diff options
4 files changed, 221 insertions, 54 deletions
diff --git a/llvm/include/llvm/Analysis/ScalarEvolutionExpander.h b/llvm/include/llvm/Analysis/ScalarEvolutionExpander.h index 8194555cdeb..7e0de47dc4f 100644 --- a/llvm/include/llvm/Analysis/ScalarEvolutionExpander.h +++ b/llvm/include/llvm/Analysis/ScalarEvolutionExpander.h @@ -110,8 +110,8 @@ namespace llvm {    private:      /// expandAddToGEP - Expand a SCEVAddExpr with a pointer type into a GEP      /// instead of using ptrtoint+arithmetic+inttoptr. -    Value *expandAddToGEP(const SCEVAddExpr *S, const PointerType *PTy, -                          const Type *Ty, Value *V); +    Value *expandAddToGEP(const SCEVHandle *op_begin, const SCEVHandle *op_end, +                          const PointerType *PTy, const Type *Ty, Value *V);      Value *expand(const SCEV *S); diff --git a/llvm/lib/Analysis/ScalarEvolutionExpander.cpp b/llvm/lib/Analysis/ScalarEvolutionExpander.cpp index fc66ddb6f48..7ebc00a19ae 100644 --- a/llvm/lib/Analysis/ScalarEvolutionExpander.cpp +++ b/llvm/lib/Analysis/ScalarEvolutionExpander.cpp @@ -144,17 +144,89 @@ Value *SCEVExpander::InsertBinop(Instruction::BinaryOps Opcode, Value *LHS,    return BO;  } +/// FactorOutConstant - Test if S is evenly divisible by Factor, using signed +/// division. If so, update S with Factor divided out and return true. +/// TODO: When ScalarEvolution gets a SCEVSDivExpr, this can be made +/// unnecessary; in its place, just signed-divide Ops[i] by the scale and +/// check to see if the divide was folded. +static bool FactorOutConstant(SCEVHandle &S, +                              const APInt &Factor, +                              ScalarEvolution &SE) { +  // Everything is divisible by one. +  if (Factor == 1) +    return true; + +  // For a Constant, check for a multiple of the given factor. +  if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) +    if (!C->getValue()->getValue().srem(Factor)) { +      ConstantInt *CI = +        ConstantInt::get(C->getValue()->getValue().sdiv(Factor)); +      SCEVHandle Div = SE.getConstant(CI); +      S = Div; +      return true; +    } + +  // In a Mul, check if there is a constant operand which is a multiple +  // of the given factor. +  if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) +    if (const SCEVConstant *C = dyn_cast<SCEVConstant>(M->getOperand(0))) +      if (!C->getValue()->getValue().srem(Factor)) { +        std::vector<SCEVHandle> NewMulOps(M->getOperands()); +        NewMulOps[0] = +          SE.getConstant(C->getValue()->getValue().sdiv(Factor)); +        S = SE.getMulExpr(NewMulOps); +        return true; +      } + +  // In an AddRec, check if both start and step are divisible. +  if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) { +    SCEVHandle Start = A->getStart(); +    if (!FactorOutConstant(Start, Factor, SE)) +      return false; +    SCEVHandle Step = A->getStepRecurrence(SE); +    if (!FactorOutConstant(Step, Factor, SE)) +      return false; +    S = SE.getAddRecExpr(Start, Step, A->getLoop()); +    return true; +  } + +  return false; +} +  /// expandAddToGEP - Expand a SCEVAddExpr with a pointer type into a GEP -/// instead of using ptrtoint+arithmetic+inttoptr. -Value *SCEVExpander::expandAddToGEP(const SCEVAddExpr *S, +/// instead of using ptrtoint+arithmetic+inttoptr. This helps +/// BasicAliasAnalysis analyze the result. However, it suffers from the +/// underlying bug described in PR2831. Addition in LLVM currently always +/// has two's complement wrapping guaranteed. However, the semantics for +/// getelementptr overflow are ambiguous. In the common case though, this +/// expansion gets used when a GEP in the original code has been converted +/// into integer arithmetic, in which case the resulting code will be no +/// more undefined than it was originally. +/// +/// Design note: It might seem desirable for this function to be more +/// loop-aware. If some of the indices are loop-invariant while