diff options
-rw-r--r-- | clang/lib/CodeGen/ABIInfo.h | 33 | ||||
-rw-r--r-- | clang/lib/CodeGen/CGCall.cpp | 1368 | ||||
-rw-r--r-- | clang/lib/CodeGen/TargetABIInfo.cpp | 1379 |
3 files changed, 1398 insertions, 1382 deletions
diff --git a/clang/lib/CodeGen/ABIInfo.h b/clang/lib/CodeGen/ABIInfo.h index 3de461242ab..44af0c476aa 100644 --- a/clang/lib/CodeGen/ABIInfo.h +++ b/clang/lib/CodeGen/ABIInfo.h @@ -10,8 +10,13 @@ #ifndef CLANG_CODEGEN_ABIINFO_H #define CLANG_CODEGEN_ABIINFO_H +#include "clang/AST/Type.h" + +#include <cassert> + namespace llvm { class Type; + class Value; } namespace clang { @@ -38,32 +43,32 @@ namespace clang { Direct, /// Pass the argument directly using the normal /// converted LLVM type. Complex and structure types /// are passed using first class aggregates. - + Indirect, /// Pass the argument indirectly via a hidden pointer /// with the specified alignment (0 indicates default /// alignment). - + Ignore, /// Ignore the argument (treat as void). Useful for /// void and empty structs. - + Coerce, /// Only valid for aggregate return types, the argument /// should be accessed by coercion to a provided type. - + Expand, /// Only valid for aggregate argument types. The /// structure should be expanded into consecutive /// arguments for its constituent fields. Currently /// expand is only allowed on structures whose fields /// are all scalar types or are themselves expandable /// types. - + KindFirst=Direct, KindLast=Expand }; - + private: Kind TheKind; const llvm::Type *TypeData; unsigned UIntData; - + ABIArgInfo(Kind K, const llvm::Type *TD=0, unsigned UI=0) : TheKind(K), TypeData(TD), @@ -71,13 +76,13 @@ namespace clang { public: ABIArgInfo() : TheKind(Direct), TypeData(0), UIntData(0) {} - static ABIArgInfo getDirect() { - return ABIArgInfo(Direct); + static ABIArgInfo getDirect() { + return ABIArgInfo(Direct); } static ABIArgInfo getIgnore() { return ABIArgInfo(Ignore); } - static ABIArgInfo getCoerce(const llvm::Type *T) { + static ABIArgInfo getCoerce(const llvm::Type *T) { return ABIArgInfo(Coerce, T); } static ABIArgInfo getIndirect(unsigned Alignment) { @@ -86,20 +91,20 @@ namespace clang { static ABIArgInfo getExpand() { return ABIArgInfo(Expand); } - + Kind getKind() const { return TheKind; } bool isDirect() const { return TheKind == Direct; } bool isIgnore() const { return TheKind == Ignore; } bool isCoerce() const { return TheKind == Coerce; } bool isIndirect() const { return TheKind == Indirect; } bool isExpand() const { return TheKind == Expand; } - + // Coerce accessors const llvm::Type *getCoerceToType() const { assert(TheKind == Coerce && "Invalid kind!"); return TypeData; } - + // ByVal accessors unsigned getIndirectAlign() const { assert(TheKind == Indirect && "Invalid kind!"); @@ -120,7 +125,7 @@ namespace clang { /// EmitVAArg - Emit the target dependent code to load a value of /// \arg Ty from the va_list pointed to by \arg VAListAddr. - + // FIXME: This is a gaping layering violation if we wanted to drop // the ABI information any lower than CodeGen. Of course, for // VAArg handling it has to be at this level; there is no way to diff --git a/clang/lib/CodeGen/CGCall.cpp b/clang/lib/CodeGen/CGCall.cpp index 55601f38dbe..b46e860b2ef 100644 --- a/clang/lib/CodeGen/CGCall.cpp +++ b/clang/lib/CodeGen/CGCall.cpp @@ -16,16 +16,12 @@ #include "CodeGenFunction.h" #include "CodeGenModule.h" #include "clang/Basic/TargetInfo.h" -#include "clang/AST/ASTContext.h" #include "clang/AST/Decl.h" #include "clang/AST/DeclCXX.h" #include "clang/AST/DeclObjC.h" -#include "clang/AST/RecordLayout.h" #include "clang/Frontend/CompileOptions.h" -#include "llvm/ADT/StringExtras.h" #include "llvm/Attributes.h" #include "llvm/Support/CallSite.h" -#include "llvm/Support/MathExtras.h" #include "llvm/Target/TargetData.h" #include "ABIInfo.h" @@ -127,1370 +123,6 @@ const CGFunctionInfo &CodeGenTypes::getFunctionInfo(QualType ResTy, return *FI; } -/***/ - -ABIInfo::~ABIInfo() {} - -void ABIArgInfo::dump() const { - fprintf(stderr, "(ABIArgInfo Kind="); - switch (TheKind) { - case Direct: - fprintf(stderr, "Direct"); - break; - case Ignore: - fprintf(stderr, "Ignore"); - break; - case Coerce: - fprintf(stderr, "Coerce Type="); - getCoerceToType()->print(llvm::errs()); - break; - case Indirect: - fprintf(stderr, "Indirect Align=%d", getIndirectAlign()); - break; - case Expand: - fprintf(stderr, "Expand"); - break; - } - fprintf(stderr, ")\n"); -} - -/***/ - -static bool isEmptyRecord(ASTContext &Context, QualType T); - -/// isEmptyField - Return true iff a the field is "empty", that is it -/// is an unnamed bit-field or an (array of) empty record(s). -static bool isEmptyField(ASTContext &Context, const FieldDecl *FD) { - if (FD->isUnnamedBitfield()) - return true; - - QualType FT = FD->getType(); - // Constant arrays of empty records count as empty, strip them off. - while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) - FT = AT->getElementType(); - - return isEmptyRecord(Context, FT); -} - -/// isEmptyRecord - Return true iff a structure contains only empty -/// fields. Note that a structure with a flexible array member is not -/// considered empty. -static bool isEmptyRecord(ASTContext &Context, QualType T) { - const RecordType *RT = T->getAsRecordType(); - if (!RT) - return 0; - const RecordDecl *RD = RT->getDecl(); - if (RD->hasFlexibleArrayMember()) - return false; - for (RecordDecl::field_iterator i = RD->field_begin(Context), - e = RD->field_end(Context); i != e; ++i) - if (!isEmptyField(Context, *i)) - return false; - return true; -} - -/// isSingleElementStruct - Determine if a structure is a "single -/// element struct", i.e. it has exactly one non-empty field or -/// exactly one field which is itself a single element -/// struct. Structures with flexible array members are never -/// considered single element structs. -/// -/// \return The field declaration for the single non-empty field, if -/// it exists. -static const Type *isSingleElementStruct(QualType T, ASTContext &Context) { - const RecordType *RT = T->getAsStructureType(); - if (!RT) - return 0; - - const RecordDecl *RD = RT->getDecl(); - if (RD->hasFlexibleArrayMember()) - return 0; - - const Type *Found = 0; - for (RecordDecl::field_iterator i = RD->field_begin(Context), - e = RD->field_end(Context); i != e; ++i) { - const FieldDecl *FD = *i; - QualType FT = FD->getType(); - - // Ignore empty fields. - if (isEmptyField(Context, FD)) - continue; - - // If we already found an element then this isn't a single-element - // struct. - if (Found) - return 0; - - // Treat single element arrays as the element. - while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) { - if (AT->getSize().getZExtValue() != 1) - break; - FT = AT->getElementType(); - } - - if (!CodeGenFunction::hasAggregateLLVMType(FT)) { - Found = FT.getTypePtr(); - } else { - Found = isSingleElementStruct(FT, Context); - if (!Found) - return 0; - } - } - - return Found; -} - -static bool is32Or64BitBasicType(QualType Ty, ASTContext &Context) { - if (!Ty->getAsBuiltinType() && !Ty->isPointerType()) - return false; - - uint64_t Size = Context.getTypeSize(Ty); - return Size == 32 || Size == 64; -} - -static bool areAllFields32Or64BitBasicType(const RecordDecl *RD, - ASTContext &Context) { - for (RecordDecl::field_iterator i = RD->field_begin(Context), - e = RD->field_end(Context); i != e; ++i) { - const FieldDecl *FD = *i; - - if (!is32Or64BitBasicType(FD->getType(), Context)) - return false; - - // FIXME: Reject bit-fields wholesale; there are two problems, we don't know - // how to expand them yet, and the predicate for telling if a bitfield still - // counts as "basic" is more complicated than what we were doing previously. - if (FD->isBitField()) - return false; - } - - return true; -} - -namespace { -/// DefaultABIInfo - The default implementation for ABI specific -/// details. This implementation provides information which results in -/// self-consistent and sensible LLVM IR generation, but does not -/// conform to any particular ABI. -class DefaultABIInfo : public ABIInfo { - ABIArgInfo classifyReturnType(QualType RetTy, - ASTContext &Context) const; - - ABIArgInfo classifyArgumentType(QualType RetTy, - ASTContext &Context) const; - - virtual void computeInfo(CGFunctionInfo &FI, ASTContext &Context) const { - FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), Context); - for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end(); - it != ie; ++it) - it->info = classifyArgumentType(it->type, Context); - } - - virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, - CodeGenFunction &CGF) const; -}; - -/// X86_32ABIInfo - The X86-32 ABI information. -class X86_32ABIInfo : public ABIInfo { - ASTContext &Context; - bool IsDarwin; - - static bool isRegisterSize(unsigned Size) { - return (Size == 8 || Size == 16 || Size == 32 || Size == 64); - } - - static bool shouldReturnTypeInRegister(QualType Ty, ASTContext &Context); - -public: - ABIArgInfo classifyReturnType(QualType RetTy, - ASTContext &Context) const; - - ABIArgInfo classifyArgumentType(QualType RetTy, - ASTContext &Context) const; - - virtual void computeInfo(CGFunctionInfo &FI, ASTContext &Context) const { - FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), Context); - for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end(); - it != ie; ++it) - it->info = classifyArgumentType(it->type, Context); - } - - virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, - CodeGenFunction &CGF) const; - - X86_32ABIInfo(ASTContext &Context, bool d) - : ABIInfo(), Context(Context), IsDarwin(d) {} -}; -} - - -/// shouldReturnTypeInRegister - Determine if the given type should be -/// passed in a register (for the Darwin ABI). -bool X86_32ABIInfo::shouldReturnTypeInRegister(QualType Ty, - ASTContext &Context) { - uint64_t Size = Context.getTypeSize(Ty); - - // Type must be register sized. - if (!isRegisterSize(Size)) - return false; - - if (Ty->isVectorType()) { - // 64- and 128- bit vectors inside structures are not returned in - // registers. - if (Size == 64 || Size == 128) - return false; - - return true; - } - - // If this is a builtin, pointer, or complex type, it is ok. - if (Ty->getAsBuiltinType() || Ty->isPointerType() || Ty->isAnyComplexType()) - return true; - - // Arrays are treated like records. - if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) - return shouldReturnTypeInRegister(AT->getElementType(), Context); - - // Otherwise, it must be a record type. - const RecordType *RT = Ty->getAsRecordType(); - if (!RT) return false; - - // Structure types are passed in register if all fields would be - // passed in a register. - for (RecordDecl::field_iterator i = RT->getDecl()->field_begin(Context), - e = RT->getDecl()->field_end(Context); i != e; ++i) { - const FieldDecl *FD = *i; - - // Empty fields are ignored. - if (isEmptyField(Context, FD)) - continue; - - // Check fields recursively. - if (!shouldReturnTypeInRegister(FD->getType(), Context)) - return false; - } - - return true; -} - -ABIArgInfo X86_32ABIInfo::classifyReturnType(QualType RetTy, - ASTContext &Context) const { - if (RetTy->isVoidType()) { - return ABIArgInfo::getIgnore(); - } else if (const VectorType *VT = RetTy->getAsVectorType()) { - // On Darwin, some vectors are returned in registers. - if (IsDarwin) { - uint64_t Size = Context.getTypeSize(RetTy); - - // 128-bit vectors are a special case; they are returned in - // registers and we need to make sure to pick a type the LLVM - // backend will like. - if (Size == 128) - return ABIArgInfo::getCoerce(llvm::VectorType::get(llvm::Type::Int64Ty, - 2)); - - // Always return in register if it fits in a general purpose - // register, or if it is 64 bits and has a single element. - if ((Size == 8 || Size == 16 || Size == 32) || - (Size == 64 && VT->getNumElements() == 1)) - return ABIArgInfo::getCoerce(llvm::IntegerType::get(Size)); - - return ABIArgInfo::getIndirect(0); - } - - return ABIArgInfo::getDirect(); - } else