, - { X86::FCMOVNE, X86::FCMOVE, 0, 0, 0, 0, 0, 0 }, - }; - Opcode = OpcodeTab[isSigned][OpNum]; - - // If opcode == 0, we hit a case that we don't support. Output a setcc - // and compare the result against zero. - if (Opcode == 0) { - unsigned CompClass = getClassB(CompTy); - unsigned CondReg; - if (CompClass != cLong || OpNum < 2) { - CondReg = makeAnotherReg(Type::BoolTy); - // Handle normal comparisons with a setcc instruction... - BuildMI(*MBB, IP, SetCCOpcodeTab[isSigned][OpNum], 0, CondReg); - } else { - // Long comparisons end up in the BL register. - CondReg = X86::BL; - } - - BuildMI(*MBB, IP, X86::TEST8rr, 2).addReg(CondReg).addReg(CondReg); - Opcode = X86::FCMOVE; - } - break; - } - case cByte: - case cShort: { - static const unsigned OpcodeTab[2][8] = { - { X86::CMOVNE16rr, X86::CMOVE16rr, X86::CMOVAE16rr, X86::CMOVB16rr, - X86::CMOVBE16rr, X86::CMOVA16rr, 0, 0 }, - { X86::CMOVNE16rr, X86::CMOVE16rr, X86::CMOVGE16rr, X86::CMOVL16rr, - X86::CMOVLE16rr, X86::CMOVG16rr, X86::CMOVNS16rr, X86::CMOVS16rr }, - }; - Opcode = OpcodeTab[isSigned][OpNum]; - break; - } - case cInt: - case cLong: { - static const unsigned OpcodeTab[2][8] = { - { X86::CMOVNE32rr, X86::CMOVE32rr, X86::CMOVAE32rr, X86::CMOVB32rr, - X86::CMOVBE32rr, X86::CMOVA32rr, 0, 0 }, - { X86::CMOVNE32rr, X86::CMOVE32rr, X86::CMOVGE32rr, X86::CMOVL32rr, - X86::CMOVLE32rr, X86::CMOVG32rr, X86::CMOVNS32rr, X86::CMOVS32rr }, - }; - Opcode = OpcodeTab[isSigned][OpNum]; - break; - } - } - } else { - // Get the value being branched on, and use it to set the condition codes. - unsigned CondReg = getReg(Cond, MBB, IP); - BuildMI(*MBB, IP, X86::TEST8rr, 2).addReg(CondReg).addReg(CondReg); - switch (SelectClass) { - default: assert(0 && "Unknown value class!"); - case cFP: Opcode = X86::FCMOVE; break; - case cByte: - case cShort: Opcode = X86::CMOVE16rr; break; - case cInt: - case cLong: Opcode = X86::CMOVE32rr; break; - } - } - - unsigned RealDestReg = DestReg; - - - // Annoyingly enough, X86 doesn't HAVE 8-bit conditional moves. Because of - // this, we have to promote the incoming values to 16 bits, perform a 16-bit - // cmove, then truncate the result. - if (SelectClass == cByte) { - DestReg = makeAnotherReg(Type::ShortTy); - if (getClassB(TrueVal->getType()) == cByte) { - // Promote the true value, by storing it into AL, and reading from AX. - BuildMI(*MBB, IP, X86::MOV8rr, 1, X86::AL).addReg(TrueReg); - BuildMI(*MBB, IP, X86::MOV8ri, 1, X86::AH).addImm(0); - TrueReg = makeAnotherReg(Type::ShortTy); - BuildMI(*MBB, IP, X86::MOV16rr, 1, TrueReg).addReg(X86::AX); - } - if (getClassB(FalseVal->getType()) == cByte) { - // Promote the true value, by storing it into CL, and reading from CX. - BuildMI(*MBB, IP, X86::MOV8rr, 1, X86::CL).addReg(FalseReg); - BuildMI(*MBB, IP, X86::MOV8ri, 1, X86::CH).addImm(0); - FalseReg = makeAnotherReg(Type::ShortTy); - BuildMI(*MBB, IP, X86::MOV16rr, 1, FalseReg).addReg(X86::CX); - } - } - - BuildMI(*MBB, IP, Opcode, 2, DestReg).addReg(TrueReg).addReg(FalseReg); - - switch (SelectClass) { - case cByte: - // We did the computation with 16-bit registers. Truncate back to our - // result by copying into AX then copying out AL. - BuildMI(*MBB, IP, X86::MOV16rr, 1, X86::AX).addReg(DestReg); - BuildMI(*MBB, IP, X86::MOV8rr, 1, RealDestReg).addReg(X86::AL); - break; - case cLong: - // Move the upper half of the value as well. - BuildMI(*MBB, IP, Opcode, 2,DestReg+1).addReg(TrueReg+1).addReg(FalseReg+1); - break; - } -} - - - -/// promote32 - Emit instructions to turn a narrow operand into a 32-bit-wide -/// operand, in the specified target register. -/// -void X86ISel::promote32(unsigned targetReg, const ValueRecord &VR) { - bool isUnsigned = VR.Ty->isUnsigned() || VR.Ty == Type::BoolTy; - - Value *Val = VR.Val; - const Type *Ty = VR.Ty; - if (Val) { - if (Constant *C = dyn_cast<Constant>(Val)) { - Val = ConstantExpr::getCast(C, Type::IntTy); - Ty = Type::IntTy; - } - - // If this is a simple constant, just emit a MOVri directly to avoid the - // copy. - if (ConstantInt *CI = dyn_cast<ConstantInt>(Val)) { - int TheVal = CI->getRawValue() & 0xFFFFFFFF; - BuildMI(BB, X86::MOV32ri, 1, targetReg).addImm(TheVal); - return; - } - } - - // Make sure we have the register number for this value... - unsigned Reg = Val ? getReg(Val) : VR.Reg; - - switch (getClassB(Ty)) { - case cByte: - // Extend value into target register (8->32) - if (isUnsigned) - BuildMI(BB, X86::MOVZX32rr8, 1, targetReg).addReg(Reg); - else - BuildMI(BB, X86::MOVSX32rr8, 1, targetReg).addReg(Reg); - break; - case cShort: - // Extend value into target register (16->32) - if (isUnsigned) - BuildMI(BB, X86::MOVZX32rr16, 1, targetReg).addReg(Reg); - else - BuildMI(BB, X86::MOVSX32rr16, 1, targetReg).addReg(Reg); - break; - case cInt: - // Move value into target register (32->32) - BuildMI(BB, X86::MOV32rr, 1, targetReg).addReg(Reg); - break; - default: - assert(0 && "Unpromotable operand class in promote32"); - } -} - -/// 'ret' instruction - Here we are interested in meeting the x86 ABI. As such, -/// we have the following possibilities: -/// -/// ret void: No return value, simply emit a 'ret' instruction -/// ret sbyte, ubyte : Extend value into EAX and return -/// ret short, ushort: Extend value into EAX and return -/// ret int, uint : Move value into EAX and return -/// ret pointer : Move value into EAX and return -/// ret long, ulong : Move value into EAX/EDX and return -/// ret float/double : Top of FP stack -/// -void X86ISel::visitReturnInst(ReturnInst &I) { - if (I.getNumOperands() == 0) { - BuildMI(BB, X86::RET, 0); // Just emit a 'ret' instruction - return; - } - - Value *RetVal = I.getOperand(0); - switch (getClassB(RetVal->getType())) { - case cByte: // integral return values: extend or move into EAX and return - case cShort: - case cInt: - promote32(X86::EAX, ValueRecord(RetVal)); - break; - case cFP: { // Floats & Doubles: Return in ST(0) - unsigned RetReg = getReg(RetVal); - BuildMI(BB, X86::FpSETRESULT, 1).addReg(RetReg); - break; - } - case cLong: { - unsigned RetReg = getReg(RetVal); - BuildMI(BB, X86::MOV32rr, 1, X86::EAX).addReg(RetReg); - BuildMI(BB, X86::MOV32rr, 1, X86::EDX).addReg(RetReg+1); - break; - } - default: - visitInstruction(I); - } - // Emit a 'ret' instruction - BuildMI(BB, X86::RET, 0); -} - -// getBlockAfter - Return the basic block which occurs lexically after the -// specified one. -static inline BasicBlock *getBlockAfter(BasicBlock *BB) { - Function::iterator I = BB; ++I; // Get iterator to next block - return I != BB->getParent()->end() ? &*I : 0; -} - -/// visitBranchInst - Handle conditional and unconditional branches here. Note -/// that since code layout is frozen at this point, that if we are trying to -/// jump to a block that is the immediate successor of the current block, we can -/// just make a fall-through (but we don't currently). -/// -void X86ISel::visitBranchInst(BranchInst &BI) { - // Update machine-CFG edges - BB->addSuccessor (MBBMap[BI.getSuccessor(0)]); - if (BI.isConditional()) - BB->addSuccessor (MBBMap[BI.getSuccessor(1)]); - - BasicBlock *NextBB = getBlockAfter(BI.getParent()); // BB after current one - - if (!BI.isConditional()) { // Unconditional branch? - if (BI.getSuccessor(0) != NextBB) - BuildMI(BB, X86::JMP, 1).addMBB(MBBMap[BI.getSuccessor(0)]); - return; - } - - // See if we can fold the setcc into the branch itself... - SetCondInst *SCI = canFoldSetCCIntoBranchOrSelect(BI.getCondition()); - if (SCI == 0) { - // Nope, cannot fold setcc into this branch. Emit a branch on a condition - // computed some other way... - unsigned condReg = getReg(BI.getCondition()); - BuildMI(BB, X86::TEST8rr, 2).addReg(condReg).addReg(condReg); - if (BI.getSuccessor(1) == NextBB) { - if (BI.getSuccessor(0) != NextBB) - BuildMI(BB, X86::JNE, 1).addMBB(MBBMap[BI.getSuccessor(0)]); - } else { - BuildMI(BB, X86::JE, 1).addMBB(MBBMap[BI.getSuccessor(1)]); - - if (BI.getSuccessor(0) != NextBB) - BuildMI(BB, X86::JMP, 1).addMBB(MBBMap[BI.getSuccessor(0)]); - } - return; - } - - unsigned OpNum = getSetCCNumber(SCI->getOpcode()); - MachineBasicBlock::iterator MII = BB->end(); - OpNum = EmitComparison(OpNum, SCI->getOperand(0), SCI->getOperand(1), BB,MII); - - const Type *CompTy = SCI->getOperand(0)->getType(); - bool isSigned = CompTy->isSigned() && getClassB(CompTy) != cFP; - - - // LLVM -> X86 signed X86 unsigned - // ----- ---------- ------------ - // seteq -> je je - // setne -> jne jne - // setlt -> jl jb - // setge -> jge jae - // setgt -> jg ja - // setle -> jle jbe - // ---- - // js // Used by comparison with 0 optimization - // jns - - static const unsigned OpcodeTab[2][8] = { - { X86::JE, X86::JNE, X86::JB, X86::JAE, X86::JA, X86::JBE, 0, 0 }, - { X86::JE, X86::JNE, X86::JL, X86::JGE, X86::JG, X86::JLE, - X86::JS, X86::JNS }, - }; - - if (BI.getSuccessor(0) != NextBB) { - BuildMI(BB, OpcodeTab[isSigned][OpNum], 1) - .addMBB(MBBMap[BI.getSuccessor(0)]); - if (BI.getSuccessor(1) != NextBB) - BuildMI(BB, X86::JMP, 1).addMBB(MBBMap[BI.getSuccessor(1)]); - } else { - // Change to the inverse condition... - if (BI.getSuccessor(1) != NextBB) { - OpNum ^= 1; - BuildMI(BB, OpcodeTab[isSigned][OpNum], 1) - .addMBB(MBBMap[BI.getSuccessor(1)]); - } - } -} - - -/// doCall - This emits an abstract call instruction, setting up the arguments -/// and the return value as appropriate. For the actual function call itself, -/// it inserts the specified CallMI instruction into the stream. -/// -void X86ISel::doCall(const ValueRecord &Ret, MachineInstr *CallMI, - const std::vector<ValueRecord> &Args) { - // Count how many bytes are to be pushed on the stack... - unsigned NumBytes = 0; - - if (!Args.empty()) { - for (unsigned i = 0, e = Args.size(); i != e; ++i) - switch (getClassB(Args[i].Ty)) { - case cByte: case cShort: case cInt: - NumBytes += 4; break; - case cLong: - NumBytes += 8; break; - case cFP: - NumBytes += Args[i].Ty == Type::FloatTy ? 4 : 8; - break; - default: assert(0 && "Unknown class!"); - } - - // Adjust the stack pointer for the new arguments... - BuildMI(BB, X86::ADJCALLSTACKDOWN, 1).addImm(NumBytes); - - // Arguments go on the stack in reverse order, as specified by the ABI. - unsigned ArgOffset = 0; - for (unsigned i = 0, e = Args.size(); i != e; ++i) { - unsigned ArgReg; - switch (getClassB(Args[i].Ty)) { - case cByte: - if (Args[i].Val && isa<ConstantBool>(Args[i].Val)) { - addRegOffset(BuildMI(BB, X86::MOV32mi, 5), X86::ESP, ArgOffset) - .addImm(Args[i].Val == ConstantBool::True); - break; - } - // FALL THROUGH - case cShort: - if (Args[i].Val && isa<ConstantInt>(Args[i].Val)) { - // Zero/Sign extend constant, then stuff into memory. - ConstantInt *Val = cast<ConstantInt>(Args[i].Val); - Val = cast<ConstantInt>(ConstantExpr::getCast(Val, Type::IntTy)); - addRegOffset(BuildMI(BB, X86::MOV32mi, 5), X86::ESP, ArgOffset) - .addImm(Val->getRawValue() & 0xFFFFFFFF); - } else { - // Promote arg to 32 bits wide into a temporary register... - ArgReg = makeAnotherReg(Type::UIntTy); - promote32(ArgReg, Args[i]); - addRegOffset(BuildMI(BB, X86::MOV32mr, 5), - X86::ESP, ArgOffset).addReg(ArgReg); - } - break; - case cInt: - if (Args[i].Val && isa<ConstantInt>(Args[i].Val)) { - unsigned Val = cast<ConstantInt>(Args[i].Val)->getRawValue(); - addRegOffset(BuildMI(BB, X86::MOV32mi, 5), - X86::ESP, ArgOffset).addImm(Val); - } else if (Args[i].Val && isa<ConstantPointerNull>(Args[i].Val)) { - addRegOffset(BuildMI(BB, X86::MOV32mi, 5), - X86::ESP, ArgOffset).addImm(0); - } else if (Args[i].Val && isa<GlobalValue>(Args[i].Val)) { - addRegOffset(BuildMI(BB, X86::MOV32mi, 5), X86::ESP, ArgOffset) - .addGlobalAddress(cast<GlobalValue>(Args[i].Val)); - } else { - ArgReg = Args[i].Val ? getReg(Args[i].Val) : Args[i].Reg; - addRegOffset(BuildMI(BB, X86::MOV32mr, 5), - X86::ESP, ArgOffset).addReg(ArgReg); - } - break; - case cLong: - if (Args[i].Val && isa<ConstantInt>(Args[i].Val)) { - uint64_t Val = cast<ConstantInt>(Args[i].Val)->getRawValue(); - addRegOffset(BuildMI(BB, X86::MOV32mi, 5), - X86::ESP, ArgOffset).addImm(Val & ~0U); - addRegOffset(BuildMI(BB, X86::MOV32mi, 5), - X86::ESP, ArgOffset+4).addImm(Val >> 32ULL); - } else { - ArgReg = Args[i].Val ? getReg(Args[i].Val) : Args[i].Reg; - addRegOffset(BuildMI(BB, X86::MOV32mr, 5), - X86::ESP, ArgOffset).addReg(ArgReg); - addRegOffset(BuildMI(BB, X86::MOV32mr, 5), - X86::ESP, ArgOffset+4).addReg(ArgReg+1); - } - ArgOffset += 4; // 8 byte entry, not 4. - break; - - case cFP: - if (ConstantFP *CFP = dyn_cast_or_null<ConstantFP>(Args[i].Val)) { - // Store constant FP values with integer instructions to avoid having - // to load the constants from the constant pool then do a store. - if (CFP->getType() == Type::FloatTy) { - union { - unsigned I; - float F; - } V; - V.F = CFP->getValue(); - addRegOffset(BuildMI(BB, X86::MOV32mi, 