summaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
-rw-r--r--polly/lib/Transform/ScheduleOptimizer.cpp215
-rw-r--r--polly/test/Isl/CodeGen/MemAccess/mat_mul_pattern_data_layout.ll86
2 files changed, 301 insertions, 0 deletions
diff --git a/polly/lib/Transform/ScheduleOptimizer.cpp b/polly/lib/Transform/ScheduleOptimizer.cpp
index 83f28f77370..3876ae38b46 100644
--- a/polly/lib/Transform/ScheduleOptimizer.cpp
+++ b/polly/lib/Transform/ScheduleOptimizer.cpp
@@ -618,6 +618,212 @@ getMacroKernelParams(const MicroKernelParamsTy &MicroKernelParams) {
return {Mc, Nc, Kc};
}
+/// @brief Identify a memory access through the shape of its memory access
+/// relation.
+///
+/// Identify the unique memory access in @p Stmt, that has an access relation
+/// equal to @p ExpectedAccessRelation.
+///
+/// @param Stmt The SCoP statement that contains the memory accesses under
+/// consideration.
+/// @param ExpectedAccessRelation The access relation that identifies
+/// the memory access.
+/// @return The memory access of @p Stmt whose memory access relation is equal
+/// to @p ExpectedAccessRelation. nullptr in case there is no or more
+/// than one such access.
+MemoryAccess *
+identifyAccessByAccessRelation(ScopStmt *Stmt,
+ __isl_take isl_map *ExpectedAccessRelation) {
+ if (isl_map_has_tuple_id(ExpectedAccessRelation, isl_dim_out))
+ ExpectedAccessRelation =
+ isl_map_reset_tuple_id(ExpectedAccessRelation, isl_dim_out);
+ MemoryAccess *IdentifiedAccess = nullptr;
+ for (auto *Access : *Stmt) {
+ auto *AccessRelation = Access->getAccessRelation();
+ AccessRelation = isl_map_reset_tuple_id(AccessRelation, isl_dim_out);
+ if (isl_map_is_equal(ExpectedAccessRelation, AccessRelation)) {
+ if (IdentifiedAccess) {
+ isl_map_free(AccessRelation);
+ isl_map_free(ExpectedAccessRelation);
+ return nullptr;
+ }
+ IdentifiedAccess = Access;
+ }
+ isl_map_free(AccessRelation);
+ }
+ isl_map_free(ExpectedAccessRelation);
+ return IdentifiedAccess;
+}
+
+/// @brief Create an access relation that is specific to the matrix
+/// multiplication pattern.
+///
+/// Create an access relation of the following form:
+/// Stmt[O0, O1, O2]->[OI, OJ],
+/// where I is @p I, J is @J
+///
+/// @param Stmt The SCoP statement for which to generate the access relation.
+/// @param I The index of the input dimension that is mapped to the first output
+/// dimension.
+/// @param J The index of the input dimension that is mapped to the second
+/// output dimension.
+/// @return The specified access relation.
+__isl_give isl_map *
+getMatMulPatternOriginalAccessRelation(ScopStmt *Stmt, unsigned I, unsigned J) {
+ auto *AccessRelSpace = isl_space_alloc(Stmt->getIslCtx(), 0, 3, 2);
+ auto *AccessRel = isl_map_universe(AccessRelSpace);
+ AccessRel = isl_map_equate(AccessRel, isl_dim_in, I, isl_dim_out, 0);
+ AccessRel = isl_map_equate(AccessRel, isl_dim_in, J, isl_dim_out, 1);
+ AccessRel = isl_map_set_tuple_id(AccessRel, isl_dim_in, Stmt->getDomainId());
+ return AccessRel;
+}
+
+/// @brief Identify the memory access that corresponds to the access
+/// to the second operand of the matrix multiplication.
+///
+/// Identify the memory access that corresponds to the access
+/// to the matrix B of the matrix multiplication C = A x B.
+///
+/// @param Stmt The SCoP statement that contains the memory accesses
+/// under consideration.
+/// @return The memory access of @p Stmt that corresponds to the access
+/// to the second operand of the matrix multiplication.
