diff options
| -rw-r--r-- | llvm/lib/Transforms/Scalar/ScalarReplAggregates.cpp | 167 | 
1 files changed, 162 insertions, 5 deletions
diff --git a/llvm/lib/Transforms/Scalar/ScalarReplAggregates.cpp b/llvm/lib/Transforms/Scalar/ScalarReplAggregates.cpp index 9d3f01f2447..e644ccf1383 100644 --- a/llvm/lib/Transforms/Scalar/ScalarReplAggregates.cpp +++ b/llvm/lib/Transforms/Scalar/ScalarReplAggregates.cpp @@ -35,6 +35,7 @@  #include "llvm/Target/TargetData.h"  #include "llvm/Transforms/Utils/PromoteMemToReg.h"  #include "llvm/Transforms/Utils/Local.h" +#include "llvm/Transforms/Utils/SSAUpdater.h"  #include "llvm/Support/CallSite.h"  #include "llvm/Support/Debug.h"  #include "llvm/Support/ErrorHandling.h" @@ -51,6 +52,10 @@ STATISTIC(NumPromoted,  "Number of allocas promoted");  STATISTIC(NumConverted, "Number of aggregates converted to scalar");  STATISTIC(NumGlobals,   "Number of allocas copied from constant global"); +enum { +  UsePromoteMemToReg = 1 +}; +  namespace {    struct SROA : public FunctionPass {      static char ID; // Pass identification, replacement for typeid @@ -70,8 +75,10 @@ namespace {      // getAnalysisUsage - This pass does not require any passes, but we know it      // will not alter the CFG, so say so.      virtual void getAnalysisUsage(AnalysisUsage &AU) const { -      AU.addRequired<DominatorTree>(); -      AU.addRequired<DominanceFrontier>(); +      if (UsePromoteMemToReg) { +        AU.addRequired<DominatorTree>(); +        AU.addRequired<DominanceFrontier>(); +      }        AU.setPreservesCFG();      } @@ -804,11 +811,153 @@ bool SROA::runOnFunction(Function &F) {    return Changed;  } +/// PromoteAlloca - Promote an alloca to registers, using SSAUpdater. +static void PromoteAlloca(AllocaInst *AI, SSAUpdater &SSA) { +  SSA.Initialize(AI->getType()->getElementType(), AI->getName()); + +  // First step: bucket up uses of the alloca by the block they occur in. +  // This is important because we have to handle multiple defs/uses in a block +  // ourselves: SSAUpdater is purely for cross-block references. +  // FIXME: Want a TinyVector<Instruction*> since there is often 0/1 element. +  DenseMap<BasicBlock*, std::vector<Instruction*> > UsesByBlock; +   +  for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end(); +       UI != E; ++UI) { +    Instruction *User = cast<Instruction>(*UI); +    UsesByBlock[User->getParent()].push_back(User); +  } +   +  // Okay, now we can iterate over all the blocks in the function with uses, +  // processing them.  Keep track of which loads are loading a live-in value. +  // Walk the uses in the use-list order to be determinstic. +  SmallVector<LoadInst*, 32> LiveInLoads; +  DenseMap<Value*, Value*> ReplacedLoads; +   +  for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end(); +       UI != E; ++UI) { +    Instruction *User = cast<Instruction>(*UI); +    BasicBlock *BB = User->getParent(); +    std::vector<Instruction*> &BlockUses = UsesByBlock[BB]; +     +    // If this block has already been processed, ignore this repeat use. +    if (BlockUses.empty()) continue; +     +    // Okay, this is the first use in the block.  If this block just has a +    // single user in it, we can rewrite it trivially. +    if (BlockUses.size() == 1) { +      // If it is a store, it is a trivial def of the value in the block. +      if (StoreInst *SI = dyn_cast<StoreInst>(User)) +        SSA.AddAvailableValue(BB, SI->getOperand(0)); +      else  +        // Otherwise it is a load, queue it to rewrite as a live-in load. +        LiveInLoads.push_back(cast<LoadInst>(User)); +      BlockUses.clear(); +      continue; +    } +     +    // Otherwise, check to see if this block is all loads. +    bool HasStore = false; +    for (unsigned i = 0, e = BlockUses.size(); i != e; ++i) { +      if (isa<StoreInst>(BlockUses[i])) { +        HasStore = true; +        break; +      } +    } +     +    // If so, we can queue them all as live in loads.  