5), - X86::ESP, ArgOffset).addImm(V.I); - } else { - union { - uint64_t I; - double F; - } V; - V.F = CFP->getValue(); - addRegOffset(BuildMI(BB, X86::MOV32mi, 5), - X86::ESP, ArgOffset).addImm((unsigned)V.I); - addRegOffset(BuildMI(BB, X86::MOV32mi, 5), - X86::ESP, ArgOffset+4).addImm(unsigned(V.I >> 32)); - ArgOffset += 4; // 8 byte entry, not 4. - } - } else { - ArgReg = Args[i].Val ? getReg(Args[i].Val) : Args[i].Reg; - if (Args[i].Ty == Type::FloatTy) { - addRegOffset(BuildMI(BB, X86::FST32m, 5), - X86::ESP, ArgOffset).addReg(ArgReg); - } else { - assert(Args[i].Ty == Type::DoubleTy && "Unknown FP type!"); - addRegOffset(BuildMI(BB, X86::FST64m, 5), - X86::ESP, ArgOffset).addReg(ArgReg); - ArgOffset += 4; // 8 byte entry, not 4. - } - } - break; - - default: assert(0 && "Unknown class!"); - } - ArgOffset += 4; - } - } else { - BuildMI(BB, X86::ADJCALLSTACKDOWN, 1).addImm(0); - } - - BB->push_back(CallMI); - - BuildMI(BB, X86::ADJCALLSTACKUP, 2).addImm(NumBytes).addImm(0); - - // If there is a return value, scavenge the result from the location the call - // leaves it in... - // - if (Ret.Ty != Type::VoidTy) { - unsigned DestClass = getClassB(Ret.Ty); - switch (DestClass) { - case cByte: - case cShort: - case cInt: { - // Integral results are in %eax, or the appropriate portion - // thereof. - static const unsigned regRegMove[] = { - X86::MOV8rr, X86::MOV16rr, X86::MOV32rr - }; - static const unsigned AReg[] = { X86::AL, X86::AX, X86::EAX }; - BuildMI(BB, regRegMove[DestClass], 1, Ret.Reg).addReg(AReg[DestClass]); - break; - } - case cFP: // Floating-point return values live in %ST(0) - BuildMI(BB, X86::FpGETRESULT, 1, Ret.Reg); - break; - case cLong: // Long values are left in EDX:EAX - BuildMI(BB, X86::MOV32rr, 1, Ret.Reg).addReg(X86::EAX); - BuildMI(BB, X86::MOV32rr, 1, Ret.Reg+1).addReg(X86::EDX); - break; - default: assert(0 && "Unknown class!"); - } - } -} - - -/// visitCallInst - Push args on stack and do a procedure call instruction. -void X86ISel::visitCallInst(CallInst &CI) { - MachineInstr *TheCall; - if (Function *F = CI.getCalledFunction()) { - // Is it an intrinsic function call? - if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID()) { - visitIntrinsicCall(ID, CI); // Special intrinsics are not handled here - return; - } else if (F->getName() == "fabs" || F->getName() == "fabsf") { - if (CI.getNumOperands() == 2 && // Basic sanity checks. - CI.getOperand(1)->getType()->isFloatingPoint() && - CI.getType() == CI.getOperand(1)->getType()) { - unsigned op1Reg = getReg(CI.getOperand(1)); - unsigned DestReg = getReg(CI); - BuildMI(BB, X86::FABS, 1, DestReg).addReg(op1Reg); - return; - } - } else if (F->getName() == "sin" && UnsafeFPMath || F->getName() == "sinf") { - if (CI.getNumOperands() == 2 && // Basic sanity checks. - CI.getOperand(1)->getType()->isFloatingPoint() && - CI.getType() == CI.getOperand(1)->getType()) { - unsigned op1Reg = getReg(CI.getOperand(1)); - unsigned DestReg = getReg(CI); - BuildMI(BB, X86::FSIN, 1, DestReg).addReg(op1Reg); - return; - } - } - else if (F->getName() == "cos" && UnsafeFPMath || F->getName() == "cosf") { - if (CI.getNumOperands() == 2 && // Basic sanity checks. - CI.getOperand(1)->getType()->isFloatingPoint() && - CI.getType() == CI.getOperand(1)->getType()) { - unsigned op1Reg = getReg(CI.getOperand(1)); - unsigned DestReg = getReg(CI); - BuildMI(BB, X86::FCOS, 1, DestReg).addReg(op1Reg); - return; - } - } - - // Emit a CALL instruction with PC-relative displacement. - TheCall = BuildMI(X86::CALLpcrel32, 1).addGlobalAddress(F, true); - } else { // Emit an indirect call... - unsigned Reg = getReg(CI.getCalledValue()); - TheCall = BuildMI(X86::CALL32r, 1).addReg(Reg); - } - - std::vector<ValueRecord> Args; - for (unsigned i = 1, e = CI.getNumOperands(); i != e; ++i) - Args.push_back(ValueRecord(CI.getOperand(i))); - - unsigned DestReg = CI.getType() != Type::VoidTy ? getReg(CI) : 0; - doCall(ValueRecord(DestReg, CI.getType()), TheCall, Args); -} - -/// LowerUnknownIntrinsicFunctionCalls - This performs a prepass over the -/// function, lowering any calls to unknown intrinsic functions into the -/// equivalent LLVM code. -/// -void X86ISel::LowerUnknownIntrinsicFunctionCalls(Function &F) { - for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) - for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ) - if (CallInst *CI = dyn_cast<CallInst>(I++)) - if (Function *F = CI->getCalledFunction()) - switch (F->getIntrinsicID()) { - case Intrinsic::not_intrinsic: - case Intrinsic::vastart: - case Intrinsic::vacopy: - case Intrinsic::vaend: - case Intrinsic::returnaddress: - case Intrinsic::frameaddress: - case Intrinsic::memcpy: - case Intrinsic::memset: - case Intrinsic::isunordered: - case Intrinsic::sqrt: - case Intrinsic::readport: - case Intrinsic::writeport: - // We directly implement these intrinsics - break; - case Intrinsic::readio: { - // On X86, memory operations are in-order. Lower this intrinsic - // into a volatile load. - LoadInst * LI = new LoadInst(CI->getOperand(1), "", true, CI); - CI->replaceAllUsesWith(LI); - BB->getInstList().erase(CI); - break; - } - case Intrinsic::writeio: { - // On X86, memory operations are in-order. Lower this intrinsic - // into a volatile store. - StoreInst *LI = new StoreInst(CI->getOperand(1), - CI->getOperand(2), true, CI); - CI->replaceAllUsesWith(LI); - BB->getInstList().erase(CI); - break; - } - default: - // All other intrinsic calls we must lower. - Instruction *Before = CI->getPrev(); - TM.getIntrinsicLowering().LowerIntrinsicCall(CI); - if (Before) { // Move iterator to instruction after call - I = Before; ++I; - } else { - I = BB->begin(); - } - } -} - -void X86ISel::visitIntrinsicCall(Intrinsic::ID ID, CallInst &CI) { - unsigned TmpReg1, TmpReg2; - switch (ID) { - case Intrinsic::vastart: - //FIXME: store to first arg, don't return - // Get the address of the first vararg value... - TmpReg1 = getReg(CI); - addFrameReference(BuildMI(BB, X86::LEA32r, 5, TmpReg1), VarArgsFrameIndex); - return; - - case Intrinsic::vacopy: - //FIXME: copy val of second into first (which is a ptr) - TmpReg1 = getReg(CI); - TmpReg2 = getReg(CI.getOperand(1)); - BuildMI(BB, X86::MOV32rr, 1, TmpReg1).addReg(TmpReg2); - return; - case Intrinsic::vaend: return; // Noop on X86 - - case Intrinsic::returnaddress: - case Intrinsic::frameaddress: - TmpReg1 = getReg(CI); - if (cast<Constant>(CI.getOperand(1))->isNullValue()) { - if (ReturnAddressIndex == 0) { - // Set up a frame object for the return address. - ReturnAddressIndex = F->getFrameInfo()->CreateFixedObject(4, -4); - } - - if (ID == Intrinsic::returnaddress) { - // Just load the return address - addFrameReference(BuildMI(BB, X86::MOV32rm, 4, TmpReg1), - ReturnAddressIndex); - } else { - addFrameReference(BuildMI(BB, X86::LEA32r, 4, TmpReg1), - ReturnAddressIndex, -4); - } - } else { - // Values other than zero are not implemented yet. - BuildMI(BB, X86::MOV32ri, 1, TmpReg1).addImm(0); - } - return; - - case Intrinsic::isunordered: - TmpReg1 = getReg(CI.getOperand(1)); - TmpReg2 = getReg(CI.getOperand(2)); - emitUCOMr(BB, BB->end(), TmpReg2, TmpReg1); - TmpReg2 = getReg(CI); - BuildMI(BB, X86::SETPr, 0, TmpReg2); - return; - - case Intrinsic::sqrt: - TmpReg1 = getReg(CI.getOperand(1)); - TmpReg2 = getReg(CI); - BuildMI(BB, X86::FSQRT, 1, TmpReg2).addReg(TmpReg1); - return; - - case Intrinsic::memcpy: { - assert(CI.getNumOperands() == 5 && "Illegal llvm.memcpy call!"); - unsigned Align = 1; - if (ConstantInt *AlignC = dyn_cast<ConstantInt>(CI.getOperand(4))) { - Align = AlignC->getRawValue(); - if (Align == 0) Align = 1; - } - - // Turn the byte code into # iterations - unsigned CountReg; - unsigned Opcode; - switch (Align & 3) { - case 2: // WORD aligned - if (ConstantInt *I = dyn_cast<ConstantInt>(CI.getOperand(3))) { - CountReg = getReg(ConstantUInt::get(Type::UIntTy, I->getRawValue()/2)); - } else { - CountReg = makeAnotherReg(Type::IntTy); - unsigned ByteReg = getReg(CI.getOperand(3)); - BuildMI(BB, X86::SHR32ri, 2, CountReg).addReg(ByteReg).addImm(1); - } - Opcode = X86::REP_MOVSW; - break; - case 0: // DWORD aligned - if (ConstantInt *I = dyn_cast<ConstantInt>(CI.getOperand(3))) { - CountReg = getReg(ConstantUInt::get(Type::UIntTy, I->getRawValue()/4)); - } else { - CountReg = makeAnotherReg(Type::IntTy); - unsigned ByteReg = getReg(CI.getOperand(3)); - BuildMI(BB, X86::SHR32ri, 2, CountReg).addReg(ByteReg).addImm(2); - } - Opcode = X86::REP_MOVSD; - break; - default: // BYTE aligned - CountReg = getReg(CI.getOperand(3)); - Opcode = X86::REP_MOVSB; - break; - } - - // No matter what the alignment is, we put the source in ESI, the - // destination in EDI, and the count in ECX. - TmpReg1 = getReg(CI.getOperand(1)); - TmpReg2 = getReg(CI.getOperand(2)); - BuildMI(BB, X86::MOV32rr, 1, X86::ECX).addReg(CountReg); - BuildMI(BB, X86::MOV32rr, 1, X86::EDI).addReg(TmpReg1); - BuildMI(BB, X86::MOV32rr, 1, X86::ESI).addReg(TmpReg2); - BuildMI(BB, Opcode, 0); - return; - } - case Intrinsic::memset: { - assert(CI.getNumOperands() == 5 && "Illegal llvm.memset call!"); - unsigned Align = 1; - if (ConstantInt *AlignC = dyn_cast<ConstantInt>(CI.getOperand(4))) { - Align = AlignC->getRawValue(); - if (Align == 0) Align = 1; - } - - // Turn the byte code into # iterations - unsigned CountReg; - unsigned Opcode; - if (ConstantInt *ValC = dyn_cast<ConstantInt>(CI.getOperand(2))) { - unsigned Val = ValC->getRawValue() & 255; - - // If the value is a constant, then we can potentially use larger copies. - switch (Align & 3) { - case 2: // WORD aligned - if (ConstantInt *I = dyn_cast<ConstantInt>(CI.getOperand(3))) { - CountReg =getReg(ConstantUInt::get(Type::UIntTy, I->getRawValue()/2)); - } else { - CountReg = makeAnotherReg(Type::IntTy); - unsigned ByteReg = getReg(CI.getOperand(3)); - BuildMI(BB, X86::SHR32ri, 2, CountReg).addReg(ByteReg).addImm(1); - } - BuildMI(BB, X86::MOV16ri, 1, X86::AX).addImm((Val << 8) | Val); - Opcode = X86::REP_STOSW; - break; - case 0: // DWORD aligned - if (ConstantInt *I = dyn_cast<ConstantInt>(CI.getOperand(3))) { - CountReg =getReg(ConstantUInt::get(Type::UIntTy, I->getRawValue()/4)); - } else { - CountReg = makeAnotherReg(Type::IntTy); - unsigned ByteReg = getReg(CI.getOperand(3)); - BuildMI(BB, X86::SHR32ri, 2, CountReg).addReg(ByteReg).addImm(2); - } - Val = (Val << 8) | Val; - BuildMI(BB, X86::MOV32ri, 1, X86::EAX).addImm((Val << 16) | Val); - Opcode = X86::REP_STOSD; - break; - default: // BYTE aligned - CountReg = getReg(CI.getOperand(3)); - BuildMI(BB, X86::MOV8ri, 1, X86::AL).addImm(Val); - Opcode = X86::REP_STOSB; - break; - } - } else { - // If it's not a constant value we are storing, just fall back. We could - // try to be clever to form 16 bit and 32 bit values, but we don't yet. - unsigned ValReg = getReg(CI.getOperand(2)); - BuildMI(BB, X86::MOV8rr, 1, X86::AL).addReg(ValReg); - CountReg = getReg(CI.getOperand(3)); - Opcode = X86::REP_STOSB; - } - - // No matter what the alignment is, we put the source in ESI, the - // destination in EDI, and the count in ECX. - TmpReg1 = getReg(CI.getOperand(1)); - //TmpReg2 = getReg(CI.getOperand(2)); - BuildMI(BB, X86::MOV32rr, 1, X86::ECX).addReg(CountReg); - BuildMI(BB, X86::MOV32rr, 1, X86::EDI).addReg(TmpReg1); - BuildMI(BB, Opcode, 0); - return; - } - - case Intrinsic::readport: { - // First, determine that the size of the operand falls within the acceptable - // range for this architecture. - // - if (getClassB(CI.getOperand(1)->getType()) != cShort) { - std::cerr << "llvm.readport: Address size is not 16 bits\n"; - exit(1); - } - - // Now, move the I/O port address into the DX register and use the IN - // instruction to get the input data. - // - unsigned Class = getClass(CI.getCalledFunction()->getReturnType()); - unsigned DestReg = getReg(CI); - - // If the port is a single-byte constant, use the immediate form. - if (ConstantInt *C = dyn_cast<ConstantInt>(CI.getOperand(1))) - if ((C->getRawValue() & 255) == C->getRawValue()) { - switch (Class) { - case cByte: - BuildMI(BB, X86::IN8ri, 1).addImm((unsigned char)C->getRawValue()); - BuildMI(BB, X86::MOV8rr, 1, DestReg).addReg(X86::AL); - return; - case cShort: - BuildMI(BB, X86::IN16ri, 1).addImm((unsigned char)C->getRawValue()); - BuildMI(BB, X86::MOV8rr, 1, DestReg).addReg(X86::AX); - return; - case cInt: - BuildMI(BB, X86::IN32ri, 1).addImm((unsigned char)C->getRawValue()); - BuildMI(BB, X86::MOV8rr, 1, DestReg).addReg(X86::EAX); - return; - } - } - - unsigned Reg = getReg(CI.getOperand(1)); - BuildMI(BB, X86::MOV16rr, 1, X86::DX).addReg(Reg); - switch (Class) { - case cByte: - BuildMI(BB, X86::IN8rr, 0); - BuildMI(BB, X86::MOV8rr, 1, DestReg).addReg(X86::AL); - break; - case cShort: - BuildMI(BB, X86::IN16rr, 0); - BuildMI(BB, X86::MOV16rr, 