others +/// aren't, it might seem desirable to emit multiple GEPs, keeping the +/// loop-invariant portions of the overall computation outside the loop. +/// However, there are a few reasons this is not done here. Hoisting simple +/// arithmetic is a low-level optimization that often isn't very +/// important until late in the optimization process. In fact, passes +/// like InstructionCombining will combine GEPs, even if it means +/// pushing loop-invariant computation down into loops, so even if the +/// GEPs were split here, the work would quickly be undone. The +/// LoopStrengthReduction pass, which is usually run quite late (and +/// after the last InstructionCombining pass), takes care of hoisting +/// loop-invariant portions of expressions, after considering what +/// can be folded using target addressing modes. +/// +Value *SCEVExpander::expandAddToGEP(const SCEVHandle *op_begin, +                                    const SCEVHandle *op_end,                                      const PointerType *PTy,                                      const Type *Ty,                                      Value *V) {    const Type *ElTy = PTy->getElementType();    SmallVector<Value *, 4> GepIndices; -  std::vector<SCEVHandle> Ops = S->getOperands(); +  std::vector<SCEVHandle> Ops(op_begin, op_end);    bool AnyNonZeroIndices = false; -  Ops.pop_back();    // Decend down the pointer's type and attempt to convert the other    // operands into GEP indices, at each level. The first index in a GEP @@ -167,45 +239,27 @@ Value *SCEVExpander::expandAddToGEP(const SCEVAddExpr *S,      std::vector<SCEVHandle> NewOps;      std::vector<SCEVHandle> ScaledOps;      for (unsigned i = 0, e = Ops.size(); i != e; ++i) { +      // Split AddRecs up into parts as either of the parts may be usable +      // without the other. +      if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(Ops[i])) +        if (!A->getStart()->isZero()) { +          SCEVHandle Start = A->getStart(); +          Ops.push_back(SE.getAddRecExpr(SE.getIntegerSCEV(0, A->getType()), +                                         A->getStepRecurrence(SE), +                                         A->getLoop())); +          Ops[i] = Start; +          ++e; +        } +      // If the scale size is not 0, attempt to factor out a scale.        if (ElSize != 0) { -        // For a Constant, check for a multiple of the pointer type's -        // scale size. -        if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) -          if (!C->getValue()->getValue().srem(ElSize)) { -            ConstantInt *CI = -              ConstantInt::get(C->getValue()->getValue().sdiv(ElSize)); -            SCEVHandle Div = SE.getConstant(CI); -            ScaledOps.push_back(Div); -            continue; -          } -        // In a Mul, check if there is a constant operand which is a multiple -        // of the pointer type's scale size. -        if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) -          if (const SCEVConstant *C = dyn_cast<SCEVConstant>(M->getOperand(0))) -            if (!C->getValue()->getValue().srem(ElSize)) { -              std::vector<SCEVHandle> NewMulOps(M->getOperands()); -              NewMulOps[0] = -                SE.getConstant(C->getValue()->getValue().sdiv(ElSize)); -              ScaledOps.push_back(SE.getMulExpr(NewMulOps)); -              continue; -            } -        // In an Unknown, check if the underlying value is a Mul by a constant -        // which is equal to the pointer type's scale size. -        if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Ops[i])) -          if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U->getValue())) -            if (BO->getOpcode() == Instruction::Mul) -              if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1))) -                if (CI->getValue() == ElSize) { -                  ScaledOps.push_back(SE.getUnknown(BO->getOperand(0))); -                  continue; -                } -        // If the pointer type's scale size is 1, no scaling is necessary -        // and any value can be used. -        if (ElSize == 1) { -          ScaledOps.push_back(Ops[i]); +        SCEVHandle Op = Ops[i]; +        if (FactorOutConstant(Op, ElSize, SE)) { +          ScaledOps.push_back(Op); // Op now has ElSize factored out.            continue;          }        } +      // If the operand was not divisible, add it to the list of operands +      // we'll scan next iteration.        