+MemoryAccess *identifyAccessA(ScopStmt *Stmt) {
+ auto *OriginalRel = getMatMulPatternOriginalAccessRelation(Stmt, 0, 2);
+ return identifyAccessByAccessRelation(Stmt, OriginalRel);
+}
+
+/// @brief Identify the memory access that corresponds to the access
+/// to the first operand of the matrix multiplication.
+///
+/// Identify the memory access that corresponds to the access
+/// to the matrix A of the matrix multiplication C = A x B.
+///
+/// @param Stmt The SCoP statement that contains the memory accesses
+/// under consideration.
+/// @return The memory access of @p Stmt that corresponds to the access
+/// to the first operand of the matrix multiplication.
+MemoryAccess *identifyAccessB(ScopStmt *Stmt) {
+ auto *OriginalRel = getMatMulPatternOriginalAccessRelation(Stmt, 2, 1);
+ return identifyAccessByAccessRelation(Stmt, OriginalRel);
+}
+
+/// @brief Create an access relation that is specific to
+/// the matrix multiplication pattern.
+///
+/// Create an access relation of the following form:
+/// [O0, O1, O2, O3, O4, O5, O6, O7, O8] -> [0, O5 + K * OI, OJ],
+/// where K is @p Coeff, I is @p FirstDim, J is @p SecondDim.
+///
+/// It can be used, for example, to create relations that helps to consequently
+/// access elements of operands of a matrix multiplication after creation of
+/// the BLIS micro and macro kernels.
+///
+/// @see ScheduleTreeOptimizer::createMicroKernel
+/// @see ScheduleTreeOptimizer::createMacroKernel
+///
+/// Subsequently, the described access relation is applied to the range of
+/// @p MapOldIndVar, that is used to map original induction variables to
+/// the ones, which are produced by schedule transformations. It helps to
+/// define relations using a new space and, at the same time, keep them
+/// in the original one.
+///
+/// @param MapOldIndVar The relation, which maps original induction variables
+/// to the ones, which are produced by schedule
+/// transformations.
+/// @param Coeff The coefficient that is used to define the specified access
+/// relation.
+/// @param FirstDim, SecondDim The input dimensions that are used to define
+/// the specified access relation.
+/// @return The specified access relation.
+__isl_give isl_map *getMatMulAccRel(__isl_take isl_map *MapOldIndVar,
+ unsigned Coeff, unsigned FirstDim,
+ unsigned SecondDim) {
+ auto *Ctx = isl_map_get_ctx(MapOldIndVar);
+ auto *AccessRelSpace = isl_space_alloc(Ctx, 0, 9, 3);
+ auto *AccessRel = isl_map_universe(isl_space_copy(AccessRelSpace));
+ auto *ConstrSpace = isl_local_space_from_space(AccessRelSpace);
+ auto *Constr = isl_constraint_alloc_equality(ConstrSpace);
+ Constr = isl_constraint_set_coefficient_si(Constr, isl_dim_out, 1, -1);
+ Constr = isl_constraint_set_coefficient_si(Constr, isl_dim_in, 5, 1);
+ Constr =
+ isl_constraint_set_coefficient_si(Constr, isl_dim_in, FirstDim, Coeff);
+ AccessRel = isl_map_add_constraint(AccessRel, Constr);
+ AccessRel = isl_map_fix_si(AccessRel, isl_dim_out, 0, 0);
+ AccessRel = isl_map_equate(AccessRel, isl_dim_in, SecondDim, isl_dim_out, 2);
+ return isl_map_apply_range(MapOldIndVar, AccessRel);
+}
+
+/// @brief Apply the packing transformation.
+///
+/// The packing transformation can be described as a data-layout
+/// transformation that requires to introduce a new array, copy data
+/// to the array, and change memory access locations of the compute kernel
+/// to reference the array.
+///
+/// @param Node The schedule node to be optimized.
+/// @param MapOldIndVar The relation, which maps original induction variables
+/// to the ones, which are produced by schedule
+/// transformations.
+/// @param MicroParams, MacroParams Parameters of the BLIS kernel
+/// to be taken into account.
+/// @return The optimized schedule node.