if (CodeGenFunction::hasAggregateLLVMType(RetTy)) { - // Structures with flexible arrays are always indirect. - if (const RecordType *RT = RetTy->getAsStructureType()) - if (RT->getDecl()->hasFlexibleArrayMember()) - return ABIArgInfo::getIndirect(0); - - // Outside of Darwin, structs and unions are always indirect. - if (!IsDarwin && !RetTy->isAnyComplexType()) - return ABIArgInfo::getIndirect(0); - - // Classify "single element" structs as their element type. - if (const Type *SeltTy = isSingleElementStruct(RetTy, Context)) { - if (const BuiltinType *BT = SeltTy->getAsBuiltinType()) { - if (BT->isIntegerType()) { - // We need to use the size of the structure, padding - // bit-fields can adjust that to be larger than the single - // element type. - uint64_t Size = Context.getTypeSize(RetTy); - return ABIArgInfo::getCoerce(llvm::IntegerType::get((unsigned) Size)); - } else if (BT->getKind() == BuiltinType::Float) { - assert(Context.getTypeSize(RetTy) == Context.getTypeSize(SeltTy) && - "Unexpect single element structure size!"); - return ABIArgInfo::getCoerce(llvm::Type::FloatTy); - } else if (BT->getKind() == BuiltinType::Double) { - assert(Context.getTypeSize(RetTy) == Context.getTypeSize(SeltTy) && - "Unexpect single element structure size!"); - return ABIArgInfo::getCoerce(llvm::Type::DoubleTy); - } - } else if (SeltTy->isPointerType()) { - // FIXME: It would be really nice if this could come out as the proper - // pointer type. - llvm::Type *PtrTy = - llvm::PointerType::getUnqual(llvm::Type::Int8Ty); - return ABIArgInfo::getCoerce(PtrTy); - } else if (SeltTy->isVectorType()) { - // 64- and 128-bit vectors are never returned in a - // register when inside a structure. - uint64_t Size = Context.getTypeSize(RetTy); - if (Size == 64 || Size == 128) - return ABIArgInfo::getIndirect(0); - - return classifyReturnType(QualType(SeltTy, 0), Context); - } - } - - // Small structures which are register sized are generally returned - // in a register. - if (X86_32ABIInfo::shouldReturnTypeInRegister(RetTy, Context)) { - uint64_t Size = Context.getTypeSize(RetTy); - return ABIArgInfo::getCoerce(llvm::IntegerType::get(Size)); - } - - return ABIArgInfo::getIndirect(0); - } else { - return ABIArgInfo::getDirect(); - } -} - -ABIArgInfo X86_32ABIInfo::classifyArgumentType(QualType Ty, - ASTContext &Context) const { - // FIXME: Set alignment on indirect arguments. - if (CodeGenFunction::hasAggregateLLVMType(Ty)) { - // Structures with flexible arrays are always indirect. - if (const RecordType *RT = Ty->getAsStructureType()) - if (RT->getDecl()->hasFlexibleArrayMember()) - return ABIArgInfo::getIndirect(0); - - // Ignore empty structs. - uint64_t Size = Context.getTypeSize(Ty); - if (Ty->isStructureType() && Size == 0) - return ABIArgInfo::getIgnore(); - - // Expand structs with size <= 128-bits which consist only of - // basic types (int, long long, float, double, xxx*). This is - // non-recursive and does not ignore empty fields. - if (const RecordType *RT = Ty->getAsStructureType()) { - if (Context.getTypeSize(Ty) <= 4*32 && - areAllFields32Or64BitBasicType(RT->getDecl(), Context)) - return ABIArgInfo::getExpand(); - } - - return ABIArgInfo::getIndirect(0); - } else { - return ABIArgInfo::getDirect(); - } -} - -llvm::Value *X86_32ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, - CodeGenFunction &CGF) const { - const llvm::Type *BP = llvm::PointerType::getUnqual(llvm::Type::Int8Ty); - const llvm::Type *BPP = llvm::PointerType::getUnqual(BP); - - CGBuilderTy &Builder = CGF.Builder; - llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, - "ap"); - llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur"); - llvm::Type *PTy = - llvm::PointerType::getUnqual(CGF.ConvertType(Ty)); - llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy); - - uint64_t Offset = - llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, 4); - llvm::Value *NextAddr = - Builder.CreateGEP(Addr, - llvm::ConstantInt::get(llvm::Type::Int32Ty, Offset), - "ap.next"); - Builder.CreateStore(NextAddr, VAListAddrAsBPP); - - return AddrTyped; -} - -namespace { -/// X86_64ABIInfo - The X86_64 ABI information. -class X86_64ABIInfo : public ABIInfo { - enum Class { - Integer = 0, - SSE, - SSEUp, - X87, - X87Up, - ComplexX87, - NoClass, - Memory - }; - - /// merge - Implement the X86_64 ABI merging algorithm. - /// - /// Merge an accumulating classification \arg Accum with a field - /// classification \arg Field. - /// - /// \param Accum - The accumulating classification. This should - /// always be either NoClass or the result of a previous merge - /// call. In addition, this should never be Memory (the caller - /// should just return Memory for the aggregate). - Class merge(Class Accum, Class Field) const; - - /// classify - Determine the x86_64 register classes in which the - /// given type T should be passed. - /// - /// \param Lo - The classification for the parts of the type - /// residing in the low word of the containing object. - /// - /// \param Hi - The classification for the parts of the type - /// residing in the high word of the containing object. - /// - /// \param OffsetBase - The bit offset of this type in the - /// containing object. Some parameters are classified different - /// depending on whether they straddle an eightbyte boundary. - /// - /// If a word is unused its result will be NoClass; if a type should - /// be passed in Memory then at least the classification of \arg Lo - /// will be Memory. - /// - /// The \arg Lo class will be NoClass iff the argument is ignored. - /// - /// If the \arg Lo class is ComplexX87, then the \arg Hi class will - /// also be ComplexX87. - void classify(QualType T, ASTContext &Context, uint64_t OffsetBase, - Class &Lo, Class &Hi) const; - - /// getCoerceResult - Given a source type \arg Ty and an LLVM type - /// to coerce to, chose the best way to pass Ty in the same place - /// that \arg CoerceTo would be passed, but while keeping the - /// emitted code as simple as possible. - /// - /// FIXME: Note, this should be cleaned up to just take an enumeration of all - /// the ways we might want to pass things, instead of constructing an LLVM - /// type. This makes this code more explicit, and it makes it clearer that we - /// are also doing this for correctness in the case of passing scalar types. - ABIArgInfo getCoerceResult(QualType Ty, - const llvm::Type *CoerceTo, - ASTContext &Context) const; - - /// getIndirectResult - Give a source type \arg Ty, return a suitable result - /// such that the argument will be passed in memory. - ABIArgInfo getIndirectResult(QualType Ty, - ASTContext &Context) const; - - ABIArgInfo classifyReturnType(QualType RetTy, - ASTContext &Context) const; - - ABIArgInfo classifyArgumentType(QualType Ty, - ASTContext &Context, - unsigned &neededInt, - unsigned &neededSSE) const; - -public: - virtual void computeInfo(CGFunctionInfo &FI, ASTContext &Context) const; - - virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, - CodeGenFunction &CGF) const; -}; -} - -X86_64ABIInfo::Class X86_64ABIInfo::merge(Class Accum, - Class Field) const { - // AMD64-ABI 3.2.3p2: Rule 4. Each field of an object is - // classified recursively so that always two fields are - // considered. The resulting class is calculated according to - // the classes of the fields in the eightbyte: - // - // (a) If both classes are equal, this is the resulting class. - // - // (b) If one of the classes is NO_CLASS, the resulting class is - // the other class. - // - // (c) If one of the classes is MEMORY, the result is the MEMORY - // class. - // - // (d) If one of the classes is INTEGER, the result is the - // INTEGER. - // - // (e) If one of the classes is X87, X87UP, COMPLEX_X87 class, - // MEMORY is used as class. - // - // (f) Otherwise class SSE is used. - - // Accum should never be memory (we should have returned) or - // ComplexX87 (because this cannot be passed in a structure). - assert((Accum != Memory && Accum != ComplexX87) && - "Invalid accumulated classification during merge."); - if (Accum == Field || Field == NoClass) - return Accum; - else if (Field == Memory) - return Memory; - else if (Accum == NoClass) - return Field; - else if (Accum == Integer || Field == Integer) - return Integer; - else if (Field == X87 || Field == X87Up || Field == ComplexX87 || - Accum == X87 || Accum == X87Up) - return Memory; - else - return SSE; -} - -void X86_64ABIInfo::classify(QualType Ty, - ASTContext &Context, - uint64_t OffsetBase, - Class &Lo, Class &Hi) const { - // FIXME: This code can be simplified by introducing a simple value class for - // Class pairs with appropriate constructor methods for the various - // situations. - - // FIXME: Some of the split computations are wrong; unaligned vectors - // shouldn't be passed in registers for example, so there is no chance they - // can straddle an eightbyte. Verify & simplify. - - Lo = Hi = NoClass; - - Class &Current = OffsetBase < 64 ? Lo : Hi; - Current = Memory; - - if (const BuiltinType *BT = Ty->getAsBuiltinType()) { - BuiltinType::Kind k = BT->getKind(); - - if (k == BuiltinType::Void) { - Current = NoClass; - } else if (k == BuiltinType::Int128 || k == BuiltinType::UInt128) { - Lo = Integer; - Hi = Integer; - } else if (k >= BuiltinType::Bool && k <= BuiltinType::LongLong) { - Current = Integer; - } else if (k == BuiltinType::Float || k == BuiltinType::Double) { - Current = SSE; - } else if (k == BuiltinType::LongDouble) { - Lo = X87; - Hi = X87Up; - } - // FIXME: _Decimal32 and _Decimal64 are SSE. - // FIXME: _float128 and _Decimal128 are (SSE, SSEUp). - } else if (const EnumType *ET = Ty->getAsEnumType()) { - // Classify the underlying integer type. - classify(ET->getDecl()->getIntegerType(), Context, OffsetBase, Lo, Hi); - } else if (Ty->hasPointerRepresentation()) { - Current = Integer; - } else if (const VectorType *VT = Ty->getAsVectorType()) { - uint64_t Size = Context.getTypeSize(VT); - if (Size == 32) { - // gcc passes all <4 x char>, <2 x short>, <1 x int>, <1 x - // float> as integer. - Current = Integer; - - // If this type crosses an eightbyte boundary, it should be - // split. - uint64_t EB_Real = (OffsetBase) / 64; - uint64_t EB_Imag = (OffsetBase + Size - 1) / 64; - if (EB_Real != EB_Imag) - Hi = Lo; - } else if (Size == 64) { - // gcc passes <1 x double> in memory. :( - if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::Double)) - return; - - // gcc passes <1 x long long> as INTEGER. - if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::LongLong)) - Current = Integer; - else - Current = SSE; - - // If this type crosses an eightbyte boundary, it should be - // split. - if (OffsetBase && OffsetBase != 64) - Hi = Lo; - } else if (Size == 128) { - Lo = SSE; - Hi = SSEUp; - } - } else if (const ComplexType *CT = Ty->getAsComplexType()) { - QualType ET = Context.getCanonicalType(CT->getElementType()); - - uint64_t Size = Context.getTypeSize(Ty); - if (ET->isIntegralType()) { - if (Size <= 64) - Current = Integer; - else if (Size <= 128) - Lo = Hi = Integer; - } else if (ET == Context.FloatTy) - Current = SSE; - else if (ET == Context.DoubleTy) - Lo = Hi = SSE; - else if (ET == Context.LongDoubleTy) - Current = ComplexX87; - - // If this complex type crosses an eightbyte boundary then it - // should be split. - uint64_t EB_Real = (OffsetBase) / 64; - uint64_t EB_Imag = (OffsetBase + Context.getTypeSize(ET)) / 64; - if (Hi == NoClass && EB_Real != EB_Imag) - Hi = Lo; - } else if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) { - // Arrays are treated like structures. - - uint64_t Size = Context.getTypeSize(Ty); - - // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger - // than two eightbytes, ..., it has class MEMORY. - if (Size > 128) - return; - - // AMD64-ABI 3.2.3p2: Rule 1. If ..., or it contains unaligned - // fields, it has class MEMORY. - // - // Only need to check alignment of array base. - if (OffsetBase % Context.getTypeAlign(AT->getElementType())) - return; - - // Otherwise implement simplified merge. We could be smarter about - // this, but it isn't worth it and would be harder to verify. - Current = NoClass; - uint64_t EltSize = Context.getTypeSize(AT->getElementType()); - uint64_t ArraySize = AT->getSize().getZExtValue(); - for (uint64_t i=0, Offset=OffsetBase; i<ArraySize; ++i, Offset += EltSize) { - Class FieldLo, FieldHi; - classify(AT->getElementType(), Context, Offset, FieldLo, FieldHi); - Lo = merge(Lo, FieldLo); - Hi = merge(Hi, FieldHi); - if (Lo == Memory || Hi == Memory) - break; - } - - // Do post merger cleanup (see below). Only case we worry about is Memory. - if (Hi == Memory) - Lo = Memory; - assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp array classification."); - } else if (const RecordType *RT = Ty->getAsRecordType()) { - uint64_t Size = Context.getTypeSize(Ty); - - // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger - // than two eightbytes, ..., it has class MEMORY. - if (Size > 128) - return; - - const RecordDecl *RD = RT->getDecl(); - - // Assume variable sized types are passed in memory. - if (RD->hasFlexibleArrayMember()) - return; - - const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); - - // Reset Lo class, this will be recomputed. - Current = NoClass; - unsigned idx = 0; - for (RecordDecl::field_iterator i = RD->field_begin(Context), - e = RD->field_end(Context); i != e; ++i, ++idx) { - uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx); - bool BitField = i->isBitField(); - - // AMD64-ABI 3.2.3p2: Rule 1. If ..., or it contains unaligned - // fields, it has class MEMORY. - // - // Note, skip this test for bit-fields, see below. - if (!BitField && Offset % Context.getTypeAlign(i->getType())) { - Lo = Memory; - return; - } - - // Classify this field. - // - // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate - // exceeds a single eightbyte, each is classified - // separately. Each eightbyte gets initialized to class - // NO_CLASS. - Class FieldLo, FieldHi; - - // Bit-fields require special handling, they do not force the - // structure to be passed in memory even if unaligned, and - // therefore they can straddle an eightbyte. - if (BitField) { - // Ignore padding bit-fields. - if (i->isUnnamedBitfield()) - continue; - - uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx); - uint64_t Size = i->getBitWidth()->EvaluateAsInt(Context).getZExtValue(); - - uint64_t EB_Lo = Offset / 64; - uint64_t EB_Hi = (Offset + Size - 1) / 64; - FieldLo = FieldHi = NoClass; - if (EB_Lo) { - assert(EB_Hi == EB_Lo && "Invalid classification, type > 16 bytes."); - FieldLo = NoClass; - FieldHi = Integer; - } else { - FieldLo = Integer; - FieldHi = EB_Hi ? Integer : NoClass; - } - } else - classify(i->getType(), Context, Offset, FieldLo, FieldHi); - Lo = merge(Lo, FieldLo); - Hi = merge(Hi, FieldHi); - if (Lo == Memory || Hi == Memory) - break; - } - - // AMD64-ABI 3.2.3p2: Rule 5. Then a post merger cleanup is done: - // - // (a) If one of the classes is MEMORY, the whole argument is - // passed in memory. - // - // (b) If SSEUP is not preceeded by SSE, it is converted to SSE. - - // The first of these conditions is guaranteed by how we implement - // the merge (just bail). - // - // The second condition occurs in the case of unions; for example - // union { _Complex double; unsigned; }. - if (Hi == Memory) - Lo = Memory; - if (Hi == SSEUp && Lo != SSE) - Hi = SSE; - } -} - -ABIArgInfo X86_64ABIInfo::getCoerceResult(QualType Ty, - const llvm::Type *CoerceTo, - ASTContext &Context) const { - if (CoerceTo == llvm::Type::Int64Ty) { - // Integer and pointer types will end up in a general purpose - // register. - if (Ty->isIntegralType() || Ty->isPointerType()) - return ABIArgInfo::getDirect(); - - } else if (CoerceTo == llvm::Type::DoubleTy) { - // FIXME: It would probably be better to make CGFunctionInfo only map using - // canonical types than to canonize here. - QualType CTy = Context.getCanonicalType(Ty); - - // Float and double end up in a single SSE reg. - if (CTy == Context.FloatTy || CTy == Context.DoubleTy) - return ABIArgInfo::getDirect(); - - } - - return ABIArgInfo::getCoerce(CoerceTo); -} - -ABIArgInfo X86_64ABIInfo::getIndirectResult(QualType Ty, - ASTContext &Context) const { - // If this is a scalar LLVM value then assume LLVM will pass it in the right - // place naturally. - if (!CodeGenFunction::hasAggregateLLVMType(Ty)) - return ABIArgInfo::getDirect(); - - // FIXME: Set alignment correctly. - return ABIArgInfo::getIndirect(0); -} - -ABIArgInfo X86_64ABIInfo::classifyReturnType(QualType RetTy, - ASTContext &Context) const { - // AMD64-ABI 3.2.3p4: Rule 1. Classify the return type with the - // classification algorithm. - X86_64ABIInfo::Class Lo, Hi; - classify(RetTy, Context, 0, Lo, Hi); - - // Check some invariants. - assert((Hi != Memory || Lo == Memory) && "Invalid memory classification."); - assert((Lo != NoClass || Hi == NoClass) && "Invalid null classification."); - assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification."); - - const llvm::Type *ResType = 0; - switch (Lo) { - case NoClass: - return ABIArgInfo::getIgnore(); - - case SSEUp: - case X87Up: - assert(0 && "Invalid classification for lo word."); - - // AMD64-ABI 3.2.3p4: Rule 2. Types of class memory are returned via - // hidden argument. - case Memory: - return getIndirectResult(RetTy, Context); - - // AMD64-ABI 3.2.3p4: Rule 3. If the class is INTEGER, the next - // available register of the sequence %rax, %rdx is used. - case Integer: - ResType = llvm::Type::Int64Ty; break; - - // AMD64-ABI 3.2.3p4: Rule 4. If the class is SSE, the next - // available SSE register of the sequence %xmm0, %xmm1 is used. - case SSE: - ResType = llvm::Type::DoubleTy; break; - - // AMD64-ABI 3.2.3p4: Rule 6. If the class is X87, the value is - // returned on the X87 stack in %st0 as 80-bit x87 number. - case X87: - ResType = llvm::Type::X86_FP80Ty; break; - - // AMD64-ABI 3.2.3p4: Rule 8. If the class is COMPLEX_X87, the real - // part of the value is returned in %st0 and the imaginary part in - // %st1. - case ComplexX87: - assert(Hi == ComplexX87 && "Unexpected ComplexX87 classification."); - ResType = llvm::StructType::get(llvm::Type::X86_FP80Ty, - llvm::Type::X86_FP80Ty, - NULL); - break; - } - - switch (Hi) { - // Memory was handled previously and X87 should - // never occur as a hi class. - case Memory: - case X87: - assert(0 && "Invalid classification for hi word."); - - case ComplexX87: // Previously handled. - case NoClass: break; - - case Integer: - ResType = llvm::StructType::get(ResType, llvm::Type::Int64Ty, NULL); - break; - case SSE: - ResType = llvm::StructType::get(ResType, llvm::Type::DoubleTy, NULL); - break; - - // AMD64-ABI 3.2.3p4: Rule 5. If the class is SSEUP, the eightbyte - // is passed in the upper half of the last used SSE register. - // - // SSEUP should always be preceeded by SSE, just widen. - case SSEUp: - assert(Lo == SSE && "Unexpected SSEUp classification."); - ResType = llvm::VectorType::get(llvm::Type::DoubleTy, 2); - break; - - // AMD64-ABI 3.2.3p4: Rule 7. If the class is X87UP, the value is - // returned together with the previous X87 value in %st0. - case X87Up: - // If X87Up is preceeded by X87, we don't need to do - // anything. However, in some cases with unions it may not be - // preceeded by X87. In such situations we follow gcc and pass the - // extra bits in an SSE reg. - if (Lo != X87) - ResType = llvm::StructType::get(ResType, llvm::Type::DoubleTy, NULL); - break; - } - - return getCoerceResult(RetTy, ResType, Context); -} - -ABIArgInfo X86_64ABIInfo::classifyArgumentType(QualType Ty, ASTContext &Context, - unsigned &neededInt, - unsigned &neededSSE) const { - X86_64ABIInfo::Class Lo, Hi; - classify(Ty, Context, 0, Lo, Hi); - - // Check some invariants. - // FIXME: Enforce these by construction. - assert((Hi != Memory || Lo == Memory) && "Invalid memory classification."); - assert((Lo != NoClass || Hi == NoClass) && "Invalid null classification."); - assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification."); - - neededInt = 0; - neededSSE = 0; - const llvm::Type *ResType = 0; - switch (Lo) { - case NoClass: - return ABIArgInfo::getIgnore(); - - // AMD64-ABI 3.2.3p3: Rule 1. If the class is MEMORY, pass the argument - // on the stack. - case Memory: - - // AMD64-ABI 3.2.3p3: Rule 5. If the class is X87, X87UP or - // COMPLEX_X87, it is passed in memory. - case X87: - case ComplexX87: - return getIndirectResult(Ty, Context); - - case SSEUp: - case X87Up: - assert(0 && "Invalid classification for lo word."); - - // AMD64-ABI 3.2.3p3: Rule 2. If the class is INTEGER, the next - // available register of the sequence %rdi, %rsi, %rdx, %rcx, %r8 - // and %r9 is used. - case Integer: - ++neededInt; - ResType = llvm::Type::Int64Ty; - break; - - // AMD64-ABI 3.2.3p3: Rule 3. If the class is SSE, the next - // available SSE register is used, the registers are taken in the - // order from %xmm0 to %xmm7. - case SSE: - ++neededSSE; - ResType = llvm::Type::DoubleTy; - break; - } - - switch (Hi) { - // Memory was handled previously, ComplexX87 and X87 should - // never occur as hi classes, and X87Up must be preceed by X87, - // which is passed in memory. - case Memory: - case X87: - case ComplexX87: - assert(0 && "Invalid classification for hi word."); - break; - - case NoClass: break; - case Integer: - ResType = llvm::StructType::get(ResType, llvm::Type::Int64Ty, NULL); - ++neededInt; - break; - - // X87Up generally doesn't occur here (long double is passed in - // memory), except in situations involving unions. - case X87Up: - case SSE: - ResType = llvm::StructType::get(ResType, llvm::Type::DoubleTy, NULL); - ++neededSSE; - break; - - // AMD64-ABI 3.2.3p3: Rule 4. If the class is SSEUP, the - // eightbyte is passed in the upper half of the last used SSE - // register. - case SSEUp: - assert(Lo == SSE && "Unexpected SSEUp classification."); - ResType = llvm::VectorType::get(llvm::Type::DoubleTy, 2); - break; - } - - return getCoerceResult(Ty, ResType, Context); -} - -void X86_64ABIInfo::computeInfo(CGFunctionInfo &FI, ASTContext &Context) const { - FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), Context); - - // Keep track of the number of assigned registers. - unsigned freeIntRegs = 6, freeSSERegs = 8; - - // If the return value is indirect, then the hidden argument is consuming one - // integer register. - if (FI.getReturnInfo().isIndirect()) - --freeIntRegs; - - // AMD64-ABI 3.2.3p3: Once arguments are classified, the registers - // get assigned (in left-to-right order) for passing as follows... - for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end(); - it != ie; ++it) { - unsigned neededInt, neededSSE; - it->info = classifyArgumentType(it->type, Context, neededInt, neededSSE); - - // AMD64-ABI 3.2.3p3: If there are no registers available for any - // eightbyte of an argument, the whole argument is passed on the - // stack. If registers have already been assigned for some - // eightbytes of such an argument, the assignments get reverted. - if (freeIntRegs >= neededInt && freeSSERegs >= neededSSE) { - freeIntRegs -= neededInt; - freeSSERegs -= neededSSE; - } else { - it->info = getIndirectResult(it->type, Context); - } - } -} - -static llvm::Value *EmitVAArgFromMemory(llvm::Value *VAListAddr, - QualType Ty, - CodeGenFunction &CGF) { - llvm::Value *overflow_arg_area_p = - CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_p"); - llvm::Value *overflow_arg_area = - CGF.Builder.CreateLoad(overflow_arg_area_p, "overflow_arg_area"); - - // AMD64-ABI 3.5.7p5: Step 7. Align l->overflow_arg_area upwards to a 16 - // byte boundary if alignment needed by type exceeds 8 byte boundary. - uint64_t Align = CGF.getContext().getTypeAlign(Ty) / 8; - if (Align > 8) { - // Note that we follow the ABI & gcc here, even though the type - // could in theory have an alignment greater than 16. This case - // shouldn't