We don't have an +    // efficient way to tell which on is first in the block and don't want to +    // scan large blocks, so just add all loads as live ins. +    if (!HasStore) { +      for (unsigned i = 0, e = BlockUses.size(); i != e; ++i) +        LiveInLoads.push_back(cast<LoadInst>(BlockUses[i])); +      BlockUses.clear(); +      continue; +    } +     +    // Otherwise, we have mixed loads and stores (or just a bunch of stores). +    // Since SSAUpdater is purely for cross-block values, we need to determine +    // the order of these instructions in the block.  If the first use in the +    // block is a load, then it uses the live in value.  The last store defines +    // the live out value.  We handle this by doing a linear scan of the block. +    Value *StoredValue = 0; +    for (BasicBlock::iterator II = BB->begin(), E = BB->end(); II != E; ++II) { +      if (LoadInst *L = dyn_cast<LoadInst>(II)) { +        // If this is a load from an unrelated pointer, ignore it. +        if (L->getOperand(0) != AI) continue; +         +        // If we haven't seen a store yet, this is a live in use, otherwise +        // use the stored value. +        if (StoredValue) { +          L->replaceAllUsesWith(StoredValue); +          ReplacedLoads[L] = StoredValue; +        } else { +          LiveInLoads.push_back(L); +        } +        continue; +      } +       +      if (StoreInst *S = dyn_cast<StoreInst>(II)) { +        // If this is a store to an unrelated pointer, ignore it. +        if (S->getPointerOperand() != AI) continue; +         +        // Remember that this is the active value in the block. +        StoredValue = S->getOperand(0); +      } +    } +     +    // The last stored value that happened is the live-out for the block. +    assert(StoredValue && "Already checked that there is a store in block"); +    SSA.AddAvailableValue(BB, StoredValue); +    BlockUses.clear(); +  } +   +  // Okay, now we rewrite all loads that use live-in values in the loop, +  // inserting PHI nodes as necessary. +  for (unsigned i = 0, e = LiveInLoads.size(); i != e; ++i) { +    LoadInst *ALoad = LiveInLoads[i]; +    Value *NewVal = SSA.GetValueInMiddleOfBlock(ALoad->getParent()); +    ALoad->replaceAllUsesWith(NewVal); +    ReplacedLoads[ALoad] = NewVal; +  } +   +  // Now that everything is rewritten, delete the old instructions from the +  // function.  They should all be dead now. +  for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end(); UI != E; ) { +    Instruction *User = cast<Instruction>(*UI++); +     +    // If this is a load that still has uses, then the load must have been added +    // as a live value in the SSAUpdate data structure for a block (e.g. because +    // the loaded value was stored later).  In this case, we need to recursively +    // propagate the updates until we get to the real value. +    if (!User->use_empty()) { +      Value *NewVal = ReplacedLoads[User]; +      assert(NewVal && "not a replaced load?"); +       +      // Propagate down to the ultimate replacee.  The intermediately loads +      // could theoretically already have been deleted, so we don't want to +      // dereference the Value*'s. +      DenseMap<Value*, Value*>::iterator RLI = ReplacedLoads.find(NewVal); +      while (RLI != ReplacedLoads.end()) { +        NewVal = RLI->second; +        RLI = ReplacedLoads.find(NewVal); +      } +       +      User->replaceAllUsesWith(NewVal); +    } +     +    User->eraseFromParent(); +  } +} +  bool SROA::performPromotion(Function &F) {    std::vector<AllocaInst*> Allocas; -  DominatorTree         &DT = getAnalysis<DominatorTree>(); -  DominanceFrontier &DF = getAnalysis<DominanceFrontier>(); +  DominatorTree *DT = 0; +  DominanceFrontier *DF = 0; +  if (UsePromoteMemToReg) { +    DT = &getAnalysis<DominatorTree>(); +    DF = &getAnalysis<DominanceFrontier>(); +  }    BasicBlock &BB = F.getEntryBlock();  // Get the entry node for the function @@ -826,7 +975,15 @@ bool SROA::performPromotion(Function &F) {      if (Allocas.empty()) break; -    PromoteMemToReg(Allocas, DT, DF); +    if (UsePromoteMemToReg) +      PromoteMemToReg(Allocas, *DT, *DF); +    else { +      SSAUpdater SSA; +      for (unsigned i = 0, e = Allocas.size(); i != e; ++i) { +        PromoteAlloca(Allocas[i], SSA); +        Allocas[i]->eraseFromParent(); +      } +    }      NumPromoted += Allocas.size();      Changed = true;    }  | 