1, DestReg).addReg(X86::AX); - break; - case cInt: - BuildMI(BB, X86::IN32rr, 0); - BuildMI(BB, X86::MOV32rr, 1, DestReg).addReg(X86::EAX); - break; - default: - std::cerr << "Cannot do input on this data type"; - exit (1); - } - return; - } - - case Intrinsic::writeport: { - // First, determine that the size of the operand falls within the - // acceptable range for this architecture. - if (getClass(CI.getOperand(2)->getType()) != cShort) { - std::cerr << "llvm.writeport: Address size is not 16 bits\n"; - exit(1); - } - - unsigned Class = getClassB(CI.getOperand(1)->getType()); - unsigned ValReg = getReg(CI.getOperand(1)); - switch (Class) { - case cByte: - BuildMI(BB, X86::MOV8rr, 1, X86::AL).addReg(ValReg); - break; - case cShort: - BuildMI(BB, X86::MOV16rr, 1, X86::AX).addReg(ValReg); - break; - case cInt: - BuildMI(BB, X86::MOV32rr, 1, X86::EAX).addReg(ValReg); - break; - default: - std::cerr << "llvm.writeport: invalid data type for X86 target"; - exit(1); - } - - - // If the port is a single-byte constant, use the immediate form. - if (ConstantInt *C = dyn_cast<ConstantInt>(CI.getOperand(2))) - if ((C->getRawValue() & 255) == C->getRawValue()) { - static const unsigned O[] = { X86::OUT8ir, X86::OUT16ir, X86::OUT32ir }; - BuildMI(BB, O[Class], 1).addImm((unsigned char)C->getRawValue()); - return; - } - - // Otherwise, move the I/O port address into the DX register and the value - // to write into the AL/AX/EAX register. - static const unsigned Opc[] = { X86::OUT8rr, X86::OUT16rr, X86::OUT32rr }; - unsigned Reg = getReg(CI.getOperand(2)); - BuildMI(BB, X86::MOV16rr, 1, X86::DX).addReg(Reg); - BuildMI(BB, Opc[Class], 0); - return; - } - - default: assert(0 && "Error: unknown intrinsics should have been lowered!"); - } -} - -static bool isSafeToFoldLoadIntoInstruction(LoadInst &LI, Instruction &User) { - if (LI.getParent() != User.getParent()) - return false; - BasicBlock::iterator It = &LI; - // Check all of the instructions between the load and the user. We should - // really use alias analysis here, but for now we just do something simple. - for (++It; It != BasicBlock::iterator(&User); ++It) { - switch (It->getOpcode()) { - case Instruction::Free: - case Instruction::Store: - case Instruction::Call: - case Instruction::Invoke: - return false; - case Instruction::Load: - if (cast<LoadInst>(It)->isVolatile() && LI.isVolatile()) - return false; - break; - } - } - return true; -} - -/// visitSimpleBinary - Implement simple binary operators for integral types... -/// OperatorClass is one of: 0 for Add, 1 for Sub, 2 for And, 3 for Or, 4 for -/// Xor. -/// -void X86ISel::visitSimpleBinary(BinaryOperator &B, unsigned OperatorClass) { - unsigned DestReg = getReg(B); - MachineBasicBlock::iterator MI = BB->end(); - Value *Op0 = B.getOperand(0), *Op1 = B.getOperand(1); - unsigned Class = getClassB(B.getType()); - - // If this is AND X, C, and it is only used by a setcc instruction, it will - // be folded. There is no need to emit this instruction. - if (B.hasOneUse() && OperatorClass == 2 && isa<ConstantInt>(Op1)) - if (Class == cByte || Class == cShort || Class == cInt) { - Instruction *Use = cast<Instruction>(B.use_back()); - if (isa<SetCondInst>(Use) && - Use->getOperand(1) == Constant::getNullValue(B.getType())) { - switch (getSetCCNumber(Use->getOpcode())) { - case 0: - case 1: - return; - default: - if (B.getType()->isSigned()) return; - } - } - } - - // Special case: op Reg, load [mem] - if (isa<LoadInst>(Op0) && !isa<LoadInst>(Op1) && Class != cLong && - Op0->hasOneUse() && - isSafeToFoldLoadIntoInstruction(*cast<LoadInst>(Op0), B)) - if (!B.swapOperands()) - std::swap(Op0, Op1); // Make sure any loads are in the RHS. - - if (isa<LoadInst>(Op1) && Class != cLong && Op1->hasOneUse() && - isSafeToFoldLoadIntoInstruction(*cast<LoadInst>(Op1), B)) { - - unsigned Opcode; - if (Class != cFP) { - static const unsigned OpcodeTab[][3] = { - // Arithmetic operators - { X86::ADD8rm, X86::ADD16rm, X86::ADD32rm }, // ADD - { X86::SUB8rm, X86::SUB16rm, X86::SUB32rm }, // SUB - - // Bitwise operators - { X86::AND8rm, X86::AND16rm, X86::AND32rm }, // AND - { X86:: OR8rm, X86:: OR16rm, X86:: OR32rm }, // OR - { X86::XOR8rm, X86::XOR16rm, X86::XOR32rm }, // XOR - }; - Opcode = OpcodeTab[OperatorClass][Class]; - } else { - static const unsigned OpcodeTab[][2] = { - { X86::FADD32m, X86::FADD64m }, // ADD - { X86::FSUB32m, X86::FSUB64m }, // SUB - }; - const Type *Ty = Op0->getType(); - assert(Ty == Type::FloatTy || Ty == Type::DoubleTy && "Unknown FP type!"); - Opcode = OpcodeTab[OperatorClass][Ty == Type::DoubleTy]; - } - - unsigned Op0r = getReg(Op0); - if (AllocaInst *AI = - dyn_castFixedAlloca(cast<LoadInst>(Op1)->getOperand(0))) { - unsigned FI = getFixedSizedAllocaFI(AI); - addFrameReference(BuildMI(BB, Opcode, 5, DestReg).addReg(Op0r), FI); - - } else { - X86AddressMode AM; - getAddressingMode(cast<LoadInst>(Op1)->getOperand(0), AM); - - addFullAddress(BuildMI(BB, Opcode, 5, DestReg).addReg(Op0r), AM); - } - return; - } - - // If this is a floating point subtract, check to see if we can fold the first - // operand in. - if (Class == cFP && OperatorClass == 1 && - isa<LoadInst>(Op0) && - isSafeToFoldLoadIntoInstruction(*cast<LoadInst>(Op0), B)) { - const Type *Ty = Op0->getType(); - assert(Ty == Type::FloatTy || Ty == Type::DoubleTy && "Unknown FP type!"); - unsigned Opcode = Ty == Type::FloatTy ? X86::FSUBR32m : X86::FSUBR64m; - - unsigned Op1r = getReg(Op1); - if (AllocaInst *AI = - dyn_castFixedAlloca(cast<LoadInst>(Op0)->getOperand(0))) { - unsigned FI = getFixedSizedAllocaFI(AI); - addFrameReference(BuildMI(BB, Opcode, 5, DestReg).addReg(Op1r), FI); - } else { - X86AddressMode AM; - getAddressingMode(cast<LoadInst>(Op0)->getOperand(0), AM); - - addFullAddress(BuildMI(BB, Opcode, 5, DestReg).addReg(Op1r), AM); - } - return; - } - - emitSimpleBinaryOperation(BB, MI, Op0, Op1, OperatorClass, DestReg); -} - - -/// emitBinaryFPOperation - This method handles emission of floating point -/// Add (0), Sub (1), Mul (2), and Div (3) operations. -void X86ISel::emitBinaryFPOperation(MachineBasicBlock *BB, - MachineBasicBlock::iterator IP, - Value *Op0, Value *Op1, - unsigned OperatorClass, unsigned DestReg) { - // Special case: op Reg, <const fp> - if (ConstantFP *Op1C = dyn_cast<ConstantFP>(Op1)) - if (!Op1C->isExactlyValue(+0.0) && !Op1C->isExactlyValue(+1.0)) { - // Create a constant pool entry for this constant. - MachineConstantPool *CP = F->getConstantPool(); - unsigned CPI = CP->getConstantPoolIndex(Op1C); - const Type *Ty = Op1->getType(); - - static const unsigned OpcodeTab[][4] = { - { X86::FADD32m, X86::FSUB32m, X86::FMUL32m, X86::FDIV32m }, // Float - { X86::FADD64m, X86::FSUB64m, X86::FMUL64m, X86::FDIV64m }, // Double - }; - - assert(Ty == Type::FloatTy || Ty == Type::DoubleTy && "Unknown FP type!"); - unsigned Opcode = OpcodeTab[Ty != Type::FloatTy][OperatorClass]; - unsigned Op0r = getReg(Op0, BB, IP); - addConstantPoolReference(BuildMI(*BB, IP, Opcode, 5, - DestReg).addReg(Op0r), CPI); - return; - } - - // Special case: R1 = op <const fp>, R2 - if (ConstantFP *CFP = dyn_cast<ConstantFP>(Op0)) - if (CFP->isExactlyValue(-0.0) && OperatorClass == 1) { - // -0.0 - X === -X - unsigned op1Reg = getReg(Op1, BB, IP); - BuildMI(*BB, IP, X86::FCHS, 1, DestReg).addReg(op1Reg); - return; - } else if (!CFP->isExactlyValue(+0.0) && !CFP->isExactlyValue(+1.0)) { - // R1 = op CST, R2 --> R1 = opr R2, CST - - // Create a constant pool entry for this constant. - MachineConstantPool *CP = F->getConstantPool(); - unsigned CPI = CP->getConstantPoolIndex(CFP); - const Type *Ty = CFP->getType(); - - static const unsigned OpcodeTab[][4] = { - { X86::FADD32m, X86::FSUBR32m, X86::FMUL32m, X86::FDIVR32m }, // Float - { X86::FADD64m, X86::FSUBR64m, X86::FMUL64m, X86::FDIVR64m }, // Double - }; - - assert(Ty == Type::FloatTy||Ty == Type::DoubleTy && "Unknown FP type!"); - unsigned Opcode = OpcodeTab[Ty != Type::FloatTy][OperatorClass]; - unsigned Op1r = getReg(Op1, BB, IP); - addConstantPoolReference(BuildMI(*BB, IP, Opcode, 5, - DestReg).addReg(Op1r), CPI); - return; - } - - // General case. - static const unsigned OpcodeTab[4] = { - X86::FpADD, X86::FpSUB, X86::FpMUL, X86::FpDIV - }; - - unsigned Opcode = OpcodeTab[OperatorClass]; - unsigned Op0r = getReg(Op0, BB, IP); - unsigned Op1r = getReg(Op1, BB, IP); - BuildMI(*BB, IP, Opcode, 2, DestReg).addReg(Op0r).addReg(Op1r); -} - -/// emitSimpleBinaryOperation - Implement simple binary operators for integral -/// types... OperatorClass is one of: 0 for Add, 1 for Sub, 2 for And, 3 for -/// Or, 4 for Xor. -/// -/// emitSimpleBinaryOperation - Common code shared between visitSimpleBinary -/// and constant expression support. -/// -void X86ISel::emitSimpleBinaryOperation(MachineBasicBlock *MBB, - MachineBasicBlock::iterator IP, - Value *Op0, Value *Op1, - unsigned OperatorClass, - unsigned DestReg) { - unsigned Class = getClassB(Op0->getType()); - - if (Class == cFP) { - assert(OperatorClass < 2 && "No logical ops for FP!"); - emitBinaryFPOperation(MBB, IP, Op0, Op1, OperatorClass, DestReg); - return; - } - - if (ConstantInt *CI = dyn_cast<ConstantInt>(Op0)) - if (OperatorClass == 1) { - static unsigned const NEGTab[] = { - X86::NEG8r, X86::NEG16r, X86::NEG32r, 0, X86::NEG32r - }; - - // sub 0, X -> neg X - if (CI->isNullValue()) { - unsigned op1Reg = getReg(Op1, MBB, IP); - BuildMI(*MBB, IP, NEGTab[Class], 1, DestReg).addReg(op1Reg); - - if (Class == cLong) { - // We just emitted: Dl = neg Sl - // Now emit : T = addc Sh, 0 - // : Dh = neg T - unsigned T = makeAnotherReg(Type::IntTy); - BuildMI(*MBB, IP, X86::ADC32ri, 2, T).addReg(op1Reg+1).addImm(0); - BuildMI(*MBB, IP, X86::NEG32r, 1, DestReg+1).addReg(T); - } - return; - } else if (Op1->hasOneUse() && Class != cLong) { - // sub C, X -> tmp = neg X; DestReg = add tmp, C. This is better - // than copying C into a temporary register, because of register - // pressure (tmp and destreg can share a register. - static unsigned const ADDRITab[] = { - X86::ADD8ri, X86::ADD16ri, X86::ADD32ri, 0, X86::ADD32ri - }; - unsigned op1Reg = getReg(Op1, MBB, IP); - unsigned Tmp = makeAnotherReg(Op0->getType()); - BuildMI(*MBB, IP, NEGTab[Class], 1, Tmp).addReg(op1Reg); - BuildMI(*MBB, IP, ADDRITab[Class], 2, - DestReg).addReg(Tmp).addImm(CI->getRawValue()); - return; - } - } - - // Special case: op Reg, <const int> - if (ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) { - unsigned Op0r = getReg(Op0, MBB, IP); - - // xor X, -1 -> not X - if (OperatorClass == 4 && Op1C->isAllOnesValue()) { - static unsigned const NOTTab[] = { - X86::NOT8r, X86::NOT16r, X86::NOT32r, 0, X86::NOT32r - }; - BuildMI(*MBB, IP, NOTTab[Class], 1, DestReg).addReg(Op0r); - if (Class == cLong) // Invert the top part too - BuildMI(*MBB, IP, X86::NOT32r, 1, DestReg+1).addReg(Op0r+1); - return; - } - - // add X, -1 -> dec X - if (OperatorClass == 0 && Op1C->isAllOnesValue() && Class != cLong) { - // Note that we can't use dec for 64-bit decrements, because it does not - // set the carry flag! - static unsigned const DECTab[] = { X86::DEC8r, X86::DEC16r, X86::DEC32r }; - BuildMI(*MBB, IP, DECTab[Class], 1, DestReg).addReg(Op0r); - return; - } - - // add X, 1 -> inc X - if (OperatorClass == 0 && Op1C->equalsInt(1) && Class != cLong) { - // Note that we can't use inc for 64-bit increments, because it does not - // set the carry flag! - static unsigned const INCTab[] = { X86::INC8r, X86::INC16r, X86::INC32r }; - BuildMI(*MBB, IP, INCTab[Class], 1, DestReg).addReg(Op0r); - return; - } - - static const unsigned OpcodeTab[][5] = { - // Arithmetic operators - { X86::ADD8ri, X86::ADD16ri, X86::ADD32ri, 0, X86::ADD32ri }, // ADD - { X86::SUB8ri, X86::SUB16ri, X86::SUB32ri, 0, X86::SUB32ri }, // SUB - - // Bitwise operators - { X86::AND8ri, X86::AND16ri, X86::AND32ri, 0, X86::AND32ri }, // AND - { X86:: OR8ri, X86:: OR16ri, X86:: OR32ri, 0, X86::OR32ri }, // OR - { X86::XOR8ri, X86::XOR16ri, X86::XOR32ri, 0, X86::XOR32ri }, // XOR - }; - - unsigned Opcode = OpcodeTab[OperatorClass][Class]; - unsigned Op1l = cast<ConstantInt>(Op1C)->getRawValue(); - - if (Class != cLong) { - BuildMI(*MBB, IP, Opcode, 2, DestReg).addReg(Op0r).addImm(Op1l); - return; - } - - // If this is a long value and the high or low bits have a special - // property, emit some special cases. - unsigned Op1h = cast<ConstantInt>(Op1C)->getRawValue() >> 32LL; - - // If the constant is zero in the low 32-bits, just copy the low part - // across and apply the normal 32-bit operation to the high parts. There - // will be no carry or borrow into the top. - if (Op1l == 0) { - if (OperatorClass != 2) // All but and... - BuildMI(*MBB, IP, X86::MOV32rr, 1, DestReg).addReg(Op0r); - else - BuildMI(*MBB, IP, X86::MOV32ri, 1, DestReg).addImm(0); - BuildMI(*MBB, IP, OpcodeTab[OperatorClass][cLong], 