ever matter in practice. - - // overflow_arg_area = (overflow_arg_area + 15) & ~15; - llvm::Value *Offset = llvm::ConstantInt::get(llvm::Type::Int32Ty, 15); - overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset); - llvm::Value *AsInt = CGF.Builder.CreatePtrToInt(overflow_arg_area, - llvm::Type::Int64Ty); - llvm::Value *Mask = llvm::ConstantInt::get(llvm::Type::Int64Ty, ~15LL); - overflow_arg_area = - CGF.Builder.CreateIntToPtr(CGF.Builder.CreateAnd(AsInt, Mask), - overflow_arg_area->getType(), - "overflow_arg_area.align"); - } - - // AMD64-ABI 3.5.7p5: Step 8. Fetch type from l->overflow_arg_area. - const llvm::Type *LTy = CGF.ConvertTypeForMem(Ty); - llvm::Value *Res = - CGF.Builder.CreateBitCast(overflow_arg_area, - llvm::PointerType::getUnqual(LTy)); - - // AMD64-ABI 3.5.7p5: Step 9. Set l->overflow_arg_area to: - // l->overflow_arg_area + sizeof(type). - // AMD64-ABI 3.5.7p5: Step 10. Align l->overflow_arg_area upwards to - // an 8 byte boundary. - - uint64_t SizeInBytes = (CGF.getContext().getTypeSize(Ty) + 7) / 8; - llvm::Value *Offset = llvm::ConstantInt::get(llvm::Type::Int32Ty, - (SizeInBytes + 7) & ~7); - overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset, - "overflow_arg_area.next"); - CGF.Builder.CreateStore(overflow_arg_area, overflow_arg_area_p); - - // AMD64-ABI 3.5.7p5: Step 11. Return the fetched type. - return Res; -} - -llvm::Value *X86_64ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, - CodeGenFunction &CGF) const { - // Assume that va_list type is correct; should be pointer to LLVM type: - // struct { - // i32 gp_offset; - // i32 fp_offset; - // i8* overflow_arg_area; - // i8* reg_save_area; - // }; - unsigned neededInt, neededSSE; - ABIArgInfo AI = classifyArgumentType(Ty, CGF.getContext(), - neededInt, neededSSE); - - // AMD64-ABI 3.5.7p5: Step 1. Determine whether type may be passed - // in the registers. If not go to step 7. - if (!neededInt && !neededSSE) - return EmitVAArgFromMemory(VAListAddr, Ty, CGF); - - // AMD64-ABI 3.5.7p5: Step 2. Compute num_gp to hold the number of - // general purpose registers needed to pass type and num_fp to hold - // the number of floating point registers needed. - - // AMD64-ABI 3.5.7p5: Step 3. Verify whether arguments fit into - // registers. In the case: l->gp_offset > 48 - num_gp * 8 or - // l->fp_offset > 304 - num_fp * 16 go to step 7. - // - // NOTE: 304 is a typo, there are (6 * 8 + 8 * 16) = 176 bytes of - // register save space). - - llvm::Value *InRegs = 0; - llvm::Value *gp_offset_p = 0, *gp_offset = 0; - llvm::Value *fp_offset_p = 0, *fp_offset = 0; - if (neededInt) { - gp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, "gp_offset_p"); - gp_offset = CGF.Builder.CreateLoad(gp_offset_p, "gp_offset"); - InRegs = - CGF.Builder.CreateICmpULE(gp_offset, - llvm::ConstantInt::get(llvm::Type::Int32Ty, - 48 - neededInt * 8), - "fits_in_gp"); - } - - if (neededSSE) { - fp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 1, "fp_offset_p"); - fp_offset = CGF.Builder.CreateLoad(fp_offset_p, "fp_offset"); - llvm::Value *FitsInFP = - CGF.Builder.CreateICmpULE(fp_offset, - llvm::ConstantInt::get(llvm::Type::Int32Ty, - 176 - neededSSE * 16), - "fits_in_fp"); - InRegs = InRegs ? CGF.Builder.CreateAnd(InRegs, FitsInFP) : FitsInFP; - } - - llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg"); - llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem"); - llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end"); - CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock); - - // Emit code to load the value if it was passed in registers. - - CGF.EmitBlock(InRegBlock); - - // AMD64-ABI 3.5.7p5: Step 4. Fetch type from l->reg_save_area with - // an offset of l->gp_offset and/or l->fp_offset. This may require - // copying to a temporary location in case the parameter is passed - // in different register classes or requires an alignment greater - // than 8 for general purpose registers and 16 for XMM registers. - // - // FIXME: This really results in shameful code when we end up needing to - // collect arguments from different places; often what should result in a - // simple assembling of a structure from scattered addresses has many more - // loads than necessary. Can we clean this up? - const llvm::Type *LTy = CGF.ConvertTypeForMem(Ty); - llvm::Value *RegAddr = - CGF.Builder.CreateLoad(CGF.Builder.CreateStructGEP(VAListAddr, 3), - "reg_save_area"); - if (neededInt && neededSSE) { - // FIXME: Cleanup. - assert(AI.isCoerce() && "Unexpected ABI info for mixed regs"); - const llvm::StructType *ST = cast<llvm::StructType>(AI.getCoerceToType()); - llvm::Value *Tmp = CGF.CreateTempAlloca(ST); - assert(ST->getNumElements() == 2 && "Unexpected ABI info for mixed regs"); - const llvm::Type *TyLo = ST->getElementType(0); - const llvm::Type *TyHi = ST->getElementType(1); - assert((TyLo->isFloatingPoint() ^ TyHi->isFloatingPoint()) && - "Unexpected ABI info for mixed regs"); - const llvm::Type *PTyLo = llvm::PointerType::getUnqual(TyLo); - const llvm::Type *PTyHi = llvm::PointerType::getUnqual(TyHi); - llvm::Value *GPAddr = CGF.Builder.CreateGEP(RegAddr, gp_offset); - llvm::Value *FPAddr = CGF.Builder.CreateGEP(RegAddr, fp_offset); - llvm::Value *RegLoAddr = TyLo->isFloatingPoint() ? FPAddr : GPAddr; - llvm::Value *RegHiAddr = TyLo->isFloatingPoint() ? GPAddr : FPAddr; - llvm::Value *V = - CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegLoAddr, PTyLo)); - CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0)); - V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegHiAddr, PTyHi)); - CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1)); - - RegAddr = CGF.Builder.CreateBitCast(Tmp, llvm::PointerType::getUnqual(LTy)); - } else if (neededInt) { - RegAddr = CGF.Builder.CreateGEP(RegAddr, gp_offset); - RegAddr = CGF.Builder.CreateBitCast(RegAddr, - llvm::PointerType::getUnqual(LTy)); - } else { - if (neededSSE == 1) { - RegAddr = CGF.Builder.CreateGEP(RegAddr, fp_offset); - RegAddr = CGF.Builder.CreateBitCast(RegAddr, - llvm::PointerType::getUnqual(LTy)); - } else { - assert(neededSSE == 2 && "Invalid number of needed registers!"); - // SSE registers are spaced 16 bytes apart in the register save - // area, we need to collect the two eightbytes together. - llvm::Value *RegAddrLo = CGF.Builder.CreateGEP(RegAddr, fp_offset); - llvm::Value *RegAddrHi = - CGF.Builder.CreateGEP(RegAddrLo, - llvm::ConstantInt::get(llvm::Type::Int32Ty, 16)); - const llvm::Type *DblPtrTy = - llvm::PointerType::getUnqual(llvm::Type::DoubleTy); - const llvm::StructType *ST = llvm::StructType::get(llvm::Type::DoubleTy, - llvm::Type::DoubleTy, - NULL); - llvm::Value *V, *Tmp = CGF.CreateTempAlloca(ST); - V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegAddrLo, - DblPtrTy)); - CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0)); - V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegAddrHi, - DblPtrTy)); - CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1)); - RegAddr = CGF.Builder.CreateBitCast(Tmp, - llvm::PointerType::getUnqual(LTy)); - } - } - - // AMD64-ABI 3.5.7p5: Step 5. Set: - // l->gp_offset = l->gp_offset + num_gp * 8 - // l->fp_offset = l->fp_offset + num_fp * 16. - if (neededInt) { - llvm::Value *Offset = llvm::ConstantInt::get(llvm::Type::Int32Ty, - neededInt * 8); - CGF.Builder.CreateStore(CGF.Builder.CreateAdd(gp_offset, Offset), - gp_offset_p); - } - if (neededSSE) { - llvm::Value *Offset = llvm::ConstantInt::get(llvm::Type::Int32Ty, - neededSSE * 16); - CGF.Builder.CreateStore(CGF.Builder.CreateAdd(fp_offset, Offset), - fp_offset_p); - } - CGF.EmitBranch(ContBlock); - - // Emit code to load the value if it was passed in memory. - - CGF.EmitBlock(InMemBlock); - llvm::Value *MemAddr = EmitVAArgFromMemory(VAListAddr, Ty, CGF); - - // Return the appropriate result. - - CGF.EmitBlock(ContBlock); - llvm::PHINode *ResAddr = CGF.Builder.CreatePHI(RegAddr->getType(), - "vaarg.addr"); - ResAddr->reserveOperandSpace(2); - ResAddr->addIncoming(RegAddr, InRegBlock); - ResAddr->addIncoming(MemAddr, InMemBlock); - - return ResAddr; -} - -// ABI Info for PIC16 -class PIC16ABIInfo : public ABIInfo { - ABIArgInfo classifyReturnType(QualType RetTy, - ASTContext &Context) const; - - ABIArgInfo classifyArgumentType(QualType RetTy, - ASTContext &Context) const; - - virtual void computeInfo(CGFunctionInfo &FI, ASTContext &Context) const { - FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), Context); - for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end(); - it != ie; ++it) - it->info = classifyArgumentType(it->type, Context); - } - - virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, - CodeGenFunction &CGF) const; - -}; - -ABIArgInfo PIC16ABIInfo::classifyReturnType(QualType RetTy, - ASTContext &Context) const { - if (RetTy->isVoidType()) { - return ABIArgInfo::getIgnore(); - } else { - return ABIArgInfo::getDirect(); - } -} - -ABIArgInfo PIC16ABIInfo::classifyArgumentType(QualType Ty, - ASTContext &Context) const { - return ABIArgInfo::getDirect(); -} - -llvm::Value *PIC16ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, - CodeGenFunction &CGF) const { - return 0; -} - -class ARMABIInfo : public ABIInfo { - ABIArgInfo classifyReturnType(QualType RetTy, - ASTContext &Context) const; - - ABIArgInfo classifyArgumentType(QualType RetTy, - ASTContext &Context) const; - - virtual void computeInfo(CGFunctionInfo &FI, ASTContext &Context) const; - - virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, - CodeGenFunction &CGF) const; -}; - -void ARMABIInfo::computeInfo(CGFunctionInfo &FI, ASTContext &Context) const { - FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), Context); - for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end(); - it != ie; ++it) { - it->info = classifyArgumentType(it->type, Context); - } -} - -ABIArgInfo ARMABIInfo::classifyArgumentType(QualType Ty, - ASTContext &Context) const { - if (!CodeGenFunction::hasAggregateLLVMType(Ty)) { - return ABIArgInfo::getDirect(); - } - // FIXME: This is kind of nasty... but there isn't much choice because the ARM - // backend doesn't support byval. - // FIXME: This doesn't handle alignment > 64 bits. - const llvm::Type* ElemTy; - unsigned SizeRegs; - if (Context.getTypeAlign(Ty) > 32) { - ElemTy = llvm::Type::Int64Ty; - SizeRegs = (Context.getTypeSize(Ty) + 63) / 64; - } else { - ElemTy = llvm::Type::Int32Ty; - SizeRegs = (Context.getTypeSize(Ty) + 31) / 32; - } - std::vector<const llvm::Type*> LLVMFields; - LLVMFields.push_back(llvm::ArrayType::get(ElemTy, SizeRegs)); - const llvm::Type* STy = llvm::StructType::get(LLVMFields, true); - return ABIArgInfo::getCoerce(STy); -} - -ABIArgInfo ARMABIInfo::classifyReturnType(QualType RetTy, - ASTContext &Context) const { - if (RetTy->isVoidType()) { - return ABIArgInfo::getIgnore(); - } else if (CodeGenFunction::hasAggregateLLVMType(RetTy)) { - // Aggregates <= 4 bytes are returned in r0; other aggregates - // are returned indirectly. - uint64_t Size = Context.getTypeSize(RetTy); - if (Size <= 32) - return ABIArgInfo::getCoerce(llvm::Type::Int32Ty); - return ABIArgInfo::getIndirect(0); - } else { - return ABIArgInfo::getDirect(); - } -} - -llvm::Value *ARMABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, - CodeGenFunction &CGF) const { - // FIXME: Need to handle alignment - const llvm::Type *BP = llvm::PointerType::getUnqual(llvm::Type::Int8Ty); - const llvm::Type *BPP = llvm::PointerType::getUnqual(BP); - - CGBuilderTy &Builder = CGF.Builder; - llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, - "ap"); - llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur"); - llvm::Type *PTy = - llvm::PointerType::getUnqual(CGF.ConvertType(Ty)); - llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy); - - uint64_t Offset = - llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, 4); - llvm::Value *NextAddr = - Builder.CreateGEP(Addr, - llvm::ConstantInt::get(llvm::Type::Int32Ty, Offset), - "ap.next"); - Builder.CreateStore(NextAddr, VAListAddrAsBPP); - - return