diff options
-rw-r--r-- | llvm/lib/Transforms/Vectorize/LoopVectorize.cpp | 29 | ||||
-rw-r--r-- | llvm/test/Transforms/LoopVectorize/AArch64/no_vector_instructions.ll | 49 |
2 files changed, 68 insertions, 10 deletions
diff --git a/llvm/lib/Transforms/Vectorize/LoopVectorize.cpp b/llvm/lib/Transforms/Vectorize/LoopVectorize.cpp index 2b83b8426d1..8b9a64c220c 100644 --- a/llvm/lib/Transforms/Vectorize/LoopVectorize.cpp +++ b/llvm/lib/Transforms/Vectorize/LoopVectorize.cpp @@ -7170,10 +7170,8 @@ LoopVectorizationCostModel::getInstructionCost(Instruction *I, unsigned VF) { Type *VectorTy; unsigned C = getInstructionCost(I, VF, VectorTy); - // Note: Even if all instructions are scalarized, return true if any memory - // accesses appear in the loop to get benefits from address folding etc. bool TypeNotScalarized = - VF > 1 && !VectorTy->isVoidTy() && TTI.getNumberOfParts(VectorTy) < VF; + VF > 1 && VectorTy->isVectorTy() && TTI.getNumberOfParts(VectorTy) < VF; return VectorizationCostTy(C, TypeNotScalarized); } @@ -7312,7 +7310,7 @@ unsigned LoopVectorizationCostModel::getInstructionCost(Instruction *I, Type *RetTy = I->getType(); if (canTruncateToMinimalBitwidth(I, VF)) RetTy = IntegerType::get(RetTy->getContext(), MinBWs[I]); - VectorTy = ToVectorTy(RetTy, VF); + VectorTy = isScalarAfterVectorization(I, VF) ? RetTy : ToVectorTy(RetTy, VF); auto SE = PSE.getSE(); // TODO: We need to estimate the cost of intrinsic calls. @@ -7445,9 +7443,10 @@ unsigned LoopVectorizationCostModel::getInstructionCost(Instruction *I, } else if (Legal->isUniform(Op2)) { Op2VK = TargetTransformInfo::OK_UniformValue; } - SmallVector<const Value *, 4> Operands(I->operand_values()); - return TTI.getArithmeticInstrCost(I->getOpcode(), VectorTy, Op1VK, - Op2VK, Op1VP, Op2VP, Operands); + SmallVector<const Value *, 4> Operands(I->operand_values()); + unsigned N = isScalarAfterVectorization(I, VF) ? VF : 1; + return N * TTI.getArithmeticInstrCost(I->getOpcode(), VectorTy, Op1VK, + Op2VK, Op1VP, Op2VP, Operands); } case Instruction::Select: { SelectInst *SI = cast<SelectInst>(I); @@ -7470,7 +7469,15 @@ unsigned LoopVectorizationCostModel::getInstructionCost(Instruction *I, } case Instruction::Store: case Instruction::Load: { - VectorTy = ToVectorTy(getMemInstValueType(I), VF); + unsigned Width = VF; + if (Width > 1) { + InstWidening Decision = getWideningDecision(I, Width); + assert(Decision != CM_Unknown && + "CM decision should be taken at this point"); + if (Decision == CM_Scalarize) + Width = 1; + } + VectorTy = ToVectorTy(getMemInstValueType(I), Width); return getMemoryInstructionCost(I, VF); } case Instruction::ZExt: @@ -7495,7 +7502,8 @@ unsigned LoopVectorizationCostModel::getInstructionCost(Instruction *I, } Type *SrcScalarTy = I->getOperand(0)->getType(); - Type *SrcVecTy = ToVectorTy(SrcScalarTy, VF); + Type *SrcVecTy = + VectorTy->isVectorTy() ? ToVectorTy(SrcScalarTy, VF) : SrcScalarTy; if (canTruncateToMinimalBitwidth(I, VF)) { // This cast is going to be shrunk. This may remove the cast or it might // turn it into slightly different cast. For example, if MinBW == 16, @@ -7515,7 +7523,8 @@ unsigned LoopVectorizationCostModel::getInstructionCost(Instruction *I, } } - return TTI.getCastInstrCost(I->getOpcode(), VectorTy, SrcVecTy, I); + unsigned N = isScalarAfterVectorization(I, VF) ? VF : 1; + return N * TTI.getCastInstrCost(I->getOpcode(), VectorTy, SrcVecTy, I); } case Instruction::Call: { bool NeedToScalarize; diff --git a/llvm/test/Transforms/LoopVectorize/AArch64/no_vector_instructions.ll b/llvm/test/Transforms/LoopVectorize/AArch64/no_vector_instructions.ll new file mode 100644 index 00000000000..247ea35ff5d --- /dev/null +++ b/llvm/test/Transforms/LoopVectorize/AArch64/no_vector_instructions.ll @@ -0,0 +1,49 @@ +; REQUIRES: asserts +; RUN: opt < %s -loop-vectorize -force-vector-interleave=1 -S -debug-only=loop-vectorize 2>&1 | FileCheck %s + +target datalayout = "e-m:e-i8:8:32-i16:16:32-i64:64-i128:128-n32:64-S128" +target triple = "aarch64--linux-gnu" + +; CHECK-LABEL: all_scalar +; CHECK: LV: Found scalar instruction: %i.next = add nuw nsw i64 %i, 2 +; CHECK: LV: Found an estimated cost of 2 for VF 2 For instruction: %i.next = add nuw nsw i64 %i, 2 +; CHECK: LV: Not considering vector loop of width 2 because it will not generate any vector instructions +; +define void @all_scalar(i64* %a, i64 %n) { +entry: + br label %for.body + +for.body: + %i = phi i64 [ 0, %entry ], [ %i.next, %for.body ] + %tmp0 = getelementptr i64, i64* %a, i64 %i + store i64 0, i64* %tmp0, align 1 + %i.next = add nuw nsw i64 %i, 2 + %cond = icmp eq i64 %i.next, %n + br i1 %cond, label %for.end, label %for.body + +for.end: + ret void +} + +; CHECK-LABEL: PR33193 +; CHECK: LV: Found scalar instruction: %i.next = zext i32 %j.next to i64 +; CHECK: LV: Found an estimated cost of 0 for VF 8 For instruction: %i.next = zext i32 %j.next to i64 +; CHECK: LV: Not considering vector loop of width 8 because it will not generate any vector instructions +%struct.a = type { i32, i8 } +define void @PR33193(%struct.a* %a, i64 %n) { +entry: + br label %for.body + +for.body: + %i = phi i64 [ 0, %entry ], [ %i.next, %for.body ] + %j = phi i32 [ 0, %entry ], [ %j.next, %for.body ] + %tmp0 = getelementptr inbounds %struct.a, %struct.a* %a, i64 %i, i32 1 + store i8 0, i8* %tmp0, align 4 + %j.next = add i32 %j, 1 + %i.next = zext i32 %j.next to i64 + %cond = icmp ugt i64 %n, %i.next + br i1 %cond, label %for.body, label %for.end + +for.end: + ret void +} |