2, DestReg+1) - .addReg(Op0r+1).addImm(Op1h); - return; - } - - // If this is a logical operation and the top 32-bits are zero, just - // operate on the lower 32. - if (Op1h == 0 && OperatorClass > 1) { - BuildMI(*MBB, IP, OpcodeTab[OperatorClass][cLong], 2, DestReg) - .addReg(Op0r).addImm(Op1l); - if (OperatorClass != 2) // All but and - BuildMI(*MBB, IP, X86::MOV32rr, 1, DestReg+1).addReg(Op0r+1); - else - BuildMI(*MBB, IP, X86::MOV32ri, 1, DestReg+1).addImm(0); - return; - } - - // TODO: We could handle lots of other special cases here, such as AND'ing - // with 0xFFFFFFFF00000000 -> noop, etc. - - // Otherwise, code generate the full operation with a constant. - static const unsigned TopTab[] = { - X86::ADC32ri, X86::SBB32ri, X86::AND32ri, X86::OR32ri, X86::XOR32ri - }; - - BuildMI(*MBB, IP, Opcode, 2, DestReg).addReg(Op0r).addImm(Op1l); - BuildMI(*MBB, IP, TopTab[OperatorClass], 2, DestReg+1) - .addReg(Op0r+1).addImm(Op1h); - return; - } - - // Finally, handle the general case now. - static const unsigned OpcodeTab[][5] = { - // Arithmetic operators - { X86::ADD8rr, X86::ADD16rr, X86::ADD32rr, 0, X86::ADD32rr }, // ADD - { X86::SUB8rr, X86::SUB16rr, X86::SUB32rr, 0, X86::SUB32rr }, // SUB - - // Bitwise operators - { X86::AND8rr, X86::AND16rr, X86::AND32rr, 0, X86::AND32rr }, // AND - { X86:: OR8rr, X86:: OR16rr, X86:: OR32rr, 0, X86:: OR32rr }, // OR - { X86::XOR8rr, X86::XOR16rr, X86::XOR32rr, 0, X86::XOR32rr }, // XOR - }; - - unsigned Opcode = OpcodeTab[OperatorClass][Class]; - unsigned Op0r = getReg(Op0, MBB, IP); - unsigned Op1r = getReg(Op1, MBB, IP); - BuildMI(*MBB, IP, Opcode, 2, DestReg).addReg(Op0r).addReg(Op1r); - - if (Class == cLong) { // Handle the upper 32 bits of long values... - static const unsigned TopTab[] = { - X86::ADC32rr, X86::SBB32rr, X86::AND32rr, X86::OR32rr, X86::XOR32rr - }; - BuildMI(*MBB, IP, TopTab[OperatorClass], 2, - DestReg+1).addReg(Op0r+1).addReg(Op1r+1); - } -} - -/// doMultiply - Emit appropriate instructions to multiply together the -/// registers op0Reg and op1Reg, and put the result in DestReg. The type of the -/// result should be given as DestTy. -/// -void X86ISel::doMultiply(MachineBasicBlock *MBB, - MachineBasicBlock::iterator MBBI, - unsigned DestReg, const Type *DestTy, - unsigned op0Reg, unsigned op1Reg) { - unsigned Class = getClass(DestTy); - switch (Class) { - case cInt: - case cShort: - BuildMI(*MBB, MBBI, Class == cInt ? X86::IMUL32rr:X86::IMUL16rr, 2, DestReg) - .addReg(op0Reg).addReg(op1Reg); - return; - case cByte: - // Must use the MUL instruction, which forces use of AL... - BuildMI(*MBB, MBBI, X86::MOV8rr, 1, X86::AL).addReg(op0Reg); - BuildMI(*MBB, MBBI, X86::MUL8r, 1).addReg(op1Reg); - BuildMI(*MBB, MBBI, X86::MOV8rr, 1, DestReg).addReg(X86::AL); - return; - default: - case cLong: assert(0 && "doMultiply cannot operate on LONG values!"); - } -} - -/// doMultiplyConst - This function is specialized to efficiently codegen an 8, -/// 16, or 32-bit integer multiply by a constant. -void X86ISel::doMultiplyConst(MachineBasicBlock *MBB, - MachineBasicBlock::iterator IP, - unsigned DestReg, const Type *DestTy, - unsigned op0Reg, unsigned ConstRHS) { - static const unsigned MOVrrTab[] = {X86::MOV8rr, X86::MOV16rr, X86::MOV32rr}; - static const unsigned MOVriTab[] = {X86::MOV8ri, X86::MOV16ri, X86::MOV32ri}; - static const unsigned ADDrrTab[] = {X86::ADD8rr, X86::ADD16rr, X86::ADD32rr}; - static const unsigned NEGrTab[] = {X86::NEG8r , X86::NEG16r , X86::NEG32r }; - - unsigned Class = getClass(DestTy); - unsigned TmpReg; - - // Handle special cases here. - switch (ConstRHS) { - case -2: - TmpReg = makeAnotherReg(DestTy); - BuildMI(*MBB, IP, NEGrTab[Class], 1, TmpReg).addReg(op0Reg); - BuildMI(*MBB, IP, ADDrrTab[Class], 1,DestReg).addReg(TmpReg).addReg(TmpReg); - return; - case -1: - BuildMI(*MBB, IP, NEGrTab[Class], 1, DestReg).addReg(op0Reg); - return; - case 0: - BuildMI(*MBB, IP, MOVriTab[Class], 1, DestReg).addImm(0); - return; - case 1: - BuildMI(*MBB, IP, MOVrrTab[Class], 1, DestReg).addReg(op0Reg); - return; - case 2: - BuildMI(*MBB, IP, ADDrrTab[Class], 1,DestReg).addReg(op0Reg).addReg(op0Reg); - return; - case 3: - case 5: - case 9: - if (Class == cInt) { - X86AddressMode AM; - AM.BaseType = X86AddressMode::RegBase; - AM.Base.Reg = op0Reg; - AM.Scale = ConstRHS-1; - AM.IndexReg = op0Reg; - AM.Disp = 0; - addFullAddress(BuildMI(*MBB, IP, X86::LEA32r, 5, DestReg), AM); - return; - } - case -3: - case -5: - case -9: - if (Class == cInt) { - TmpReg = makeAnotherReg(DestTy); - X86AddressMode AM; - AM.BaseType = X86AddressMode::RegBase; - AM.Base.Reg = op0Reg; - AM.Scale = -ConstRHS-1; - AM.IndexReg = op0Reg; - AM.Disp = 0; - addFullAddress(BuildMI(*MBB, IP, X86::LEA32r, 5, TmpReg), AM); - BuildMI(*MBB, IP, NEGrTab[Class], 1, DestReg).addReg(TmpReg); - return; - } - } - - // If the element size is exactly a power of 2, use a shift to get it. - if (isPowerOf2_32(ConstRHS)) { - unsigned Shift = Log2_32(ConstRHS); - switch (Class) { - default: assert(0 && "Unknown class for this function!"); - case cByte: - BuildMI(*MBB, IP, X86::SHL8ri,2, DestReg).addReg(op0Reg).addImm(Shift); - return; - case cShort: - BuildMI(*MBB, IP, X86::SHL16ri,2, DestReg).addReg(op0Reg).addImm(Shift); - return; - case cInt: - BuildMI(*MBB, IP, X86::SHL32ri,2, DestReg).addReg(op0Reg).addImm(Shift); - return; - } - } - - // If the element size is a negative power of 2, use a shift/neg to get it. - if (isPowerOf2_32(-ConstRHS)) { - unsigned Shift = Log2_32(-ConstRHS); - TmpReg = makeAnotherReg(DestTy); - BuildMI(*MBB, IP, NEGrTab[Class], 1, TmpReg).addReg(op0Reg); - switch (Class) { - default: assert(0 && "Unknown class for this function!"); - case cByte: - BuildMI(*MBB, IP, X86::SHL8ri,2, DestReg).addReg(TmpReg).addImm(Shift); - return; - case cShort: - BuildMI(*MBB, IP, X86::SHL16ri,2, DestReg).addReg(TmpReg).addImm(Shift); - return; - case cInt: - BuildMI(*MBB, IP, X86::SHL32ri,2, DestReg).addReg(TmpReg).addImm(Shift); - return; - } - } - - if (Class == cShort) { - BuildMI(*MBB, IP, X86::IMUL16rri,2,DestReg).addReg(op0Reg).addImm(ConstRHS); - return; - } else if (Class == cInt) { - BuildMI(*MBB, IP, X86::IMUL32rri,2,DestReg).addReg(op0Reg).addImm(ConstRHS); - return; - } - - // Most general case, emit a normal multiply... - TmpReg = makeAnotherReg(DestTy); - BuildMI(*MBB, IP, MOVriTab[Class], 1, TmpReg).addImm(ConstRHS); - - // Emit a MUL to multiply the register holding the index by - // elementSize, putting the result in OffsetReg. - doMultiply(MBB, IP, DestReg, DestTy, op0Reg, TmpReg); -} - -/// visitMul - Multiplies are not simple binary operators because they must deal -/// with the EAX register explicitly. -/// -void X86ISel::visitMul(BinaryOperator &I) { - unsigned ResultReg = getReg(I); - - Value *Op0 = I.getOperand(0); - Value *Op1 = I.getOperand(1); - - // Fold loads into floating point multiplies. - if (getClass(Op0->getType()) == cFP) { - if (isa<LoadInst>(Op0) && !isa<LoadInst>(Op1)) - if (!I.swapOperands()) - std::swap(Op0, Op1); // Make sure any loads are in the RHS. - if (LoadInst *LI = dyn_cast<LoadInst>(Op1)) - if (isSafeToFoldLoadIntoInstruction(*LI, I)) { - const Type *Ty = Op0->getType(); - assert(Ty == Type::FloatTy||Ty == Type::DoubleTy && "Unknown FP type!"); - unsigned Opcode = Ty == Type::FloatTy ? X86::FMUL32m : X86::FMUL64m; - - unsigned Op0r = getReg(Op0); - if (AllocaInst *AI = dyn_castFixedAlloca(LI->getOperand(0))) { - unsigned FI = getFixedSizedAllocaFI(AI); - addFrameReference(BuildMI(BB, Opcode, 5, ResultReg).addReg(Op0r), FI); - } else { - X86AddressMode AM; - getAddressingMode(LI->getOperand(0), AM); - - addFullAddress(BuildMI(BB, Opcode, 5, ResultReg).addReg(Op0r), AM); - } - return; - } - } - - MachineBasicBlock::iterator IP = BB->end(); - emitMultiply(BB, IP, Op0, Op1, ResultReg); -} - -void X86ISel::emitMultiply(MachineBasicBlock *MBB, - MachineBasicBlock::iterator IP, - Value *Op0, Value *Op1, unsigned DestReg) { - MachineBasicBlock &BB = *MBB; - TypeClass Class = getClass(Op0->getType()); - - // Simple scalar multiply? - unsigned Op0Reg = getReg(Op0, &BB, IP); - switch (Class) { - case cByte: - case cShort: - case cInt: - if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) { - unsigned Val = (unsigned)CI->getRawValue(); // Isn't a 64-bit constant - doMultiplyConst(&BB, IP, DestReg, Op0->getType(), Op0Reg, Val); - } else { - unsigned Op1Reg = getReg(Op1, &BB, IP); - doMultiply(&BB, IP, DestReg, Op1->getType(), Op0Reg, Op1Reg); - } - return; - case cFP: - emitBinaryFPOperation(MBB, IP, Op0, Op1, 2, DestReg); - return; - case cLong: - break; - } - - // Long value. We have to do things the hard way... - if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) { - unsigned CLow = CI->getRawValue(); - unsigned CHi = CI->getRawValue() >> 32; - - if (CLow == 0) { - // If the low part of the constant is all zeros, things are simple. - BuildMI(BB, IP, X86::MOV32ri, 1, DestReg).addImm(0); - doMultiplyConst(&BB, IP, DestReg+1, Type::UIntTy, Op0Reg, CHi); - return; - } - - // Multiply the two low parts... capturing carry into EDX - unsigned OverflowReg = 0; - if (CLow == 1) { - BuildMI(BB, IP, X86::MOV32rr, 1, DestReg).addReg(Op0Reg); - } else { - unsigned Op1RegL = makeAnotherReg(Type::UIntTy); - OverflowReg = makeAnotherReg(Type::UIntTy); - BuildMI(BB, IP, X86::MOV32ri, 1, Op1RegL).addImm(CLow); - BuildMI(BB, IP, X86::MOV32rr, 1, X86::EAX).addReg(Op0Reg); - BuildMI(BB, IP, X86::MUL32r, 1).addReg(Op1RegL); // AL*BL - - BuildMI(BB, IP, X86::MOV32rr, 1, DestReg).addReg(X86::EAX); // AL*BL - BuildMI(BB, IP, X86::MOV32rr, 1, - OverflowReg).addReg(X86::EDX); // AL*BL >> 32 - } - - unsigned AHBLReg = makeAnotherReg(Type::UIntTy); // AH*BL - doMultiplyConst(&BB, IP, AHBLReg, Type::UIntTy, Op0Reg+1, CLow); - - unsigned AHBLplusOverflowReg; - if (OverflowReg) { - AHBLplusOverflowReg = makeAnotherReg(Type::UIntTy); - BuildMI(BB, IP, X86::ADD32rr, 2, // AH*BL+(AL*BL >> 32) - AHBLplusOverflowReg).addReg(AHBLReg).addReg(OverflowReg); - } else { - AHBLplusOverflowReg = AHBLReg; - } - - if (CHi == 0) { - BuildMI(BB, IP, X86::MOV32rr, 1, DestReg+1).addReg(AHBLplusOverflowReg); - } else { - unsigned ALBHReg = makeAnotherReg(Type::UIntTy); // AL*BH - doMultiplyConst(&BB, IP, ALBHReg, Type::UIntTy, Op0Reg, CHi); - - BuildMI(BB, IP, X86::ADD32rr, 2, // AL*BH + AH*BL + (AL*BL >> 32) - DestReg+1).addReg(AHBLplusOverflowReg).addReg(ALBHReg); - } - return; - } - - // General 64x64 multiply - - unsigned Op1Reg = getReg(Op1, &BB, IP); - // Multiply the two low parts... capturing carry into EDX - BuildMI(BB, IP, X86::MOV32rr, 1, X86::EAX).addReg(Op0Reg); - BuildMI(BB, IP, X86::MUL32r, 1).addReg(Op1Reg); // AL*BL - - unsigned OverflowReg = makeAnotherReg(Type::UIntTy); - BuildMI(BB, IP, X86::MOV32rr, 1, DestReg).addReg(X86::EAX); // AL*BL - BuildMI(BB, IP, X86::MOV32rr, 1, - OverflowReg).addReg(X86::EDX); // AL*BL >> 32 - - unsigned AHBLReg = makeAnotherReg(Type::UIntTy); // AH*BL - BuildMI(BB, IP, X86::IMUL32rr, 2, - AHBLReg).addReg(Op0Reg+1).addReg(Op1Reg); - - unsigned AHBLplusOverflowReg = makeAnotherReg(Type::UIntTy); - BuildMI(BB, IP, X86::ADD32rr, 2, // AH*BL+(AL*BL >> 32) - AHBLplusOverflowReg).addReg(AHBLReg).addReg(OverflowReg); - - unsigned ALBHReg = makeAnotherReg(Type::UIntTy); // AL*BH - BuildMI(BB, IP, X86::IMUL32rr, 2, - ALBHReg).addReg(Op0Reg).addReg(Op1Reg+1); - - BuildMI(BB, IP, X86::ADD32rr, 2, // AL*BH + AH*BL + (AL*BL >> 32) - DestReg+1).addReg(AHBLplusOverflowReg).addReg(ALBHReg); -} - - -/// visitDivRem - Handle division and remainder instructions... these -/// instruction both require the same instructions to be generated, they just -/// select the result from a different register. Note that both of these -/// instructions work differently for signed and unsigned operands. -/// -void X86ISel::visitDivRem(BinaryOperator &I) { - unsigned ResultReg = getReg(I); - Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); - - // Fold loads into floating point divides. - if (getClass(Op0->getType()) == cFP) { - if (LoadInst *LI = dyn_cast<LoadInst>(Op1)) - if (isSafeToFoldLoadIntoInstruction(*LI, I)) { - const Type *Ty = Op0->getType(); - assert(Ty == Type::FloatTy||Ty == Type::DoubleTy && "Unknown FP type!"); - unsigned Opcode = Ty == Type::FloatTy ? X86::FDIV32m : X86::FDIV64m; - - unsigned Op0r = getReg(Op0); - if (AllocaInst *AI = dyn_castFixedAlloca(LI->getOperand(0))) { - unsigned FI = getFixedSizedAllocaFI(AI); - addFrameReference(BuildMI(BB, Opcode, 5, ResultReg).addReg(Op0r), FI); - } else { - X86AddressMode AM; - getAddressingMode(LI->getOperand(0), AM); - - addFullAddress(BuildMI(BB, Opcode, 5, ResultReg).addReg(Op0r), AM); - } - return; - } - - if (LoadInst *LI = dyn_cast<LoadInst>(Op0)) - if (isSafeToFoldLoadIntoInstruction(*LI, I)) { - const Type *Ty = Op0->getType(); - assert(Ty == Type::FloatTy||Ty == Type::DoubleTy && "Unknown FP type!"); - unsigned Opcode = Ty == Type::FloatTy ? X86::FDIVR32m : X86::FDIVR64m; - - unsigned Op1r = getReg(Op1); - if (AllocaInst *AI = dyn_castFixedAlloca(LI->getOperand(0))) { - unsigned FI = getFixedSizedAllocaFI(AI); - addFrameReference(BuildMI(BB, Opcode, 5, ResultReg).addReg(Op1r), FI); - } else { - X86AddressMode AM; - getAddressingMode(LI->getOperand(0), AM); - addFullAddress(BuildMI(BB, Opcode, 5, ResultReg).addReg(Op1r), AM); - } - return; - } - } - - - MachineBasicBlock::iterator IP = BB->end(); - emitDivRemOperation(BB, IP, Op0, Op1, - I.getOpcode() == Instruction::Div, ResultReg); -} - -void X86ISel::emitDivRemOperation(MachineBasicBlock *BB, - MachineBasicBlock::iterator IP, - Value *Op0, Value *Op1, bool isDiv, - unsigned ResultReg) { - const Type *Ty = Op0->getType(); - unsigned Class = getClass(Ty); - switch (Class) { - case cFP: // Floating point divide - if (isDiv) { - emitBinaryFPOperation(BB, IP, Op0, Op1, 3, ResultReg); - return; - } else { // Floating point remainder... - unsigned Op0Reg = getReg(Op0, BB, IP); - unsigned Op1Reg = getReg(Op1, BB, IP); - MachineInstr *TheCall = - BuildMI(X86::CALLpcrel32, 1).addExternalSymbol("fmod", true); - std::vector<ValueRecord> Args; - Args.push_back(ValueRecord(Op0Reg, Type::DoubleTy)); - Args.push_back(ValueRecord(Op1Reg, Type::DoubleTy)); - doCall(ValueRecord(ResultReg, Type::DoubleTy), TheCall, Args); - } - return; - case cLong: { - static const char *FnName[] = - { "__moddi3", "__divdi3", "__umoddi3", "__udivdi3" }; - unsigned Op0Reg = getReg(Op0, BB, IP); - unsigned Op1Reg = getReg(Op1, BB, IP); - unsigned NameIdx = Ty->isUnsigned()*2 + isDiv; - MachineInstr *TheCall = - BuildMI(X86::CALLpcrel32, 1).addExternalSymbol(FnName[NameIdx], true); - - std::vector<ValueRecord> Args; - Args.push_back(ValueRecord(Op0Reg, Type::LongTy)); - Args.push_back(ValueRecord(Op1Reg, Type::LongTy)); - doCall(ValueRecord(ResultReg, Type::LongTy), TheCall, Args); - return; - } - case cByte: case cShort: case cInt: - break; // Small integrals, handled below... - default: assert(0 && "Unknown class!"); - } - - static const unsigned MovOpcode[]={ X86::MOV8rr, X86::MOV16rr, X86::MOV32rr }; - static const unsigned NEGOpcode[]={ X86::NEG8r, X86::NEG16r, X86::NEG32r }; - static const unsigned SAROpcode[]={ X86::SAR8ri, X86::SAR16ri, X86::SAR32ri }; - static const unsigned SHROpcode[]={ X86::SHR8ri, X86::SHR16ri, X86::SHR32ri }; - static const unsigned ADDOpcode[]={ X86::ADD8rr, X86::ADD16rr, X86::ADD32rr }; - - // Special case signed division by power of 2. - if (ConstantSInt *CI = dyn_cast<ConstantSInt>(Op1)) - if (isDiv) { - assert(Class != cLong && "This doesn't handle 64-bit divides!"); - int V = CI->getValue(); - - if (V == 1) { // X /s 1 => X - unsigned Op0Reg = getReg(Op0, BB, IP); - BuildMI(*BB, IP, MovOpcode[Class], 1, ResultReg).addReg(Op0Reg); - return; - } - - if (V == -1) { // X /s -1 => -X - unsigned Op0Reg = getReg(Op0, BB, IP); - BuildMI(*BB, IP, NEGOpcode[Class], 1, ResultReg).addReg(Op0Reg); - return; - } - - if (V == 2 || V == -2) { // X /s 2 - static const unsigned CMPOpcode[] = { - X86::CMP8ri, X86::CMP16ri, X86::CMP32ri - }; - static const unsigned SBBOpcode[] = { - X86::SBB8ri, X86::SBB16ri, X86::SBB32ri - }; - unsigned Op0Reg = getReg(Op0, BB, IP); - unsigned SignBit = 1 << (CI->getType()->getPrimitiveSize()*8-1); - BuildMI(*BB, IP, CMPOpcode[Class], 2).addReg(Op0Reg).addImm(SignBit); - - unsigned TmpReg = makeAnotherReg(Op0->getType()); - BuildMI(*BB, IP, SBBOpcode[Class], 2, TmpReg).addReg(Op0Reg).addImm(-1); - - unsigned TmpReg2 = V == 2 ? ResultReg : makeAnotherReg(Op0->getType()); - BuildMI(*BB, IP, SAROpcode[Class], 2, TmpReg2).addReg(TmpReg).addImm(1); - if (V == -2) { - BuildMI(*BB, IP, NEGOpcode[Class], 1, ResultReg).addReg(TmpReg2); - } - return; - } - - bool isNeg = false; - if (V < 0) { // Not a positive power of 2? - V = -V; - isNeg = true; // Maybe it's a negative power of 2. - } - if (isPowerOf2_32(V)) { - unsigned Log = Log2_32(V); - --Log; - unsigned Op0Reg = getReg(Op0, BB, IP); - unsigned TmpReg = makeAnotherReg(Op0->getType()); - BuildMI(*BB, IP, SAROpcode[Class], 2, TmpReg) - .addReg(Op0Reg).addImm(Log-1); - unsigned TmpReg2 = makeAnotherReg(Op0->getType()); - BuildMI(*BB, IP, SHROpcode[Class], 2, TmpReg2) - .addReg(TmpReg).addImm(CI->getType()->getPrimitiveSizeInBits()-Log); - unsigned TmpReg3 = makeAnotherReg(Op0->getType()); - BuildMI(*BB, IP, ADDOpcode[Class], 2, TmpReg3) - .addReg(Op0Reg).addReg(TmpReg2); - - unsigned TmpReg4 = isNeg ? makeAnotherReg(Op0->getType()) : ResultReg; - BuildMI(*BB, IP, SAROpcode[Class], 2, TmpReg4) - .addReg(TmpReg3).addImm(Log); - if (isNeg) - BuildMI(*BB, IP, NEGOpcode[Class], 1, ResultReg).addReg(TmpReg4); - return; - } - } else { // X % C - assert(Class != cLong && "This doesn't handle 64-bit remainder!"); - int V = CI->getValue(); - - if (V == 2 || V == -2) { // X % 2, X % -2 - static const unsigned SExtOpcode[] = { X86::CBW, X86::CWD, X86::CDQ }; - static const unsigned BaseReg[] = { X86::AL , X86::AX , X86::EAX }; - static const unsigned SExtReg[] = { X86::AH , X86::DX , X86::EDX }; - static const unsigned ANDOpcode[] = { - X86::AND8ri, X86::AND16ri, X86::AND32ri - }; - static const unsigned XOROpcode[] = { - X86::XOR8rr, X86::XOR16rr, X86::XOR32rr - }; - static const unsigned SUBOpcode[] = { - X86::SUB8rr, X86::SUB16rr, X86::SUB32rr - }; - - // Sign extend result into reg of -1 or 0. - unsigned Op0Reg = getReg(Op0, BB, IP); - BuildMI(*BB, IP, MovOpcode[Class], 1, BaseReg[Class]).addReg(Op0Reg); - BuildMI(*BB, IP, SExtOpcode[Class], 0); - unsigned TmpReg0 = makeAnotherReg(Op0->getType()); - BuildMI(*BB, IP, MovOpcode[Class], 1, TmpReg0).addReg(SExtReg[Class]); - - unsigned TmpReg1 = makeAnotherReg(Op0->getType()); - BuildMI(*BB, IP, ANDOpcode[Class], 2, TmpReg1).addReg(Op0Reg).addImm(1); - - unsigned TmpReg2 = makeAnotherReg(Op0->getType()); - BuildMI(*BB, IP, XOROpcode[Class], 2, - TmpReg2).addReg(TmpReg1).addReg(TmpReg0); - BuildMI(*BB, IP, SUBOpcode[Class], 2, - ResultReg).addReg(TmpReg2).addReg(TmpReg0); - return; - } - } - - static const unsigned Regs[] ={ X86::AL , X86::AX , X86::EAX }; - static const unsigned ClrOpcode[]={ X86::MOV8ri, X86::MOV16ri, X86::MOV32ri }; - static const unsigned ExtRegs[] ={ X86::AH , X86::DX , X86::EDX }; - static const unsigned SExOpcode[]={ X86::CBW , X86::CWD , X86::CDQ }; - - static const unsigned DivOpcode[][4] = { - { X86::DIV8r , X86::DIV16r , X86::DIV32r , 0 }, // Unsigned division - { X86::IDIV8r, X86::IDIV16r, X86::IDIV32r, 0 }, // Signed division - }; - - unsigned Reg = Regs[Class]; - unsigned ExtReg = ExtRegs[Class]; - - // Put the first operand into one of the A registers... - unsigned Op0Reg = getReg(Op0, BB, IP); - unsigned Op1Reg = getReg(Op1, BB, IP); - BuildMI(*BB, IP, MovOpcode[Class], 1, Reg).addReg(Op0Reg); - - if (Ty->isSigned()) { - // Emit a sign extension instruction. - BuildMI(*BB, IP, SExOpcode[Class], 0); - - // Emit the appropriate divide or remainder instruction... - BuildMI(*BB, IP, DivOpcode[1][Class], 1).addReg(Op1Reg); - } else { - // If unsigned, emit a zeroing instruction... (reg = 0) - BuildMI(*BB, IP, ClrOpcode[Class], 2, ExtReg).addImm(0); - - // Emit the appropriate divide or remainder instruction... - BuildMI(*BB, IP, DivOpcode[0][Class], 1).addReg(Op1Reg); - } - - // Figure out which register we want to pick the result out of... - unsigned DestReg = isDiv ? Reg : ExtReg; - - // Put the result into the destination register... - BuildMI(*BB, IP, MovOpcode[Class], 1, ResultReg).addReg(DestReg); -} - - -/// Shift instructions: 'shl', 'sar', 'shr' - Some special cases here -/// for constant immediate shift values, and for constant immediate -/// shift values equal to 1. Even the general case is sort of special, -/// because the shift amount has to be in CL, not just any old register. -/// -void X86ISel::visitShiftInst(ShiftInst &I) { - MachineBasicBlock::iterator IP = BB->end (); - emitShiftOperation (BB, IP, I.getOperand (0), I.getOperand (1), - I.getOpcode () == Instruction::Shl, I.getType (), - getReg (I)); -} - -/// Emit code for a 'SHLD DestReg, Op0, Op1, Amt' operation, where Amt is a -/// constant. -void X86ISel::doSHLDConst(MachineBasicBlock *MBB, - MachineBasicBlock::iterator IP, - unsigned DestReg, unsigned Op0Reg, unsigned Op1Reg, - unsigned Amt) { - // SHLD is a very inefficient operation on every processor, try to do - // somethign simpler for common values of 'Amt'. - if (Amt == 0) { - BuildMI(*MBB, IP, X86::MOV32rr, 1, DestReg).addReg(Op0Reg); - } else if (Amt == 1) { - unsigned Tmp = makeAnotherReg(Type::UIntTy); - BuildMI(*MBB, IP, X86::ADD32rr, 2, Tmp).addReg(Op1Reg).addReg(Op1Reg); - BuildMI(*MBB, IP, X86::ADC32rr, 2, DestReg).addReg(Op0Reg).addReg(Op0Reg); - } else if (Amt == 2 || Amt == 3) { - // On the P4 and Athlon it is cheaper to replace shld ..., 2|3 with a - // shift/lea pair. NOTE: This should not be done on the P6 family! - unsigned Tmp = makeAnotherReg(Type::UIntTy); - BuildMI(*MBB, IP, X86::SHR32ri, 2, Tmp).addReg(Op1Reg).addImm(32-Amt); - X86AddressMode AM; - AM.BaseType = X86AddressMode::RegBase; - AM.Base.Reg = Tmp; - AM.Scale = 1 << Amt; - AM.IndexReg = Op0Reg; - AM.Disp = 0; - addFullAddress(BuildMI(*MBB, IP, X86::LEA32r, 4, DestReg), AM); - } else { - // NOTE: It is always cheaper on the P4 to emit SHLD as two shifts and an OR - // than it is to emit a real SHLD. - - BuildMI(*MBB, IP, X86::SHLD32rri8, 3, - DestReg).addReg(Op0Reg).addReg(Op1Reg).addImm(Amt); - } -} - -/// emitShiftOperation - Common code shared between visitShiftInst and -/// constant expression support. -void X86ISel::emitShiftOperation(MachineBasicBlock *MBB, - MachineBasicBlock::iterator IP, - Value *Op, Value *ShiftAmount, - bool isLeftShift, const Type *ResultTy, - unsigned DestReg) { - unsigned SrcReg = getReg (Op, MBB, IP); - bool isSigned = ResultTy->isSigned (); - unsigned Class = getClass (ResultTy); - - static const unsigned ConstantOperand[][3] = { - { X86::SHR8ri, X86::SHR16ri, X86::SHR32ri }, // SHR - { X86::SAR8ri, X86::SAR16ri, X86::SAR32ri }, // SAR - { X86::SHL8ri, X86::SHL16ri, X86::SHL32ri }, // SHL - { X86::SHL8ri, X86::SHL16ri, X86::SHL32ri }, // SAL = SHL - }; - - static const unsigned NonConstantOperand[][3] = { - { X86::SHR8rCL, X86::SHR16rCL, X86::SHR32rCL }, // SHR - { X86::SAR8rCL, X86::SAR16rCL, X86::SAR32rCL }, // SAR - { X86::SHL8rCL, X86::SHL16rCL, X86::SHL32rCL }, // SHL - { X86::SHL8rCL, X86::SHL16rCL, X86::SHL32rCL }, // SAL = SHL - }; - - // Longs, as usual, are handled specially. - if (Class == cLong) { - if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(ShiftAmount)) { - unsigned Amount = CUI->getValue(); - if (Amount == 1 && isLeftShift) { // X << 1 == X+X - BuildMI(*MBB, IP, X86::ADD32rr, 2, - DestReg).addReg(SrcReg).addReg(SrcReg); - BuildMI(*MBB, IP, X86::ADC32rr, 2, - DestReg+1).addReg(SrcReg+1).addReg(SrcReg+1); - } else if (Amount < 32) { - const unsigned *Opc = ConstantOperand[isLeftShift*2+isSigned]; - if (isLeftShift) { - doSHLDConst(MBB, IP, DestReg+1, SrcReg+1, SrcReg, Amount); - BuildMI(*MBB, IP, Opc[2], 2, DestReg).addReg(SrcReg).addImm(Amount); - } else { - BuildMI(*MBB, IP, X86::SHRD32rri8, 3, - DestReg).addReg(SrcReg ).addReg(SrcReg+1).addImm(Amount); - BuildMI(*MBB, IP, Opc[2],2,DestReg+1).addReg(SrcReg+1).addImm(Amount); - } - } else if (Amount == 32) { - if (isLeftShift) { - BuildMI(*MBB, IP, X86::MOV32rr, 1, DestReg+1).addReg(SrcReg); - BuildMI(*MBB, IP, X86::MOV32ri, 1, DestReg).addImm(0); - } else { - BuildMI(*MBB, IP, X86::MOV32rr, 1, DestReg).addReg(SrcReg+1); - if (!isSigned) { - BuildMI(*MBB, IP, X86::MOV32ri, 1, DestReg+1).addImm(0); - } else { - BuildMI(*MBB, IP, X86::SAR32ri, 2, - DestReg+1).addReg(SrcReg).addImm(31); - } - } - } else { // Shifting more than 32 bits - Amount -= 32; - if (isLeftShift) { - BuildMI(*MBB, IP, X86::SHL32ri, 2, - DestReg + 1).addReg(SrcReg).addImm(Amount); - BuildMI(*MBB, IP, X86::MOV32ri, 1, DestReg).addImm(0); - } else { - BuildMI(*MBB, IP, isSigned ? X86::SAR32ri : X86::SHR32ri, 2, - DestReg).addReg(SrcReg+1).addImm(Amount); - if (isSigned) - BuildMI(*MBB, IP, X86::SAR32ri, 2, - DestReg+1).addReg(SrcReg+1).addImm(31); - else - BuildMI(*MBB, IP, X86::MOV32ri, 1, DestReg+1).addImm(0); - } - } - } else { - unsigned TmpReg = makeAnotherReg(Type::IntTy); - if (!isLeftShift && isSigned) { - // If this is a SHR of a Long, then we need to do funny sign extension - // stuff. TmpReg gets the value to use as the high-part if we are - // shifting more than 32 bits. - BuildMI(*MBB, IP, X86::SAR32ri, 2, TmpReg).addReg(SrcReg).addImm(31); - } else { - // Other shifts use a fixed zero value if the shift is more than 32 - // bits. - BuildMI(*MBB, IP, X86::MOV32ri, 