AddrTyped; -} - -ABIArgInfo DefaultABIInfo::classifyReturnType(QualType RetTy, - ASTContext &Context) const { - if (RetTy->isVoidType()) { - return ABIArgInfo::getIgnore(); - } else if (CodeGenFunction::hasAggregateLLVMType(RetTy)) { - return ABIArgInfo::getIndirect(0); - } else { - return ABIArgInfo::getDirect(); - } -} - -ABIArgInfo DefaultABIInfo::classifyArgumentType(QualType Ty, - ASTContext &Context) const { - if (CodeGenFunction::hasAggregateLLVMType(Ty)) { - return ABIArgInfo::getIndirect(0); - } else { - return ABIArgInfo::getDirect(); - } -} - -llvm::Value *DefaultABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, - CodeGenFunction &CGF) const { - return 0; -} - -const ABIInfo &CodeGenTypes::getABIInfo() const { - if (TheABIInfo) - return *TheABIInfo; - - // For now we just cache this in the CodeGenTypes and don't bother - // to free it. - const char *TargetPrefix = getContext().Target.getTargetPrefix(); - if (strcmp(TargetPrefix, "x86") == 0) { - bool IsDarwin = strstr(getContext().Target.getTargetTriple(), "darwin"); - switch (getContext().Target.getPointerWidth(0)) { - case 32: - return *(TheABIInfo = new X86_32ABIInfo(Context, IsDarwin)); - case 64: - return *(TheABIInfo = new X86_64ABIInfo()); - } - } else if (strcmp(TargetPrefix, "arm") == 0) { - // FIXME: Support for OABI? - return *(TheABIInfo = new ARMABIInfo()); - } else if (strcmp(TargetPrefix, "pic16") == 0) { - return *(TheABIInfo = new PIC16ABIInfo()); - } - - return *(TheABIInfo = new DefaultABIInfo); -} - -/***/ - CGFunctionInfo::CGFunctionInfo(QualType ResTy, const llvm::SmallVector<QualType, 16> &ArgTys) { NumArgs = ArgTys.size(); diff --git a/clang/lib/CodeGen/TargetABIInfo.cpp b/clang/lib/CodeGen/TargetABIInfo.cpp new file mode 100644 index 00000000000..573ffed10a0 --- /dev/null +++ b/clang/lib/CodeGen/TargetABIInfo.cpp @@ -0,0 +1,1379 @@ +//===---- TargetABIInfo.cpp - Encapsulate target ABI details ----*- C++ -*-===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// These classes wrap the information about a call or function +// definition used to handle ABI compliancy. +// +//===----------------------------------------------------------------------===// + +#include "ABIInfo.h" +#include "CodeGenFunction.h" +#include "clang/AST/RecordLayout.h" +#include "llvm/Type.h" + +using namespace clang; +using namespace CodeGen; + +ABIInfo::~ABIInfo() {} + +void ABIArgInfo::dump() const { + fprintf(stderr, "(ABIArgInfo Kind="); + switch (TheKind) { + case Direct: + fprintf(stderr, "Direct"); + break; + case Ignore: + fprintf(stderr, "Ignore"); + break; + case Coerce: + fprintf(stderr, "Coerce Type="); + getCoerceToType()->print(llvm::errs()); + break; + case Indirect: + fprintf(stderr, "Indirect Align=%d", getIndirectAlign()); + break; + case Expand: + fprintf(stderr, "Expand"); + break; + } + fprintf(stderr, ")\n"); +} + +static bool isEmptyRecord(ASTContext &Context, QualType T); + +/// isEmptyField - Return true iff a the field is "empty", that is it +/// is an unnamed bit-field or an (array of) empty record(s). +static bool isEmptyField(ASTContext &Context, const FieldDecl *FD) { + if (FD->isUnnamedBitfield()) + return true; + + QualType FT = FD->getType(); + // Constant arrays of empty records count as empty, strip them off. + while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) + FT = AT->getElementType(); + + return isEmptyRecord(Context, FT); +} + +/// isEmptyRecord - Return true iff a structure contains only empty +/// fields. Note that a structure with a flexible array member is not +/// considered empty. +static bool isEmptyRecord(ASTContext &Context, QualType T) { + const RecordType *RT = T->getAsRecordType(); + if (!RT) + return 0; + const RecordDecl *RD = RT->getDecl(); + if (RD->hasFlexibleArrayMember()) + return false; + for (RecordDecl::field_iterator i = RD->field_begin(Context), + e = RD->field_end(Context); i != e; ++i) + if (!isEmptyField(Context, *i)) + return false; + return true; +} + +/// isSingleElementStruct - Determine if a structure is a "single +/// element struct", i.e. it has exactly one non-empty field or +/// exactly one field which is itself a single element +/// struct. Structures with flexible array members are never +/// considered single element structs. +/// +/// \return The field declaration for the single non-empty field, if +/// it exists. +static const Type *isSingleElementStruct(QualType T, ASTContext &Context) { + const RecordType *RT = T->getAsStructureType(); + if (!RT) + return 0; + + const RecordDecl *RD = RT->getDecl(); + if (RD->hasFlexibleArrayMember()) + return 0; + + const Type *Found = 0; + for (RecordDecl::field_iterator i = RD->field_begin(Context), + e = RD->field_end(Context); i != e; ++i) { + const FieldDecl *FD = *i; + QualType FT = FD->getType(); + + // Ignore empty fields. + if (isEmptyField(Context, FD)) + continue; + + // If we already found an element then this isn't a single-element + // struct. + if (Found) + return 0; + + // Treat single element arrays as the element. + while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) { + if (AT->getSize().getZExtValue() != 1) + break; + FT = AT->getElementType(); + } + + if (!CodeGenFunction::hasAggregateLLVMType(FT)) { + Found = FT.getTypePtr(); + } else { + Found = isSingleElementStruct(FT, Context); + if (!Found) + return 0; + } + } + + return Found; +} + +static bool is32Or64BitBasicType(QualType Ty, ASTContext &Context) { + if (!Ty->getAsBuiltinType() && !Ty->isPointerType()) + return false; + + uint64_t Size = Context.getTypeSize(Ty); + return Size == 32 || Size == 64; +} + +static bool areAllFields32Or64BitBasicType(const RecordDecl *RD, + ASTContext &Context) { + for (RecordDecl::field_iterator i = RD->field_begin(Context), + e = RD->field_end(Context); i != e; ++i) { + const FieldDecl *FD = *i; + + if (!is32Or64BitBasicType(FD->getType(), Context)) + return false; + + // FIXME: Reject bit-fields wholesale; there are two problems, we don't know + // how to expand them yet, and the predicate for telling if a bitfield still + // counts as "basic" is more complicated than what we were doing previously. + if (FD->isBitField()) + return false; + } + + return true; +} + +namespace { +/// DefaultABIInfo - The default implementation for ABI specific +/// details. This implementation provides information which results in +/// self-consistent and sensible LLVM IR generation, but does not +/// conform to any particular ABI. +class DefaultABIInfo : public ABIInfo { + ABIArgInfo classifyReturnType(QualType RetTy, + ASTContext &Context) const; + + ABIArgInfo classifyArgumentType(QualType RetTy, + ASTContext &Context) const; + + virtual void computeInfo(CGFunctionInfo &FI, ASTContext &Context) const { + FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), Context); + for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end(); + it != ie; ++it) + it->info = classifyArgumentType(it->type, Context); + } + + virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, + CodeGenFunction &CGF) const; +}; + +/// X86_32ABIInfo - The X86-32 ABI information. +class X86_32ABIInfo : public ABIInfo { + ASTContext &Context; + bool IsDarwin; + + static bool isRegisterSize(unsigned Size) { + return (Size == 8 || Size == 16 || Size == 32 || Size == 64); + } + + static bool shouldReturnTypeInRegister(QualType Ty, ASTContext &Context); + +public: + ABIArgInfo classifyReturnType(QualType RetTy, + ASTContext &Context) const; + + ABIArgInfo classifyArgumentType(QualType RetTy, + ASTContext &Context) const; + + virtual void computeInfo(CGFunctionInfo &FI, ASTContext &Context) const { + FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), Context); + for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end(); + it != ie; ++it) + it->info = classifyArgumentType(it->type, Context); + } + + virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, + CodeGenFunction &CGF) const; + + X86_32ABIInfo(ASTContext &Context, bool d) + : ABIInfo(), Context(Context), IsDarwin(d) {} +}; +} + + +/// shouldReturnTypeInRegister - Determine if the given type should be +/// passed in a register (for the Darwin ABI). +bool X86_32ABIInfo::shouldReturnTypeInRegister(QualType Ty, + ASTContext &Context) { + uint64_t Size = Context.getTypeSize(Ty); + + // Type must be register sized. + if (!isRegisterSize(Size)) + return false; + + if (Ty->isVectorType()) { + // 64- and 128- bit vectors inside structures are not returned in + // registers. + if (Size == 64 || Size == 128) + return false; + + return true; + } + + // If this is a builtin, pointer, or complex type, it is ok. + if (Ty->getAsBuiltinType() || Ty->isPointerType() || Ty->isAnyComplexType()) + return true; + + // Arrays are treated like records. + if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) + return shouldReturnTypeInRegister(AT->getElementType(), Context); + + // Otherwise, it must be a record type. + const RecordType *RT = Ty->getAsRecordType(); + if (!RT) return false; + + // Structure types are passed in register if all fields would be + // passed in a register. + for (RecordDecl::field_iterator i = RT->getDecl()->field_begin(Context), + e = RT->getDecl()->field_end(Context); i != e; ++i) { + const FieldDecl *FD = *i; + + // Empty fields are ignored. + if (isEmptyField(Context, FD)) + continue; + + // Check fields recursively. + if (!shouldReturnTypeInRegister(FD->getType(), Context)) + return false; + } + + return true; +} + +ABIArgInfo X86_32ABIInfo::classifyReturnType(QualType RetTy, + ASTContext &Context) const { + if (RetTy->isVoidType()) { + return ABIArgInfo::getIgnore(); + } else if (const VectorType *VT = RetTy->getAsVectorType()) { + // On Darwin, some vectors are returned in registers. + if (IsDarwin) { + uint64_t Size = Context.getTypeSize(RetTy); + + // 128-bit vectors are a special case; they are returned in + // registers and we need to make sure to pick a type the LLVM + // backend will like. + if (Size == 128) + return ABIArgInfo::getCoerce(llvm::VectorType::get(llvm::Type::Int64Ty, + 2)); + + // Always return in register if it fits in a general purpose + // register, or if it is 64 bits and has a single element. + if ((Size == 8 || Size == 16 || Size == 32) || + (Size == 64 && VT->getNumElements() == 1)) + return ABIArgInfo::getCoerce(llvm::IntegerType::get(Size)); + + return ABIArgInfo::getIndirect(0); + } + + return ABIArgInfo::getDirect(); + } else if (CodeGenFunction::hasAggregateLLVMType(RetTy)) { + // Structures with flexible arrays are always indirect. + if (const RecordType *RT = RetTy->getAsStructureType()) + if (RT->getDecl()->hasFlexibleArrayMember()) + return ABIArgInfo::getIndirect(0); + + // Outside of Darwin, structs and unions are always indirect. + if (!IsDarwin && !RetTy->isAnyComplexType()) + return ABIArgInfo::getIndirect(0); + + // Classify "single element" structs as their element type. + if (const Type *SeltTy = isSingleElementStruct(RetTy, Context)) { + if (const BuiltinType *BT = SeltTy->getAsBuiltinType()) { + if (BT->isIntegerType()) { + // We need to use the size of the structure, padding + // bit-fields can adjust that to be larger than the single + // element type. + uint64_t Size = Context.getTypeSize(RetTy); + return ABIArgInfo::getCoerce(llvm::IntegerType::get((unsigned) Size)); + } else if (BT->getKind() == BuiltinType::Float) { + assert(Context.getTypeSize(RetTy) == Context.getTypeSize(SeltTy) && + "Unexpect single element structure size!"); + return ABIArgInfo::getCoerce(llvm::Type::FloatTy); + } else if (BT->getKind() == BuiltinType::Double) { + assert(Context.getTypeSize(RetTy) == Context.getTypeSize(SeltTy) && + "Unexpect single element structure size!"); + return ABIArgInfo::getCoerce(llvm::Type::DoubleTy); + } + } else if (SeltTy->isPointerType()) { + // FIXME: It would be really nice if this could come out as the proper + // pointer type. + llvm::Type *PtrTy = + llvm::PointerType::getUnqual(llvm::Type::Int8Ty); + return