+static void optimizeDataLayoutMatrMulPattern(__isl_take isl_map *MapOldIndVar,
+ MicroKernelParamsTy MicroParams,
+ MacroKernelParamsTy MacroParams) {
+ auto InputDimsId = isl_map_get_tuple_id(MapOldIndVar, isl_dim_in);
+ auto *Stmt = static_cast<ScopStmt *>(isl_id_get_user(InputDimsId));
+ isl_id_free(InputDimsId);
+ MemoryAccess *MemAccessA = identifyAccessA(Stmt);
+ MemoryAccess *MemAccessB = identifyAccessB(Stmt);
+ if (!MemAccessA || !MemAccessB) {
+ isl_map_free(MapOldIndVar);
+ return;
+ }
+ auto *AccRel =
+ getMatMulAccRel(isl_map_copy(MapOldIndVar), MacroParams.Kc, 3, 6);
+ unsigned FirstDimSize = MacroParams.Mc * MacroParams.Kc / MicroParams.Mr;
+ unsigned SecondDimSize = MicroParams.Mr;
+ auto *SAI = Stmt->getParent()->createScopArrayInfo(
+ MemAccessA->getElementType(), "Packed_A", {FirstDimSize, SecondDimSize});
+ AccRel = isl_map_set_tuple_id(AccRel, isl_dim_out, SAI->getBasePtrId());
+ MemAccessA->setNewAccessRelation(AccRel);
+ AccRel = getMatMulAccRel(MapOldIndVar, MacroParams.Kc, 4, 7);
+ FirstDimSize = MacroParams.Nc * MacroParams.Kc / MicroParams.Nr;
+ SecondDimSize = MicroParams.Nr;
+ SAI = Stmt->getParent()->createScopArrayInfo(
+ MemAccessB->getElementType(), "Packed_B", {FirstDimSize, SecondDimSize});
+ AccRel = isl_map_set_tuple_id(AccRel, isl_dim_out, SAI->getBasePtrId());
+ MemAccessB->setNewAccessRelation(AccRel);
+}
+
+/// @brief Get a relation mapping induction variables produced by schedule
+/// transformations to the original ones.
+///
+/// @param Node The schedule node produced as the result of creation
+/// of the BLIS kernels.
+/// @param MicroKernelParams, MacroKernelParams Parameters of the BLIS kernel
+/// to be taken into account.
+/// @return The relation mapping original induction variables to the ones
+/// produced by schedule transformation.
+/// @see ScheduleTreeOptimizer::createMicroKernel
+/// @see ScheduleTreeOptimizer::createMacroKernel
+/// @see getMacroKernelParams
+__isl_give isl_map *
+getInductionVariablesSubstitution(__isl_take isl_schedule_node *Node,
+ MicroKernelParamsTy MicroKernelParams,
+ MacroKernelParamsTy MacroKernelParams) {
+ auto *Child = isl_schedule_node_get_child(Node, 0);
+ auto *UnMapOldIndVar = isl_schedule_node_get_prefix_schedule_union_map(Child);
+ isl_schedule_node_free(Child);
+ auto *MapOldIndVar = isl_map_from_union_map(UnMapOldIndVar);
+ if (isl_map_dim(MapOldIndVar, isl_dim_out) > 9)
+ MapOldIndVar =
+ isl_map_project_out(MapOldIndVar, isl_dim_out, 0,
+ isl_map_dim(MapOldIndVar, isl_dim_out) - 9);
+ return MapOldIndVar;
+}
+
__isl_give isl_schedule_node *ScheduleTreeOptimizer::optimizeMatMulPattern(
__isl_take isl_schedule_node *Node, const llvm::TargetTransformInfo *TTI) {
assert(TTI && "The target transform info should be provided.");
@@ -625,6 +831,15 @@ __isl_give isl_schedule_node *ScheduleTreeOptimizer::optimizeMatMulPattern(
auto MacroKernelParams = getMacroKernelParams(MicroKernelParams);
Node = createMacroKernel(Node, MacroKernelParams);
Node = createMicroKernel(Node, MicroKernelParams);