1, TmpReg).addImm(0); - } - - // Initialize CL with the shift amount... - unsigned ShiftAmountReg = getReg(ShiftAmount, MBB, IP); - BuildMI(*MBB, IP, X86::MOV8rr, 1, X86::CL).addReg(ShiftAmountReg); - - unsigned TmpReg2 = makeAnotherReg(Type::IntTy); - unsigned TmpReg3 = makeAnotherReg(Type::IntTy); - if (isLeftShift) { - // TmpReg2 = shld inHi, inLo - BuildMI(*MBB, IP, X86::SHLD32rrCL,2,TmpReg2).addReg(SrcReg+1) - .addReg(SrcReg); - // TmpReg3 = shl inLo, CL - BuildMI(*MBB, IP, X86::SHL32rCL, 1, TmpReg3).addReg(SrcReg); - - // Set the flags to indicate whether the shift was by more than 32 bits. - BuildMI(*MBB, IP, X86::TEST8ri, 2).addReg(X86::CL).addImm(32); - - // DestHi = (>32) ? TmpReg3 : TmpReg2; - BuildMI(*MBB, IP, X86::CMOVNE32rr, 2, - DestReg+1).addReg(TmpReg2).addReg(TmpReg3); - // DestLo = (>32) ? TmpReg : TmpReg3; - BuildMI(*MBB, IP, X86::CMOVNE32rr, 2, - DestReg).addReg(TmpReg3).addReg(TmpReg); - } else { - // TmpReg2 = shrd inLo, inHi - BuildMI(*MBB, IP, X86::SHRD32rrCL,2,TmpReg2).addReg(SrcReg) - .addReg(SrcReg+1); - // TmpReg3 = s[ah]r inHi, CL - BuildMI(*MBB, IP, isSigned ? X86::SAR32rCL : X86::SHR32rCL, 1, TmpReg3) - .addReg(SrcReg+1); - - // Set the flags to indicate whether the shift was by more than 32 bits. - BuildMI(*MBB, IP, X86::TEST8ri, 2).addReg(X86::CL).addImm(32); - - // DestLo = (>32) ? TmpReg3 : TmpReg2; - BuildMI(*MBB, IP, X86::CMOVNE32rr, 2, - DestReg).addReg(TmpReg2).addReg(TmpReg3); - - // DestHi = (>32) ? TmpReg : TmpReg3; - BuildMI(*MBB, IP, X86::CMOVNE32rr, 2, - DestReg+1).addReg(TmpReg3).addReg(TmpReg); - } - } - return; - } - - if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(ShiftAmount)) { - // The shift amount is constant, guaranteed to be a ubyte. Get its value. - assert(CUI->getType() == Type::UByteTy && "Shift amount not a ubyte?"); - - if (CUI->getValue() == 1 && isLeftShift) { // X << 1 -> X+X - static const int AddOpC[] = { X86::ADD8rr, X86::ADD16rr, X86::ADD32rr }; - BuildMI(*MBB, IP, AddOpC[Class], 2,DestReg).addReg(SrcReg).addReg(SrcReg); - } else { - const unsigned *Opc = ConstantOperand[isLeftShift*2+isSigned]; - BuildMI(*MBB, IP, Opc[Class], 2, - DestReg).addReg(SrcReg).addImm(CUI->getValue()); - } - } else { // The shift amount is non-constant. - unsigned ShiftAmountReg = getReg (ShiftAmount, MBB, IP); - BuildMI(*MBB, IP, X86::MOV8rr, 1, X86::CL).addReg(ShiftAmountReg); - - const unsigned *Opc = NonConstantOperand[isLeftShift*2+isSigned]; - BuildMI(*MBB, IP, Opc[Class], 1, DestReg).addReg(SrcReg); - } -} - - -/// visitLoadInst - Implement LLVM load instructions in terms of the x86 'mov' -/// instruction. The load and store instructions are the only place where we -/// need to worry about the memory layout of the target machine. -/// -void X86ISel::visitLoadInst(LoadInst &I) { - // Check to see if this load instruction is going to be folded into a binary - // instruction, like add. If so, we don't want to emit it. Wouldn't a real - // pattern matching instruction selector be nice? - unsigned Class = getClassB(I.getType()); - if (I.hasOneUse()) { - Instruction *User = cast<Instruction>(I.use_back()); - switch (User->getOpcode()) { - case Instruction::Cast: - // If this is a cast from a signed-integer type to a floating point type, - // fold the cast here. - if (getClassB(User->getType()) == cFP && - (I.getType() == Type::ShortTy || I.getType() == Type::IntTy || - I.getType() == Type::LongTy)) { - unsigned DestReg = getReg(User); - static const unsigned Opcode[] = { - 0/*BYTE*/, X86::FILD16m, X86::FILD32m, 0/*FP*/, X86::FILD64m - }; - - if (AllocaInst *AI = dyn_castFixedAlloca(I.getOperand(0))) { - unsigned FI = getFixedSizedAllocaFI(AI); - addFrameReference(BuildMI(BB, Opcode[Class], 4, DestReg), FI); - } else { - X86AddressMode AM; - getAddressingMode(I.getOperand(0), AM); - addFullAddress(BuildMI(BB, Opcode[Class], 4, DestReg), AM); - } - return; - } else { - User = 0; - } - break; - - case Instruction::Add: - case Instruction::Sub: - case Instruction::And: - case Instruction::Or: - case Instruction::Xor: - if (Class == cLong) User = 0; - break; - case Instruction::Mul: - case Instruction::Div: - if (Class != cFP) User = 0; - break; // Folding only implemented for floating point. - default: User = 0; break; - } - - if (User) { - // Okay, we found a user. If the load is the first operand and there is - // no second operand load, reverse the operand ordering. Note that this - // can fail for a subtract (ie, no change will be made). - bool Swapped = false; - if (!isa<LoadInst>(User->getOperand(1))) - Swapped = !cast<BinaryOperator>(User)->swapOperands(); - - // Okay, now that everything is set up, if this load is used by the second - // operand, and if there are no instructions that invalidate the load - // before the binary operator, eliminate the load. - if (User->getOperand(1) == &I && - isSafeToFoldLoadIntoInstruction(I, *User)) - return; // Eliminate the load! - - // If this is a floating point sub or div, we won't be able to swap the - // operands, but we will still be able to eliminate the load. - if (Class == cFP && User->getOperand(0) == &I && - !isa<LoadInst>(User->getOperand(1)) && - (User->getOpcode() == Instruction::Sub || - User->getOpcode() == Instruction::Div) && - isSafeToFoldLoadIntoInstruction(I, *User)) - return; // Eliminate the load! - - // If we swapped the operands to the instruction, but couldn't fold the - // load anyway, swap them back. We don't want to break add X, int - // folding. - if (Swapped) cast<BinaryOperator>(User)->swapOperands(); - } - } - - static const unsigned Opcodes[] = { - X86::MOV8rm, X86::MOV16rm, X86::MOV32rm, X86::FLD32m, X86::MOV32rm - }; - unsigned Opcode = Opcodes[Class]; - if (I.getType() == Type::DoubleTy) Opcode = X86::FLD64m; - - unsigned DestReg = getReg(I); - - if (AllocaInst *AI = dyn_castFixedAlloca(I.getOperand(0))) { - unsigned FI = getFixedSizedAllocaFI(AI); - if (Class == cLong) { - addFrameReference(BuildMI(BB, X86::MOV32rm, 4, DestReg), FI); - addFrameReference(BuildMI(BB, X86::MOV32rm, 4, DestReg+1), FI, 4); - } else { - addFrameReference(BuildMI(BB, Opcode, 4, DestReg), FI); - } - } else { - X86AddressMode AM; - getAddressingMode(I.getOperand(0), AM); - - if (Class == cLong) { - addFullAddress(BuildMI(BB, X86::MOV32rm, 4, DestReg), AM); - AM.Disp += 4; - addFullAddress(BuildMI(BB, X86::MOV32rm, 4, DestReg+1), AM); - } else { - addFullAddress(BuildMI(BB, Opcode, 4, DestReg), AM); - } - } -} - -/// visitStoreInst - Implement LLVM store instructions in terms of the x86 'mov' -/// instruction. -/// -void X86ISel::visitStoreInst(StoreInst &I) { - X86AddressMode AM; - getAddressingMode(I.getOperand(1), AM); - - const Type *ValTy = I.getOperand(0)->getType(); - unsigned Class = getClassB(ValTy); - - if (ConstantInt *CI = dyn_cast<ConstantInt>(I.getOperand(0))) { - uint64_t Val = CI->getRawValue(); - if (Class == cLong) { - addFullAddress(BuildMI(BB, X86::MOV32mi, 5), AM).addImm(Val & ~0U); - AM.Disp += 4; - addFullAddress(BuildMI(BB, X86::MOV32mi, 5), AM).addImm(Val>>32); - } else { - static const unsigned Opcodes[] = { - X86::MOV8mi, X86::MOV16mi, X86::MOV32mi - }; - unsigned Opcode = Opcodes[Class]; - addFullAddress(BuildMI(BB, Opcode, 5), AM).addImm(Val); - } - } else if (isa<ConstantPointerNull>(I.getOperand(0))) { - addFullAddress(BuildMI(BB, X86::MOV32mi, 5), AM).addImm(0); - } else if (GlobalValue *GV = dyn_cast<GlobalValue>(I.getOperand(0))) { - addFullAddress(BuildMI(BB, X86::MOV32mi, 5), AM).addGlobalAddress(GV); - } else if (ConstantBool *CB = dyn_cast<ConstantBool>(I.getOperand(0))) { - addFullAddress(BuildMI(BB, X86::MOV8mi, 5), AM).addImm(CB->getValue()); - } else if (ConstantFP *CFP = dyn_cast<ConstantFP>(I.getOperand(0))) { - // Store constant FP values with integer instructions to avoid having to - // load the constants from the constant pool then do a store. - if (CFP->getType() == Type::FloatTy) { - union { - unsigned I; - float F; - } V; - V.F = CFP->getValue(); - addFullAddress(BuildMI(BB, X86::MOV32mi, 5), AM).addImm(V.I); - } else { - union { - uint64_t I; - double F; - } V; - V.F = CFP->getValue(); - addFullAddress(BuildMI(BB, X86::MOV32mi, 5), AM).addImm((unsigned)V.I); - AM.Disp += 4; - addFullAddress(BuildMI(BB, X86::MOV32mi, 5), AM).addImm( - unsigned(V.I >> 32)); - } - - } else if (Class == cLong) { - unsigned ValReg = getReg(I.getOperand(0)); - addFullAddress(BuildMI(BB, X86::MOV32mr, 5), AM).addReg(ValReg); - AM.Disp += 4; - addFullAddress(BuildMI(BB, X86::MOV32mr, 5), AM).addReg(ValReg+1); - } else { - // FIXME: stop emitting these two instructions: - // movl $global,%eax - // movl %eax,(%ebx) - // when one instruction will suffice. That includes when the global - // has an offset applied to it. - unsigned ValReg = getReg(I.getOperand(0)); - static const unsigned Opcodes[] = { - X86::MOV8mr, X86::MOV16mr, X86::MOV32mr, X86::FST32m - }; - unsigned Opcode = Opcodes[Class]; - if (ValTy == Type::DoubleTy) Opcode = X86::FST64m; - - addFullAddress(BuildMI(BB, Opcode, 1+4), AM).addReg(ValReg); - } -} - - -/// visitCastInst - Here we have various kinds of copying with or without sign -/// extension going on. -/// -void X86ISel::visitCastInst(CastInst &CI) { - Value *Op = CI.getOperand(0); - - unsigned SrcClass = getClassB(Op->getType()); - unsigned DestClass = getClassB(CI.getType()); - // Noop casts are not emitted: getReg will return the source operand as the - // register to use for any uses of the noop cast. - if (DestClass == SrcClass) { - // The only detail in this plan is that casts from double -> float are - // truncating operations that we have to codegen through memory (despite - // the fact that the source/dest registers are the same class). - if (CI.getType() != Type::FloatTy || Op->getType() != Type::DoubleTy) - return; - } - - // If this is a cast from a 32-bit integer to a Long type, and the only uses - // of the case are GEP instructions, then the cast does not need to be - // generated explicitly, it will be folded into the GEP. - if (DestClass == cLong && SrcClass == cInt) { - bool AllUsesAreGEPs = true; - for (Value::use_iterator I = CI.use_begin(), E = CI.use_end(); I != E; ++I) - if (!isa<GetElementPtrInst>(*I)) { - AllUsesAreGEPs = false; - break; - } - - // No need to codegen this cast if all users are getelementptr instrs... - if (AllUsesAreGEPs) return; - } - - // If this cast converts a load from a short,int, or long integer to a FP - // value, we will have folded this cast away. - if (DestClass == cFP && isa<LoadInst>(Op) && Op->hasOneUse() && - (Op->getType() == Type::ShortTy || Op->getType() == Type::IntTy || - Op->getType() == Type::LongTy)) - return; - - - unsigned DestReg = getReg(CI); - MachineBasicBlock::iterator MI = BB->end(); - emitCastOperation(BB, MI, Op, CI.getType(), DestReg); -} - -/// emitCastOperation - Common code shared between visitCastInst and constant -/// expression cast support. -/// -void X86ISel::emitCastOperation(MachineBasicBlock *BB, - MachineBasicBlock::iterator IP, - Value *Src, const Type *DestTy, - unsigned DestReg) { - const Type *SrcTy = Src->getType(); - unsigned SrcClass = getClassB(SrcTy); - unsigned DestClass = getClassB(DestTy); - unsigned SrcReg = getReg(Src, BB, IP); - - // Implement casts to bool by using compare on the operand followed by set if - // not zero on the result. - if (DestTy == Type::BoolTy) { - switch (SrcClass) { - case cByte: - BuildMI(*BB, IP, X86::TEST8rr, 2).addReg(SrcReg).addReg(SrcReg); - break; - case cShort: - BuildMI(*BB, IP, X86::TEST16rr, 2).addReg(SrcReg).addReg(SrcReg); - break; - case cInt: - BuildMI(*BB, IP, X86::TEST32rr, 2).addReg(SrcReg).addReg(SrcReg); - break; - case cLong: { - unsigned TmpReg = makeAnotherReg(Type::IntTy); - BuildMI(*BB, IP, X86::OR32rr, 2, TmpReg).addReg(SrcReg).addReg(SrcReg+1); - break; - } - case cFP: - BuildMI(*BB, IP, X86::FTST, 1).addReg(SrcReg); - BuildMI(*BB, IP, X86::FNSTSW8r, 0); - BuildMI(*BB, IP, X86::SAHF, 1); - break; - } - - // If the zero flag is not set, then the value is true, set the byte to - // true. - BuildMI(*BB, IP, X86::SETNEr, 1, DestReg); - return; - } - - static const unsigned RegRegMove[] = { - X86::MOV8rr, X86::MOV16rr, X86::MOV32rr, X86::FpMOV, X86::MOV32rr - }; - - // Implement casts between values of the same type class (as determined by - // getClass) by using a register-to-register move. - if (SrcClass == DestClass) { - if (SrcClass <= cInt || (SrcClass == cFP && SrcTy == DestTy)) { - BuildMI(*BB, IP, RegRegMove[SrcClass], 1, DestReg).addReg(SrcReg); - } else if (SrcClass == cFP) { - if (SrcTy == Type::FloatTy) { // double -> float - assert(DestTy == Type::DoubleTy && "Unknown cFP member!"); - BuildMI(*BB, IP, X86::FpMOV, 1, DestReg).addReg(SrcReg); - } else { // float -> double - assert(SrcTy == Type::DoubleTy && DestTy == Type::FloatTy && - "Unknown cFP