ABIArgInfo::getCoerce(PtrTy); + } else if (SeltTy->isVectorType()) { + // 64- and 128-bit vectors are never returned in a + // register when inside a structure. + uint64_t Size = Context.getTypeSize(RetTy); + if (Size == 64 || Size == 128) + return ABIArgInfo::getIndirect(0); + + return classifyReturnType(QualType(SeltTy, 0), Context); + } + } + + // Small structures which are register sized are generally returned + // in a register. + if (X86_32ABIInfo::shouldReturnTypeInRegister(RetTy, Context)) { + uint64_t Size = Context.getTypeSize(RetTy); + return ABIArgInfo::getCoerce(llvm::IntegerType::get(Size)); + } + + return ABIArgInfo::getIndirect(0); + } else { + return ABIArgInfo::getDirect(); + } +} + +ABIArgInfo X86_32ABIInfo::classifyArgumentType(QualType Ty, + ASTContext &Context) const { + // FIXME: Set alignment on indirect arguments. + if (CodeGenFunction::hasAggregateLLVMType(Ty)) { + // Structures with flexible arrays are always indirect. + if (const RecordType *RT = Ty->getAsStructureType()) + if (RT->getDecl()->hasFlexibleArrayMember()) + return ABIArgInfo::getIndirect(0); + + // Ignore empty structs. + uint64_t Size = Context.getTypeSize(Ty); + if (Ty->isStructureType() && Size == 0) + return ABIArgInfo::getIgnore(); + + // Expand structs with size <= 128-bits which consist only of + // basic types (int, long long, float, double, xxx*). This is + // non-recursive and does not ignore empty fields. + if (const RecordType *RT = Ty->getAsStructureType()) { + if (Context.getTypeSize(Ty) <= 4*32 && + areAllFields32Or64BitBasicType(RT->getDecl(), Context)) + return ABIArgInfo::getExpand(); + } + + return ABIArgInfo::getIndirect(0); + } else { + return ABIArgInfo::getDirect(); + } +} + +llvm::Value *X86_32ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, + CodeGenFunction &CGF) const { + const llvm::Type *BP = llvm::PointerType::getUnqual(llvm::Type::Int8Ty); + const llvm::Type *BPP = llvm::PointerType::getUnqual(BP); + + CGBuilderTy &Builder = CGF.Builder; + llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, + "ap"); + llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur"); + llvm::Type *PTy = + llvm::PointerType::getUnqual(CGF.ConvertType(Ty)); + llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy); + + uint64_t Offset = + llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, 4); + llvm::Value *NextAddr = + Builder.CreateGEP(Addr, + llvm::ConstantInt::get(llvm::Type::Int32Ty, Offset), + "ap.next"); + Builder.CreateStore(NextAddr, VAListAddrAsBPP); + + return AddrTyped; +} + +namespace { +/// X86_64ABIInfo - The X86_64 ABI information. +class X86_64ABIInfo : public ABIInfo { + enum Class { + Integer = 0, + SSE, + SSEUp, + X87, + X87Up, + ComplexX87, + NoClass, + Memory + }; + + /// merge - Implement the X86_64 ABI merging algorithm. + /// + /// Merge an accumulating classification \arg Accum with a field + /// classification \arg Field. + /// + /// \param Accum - The accumulating classification. This should + /// always be either NoClass or the result of a previous merge + /// call. In addition, this should never be Memory (the caller + /// should just return Memory for the aggregate). + Class merge(Class Accum, Class Field) const; + + /// classify - Determine the x86_64 register classes in which the + /// given type T should be passed. + /// + /// \param Lo - The classification for the parts of the type + /// residing in the low word of the containing object. + /// + /// \param Hi - The classification for the parts of the type + /// residing in the high word of the containing object. + /// + /// \param OffsetBase - The bit offset of this type in the + /// containing object. Some parameters are classified different + /// depending on whether they straddle an eightbyte boundary. + /// + /// If a word is unused its result will be NoClass; if a type should + /// be passed in Memory then at least the classification of \arg Lo + /// will be Memory. + /// + /// The \arg Lo class will be NoClass iff the argument is ignored. + /// + /// If the \arg Lo class is ComplexX87, then the \arg Hi class will + /// also be ComplexX87. + void classify(QualType T, ASTContext &Context, uint64_t OffsetBase, + Class &Lo, Class &Hi) const; + + /// getCoerceResult - Given a source type \arg Ty and an LLVM type + /// to coerce to, chose the best way to pass Ty in the same place + /// that \arg CoerceTo would be passed, but while keeping the + /// emitted code as simple as possible. + /// + /// FIXME: Note, this should be cleaned up to just take an enumeration of all + /// the ways we might want to pass things, instead of constructing an LLVM + /// type. This makes this code more explicit, and it makes it clearer that we + /// are also doing this for correctness in the case of passing scalar types. + ABIArgInfo getCoerceResult(QualType Ty, + const llvm::Type *CoerceTo, + ASTContext &Context) const; + + /// getIndirectResult - Give a source type \arg Ty, return a suitable result + /// such that the argument will be passed in memory. + ABIArgInfo getIndirectResult(QualType Ty, + ASTContext &Context) const; + + ABIArgInfo classifyReturnType(QualType RetTy, + ASTContext &Context) const; + + ABIArgInfo classifyArgumentType(QualType Ty, + ASTContext &Context, + unsigned &neededInt, + unsigned &neededSSE) const; + +public: + virtual void computeInfo(CGFunctionInfo &FI, ASTContext &Context) const; + + virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, + CodeGenFunction &CGF) const; +}; +} + +X86_64ABIInfo::Class X86_64ABIInfo::merge(Class Accum, + Class Field) const { + // AMD64-ABI 3.2.3p2: Rule 4. Each field of an object is + // classified recursively so that always two fields are + // considered. The resulting class is calculated according to + // the classes of the fields in the eightbyte: + // + // (a) If both classes are equal, this is the resulting class. + // + // (b) If one of the classes is NO_CLASS, the resulting class is + // the other class. + // + // (c) If one of the classes is MEMORY, the result is the MEMORY + // class. + // + // (d) If one of the classes is INTEGER, the result is the + // INTEGER. + // + // (e) If one of the classes is X87, X87UP, COMPLEX_X87 class, + // MEMORY is used as class. + // + // (f) Otherwise class SSE is used. + + // Accum should never be memory (we should have returned) or + // ComplexX87 (because this cannot be passed in a structure). + assert((Accum != Memory && Accum != ComplexX87) && + "Invalid accumulated classification during merge."); + if (Accum == Field || Field == NoClass) + return Accum; + else if (Field == Memory) + return Memory; + else if (Accum == NoClass) + return Field; + else if (Accum == Integer || Field == Integer) + return Integer; + else if (Field == X87 || Field == X87Up || Field == ComplexX87 || + Accum == X87 || Accum == X87Up) + return Memory; + else + return SSE; +} + +void X86_64ABIInfo::classify(QualType Ty, + ASTContext &Context, + uint64_t OffsetBase, + Class &Lo, Class &Hi) const { + // FIXME: This code can be simplified by introducing a simple value class for + // Class pairs with appropriate constructor methods for the various + // situations. + + // FIXME: Some of the split computations are wrong; unaligned vectors + // shouldn't be passed in registers for example, so there is no chance they + // can straddle an eightbyte. Verify & simplify. + + Lo = Hi = NoClass; + + Class &Current = OffsetBase < 64 ? Lo : Hi; + Current = Memory; + + if (const BuiltinType *BT = Ty->getAsBuiltinType()) { + BuiltinType::Kind k = BT->getKind(); + + if (k == BuiltinType::Void) { + Current = NoClass; + } else if (k == BuiltinType::Int128 || k == BuiltinType::UInt128) { + Lo = Integer; + Hi = Integer; + } else if (k >= BuiltinType::Bool && k <= BuiltinType::LongLong) { + Current = Integer; + } else if (k == BuiltinType::Float || k == BuiltinType::Double) { + Current = SSE; + } else if (k == BuiltinType::LongDouble) { + Lo = X87; + Hi = X87Up; + } + // FIXME: _Decimal32 and _Decimal64 are SSE. + // FIXME: _float128 and _Decimal128 are (SSE, SSEUp). + } else if (const EnumType *ET = Ty->getAsEnumType()) { + // Classify the underlying integer type. + classify(ET->getDecl()->getIntegerType(), Context, OffsetBase, Lo, Hi); + } else if (Ty->hasPointerRepresentation()) { + Current = Integer; + } else if (const VectorType *VT = Ty->getAsVectorType()) { + uint64_t Size = Context.getTypeSize(VT); + if (Size == 32) { + // gcc passes all <4 x char>, <2 x short>, <1 x int>, <1 x + // float> as integer. + Current = Integer; + + // If this type crosses an eightbyte boundary, it should be + // split. + uint64_t EB_Real = (OffsetBase) / 64; + uint64_t EB_Imag = (OffsetBase + Size - 1) / 64; + if (EB_Real != EB_Imag) + Hi = Lo; + } else if (Size == 64) { + // gcc passes <1 x double> in memory. :( + if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::Double)) + return; + + // gcc passes <1 x long long> as INTEGER. + if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::LongLong)) + Current = Integer; + else + Current = SSE; + + // If this type crosses an eightbyte boundary, it should be + // split. + if (OffsetBase && OffsetBase != 64) + Hi = Lo; + } else if (Size == 128) { + Lo = SSE; + Hi = SSEUp; + } + } else if (const ComplexType *CT = Ty->getAsComplexType()) { + QualType ET = Context.getCanonicalType(CT->getElementType()); + + uint64_t Size = Context.getTypeSize(Ty); + if (ET->isIntegralType()) { + if (Size <= 64) + Current = Integer; + else if (Size <= 128) + Lo = Hi = Integer; + } else if (ET == Context.FloatTy) + Current = SSE; + else if (ET == Context.DoubleTy) + Lo = Hi = SSE; + else if (ET == Context.LongDoubleTy) + Current = ComplexX87; + + // If this complex type crosses an eightbyte boundary then it + // should be split. + uint64_t EB_Real = (OffsetBase) / 64; + uint64_t EB_Imag = (OffsetBase + Context.getTypeSize(ET)) / 64; + if (Hi == NoClass && EB_Real != EB_Imag) + Hi = Lo; + } else if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) { + // Arrays are treated like structures. + + uint64_t Size = Context.getTypeSize(Ty); + + // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger + // than two eightbytes, ..., it has class MEMORY. + if (Size > 128) + return; + + // AMD64-ABI 3.2.3p2: Rule 1. If ..., or it contains unaligned + // fields, it has class MEMORY. + // + // Only need to check alignment of array base. + if (OffsetBase % Context.getTypeAlign(AT->getElementType())) + return; + + // Otherwise implement simplified merge. We could be smarter about + // this, but it isn't worth it and would be harder to verify. + Current = NoClass; + uint64_t EltSize = Context.getTypeSize(AT->getElementType()); + uint64_t ArraySize = AT->getSize().getZExtValue(); + for (uint64_t i=0, Offset=OffsetBase; i<ArraySize; ++i, Offset += EltSize) { + Class FieldLo, FieldHi; + classify(AT->getElementType(), Context, Offset, FieldLo, FieldHi); + Lo = merge(Lo, FieldLo); + Hi = merge(Hi, FieldHi); + if (Lo == Memory || Hi == Memory) + break; + } + + // Do post merger cleanup (see below). Only case we worry about is Memory. + if (Hi == Memory) + Lo = Memory; + assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp array classification."); + } else if (const RecordType *RT = Ty->getAsRecordType()) { + uint64_t Size = Context.getTypeSize(Ty); + + // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger + // than two eightbytes, ..., it has class MEMORY. + if (Size > 128) + return; + + const RecordDecl *RD = RT->getDecl(); + + // Assume variable sized types are passed in memory. + if (RD->hasFlexibleArrayMember()) + return; + + const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); + + // Reset Lo class, this will be recomputed. + Current = NoClass; + unsigned idx = 0; + for (RecordDecl::field_iterator i = RD->field_begin(Context), + e = RD->field_end(Context); i != e; ++i, ++idx) { + uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx); + bool BitField = i->isBitField(); + + // AMD64-ABI 3.2.3p2: Rule 1. If ..., or it contains unaligned + // fields, it has class MEMORY. + // + // Note, skip this test for bit-fields, see below. + if (!BitField && Offset % Context.getTypeAlign(i->getType())) { + Lo = Memory; + return; + } + + // Classify this field. + // + // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate + // exceeds a single eightbyte, each is classified + // separately. Each eightbyte gets initialized to class + // NO_CLASS. + Class FieldLo, FieldHi; + + // Bit-fields require special handling, they do not force the + // structure to be passed in memory even if unaligned, and + // therefore they can straddle an eightbyte. + if (BitField) { + // Ignore padding bit-fields. + if (i->isUnnamedBitfield()) + continue; + + uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx); + uint64_t Size = i->getBitWidth()->EvaluateAsInt(Context).getZExtValue(); + + uint64_t EB_Lo = Offset / 64; + uint64_t EB_Hi = (Offset + Size - 1) / 64; + FieldLo = FieldHi = NoClass; + if (EB_Lo) { + assert(EB_Hi == EB_Lo && "Invalid classification, type > 16 bytes."); + FieldLo = NoClass; + FieldHi = Integer; + } else { + FieldLo = Integer; + FieldHi = EB_Hi ? Integer : NoClass; + } + } else + classify(i->getType(), Context, Offset, FieldLo, FieldHi); + Lo = merge(Lo, FieldLo); + Hi = merge(Hi, FieldHi); + if (Lo == Memory || Hi == Memory) + break; + } + + // AMD64-ABI 3.2.3p2: Rule 5. Then a post merger cleanup is done: + // + // (a) If one of the classes is MEMORY, the whole argument is + // passed in memory. + // + // (b) If SSEUP is not preceeded by SSE, it is converted to SSE. + + // The first of these conditions is guaranteed by how we implement + // the merge (just bail). + // + // The second condition occurs in the case of unions; for example + // union { _Complex double; unsigned; }. + if (Hi == Memory) + Lo = Memory; + if (Hi == SSEUp && Lo != SSE) + Hi = SSE; + } +} + +ABIArgInfo X86_64ABIInfo::getCoerceResult(QualType Ty, + const llvm::Type *CoerceTo, + ASTContext &Context) const { + if (CoerceTo == llvm::Type::Int64Ty) { + // Integer and pointer types will end up in a general purpose + // register. + if (Ty->isIntegralType() || Ty->isPointerType()) + return ABIArgInfo::getDirect(); + + } else if (CoerceTo == llvm::Type::DoubleTy) { + // FIXME: It would probably be better to make CGFunctionInfo only map using + // canonical types than to canonize here. + QualType CTy = Context.getCanonicalType(Ty); + + // Float and double end up in a single SSE reg. + if (CTy == Context.FloatTy || CTy == Context.DoubleTy) + return ABIArgInfo::getDirect(); + + } + + return ABIArgInfo::getCoerce(CoerceTo); +} + +ABIArgInfo X86_64ABIInfo::getIndirectResult(QualType Ty, + ASTContext &Context) const { + // If this is a scalar LLVM value then assume LLVM will pass it in the right + // place naturally. + if (!CodeGenFunction::hasAggregateLLVMType(Ty)) + return ABIArgInfo::getDirect(); + + // FIXME: Set alignment correctly. + return ABIArgInfo::getIndirect(0); +} + +ABIArgInfo X86_64ABIInfo::classifyReturnType(QualType RetTy, + ASTContext &Context) const { + // AMD64-ABI 3.2.3p4: Rule 1. Classify the return type with the + // classification algorithm. + X86_64ABIInfo::Class Lo, Hi; + classify(RetTy, Context, 0, Lo, Hi); + + // Check some invariants. + assert((Hi != Memory || Lo == Memory) && "Invalid memory classification."); + assert((Lo != NoClass || Hi == NoClass) && "Invalid null classification."); + assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification."); + + const llvm::Type *ResType = 0; + switch (Lo) { + case NoClass: + return ABIArgInfo::getIgnore(); + + case SSEUp: + case X87Up: + assert(0 && "Invalid classification for lo word."); + + // AMD64-ABI 3.2.3p4: Rule 2. Types of class memory are returned via + // hidden argument. + case Memory: + return getIndirectResult(RetTy, Context); + + // AMD64-ABI 3.2.3p4: Rule 3. If the class is INTEGER, the next + // available register of the sequence %rax, %rdx is used. + case Integer: + ResType = llvm::Type::Int64Ty; break; + + // AMD64-ABI 3.2.3p4: Rule 4. If the class is SSE, the next + // available SSE register of the sequence %xmm0, %xmm1 is used. + case SSE: + ResType = llvm::Type::DoubleTy; break; + + // AMD64-ABI 3.2.3p4: Rule 6. If the class is X87, the value is + // returned on the X87 stack in %st0 as 80-bit x87 number. + case X87: + ResType = llvm::Type::X86_FP80Ty; break; + + // AMD64-ABI 3.2.3p4: Rule 8. If the class is COMPLEX_X87, the real + // part of the value is returned in %st0 and the imaginary part in + // %st1. + case ComplexX87: + assert(Hi == ComplexX87 && "Unexpected ComplexX87 classification."); + ResType = llvm::StructType::get(llvm::Type::X86_FP80Ty, + llvm::Type::X86_FP80Ty, + NULL); + break; + } + + switch (Hi) { + // Memory was handled previously and X87 should + // never occur as a hi class. + case Memory: + case X87: + assert(0 && "Invalid classification for hi word."); + + case ComplexX87: // Previously handled. + case NoClass: break; + + case Integer: + ResType = llvm::StructType::get(ResType, llvm::Type::Int64Ty, NULL); + break; + case SSE: + ResType = llvm::StructType::get(ResType, llvm::Type::DoubleTy, NULL); + break; + + // AMD64-ABI 3.2.3p4: Rule 5. If the class is SSEUP, the eightbyte + // is passed in the upper half of the last used SSE register. + // + // SSEUP should always be preceeded by SSE, just widen. + case SSEUp: + assert(Lo == SSE && "Unexpected SSEUp classification."); + ResType = llvm::VectorType::get(llvm::Type::DoubleTy, 2); + break; + + // AMD64-ABI 3.2.3p4: Rule 7. If the class is X87UP, the value is + // returned together with the previous X87 value in %st0. + case X87Up: + // If X87Up is preceeded by X87, we don't need to do + // anything. However, in some cases with unions it may not be + // preceeded by X87. In such situations we follow gcc and pass the + // extra bits in an SSE reg. + if (Lo != X87) + ResType = llvm::StructType::get(ResType, llvm::Type::DoubleTy, NULL); + break; + } + + return getCoerceResult(RetTy, ResType, Context); +} + +ABIArgInfo X86_64ABIInfo::classifyArgumentType(QualType Ty, ASTContext &Context, + unsigned &neededInt, + unsigned &neededSSE) const { + X86_64ABIInfo::Class Lo, Hi; + classify(Ty, Context, 0, Lo, Hi); + + // Check some invariants. + // FIXME: Enforce these by construction. + assert((Hi != Memory || Lo == Memory) && "Invalid memory classification."); + assert((Lo != NoClass || Hi == NoClass) && "Invalid null classification."); + assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification."); + + neededInt = 0; + neededSSE = 0; + const llvm::Type *ResType = 0; + switch (Lo) { + case NoClass: + return ABIArgInfo::getIgnore(); + + // AMD64-ABI 3.2.3p3: Rule 1. If the class is MEMORY, pass the argument + // on the stack. + case Memory: + + // AMD64-ABI 3.2.3p3: Rule 5. If the class is X87, X87UP or + // COMPLEX_X87, it is passed in memory. + case X87: + case ComplexX87: + return getIndirectResult(Ty, Context); + + case SSEUp: + case X87Up: + assert(0 && "Invalid classification for lo word."); + + // AMD64-ABI 3.2.3p3: Rule 2. If the class is INTEGER, the next + // available register of the sequence %rdi, %rsi, %rdx, %rcx, %r8 + // and %r9 is used. + case Integer: + ++neededInt; + ResType = llvm::Type::Int64Ty; + break; + + // AMD64-ABI 3.2.3p3: Rule 3. If the class is SSE, the next + // available SSE register is used, the registers are taken in the + // order from %xmm0 to %xmm7. + case SSE: + ++neededSSE; + ResType = llvm::Type::DoubleTy; + break; + } + + switch (Hi) { + // Memory was handled previously, ComplexX87 and X87 should + // never occur as hi classes, and X87Up must be preceed by X87, + // which is passed in memory. + case Memory: + case X87: + case ComplexX87: + assert(0 && "Invalid classification for hi word."); + break; + + case NoClass: break; + case Integer: + ResType = llvm::StructType::get(ResType, llvm::Type::Int64Ty, NULL); + ++neededInt; + break; + + // X87Up generally doesn't occur here (long double is passed in + // memory), except in situations involving unions. + case X87Up: + case SSE: + ResType = llvm::StructType::get(ResType, llvm::Type::DoubleTy, NULL); + ++neededSSE; + break; + + // AMD64-ABI 3.2.3p3: Rule 4. If the class is SSEUP, the + // eightbyte is passed in the upper half of the last used SSE + // register. + case SSEUp: + assert(Lo == SSE && "Unexpected SSEUp classification."); + ResType = llvm::VectorType::get(llvm::Type::DoubleTy, 2); + break; + } + + return getCoerceResult(Ty, ResType, Context); +} + +void X86_64ABIInfo::computeInfo(CGFunctionInfo &FI, ASTContext &Context) const { + FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), Context); + + // Keep track of the number of assigned registers. + unsigned freeIntRegs = 6, freeSSERegs = 8; + + // If the return value is indirect, then the hidden argument is consuming one + // integer register. + if (FI.getReturnInfo().isIndirect()) + --freeIntRegs; + + // AMD64-ABI 3.2.3p3: Once arguments are classified, the registers + // get assigned (in left-to-right order) for passing as follows... + for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end(); + it != ie; ++it) { + unsigned neededInt, neededSSE; + it->info = classifyArgumentType(it->type, Context, neededInt, neededSSE); + + // AMD64-ABI 3.2.3p3: If there are no registers available for any + // eightbyte of an argument, the whole argument is passed on the + // stack. If registers have already been assigned for some + // eightbytes of such an argument, the assignments get reverted. + if (freeIntRegs >= neededInt && freeSSERegs >= neededSSE) { + freeIntRegs -= neededInt; + freeSSERegs -= neededSSE; + } else { + it->info = getIndirectResult(it->type, Context); + } + } +} + +static llvm::Value *EmitVAArgFromMemory(llvm::Value *VAListAddr, + QualType Ty, + CodeGenFunction &CGF) { + llvm::Value *overflow_arg_area_p = + CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_p"); + llvm::Value *overflow_arg_area = + CGF.Builder.CreateLoad(overflow_arg_area_p, "overflow_arg_area"); + + // AMD64-ABI 3.5.7p5: Step 7. Align l->overflow_arg_area upwards to a 16 + // byte boundary if alignment needed by type exceeds 8 byte boundary. + uint64_t Align = CGF.getContext().getTypeAlign(Ty) / 8; + if (Align > 8) { + // Note that we follow the ABI & gcc here, even though the type + // could in theory have an alignment greater than 16. This case + // shouldn't ever matter in practice. + + // overflow_arg_area = (overflow_arg_area + 15) & ~15; + llvm::Value *Offset = llvm::ConstantInt::get(llvm::Type::Int32Ty, 15); + overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset); + llvm::Value *AsInt = CGF.Builder.CreatePtrToInt(overflow_arg_area, + llvm::Type::Int64Ty); + llvm::Value *Mask = llvm::ConstantInt::get(llvm::Type::Int64Ty, ~15LL); + overflow_arg_area = + CGF.Builder.CreateIntToPtr(CGF.Builder.CreateAnd(AsInt, Mask), + overflow_arg_area->getType(), + "overflow_arg_area.align"); + } + + // AMD64-ABI 3.5.7p5: Step 8. Fetch type from l->overflow_arg_area. + const llvm::Type *LTy = CGF.ConvertTypeForMem(Ty); + llvm::Value *Res = + CGF.Builder.CreateBitCast(overflow_arg_area, + llvm::PointerType::getUnqual(LTy)); + + // AMD64-ABI 3.5.7p5: Step 9. Set l->overflow_arg_area to: + // l->overflow_arg_area + sizeof(type). + // AMD64-ABI 3.5.7p5: Step 10. Align l->overflow_arg_area upwards to + // an 8 byte boundary. + + uint64_t SizeInBytes = (CGF.getContext().getTypeSize(Ty) + 7) / 8; + llvm::Value *Offset = llvm::ConstantInt::get(llvm::Type::Int32Ty, + (SizeInBytes + 7) & ~7); + overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset, + "overflow_arg_area.next"); + CGF.Builder.CreateStore(overflow_arg_area, overflow_arg_area_p); + + // AMD64-ABI 3.5.7p5: Step 11. Return the fetched type. + return Res; +} + +llvm::Value *X86_64ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, + CodeGenFunction &CGF) const { + // Assume that va_list type is correct; should be pointer to LLVM