NewOps.push_back(Ops[i]);      }      Ops = NewOps; @@ -292,17 +346,14 @@ Value *SCEVExpander::visitAddExpr(const SCEVAddExpr *S) {    const Type *Ty = SE.getEffectiveSCEVType(S->getType());    Value *V = expand(S->getOperand(S->getNumOperands()-1)); -  // Turn things like ptrtoint+arithmetic+inttoptr into GEP. This helps -  // BasicAliasAnalysis analyze the result. However, it suffers from the -  // underlying bug described in PR2831. Addition in LLVM currently always -  // has two's complement wrapping guaranteed. However, the semantics for -  // getelementptr overflow are ambiguous. In the common case though, this -  // expansion gets used when a GEP in the original code has been converted -  // into integer arithmetic, in which case the resulting code will be no -  // more undefined than it was originally. +  // Turn things like ptrtoint+arithmetic+inttoptr into GEP. See the +  // comments on expandAddToGEP for details.    if (SE.TD) -    if (const PointerType *PTy = dyn_cast<PointerType>(V->getType())) -      return expandAddToGEP(S, PTy, Ty, V); +    if (const PointerType *PTy = dyn_cast<PointerType>(V->getType())) { +      const std::vector<SCEVHandle> &Ops = S->getOperands(); +      return expandAddToGEP(Ops.data(), Ops.data() + Ops.size() - 1, +                            PTy, Ty, V); +    }    V = InsertNoopCastOfTo(V, Ty); @@ -357,6 +408,27 @@ Value *SCEVExpander::visitUDivExpr(const SCEVUDivExpr *S) {    return InsertBinop(Instruction::UDiv, LHS, RHS, InsertPt);  } +/// Move parts of Base into Rest to leave Base with the minimal +/// expression that provides a pointer operand suitable for a +/// GEP expansion. +static void ExposePointerBase(SCEVHandle &Base, SCEVHandle &Rest, +                              ScalarEvolution &SE) { +  while (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(Base)) { +    Base = A->getStart(); +    Rest = SE.getAddExpr(Rest, +                         SE.getAddRecExpr(SE.getIntegerSCEV(0, A->getType()), +                                          A->getStepRecurrence(SE), +                                          A->getLoop())); +  } +  if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(Base)) { +    Base = A->getOperand(A->getNumOperands()-1); +    std::vector<SCEVHandle> NewAddOps(A->op_begin(), A->op_end()); +    NewAddOps.back() = Rest; +    Rest = SE.getAddExpr(NewAddOps); +    ExposePointerBase(Base, Rest, SE); +  } +} +  Value *SCEVExpander::visitAddRecExpr(const SCEVAddRecExpr *S) {    const Type *Ty = SE.getEffectiveSCEVType(S->getType());    const Loop *L = S->getLoop(); @@ -365,8 +437,25 @@ Value *SCEVExpander::visitAddRecExpr(const SCEVAddRecExpr *S) {    if (!S->getStart()->isZero()) {      std::vector<SCEVHandle> NewOps(S->getOperands());      NewOps[0] = SE.getIntegerSCEV(0, Ty); -    Value *Rest = expand(SE.getAddRecExpr(NewOps, L)); -    return expand(SE.getAddExpr(S->getStart(), SE.getUnknown(Rest))); +    SCEVHandle Rest = SE.getAddRecExpr(NewOps, L); + +    // Turn things like ptrtoint+arithmetic+inttoptr into GEP. See the +    // comments on expandAddToGEP for details. +    if (SE.TD) { +      SCEVHandle Base = S->getStart(); +      SCEVHandle RestArray[1] = Rest; +      // Dig into the expression to find the pointer base for a GEP. +      ExposePointerBase(Base, RestArray[0], SE); +      // If we found a pointer, expand the AddRec with a GEP. +      if (const PointerType *PTy = dyn_cast<PointerType>(Base->getType())) { +        Value *StartV = expand(Base); +        assert(StartV->getType() == PTy && "Pointer type mismatch for GEP!"); +        return expandAddToGEP(RestArray, RestArray+1, PTy, Ty, StartV); +      } +    } + +    Value *RestV = expand(Rest); +    return expand(SE.getAddExpr(S->getStart(), SE.getUnknown(RestV)));    }    // {0,+,1} --> Insert a canonical induction variable into the loop! diff --git a/llvm/test/Transforms/IndVarSimplify/addrec-gep.ll b/llvm/test/Transforms/IndVarSimplify/addrec-gep.ll new file mode 100644 index 00000000000..132d4f8a871 --- /dev/null +++ b/llvm/test/Transforms/IndVarSimplify/addrec-gep.ll @@ -0,0 +1,78 @@ +; RUN: llvm-as < %s | opt -indvars | llvm-dis > %t +; RUN: grep getelementptr %t | count 1 +; RUN: grep {mul .*, 37}  %t | count 1 +; RUN: grep {add .*, 5203}  %t | count 1 +; RUN: not grep cast %t + +; This test tests several things. The load and store should use the +; same address instead of having it computed twice, and SCEVExpander should +; be able to reconstruct the full getelementptr, despite it having a few +; obstacles set in its way. + +target datalayout = "e-p:64:64:64" + +define void @foo(i64 %n, i64 %m, i64 %o, i64 %q, double* nocapture %p) nounwind { +entry: +	%tmp = icmp sgt i64 %n, 0		; <i1> [#uses=1] +	br i1 %tmp, label %bb.nph3, label %return + +bb.nph:		; preds = %bb2.preheader +	%tmp1 = mul i64 %tmp16, %i.02		; <i64> [#uses=1] +	%tmp2 = mul i64 %tmp19, %i.02		; <i64> [#uses=1] +	br label %bb1 + +bb1:		; preds = %bb2, %bb.nph +	%j.01 = phi i64 [ %tmp9, %bb2 ], [ 0, %bb.nph ]		; <i64> [#uses=3] +	%tmp3 = add i64 %j.01, %tmp1		; <i64> [#uses=1] +	%tmp4 = add i64 %j.01, %tmp2		; <i64> [#uses=1] +        %z0 = add i64 %tmp4, 5203 +	%tmp5 = getelementptr double* %p, i64 %z0		; <double*> [#uses=1] +	%tmp6 = load double* %tmp5, align 8		; <double> [#uses=1] +	%tmp7 = fdiv double %tmp6, 2.100000e+00		; <double> [#uses=1] +        %z1 = add i64 %tmp4, 5203 +	%tmp8 = getelementptr double* %p, i64 %z1		; <double*> [#uses=1] +	store double %tmp7, double* %tmp8, align 8 +	%tmp9 = add i64 %j.01, 1		; <i64> [#uses=2] +	br label %bb2 + +bb2:		; preds = %bb1 +	%tmp10 = icmp slt i64 %tmp9, %m		; <i1> [#uses=1] +	br i1 %tmp10, label %bb1, label %bb2.bb3_crit_edge + +bb2.bb3_crit_edge:		; preds = %bb2 +	br label %bb3 + +bb3:		; preds = %bb2.preheader, %bb2.bb3_crit_edge +	%tmp11 = add i64 %i.02, 1		; <i64> [#uses=2] +	br label %bb4 + +bb4:		; preds = %bb3 +	%tmp12 = icmp slt i64 %tmp11, %n		; <i1> [#uses=1] +	br i1 %tmp12, label %bb2.preheader, label %bb4.return_crit_edge + +bb4.return_crit_edge:		; preds = %bb4 +	br label %bb4.return_crit_edge.split + +bb4.return_crit_edge.split:		; preds = %bb.nph3, %bb4.return_crit_edge +	br label %return + +bb.nph3:		; preds = %entry +	%tmp13 = icmp sgt i64 %m, 0		; <i1> [#uses=1] +	%tmp14 = mul i64 %n, 37		; <i64> [#uses=1] +	%tmp15 = mul i64 %tmp14, %o		; <i64> [#uses=1] +	%tmp16 = mul i64 %tmp15, %q		; <i64> [#uses=1] +	%tmp17 = mul i64 %n, 37		; <i64> [#uses=1] +	%tmp18 = mul i64 %tmp17, %o		; <i64> [#uses=1] +	%tmp19 = mul i64 %tmp18, %q		; <i64> [#uses=1] +	br i1 %tmp13, label %bb.nph3.split, label %bb4.return_crit_edge.split + +bb.nph3.split:		; preds = %bb.nph3 +	br label %bb2.preheader + +bb2.preheader:		; preds = %bb.nph3.split, %bb4 +	%i.02 = phi i64 [ %tmp11, %bb4 ], [ 0, %bb.nph3.split ]		; <i64> [#uses=3] +	br i1 true, label %bb.nph, label %bb3 + +return:		; preds = %bb4.return_crit_edge.split, %entry +	ret void +} diff --git a/llvm/test/Transforms/IndVarSimplify/gep-with-mul-base.ll b/llvm/test/Transforms/IndVarSimplify/gep-with-mul-base.ll index 0e5e1067177..e63c88c65e6 100644 --- a/llvm/test/Transforms/IndVarSimplify/gep-with-mul-base.ll +++ b/llvm/test/Transforms/IndVarSimplify/gep-with-mul-base.ll @@ -1,6 +1,6 @@  ; RUN: llvm-as < %s | opt -indvars | llvm-dis > %t  ; RUN: grep add %t | count 8 -; RUN: grep mul %t | count 9 +; RUN: grep mul %t | count 7  define void @foo(i64 %n, i64 %m, i64 %o, double* nocapture %p) nounwind {  entry:  | 