member!"); - // Truncate from double to float by storing to memory as short, then - // reading it back. - unsigned FltAlign = TM.getTargetData().getFloatAlignment(); - int FrameIdx = F->getFrameInfo()->CreateStackObject(4, FltAlign); - addFrameReference(BuildMI(*BB, IP, X86::FST32m, 5), - FrameIdx).addReg(SrcReg); - addFrameReference(BuildMI(*BB, IP, X86::FLD32m, 5, DestReg), FrameIdx); - } - } else if (SrcClass == cLong) { - BuildMI(*BB, IP, X86::MOV32rr, 1, DestReg).addReg(SrcReg); - BuildMI(*BB, IP, X86::MOV32rr, 1, DestReg+1).addReg(SrcReg+1); - } else { - assert(0 && "Cannot handle this type of cast instruction!"); - abort(); - } - return; - } - - // Handle cast of SMALLER int to LARGER int using a move with sign extension - // or zero extension, depending on whether the source type was signed. - if (SrcClass <= cInt && (DestClass <= cInt || DestClass == cLong) && - SrcClass < DestClass) { - bool isLong = DestClass == cLong; - if (isLong) DestClass = cInt; - - static const unsigned Opc[][4] = { - { X86::MOVSX16rr8, X86::MOVSX32rr8, X86::MOVSX32rr16, X86::MOV32rr }, // s - { X86::MOVZX16rr8, X86::MOVZX32rr8, X86::MOVZX32rr16, X86::MOV32rr } // u - }; - - bool isUnsigned = SrcTy->isUnsigned() || SrcTy == Type::BoolTy; - BuildMI(*BB, IP, Opc[isUnsigned][SrcClass + DestClass - 1], 1, - DestReg).addReg(SrcReg); - - if (isLong) { // Handle upper 32 bits as appropriate... - if (isUnsigned) // Zero out top bits... - BuildMI(*BB, IP, X86::MOV32ri, 1, DestReg+1).addImm(0); - else // Sign extend bottom half... - BuildMI(*BB, IP, X86::SAR32ri, 2, DestReg+1).addReg(DestReg).addImm(31); - } - return; - } - - // Special case long -> int ... - if (SrcClass == cLong && DestClass == cInt) { - BuildMI(*BB, IP, X86::MOV32rr, 1, DestReg).addReg(SrcReg); - return; - } - - // Handle cast of LARGER int to SMALLER int using a move to EAX followed by a - // move out of AX or AL. - if ((SrcClass <= cInt || SrcClass == cLong) && DestClass <= cInt - && SrcClass > DestClass) { - static const unsigned AReg[] = { X86::AL, X86::AX, X86::EAX, 0, X86::EAX }; - BuildMI(*BB, IP, RegRegMove[SrcClass], 1, AReg[SrcClass]).addReg(SrcReg); - BuildMI(*BB, IP, RegRegMove[DestClass], 1, DestReg).addReg(AReg[DestClass]); - return; - } - - // Handle casts from integer to floating point now... - if (DestClass == cFP) { - // Promote the integer to a type supported by FLD. We do this because there - // are no unsigned FLD instructions, so we must promote an unsigned value to - // a larger signed value, then use FLD on the larger value. - // - const Type *PromoteType = 0; - unsigned PromoteOpcode = 0; - unsigned RealDestReg = DestReg; - switch (SrcTy->getTypeID()) { - case Type::BoolTyID: - case Type::SByteTyID: - // We don't have the facilities for directly loading byte sized data from - // memory (even signed). Promote it to 16 bits. - PromoteType = Type::ShortTy; - PromoteOpcode = X86::MOVSX16rr8; - break; - case Type::UByteTyID: - PromoteType = Type::ShortTy; - PromoteOpcode = X86::MOVZX16rr8; - break; - case Type::UShortTyID: - PromoteType = Type::IntTy; - PromoteOpcode = X86::MOVZX32rr16; - break; - case Type::ULongTyID: - case Type::UIntTyID: - // Don't fild into the read destination. - DestReg = makeAnotherReg(Type::DoubleTy); - break; - default: // No promotion needed... - break; - } - - if (PromoteType) { - unsigned TmpReg = makeAnotherReg(PromoteType); - BuildMI(*BB, IP, PromoteOpcode, 1, TmpReg).addReg(SrcReg); - SrcTy = PromoteType; - SrcClass = getClass(PromoteType); - SrcReg = TmpReg; - } - - // Spill the integer to memory and reload it from there... - int FrameIdx = - F->getFrameInfo()->CreateStackObject(SrcTy, TM.getTargetData()); - - if (SrcClass == cLong) { - addFrameReference(BuildMI(*BB, IP, X86::MOV32mr, 5), - FrameIdx).addReg(SrcReg); - addFrameReference(BuildMI(*BB, IP, X86::MOV32mr, 5), - FrameIdx, 4).addReg(SrcReg+1); - } else { - static const unsigned Op1[] = { X86::MOV8mr, X86::MOV16mr, X86::MOV32mr }; - addFrameReference(BuildMI(*BB, IP, Op1[SrcClass], 5), - FrameIdx).addReg(SrcReg); - } - - static const unsigned Op2[] = - { 0/*byte*/, X86::FILD16m, X86::FILD32m, 0/*FP*/, X86::FILD64m }; - addFrameReference(BuildMI(*BB, IP, Op2[SrcClass], 5, DestReg), FrameIdx); - - if (SrcTy == Type::UIntTy) { - // If this is a cast from uint -> double, we need to be careful about if - // the "sign" bit is set. If so, we don't want to make a negative number, - // we want to make a positive number. Emit code to add an offset if the - // sign bit is set. - - // Compute whether the sign bit is set by shifting the reg right 31 bits. - unsigned IsNeg = makeAnotherReg(Type::IntTy); - BuildMI(*BB, IP, X86::SHR32ri, 2, IsNeg).addReg(SrcReg).addImm(31); - - // Create a CP value that has the offset in one word and 0 in the other. - static ConstantInt *TheOffset = ConstantUInt::get(Type::ULongTy, - 0x4f80000000000000ULL); - unsigned CPI = F->getConstantPool()->getConstantPoolIndex(TheOffset); - BuildMI(*BB, IP, X86::FADD32m, 5, RealDestReg).addReg(DestReg) - .addConstantPoolIndex(CPI).addZImm(4).addReg(IsNeg).addSImm(0); - - } else if (SrcTy == Type::ULongTy) { - // We need special handling for unsigned 64-bit integer sources. If the - // input number has the "sign bit" set, then we loaded it incorrectly as a - // negative 64-bit number. In this case, add an offset value. - - // Emit a test instruction to see if the dynamic input value was signed. - BuildMI(*BB, IP, X86::TEST32rr, 2).addReg(SrcReg+1).addReg(SrcReg+1); - - // If the sign bit is set, get a pointer to an offset, otherwise get a - // pointer to a zero. - MachineConstantPool *CP = F->getConstantPool(); - unsigned Zero = makeAnotherReg(Type::IntTy); - Constant *Null = Constant::getNullValue(Type::UIntTy); - addConstantPoolReference(BuildMI(*BB, IP, X86::LEA32r, 5, Zero), - CP->getConstantPoolIndex(Null)); - unsigned Offset = makeAnotherReg(Type::IntTy); - Constant *OffsetCst = ConstantUInt::get(Type::UIntTy, 0x5f800000); - - addConstantPoolReference(BuildMI(*BB, IP, X86::LEA32r, 5, Offset), - CP->getConstantPoolIndex(OffsetCst)); - unsigned Addr = makeAnotherReg(Type::IntTy); - BuildMI(*BB, IP, X86::CMOVS32rr, 2, Addr).addReg(Zero).addReg(Offset); - - // Load the constant for an add. FIXME: this could make an 'fadd' that - // reads directly from memory, but we don't support these yet. - unsigned ConstReg = makeAnotherReg(Type::DoubleTy); - addDirectMem(BuildMI(*BB, IP, X86::FLD32m, 4, ConstReg), Addr); - - BuildMI(*BB, IP, X86::FpADD, 2, RealDestReg) - .addReg(ConstReg).addReg(DestReg); - } - - return; - } - - // Handle casts from floating point to integer now... - if (SrcClass == cFP) { - // Change the floating point control register to use "round towards zero" - // mode when truncating to an integer value. - // - int CWFrameIdx = F->getFrameInfo()->CreateStackObject(2, 2); - addFrameReference(BuildMI(*BB, IP, X86::FNSTCW16m, 4), CWFrameIdx); - - // Load the old value of the high byte of the control word... - unsigned HighPartOfCW = makeAnotherReg(Type::UByteTy); - addFrameReference(BuildMI(*BB, IP, X86::MOV8rm, 4, HighPartOfCW), - CWFrameIdx, 1); - - // Set the high part to be round to zero... - addFrameReference(BuildMI(*BB, IP, X86::MOV8mi, 5), - CWFrameIdx, 1).addImm(12); - - // Reload the modified control word now... - addFrameReference(BuildMI(*BB, IP, X86::FLDCW16m, 4), CWFrameIdx); - - // Restore the memory image of control word to original value - addFrameReference(BuildMI(*BB, IP, X86::MOV8mr, 5), - CWFrameIdx, 1).addReg(HighPartOfCW); - - // We don't have the facilities for directly storing byte sized data to - // memory. Promote it to 16 bits. We also must promote unsigned values to - // larger classes because we only have signed FP stores. - unsigned StoreClass = DestClass; - const Type *StoreTy = DestTy; - if (StoreClass == cByte || DestTy->isUnsigned()) - switch (StoreClass) { - case cByte: StoreTy = Type::ShortTy; StoreClass = cShort; break; - case cShort: StoreTy = Type::IntTy; StoreClass = cInt; break; - case cInt: StoreTy = Type::LongTy; StoreClass = cLong; break; - // The following treatment of cLong may not be perfectly right, - // but it survives chains of casts of the form - // double->ulong->double. - case cLong: StoreTy = Type::LongTy; StoreClass = cLong; break; - default: assert(0 && "Unknown store class!"); - } - - // Spill the integer to memory and reload it from there... - int FrameIdx = - F->getFrameInfo()->CreateStackObject(StoreTy, TM.getTargetData()); - - static const unsigned Op1[] = - { 0, X86::FIST16m, X86::FIST32m, 0, X86::FISTP64m }; - addFrameReference(BuildMI(*BB, IP, Op1[StoreClass], 5), - FrameIdx).addReg(SrcReg); - - if (DestClass == cLong) { - addFrameReference(BuildMI(*BB, IP, X86::MOV32rm, 4, DestReg), FrameIdx); - addFrameReference(BuildMI(*BB, IP, X86::MOV32rm, 4, DestReg+1), - FrameIdx, 4); - } else { - static const unsigned Op2[] = { X86::MOV8rm, X86::MOV16rm, X86::MOV32rm }; - addFrameReference(BuildMI(*BB, IP, Op2[DestClass], 4, DestReg), FrameIdx); - } - - // Reload the original control word now... - addFrameReference(BuildMI(*BB, IP, X86::FLDCW16m, 4), CWFrameIdx); - return; - } - - // Anything we haven't handled already, we can't (yet) handle at all. - assert(0 && "Unhandled cast instruction!"); - abort(); -} - -void X86ISel::visitVAArgInst(VAArgInst &I) { - unsigned VAListPtr = getReg(I.getOperand(0)); - unsigned DestReg = getReg(I); - unsigned VAList = makeAnotherReg(Type::IntTy); - addDirectMem(BuildMI(BB, X86::MOV32rm, 4, VAList), VAListPtr); - unsigned Size; - switch (I.getType()->getTypeID()) { - default: - std::cerr << I; - assert(0 && "Error: bad type for va_next instruction!"); - return; - case Type::PointerTyID: - case Type::UIntTyID: - case Type::IntTyID: - Size = 4; - addDirectMem(BuildMI(BB, X86::MOV32rm, 4, DestReg), VAList); - break; - case Type::ULongTyID: - case Type::LongTyID: - Size = 8; - addDirectMem(BuildMI(BB, X86::MOV32rm, 4, DestReg), VAList); - addRegOffset(BuildMI(BB, X86::MOV32rm, 4, DestReg+1), VAList, 4); - break; - case Type::DoubleTyID: - Size = 8; - addDirectMem(BuildMI(BB, X86::FLD64m, 4, DestReg), VAList); - break; - } - // Increment the VAList pointer... - unsigned NP = makeAnotherReg(Type::IntTy); - BuildMI(BB, X86::ADD32ri, 2, NP).addReg(VAList).addSImm(Size); - addDirectMem(BuildMI(BB, X86::MOV32rm, 5), VAListPtr).addReg(VAList); -} - -/// visitGetElementPtrInst - instruction-select GEP instructions -/// -void X86ISel::visitGetElementPtrInst(GetElementPtrInst &I) { - // If this GEP instruction will be folded into all of its users, we don't need - // to explicitly calculate it! - X86AddressMode AM; - if (isGEPFoldable(0, I.getOperand(0), I.op_begin()+1, I.op_end(), AM)) { - // Check all of the users of the instruction to see if they are loads and - // stores. - bool AllWillFold = true; - for (Value::use_iterator UI = I.use_begin(), E = I.use_end(); UI != E; ++UI) - if (cast<Instruction>(*UI)->getOpcode() != Instruction::Load) - if (cast<Instruction>(*UI)->getOpcode() != Instruction::Store || - cast<Instruction>(*UI)->getOperand(0) == &I) { - AllWillFold = false; - break; - } - - // If the instruction is foldable, and will be folded into all users, don't - // emit it! - if (AllWillFold) return; - } - - unsigned outputReg = getReg(I); - emitGEPOperation(BB, BB->end(), I.getOperand(0), - I.op_begin()+1, I.op_end(), outputReg); -} - -/// getGEPIndex - Inspect the getelementptr operands specified with GEPOps and -/// GEPTypes (the derived types being stepped through at each level). On return -/// from this function, if some indexes of the instruction are representable as -/// an X86 lea instruction, the machine operands are put into the Ops -/// instruction and the consumed indexes are poped from the GEPOps/GEPTypes -/// lists. Otherwise, GEPOps.size() is returned. If this returns a an -/// addressing mode that only partially consumes the input, the BaseReg input of -/// the addressing mode must be left free. -/// -/// Note that there is one fewer entry in GEPTypes than there is in GEPOps. -/// -void X86ISel::getGEPIndex(MachineBasicBlock *MBB, - MachineBasicBlock::iterator IP, - std::vector<Value*> &GEPOps, - std::vector<const Type*> &GEPTypes, - X86AddressMode &AM) { - const TargetData &TD = TM.getTargetData(); - - // Clear out the state we are working with... - AM.BaseType = X86AddressMode::RegBase; - AM.Base.Reg = 0; // No base register - AM.Scale = 1; // Unit scale - AM.IndexReg = 0; // No index register - AM.Disp = 0; // No displacement - - // While there are GEP indexes that can be folded into the current address, - // keep processing them. - while (!GEPTypes.empty()) { - if (const StructType *StTy = dyn_cast<StructType>(GEPTypes.back())) { - // It's a struct access. CUI is the index into the structure, - // which names the