type: + // struct { + // i32 gp_offset; + // i32 fp_offset; + // i8* overflow_arg_area; + // i8* reg_save_area; + // }; + unsigned neededInt, neededSSE; + ABIArgInfo AI = classifyArgumentType(Ty, CGF.getContext(), + neededInt, neededSSE); + + // AMD64-ABI 3.5.7p5: Step 1. Determine whether type may be passed + // in the registers. If not go to step 7. + if (!neededInt && !neededSSE) + return EmitVAArgFromMemory(VAListAddr, Ty, CGF); + + // AMD64-ABI 3.5.7p5: Step 2. Compute num_gp to hold the number of + // general purpose registers needed to pass type and num_fp to hold + // the number of floating point registers needed. + + // AMD64-ABI 3.5.7p5: Step 3. Verify whether arguments fit into + // registers. In the case: l->gp_offset > 48 - num_gp * 8 or + // l->fp_offset > 304 - num_fp * 16 go to step 7. + // + // NOTE: 304 is a typo, there are (6 * 8 + 8 * 16) = 176 bytes of + // register save space). + + llvm::Value *InRegs = 0; + llvm::Value *gp_offset_p = 0, *gp_offset = 0; + llvm::Value *fp_offset_p = 0, *fp_offset = 0; + if (neededInt) { + gp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, "gp_offset_p"); + gp_offset = CGF.Builder.CreateLoad(gp_offset_p, "gp_offset"); + InRegs = + CGF.Builder.CreateICmpULE(gp_offset, + llvm::ConstantInt::get(llvm::Type::Int32Ty, + 48 - neededInt * 8), + "fits_in_gp"); + } + + if (neededSSE) { + fp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 1, "fp_offset_p"); + fp_offset = CGF.Builder.CreateLoad(fp_offset_p, "fp_offset"); + llvm::Value *FitsInFP = + CGF.Builder.CreateICmpULE(fp_offset, + llvm::ConstantInt::get(llvm::Type::Int32Ty, + 176 - neededSSE * 16), + "fits_in_fp"); + InRegs = InRegs ? CGF.Builder.CreateAnd(InRegs, FitsInFP) : FitsInFP; + } + + llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg"); + llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem"); + llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end"); + CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock); + + // Emit code to load the value if it was passed in registers. + + CGF.EmitBlock(InRegBlock); + + // AMD64-ABI 3.5.7p5: Step 4. Fetch type from l->reg_save_area with + // an offset of l->gp_offset and/or l->fp_offset. This may require + // copying to a temporary location in case the parameter is passed + // in different register classes or requires an alignment greater + // than 8 for general purpose registers and 16 for XMM registers. + // + // FIXME: This really results in shameful code when we end up needing to + // collect arguments from different places; often what should result in a + // simple assembling of a structure from scattered addresses has many more + // loads than necessary. Can we clean this up? + const llvm::Type *LTy = CGF.ConvertTypeForMem(Ty); + llvm::Value *RegAddr = + CGF.Builder.CreateLoad(CGF.Builder.CreateStructGEP(VAListAddr, 3), + "reg_save_area"); + if (neededInt && neededSSE) { + // FIXME: Cleanup. + assert(AI.isCoerce() && "Unexpected ABI info for mixed regs"); + const llvm::StructType *ST = cast<llvm::StructType>(AI.getCoerceToType()); + llvm::Value *Tmp = CGF.CreateTempAlloca(ST); + assert(ST->getNumElements() == 2 && "Unexpected ABI info for mixed regs"); + const llvm::Type *TyLo = ST->getElementType(0); + const llvm::Type *TyHi = ST->getElementType(1); + assert((TyLo->isFloatingPoint() ^ TyHi->isFloatingPoint()) && + "Unexpected ABI info for mixed regs"); + const llvm::Type *PTyLo = llvm::PointerType::getUnqual(TyLo); + const llvm::Type *PTyHi = llvm::PointerType::getUnqual(TyHi); + llvm::Value *GPAddr = CGF.Builder.CreateGEP(RegAddr, gp_offset); + llvm::Value *FPAddr = CGF.Builder.CreateGEP(RegAddr, fp_offset); + llvm::Value *RegLoAddr = TyLo->isFloatingPoint() ? FPAddr : GPAddr; + llvm::Value *RegHiAddr = TyLo->isFloatingPoint() ? GPAddr : FPAddr; + llvm::Value *V = + CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegLoAddr, PTyLo)); + CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0)); + V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegHiAddr, PTyHi)); + CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1)); + + RegAddr = CGF.Builder.CreateBitCast(Tmp, llvm::PointerType::getUnqual(LTy)); + } else if (neededInt) { + RegAddr = CGF.Builder.CreateGEP(RegAddr, gp_offset); + RegAddr = CGF.Builder.CreateBitCast(RegAddr, + llvm::PointerType::getUnqual(LTy)); + } else { + if (neededSSE == 1) { + RegAddr = CGF.Builder.CreateGEP(RegAddr, fp_offset); + RegAddr = CGF.Builder.CreateBitCast(RegAddr, + llvm::PointerType::getUnqual(LTy)); + } else { + assert(neededSSE == 2 && "Invalid number of needed registers!"); + // SSE registers are spaced 16 bytes apart in the register save + // area, we need to collect the two eightbytes together. + llvm::Value *RegAddrLo = CGF.Builder.CreateGEP(RegAddr, fp_offset); + llvm::Value *RegAddrHi = + CGF.Builder.CreateGEP(RegAddrLo, + llvm::ConstantInt::get(llvm::Type::Int32Ty, 16)); + const llvm::Type *DblPtrTy = + llvm::PointerType::getUnqual(llvm::Type::DoubleTy); + const llvm::StructType *ST = llvm::StructType::get(llvm::Type::DoubleTy, + llvm::Type::DoubleTy, + NULL); + llvm::Value *V, *Tmp = CGF.CreateTempAlloca(ST); + V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegAddrLo, + DblPtrTy)); + CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0)); + V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegAddrHi, + DblPtrTy)); + CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1)); + RegAddr = CGF.Builder.CreateBitCast(Tmp, + llvm::PointerType::getUnqual(LTy)); + } + } + + // AMD64-ABI 3.5.7p5: Step 5. Set: + // l->gp_offset = l->gp_offset + num_gp * 8 + // l->fp_offset = l->fp_offset + num_fp * 16. + if (neededInt) { + llvm::Value *Offset = llvm::ConstantInt::get(llvm::Type::Int32Ty, + neededInt * 8); + CGF.Builder.CreateStore(CGF.Builder.CreateAdd(gp_offset, Offset), + gp_offset_p); + } + if (neededSSE) { + llvm::Value *Offset = llvm::ConstantInt::get(llvm::Type::Int32Ty, + neededSSE * 16); + CGF.Builder.CreateStore(CGF.Builder.CreateAdd(fp_offset, Offset), + fp_offset_p); + } + CGF.EmitBranch(ContBlock); + + // Emit code to load the value if it was passed in memory. + + CGF.EmitBlock(InMemBlock); + llvm::Value *MemAddr = EmitVAArgFromMemory(VAListAddr, Ty, CGF); + + // Return the appropriate result. + + CGF.EmitBlock(ContBlock); + llvm::PHINode *ResAddr = CGF.Builder.CreatePHI(RegAddr->getType(), + "vaarg.addr"); + ResAddr->reserveOperandSpace(2); + ResAddr->addIncoming(RegAddr, InRegBlock); + ResAddr->addIncoming(MemAddr, InMemBlock); + + return ResAddr; +} + +// ABI Info for PIC16 +class PIC16ABIInfo : public ABIInfo { + ABIArgInfo classifyReturnType(QualType RetTy, + ASTContext &Context) const; + + ABIArgInfo classifyArgumentType(QualType RetTy, + ASTContext &Context) const; + + virtual void computeInfo(CGFunctionInfo &FI, ASTContext &Context) const { + FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), Context); + for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end(); + it != ie; ++it) + it->info = classifyArgumentType(it->type, Context); + } + + virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, + CodeGenFunction &CGF) const; + +}; + +ABIArgInfo PIC16ABIInfo::classifyReturnType(QualType RetTy, + ASTContext &Context) const { + if (RetTy->isVoidType()) { + return ABIArgInfo::getIgnore(); + } else { + return ABIArgInfo::getDirect(); + } +} + +ABIArgInfo PIC16ABIInfo::classifyArgumentType(QualType Ty, + ASTContext &Context) const { + return ABIArgInfo::getDirect(); +} + +llvm::Value *PIC16ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, + CodeGenFunction &CGF) const { + return 0; +} + +class ARMABIInfo : public ABIInfo { + ABIArgInfo classifyReturnType(QualType RetTy, + ASTContext &Context) const; + + ABIArgInfo classifyArgumentType(QualType RetTy, + ASTContext &Context) const; + + virtual void computeInfo(CGFunctionInfo &FI, ASTContext &Context) const; + + virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, + CodeGenFunction &CGF) const; +}; + +void ARMABIInfo::computeInfo(CGFunctionInfo &FI, ASTContext &Context) const { + FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), Context); + for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end(); + it != ie; ++it) { + it->info = classifyArgumentType(it->type, Context); + } +} + +ABIArgInfo ARMABIInfo::classifyArgumentType(QualType Ty, + ASTContext &Context) const { + if (!CodeGenFunction::hasAggregateLLVMType(Ty)) { + return ABIArgInfo::getDirect(); + } + // FIXME: This is kind of nasty... but there isn't much choice because the ARM + // backend doesn't support byval. + // FIXME: This doesn't handle alignment > 64 bits. + const llvm::Type* ElemTy; + unsigned SizeRegs; + if (Context.getTypeAlign(Ty) > 32) { + ElemTy = llvm::Type::Int64Ty; + SizeRegs = (Context.getTypeSize(Ty) + 63) / 64; + } else { + ElemTy = llvm::Type::Int32Ty; + SizeRegs = (Context.getTypeSize(Ty) + 31) / 32; + } + std::vector<const llvm::Type*> LLVMFields; + LLVMFields.push_back(llvm::ArrayType::get(ElemTy, SizeRegs)); + const llvm::Type* STy = llvm::StructType::get(LLVMFields, true); + return ABIArgInfo::getCoerce(STy); +} + +ABIArgInfo ARMABIInfo::classifyReturnType(QualType RetTy, + ASTContext &Context) const { + if (RetTy->isVoidType()) { + return ABIArgInfo::getIgnore(); + } else if (CodeGenFunction::hasAggregateLLVMType(RetTy)) { + // Aggregates <= 4 bytes are returned in r0; other aggregates + // are returned indirectly. + uint64_t Size = Context.getTypeSize(RetTy); + if (Size <= 32) + return ABIArgInfo::getCoerce(llvm::Type::Int32Ty); + return ABIArgInfo::getIndirect(0); + } else { + return ABIArgInfo::getDirect(); + } +} + +llvm::Value *ARMABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, + CodeGenFunction &CGF) const { + // FIXME: Need to handle alignment + const llvm::Type *BP = llvm::PointerType::getUnqual(llvm::Type::Int8Ty); + const llvm::Type *BPP = llvm::PointerType::getUnqual(BP); + + CGBuilderTy &Builder = CGF.Builder; + llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, + "ap"); + llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur"); + llvm::Type *PTy = + llvm::PointerType::getUnqual(CGF.ConvertType(Ty)); + llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy); + + uint64_t Offset = + llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, 4); + llvm::Value *NextAddr = + Builder.CreateGEP(Addr, + llvm::ConstantInt::get(llvm::Type::Int32Ty, Offset), + "ap.next"); + Builder.CreateStore(NextAddr, VAListAddrAsBPP); + + return AddrTyped; +} + +ABIArgInfo DefaultABIInfo::classifyReturnType(QualType RetTy, + ASTContext &Context) const { + if (RetTy->isVoidType()) { + return ABIArgInfo::getIgnore(); + } else if (CodeGenFunction::hasAggregateLLVMType(RetTy)) { + return ABIArgInfo::getIndirect(0); + } else { + return ABIArgInfo::getDirect(); + } +} + +ABIArgInfo DefaultABIInfo::classifyArgumentType(QualType Ty, + ASTContext &Context) const { + if (CodeGenFunction::hasAggregateLLVMType(Ty)) { + return ABIArgInfo::getIndirect(0); + } else { + return ABIArgInfo::getDirect(); + } +} + +llvm::Value *DefaultABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, + CodeGenFunction &CGF) const { + return 0; +} + +const ABIInfo &CodeGenTypes::getABIInfo() const { + if (TheABIInfo) + return *TheABIInfo; + + // For now we just cache this in the CodeGenTypes and don't bother + // to free it. + const char *TargetPrefix = getContext().Target.getTargetPrefix(); + if (strcmp(TargetPrefix, "x86") == 0) { + bool IsDarwin = strstr(getContext().Target.getTargetTriple(), "darwin"); + switch (getContext().Target.getPointerWidth(0)) { + case 32: + return *(TheABIInfo = new X86_32ABIInfo(Context, IsDarwin)); + case 64: + return *(TheABIInfo = new X86_64ABIInfo()); + } + } else if (strcmp(TargetPrefix, "arm") == 0) { + // FIXME: Support for OABI? + return *(TheABIInfo = new ARMABIInfo()); + } else if (strcmp(TargetPrefix, "pic16") == 0) { + return *(TheABIInfo = new PIC16ABIInfo()); + } + + return *(TheABIInfo = new DefaultABIInfo); +} |