field. This index must have unsigned type. - const ConstantUInt *CUI = cast<ConstantUInt>(GEPOps.back()); - - // Use the TargetData structure to pick out what the layout of the - // structure is in memory. Since the structure index must be constant, we - // can get its value and use it to find the right byte offset from the - // StructLayout class's list of structure member offsets. - AM.Disp += TD.getStructLayout(StTy)->MemberOffsets[CUI->getValue()]; - GEPOps.pop_back(); // Consume a GEP operand - GEPTypes.pop_back(); - } else { - // It's an array or pointer access: [ArraySize x ElementType]. - const SequentialType *SqTy = cast<SequentialType>(GEPTypes.back()); - Value *idx = GEPOps.back(); - - // idx is the index into the array. Unlike with structure - // indices, we may not know its actual value at code-generation - // time. - - // If idx is a constant, fold it into the offset. - unsigned TypeSize = TD.getTypeSize(SqTy->getElementType()); - if (ConstantSInt *CSI = dyn_cast<ConstantSInt>(idx)) { - AM.Disp += TypeSize*CSI->getValue(); - } else if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(idx)) { - AM.Disp += TypeSize*CUI->getValue(); - } else { - // If the index reg is already taken, we can't handle this index. - if (AM.IndexReg) return; - - // If this is a size that we can handle, then add the index as - switch (TypeSize) { - case 1: case 2: case 4: case 8: - // These are all acceptable scales on X86. - AM.Scale = TypeSize; - break; - default: - // Otherwise, we can't handle this scale - return; - } - - if (CastInst *CI = dyn_cast<CastInst>(idx)) - if (CI->getOperand(0)->getType() == Type::IntTy || - CI->getOperand(0)->getType() == Type::UIntTy) - idx = CI->getOperand(0); - - AM.IndexReg = MBB ? getReg(idx, MBB, IP) : 1; - } - - GEPOps.pop_back(); // Consume a GEP operand - GEPTypes.pop_back(); - } - } - - // GEPTypes is empty, which means we have a single operand left. Set it as - // the base register. - // - assert(AM.Base.Reg == 0); - - if (AllocaInst *AI = dyn_castFixedAlloca(GEPOps.back())) { - AM.BaseType = X86AddressMode::FrameIndexBase; - AM.Base.FrameIndex = getFixedSizedAllocaFI(AI); - GEPOps.pop_back(); - return; - } - - if (GlobalValue *GV = dyn_cast<GlobalValue>(GEPOps.back())) { - AM.GV = GV; - GEPOps.pop_back(); - return; - } - - AM.Base.Reg = MBB ? getReg(GEPOps[0], MBB, IP) : 1; - GEPOps.pop_back(); // Consume the last GEP operand -} - - -/// isGEPFoldable - Return true if the specified GEP can be completely -/// folded into the addressing mode of a load/store or lea instruction. -bool X86ISel::isGEPFoldable(MachineBasicBlock *MBB, - Value *Src, User::op_iterator IdxBegin, - User::op_iterator IdxEnd, X86AddressMode &AM) { - - std::vector<Value*> GEPOps; - GEPOps.resize(IdxEnd-IdxBegin+1); - GEPOps[0] = Src; - std::copy(IdxBegin, IdxEnd, GEPOps.begin()+1); - - std::vector<const Type*> - GEPTypes(gep_type_begin(Src->getType(), IdxBegin, IdxEnd), - gep_type_end(Src->getType(), IdxBegin, IdxEnd)); - - MachineBasicBlock::iterator IP; - if (MBB) IP = MBB->end(); - getGEPIndex(MBB, IP, GEPOps, GEPTypes, AM); - - // We can fold it away iff the getGEPIndex call eliminated all operands. - return GEPOps.empty(); -} - -void X86ISel::emitGEPOperation(MachineBasicBlock *MBB, - MachineBasicBlock::iterator IP, - Value *Src, User::op_iterator IdxBegin, - User::op_iterator IdxEnd, unsigned TargetReg) { - const TargetData &TD = TM.getTargetData(); - - // If this is a getelementptr null, with all constant integer indices, just - // replace it with TargetReg = 42. - if (isa<ConstantPointerNull>(Src)) { - User::op_iterator I = IdxBegin; - for (; I != IdxEnd; ++I) - if (!isa<ConstantInt>(*I)) - break; - if (I == IdxEnd) { // All constant indices - unsigned Offset = TD.getIndexedOffset(Src->getType(), - std::vector<Value*>(IdxBegin, IdxEnd)); - BuildMI(*MBB, IP, X86::MOV32ri, 1, TargetReg).addImm(Offset); - return; - } - } - - std::vector<Value*> GEPOps; - GEPOps.resize(IdxEnd-IdxBegin+1); - GEPOps[0] = Src; - std::copy(IdxBegin, IdxEnd, GEPOps.begin()+1); - - std::vector<const Type*> GEPTypes; - GEPTypes.assign(gep_type_begin(Src->getType(), IdxBegin, IdxEnd), - gep_type_end(Src->getType(), IdxBegin, IdxEnd)); - - // Keep emitting instructions until we consume the entire GEP instruction. - while (!GEPOps.empty()) { - unsigned OldSize = GEPOps.size(); - X86AddressMode AM; - getGEPIndex(MBB, IP, GEPOps, GEPTypes, AM); - - if (GEPOps.size() != OldSize) { - // getGEPIndex consumed some of the input. Build an LEA instruction here. - unsigned NextTarget = 0; - if (!GEPOps.empty()) { - assert(AM.Base.Reg == 0 && - "getGEPIndex should have left the base register open for chaining!"); - NextTarget = AM.Base.Reg = makeAnotherReg(Type::UIntTy); - } - - if (AM.BaseType == X86AddressMode::RegBase && - AM.IndexReg == 0 && AM.Disp == 0 && !AM.GV) - BuildMI(*MBB, IP, X86::MOV32rr, 1, TargetReg).addReg(AM.Base.Reg); - else if (AM.BaseType == X86AddressMode::RegBase && AM.Base.Reg == 0 && - AM.IndexReg == 0 && AM.Disp == 0) - BuildMI(*MBB, IP, X86::MOV32ri, 1, TargetReg).addGlobalAddress(AM.GV); - else - addFullAddress(BuildMI(*MBB, IP, X86::LEA32r, 5, TargetReg), AM); - --IP; - TargetReg = NextTarget; - } else if (GEPTypes.empty()) { - // The getGEPIndex operation didn't want to build an LEA. Check to see if - // all operands are consumed but the base pointer. If so, just load it - // into the register. - if (GlobalValue *GV = dyn_cast<GlobalValue>(GEPOps[0])) { - BuildMI(*MBB, IP, X86::MOV32ri, 1, TargetReg).addGlobalAddress(GV); - } else { - unsigned BaseReg = getReg(GEPOps[0], MBB, IP); - BuildMI(*MBB, IP, X86::MOV32rr, 1, TargetReg).addReg(BaseReg); - } - break; // we are now done - - } else { - // It's an array or pointer access: [ArraySize x ElementType]. - const SequentialType *SqTy = cast<SequentialType>(GEPTypes.back()); - Value *idx = GEPOps.back(); - GEPOps.pop_back(); // Consume a GEP operand - GEPTypes.pop_back(); - - // Many GEP instructions use a [cast (int/uint) to LongTy] as their - // operand on X86. Handle this case directly now... - if (CastInst *CI = dyn_cast<CastInst>(idx)) - if (CI->getOperand(0)->getType() == Type::IntTy || - CI->getOperand(0)->getType() == Type::UIntTy) - idx = CI->getOperand(0); - - // We want to add BaseReg to(idxReg * sizeof ElementType). First, we - // must find the size of the pointed-to type (Not coincidentally, the next - // type is the type of the elements in the array). - const Type *ElTy = SqTy->getElementType(); - unsigned elementSize = TD.getTypeSize(ElTy); - - // If idxReg is a constant, we don't need to perform the multiply! - if (ConstantInt *CSI = dyn_cast<ConstantInt>(idx)) { - if (!CSI->isNullValue()) { - unsigned Offset = elementSize*CSI->getRawValue(); - unsigned Reg = makeAnotherReg(Type::UIntTy); - BuildMI(*MBB, IP, X86::ADD32ri, 2, TargetReg) - .addReg(Reg).addImm(Offset); - --IP; // Insert the next instruction before this one. - TargetReg = Reg; // Codegen the rest of the GEP into this - } - } else if (elementSize == 1) { - // If the element size is 1, we don't have to multiply, just add - unsigned idxReg = getReg(idx, MBB, IP); - unsigned Reg = makeAnotherReg(Type::UIntTy); - BuildMI(*MBB, IP, X86::ADD32rr, 2,TargetReg).addReg(Reg).addReg(idxReg); - --IP; // Insert the next instruction before this one. - TargetReg = Reg; // Codegen the rest of the GEP into this - } else { - unsigned idxReg = getReg(idx, MBB, IP); - unsigned OffsetReg = makeAnotherReg(Type::UIntTy); - - // Make sure we can back the iterator up to point to the first - // instruction emitted. - MachineBasicBlock::iterator BeforeIt = IP; - if (IP == MBB->begin()) - BeforeIt = MBB->end(); - else - --BeforeIt; - doMultiplyConst(MBB, IP, OffsetReg, Type::IntTy, idxReg, elementSize); - - // Emit an ADD to add OffsetReg to the basePtr. - unsigned Reg = makeAnotherReg(Type::UIntTy); - BuildMI(*MBB, IP, X86::ADD32rr, 2, TargetReg) - .addReg(Reg).addReg(OffsetReg); - - // Step to the first instruction of the multiply. - if (BeforeIt == MBB->end()) - IP = MBB->begin(); - else - IP = ++BeforeIt; - - TargetReg = Reg; // Codegen the rest of the GEP into this - } - } - } -} - -/// visitAllocaInst - If this is a fixed size alloca, allocate space from the -/// frame manager, otherwise do it the hard way. -/// -void X86ISel::visitAllocaInst(AllocaInst &I) { - // If this is a fixed size alloca in the entry block for the function, we - // statically stack allocate the space, so we don't need to do anything here. - // - if (dyn_castFixedAlloca(&I)) return; - - // Find the data size of the alloca inst's getAllocatedType. - const Type *Ty = I.getAllocatedType(); - unsigned TySize = TM.getTargetData().getTypeSize(Ty); - - // Create a register to hold the temporary result of multiplying the type size - // constant by the variable amount. - unsigned TotalSizeReg = makeAnotherReg(Type::UIntTy); - unsigned SrcReg1 = getReg(I.getArraySize()); - - // TotalSizeReg = mul <numelements>, <TypeSize> - MachineBasicBlock::iterator MBBI = BB->end(); - doMultiplyConst(BB, MBBI, TotalSizeReg, Type::UIntTy, SrcReg1, TySize); - - // AddedSize = add <TotalSizeReg>, 15 - unsigned AddedSizeReg = makeAnotherReg(Type::UIntTy); - BuildMI(BB, X86::ADD32ri, 2, AddedSizeReg).addReg(TotalSizeReg).addImm(15); - - // AlignedSize = and <AddedSize>, ~15 - unsigned AlignedSize = makeAnotherReg(Type::UIntTy); - BuildMI(BB, X86::AND32ri, 2, AlignedSize).addReg(AddedSizeReg).addImm(~15); - - // Subtract size from stack pointer, thereby allocating some space. - BuildMI(BB, X86::SUB32rr, 2, X86::ESP).addReg(X86::ESP).addReg(AlignedSize); - - // Put a pointer to the space into the result register, by copying - // the stack pointer. - BuildMI(BB, X86::MOV32rr, 1, getReg(I)).addReg(X86::ESP); - - // Inform the Frame Information that we have just allocated a variable-sized - // object. - F->getFrameInfo()->CreateVariableSizedObject(); -} - -/// visitMallocInst - Malloc instructions are code generated into direct calls -/// to the library malloc. -/// -void X86ISel::visitMallocInst(MallocInst &I) { - unsigned AllocSize = TM.getTargetData().getTypeSize(I.getAllocatedType()); - unsigned Arg; - - if (ConstantUInt *C = dyn_cast<ConstantUInt>(I.getOperand(0))) { - Arg = getReg(ConstantUInt::get(Type::UIntTy, C->getValue() * AllocSize)); - } else { - Arg = makeAnotherReg(Type::UIntTy); - unsigned Op0Reg = getReg(I.getOperand(0)); - MachineBasicBlock::iterator MBBI = BB->end(); - doMultiplyConst(BB, MBBI, Arg, Type::UIntTy, Op0Reg, AllocSize); - } - - std::vector<ValueRecord> Args; - Args.push_back(ValueRecord(Arg, Type::UIntTy)); - MachineInstr *TheCall = BuildMI(X86::CALLpcrel32, - 1).addExternalSymbol("malloc", true); - doCall(ValueRecord(getReg(I), I.getType()), TheCall, Args); -} - - -/// visitFreeInst - Free instructions are code gen'd to call the free libc -/// function. -/// -void X86ISel::visitFreeInst(FreeInst &I) { - std::vector<ValueRecord> Args; - Args.push_back(ValueRecord(I.getOperand(0))); - MachineInstr *TheCall = BuildMI(X86::CALLpcrel32, - 1).addExternalSymbol("free", true); - doCall(ValueRecord(0, Type::VoidTy), TheCall, Args); -} - -/// createX86SimpleInstructionSelector - This pass converts an LLVM function -/// into a machine code representation is a very simple peep-hole fashion. The -/// generated code sucks but the implementation is nice and simple. -/// -FunctionPass *llvm::createX86SimpleInstructionSelector(TargetMachine &TM) { - return new X86ISel(TM); -} diff --git a/llvm/lib/Target/X86/X86TargetMachine.cpp b/llvm/lib/Target/X86/X86TargetMachine.cpp index 46a2abbaeb8..e5a4fc8ffc8 100644 --- a/llvm/lib/Target/X86/X86TargetMachine.cpp +++ b/llvm/lib/Target/X86/X86TargetMachine.cpp @@ -120,11 +120,8 @@ bool X86TargetMachine::addPassesToEmitFile(PassManager &PM, std::ostream &Out, // Make sure that no unreachable blocks are instruction selected. PM.add(createUnreachableBlockEliminationPass()); - // Default to pattern ISel - if (PatternISelTriState == 0) - PM.add(createX86SimpleInstructionSelector(*this)); - else - PM.add(createX86PatternInstructionSelector(*this)); + // Install an instruction selector. + PM.add(createX86PatternInstructionSelector(*this)); // Run optional SSA-based machine code optimizations next... if (!NoSSAPeephole) @@ -191,11 +188,8 @@ void X86JITInfo::addPassesToJITCompile(FunctionPassManager &PM) { // Make sure that no unreachable blocks are instruction selected. PM.add(createUnreachableBlockEliminationPass()); - // Default to pattern ISel - if (PatternISelTriState == 0) - PM.add(createX86SimpleInstructionSelector(TM)); - else - PM.add(createX86PatternInstructionSelector(TM)); + // Install an instruction selector. + PM.add(createX86PatternInstructionSelector(TM)); // Run optional SSA-based machine code optimizations next... if (!NoSSAPeephole) |