+ if (MacroKernelParams.Mc == 1 || MacroKernelParams.Nc == 1 ||
+ MacroKernelParams.Kc == 1)
+ return Node;
+ auto *MapOldIndVar = getInductionVariablesSubstitution(
+ Node, MicroKernelParams, MacroKernelParams);
+ if (!MapOldIndVar)
+ return Node;
+ optimizeDataLayoutMatrMulPattern(MapOldIndVar, MicroKernelParams,
+ MacroKernelParams);
return Node;
}
diff --git a/polly/test/Isl/CodeGen/MemAccess/mat_mul_pattern_data_layout.ll b/polly/test/Isl/CodeGen/MemAccess/mat_mul_pattern_data_layout.ll
new file mode 100644
index 00000000000..4e4dd3a93c1
--- /dev/null
+++ b/polly/test/Isl/CodeGen/MemAccess/mat_mul_pattern_data_layout.ll
@@ -0,0 +1,86 @@
+; RUN: opt %loadPolly -polly-opt-isl -polly-pattern-matching-based-opts=true -polly-target-througput-vector-fma=1 -polly-target-latency-vector-fma=8 -polly-target-cache-level-associativity=8,8 -polly-target-cache-level-sizes=32768,262144 -polly-codegen -S < %s 2>&1 | FileCheck %s
+;
+; /* C := alpha*A*B + beta*C */
+; for (i = 0; i < _PB_NI; i++)
+; for (j = 0; j < _PB_NJ; j++)
+; {
+; C[i][j] *= beta;
+; for (k = 0; k < _PB_NK; ++k)
+; C[i][j] += alpha * A[i][k] * B[k][j];
+; }
+;
+; CHECK:define internal void @kernel_gemm(i32 %arg, i32 %arg1, i32 %arg2, double %arg3, double %arg4, [1056 x double]* %arg5, [1024 x double]* %arg6, [1056 x double]* %arg7) #0 {
+; CHECK:bb:
+; CHECK: %arg3.s2a = alloca double
+; CHECK: %arg4.s2a = alloca double
+; CHECK: %Packed_A = alloca [1024 x [4 x double]]
+; CHECK: %Packed_B = alloca [3072 x [8 x double]]
+; CHECK: br label %polly.split_new_and_old
+;
+; CHECK:polly.stmt.bb14398: ; preds = %polly.stmt.bb14379
+; CHECK: %arg3.s2a.reload399 = load double, double* %arg3.s2a
+; CHECK: %polly.access.cast.Packed_A400 = bitcast [1024 x [4 x double]]* %Packed_A to double*
+; CHECK: %243 = mul nsw i64 256, %polly.indvar95
+; CHECK: %244 = add nsw i64 %243, %polly.indvar107
+; CHECK: %polly.access.add.Packed_A401 = add nsw i64 0, %244
+; CHECK: %polly.access.mul.Packed_A402 = mul nsw i64 %polly.access.add.Packed_A401, 4
+; CHECK: %polly.access.add.Packed_A403 = add nsw i64 %polly.access.mul.Packed_A402, 2
+; CHECK: %polly.access.Packed_A404 = getelementptr double, double* %polly.access.cast.Packed_A400, i64 %polly.access.add.Packed_A403
+; CHECK: %tmp17_p_scalar_405 = load double, double* %polly.access.Packed_A404, align 8
+; CHECK: %p_tmp18406 = fmul double %tmp17_p_scalar_405, %arg3.s2a.reload399
+; CHECK: %polly.access.cast.Packed_B407 = bitcast [3072 x [8 x double]]* %Packed_B to double*
+; CHECK %245 = mul nsw i64 256, %polly.indvar101
+; CHECK %246 = add nsw i64 %245, %polly.indvar107
+; CHECK %polly.access.add.Packed_B408 = add nsw i64 0, %246
+; CHECK %polly.access.mul.Packed_B409 = mul nsw i64 %polly.access.add.Packed_B408, 8
+; CHECK %polly.access.add.Packed_B410 = add nsw i64 %polly.access.mul.Packed_B409, 0
+;
+target datalayout = "e-m:e-i64:64-f80:128-n8:16:32:64-S128"
+target triple = "x86_64-unknown-unknown"
+
+define internal void @kernel_gemm(i32 %arg, i32 %arg1, i32 %arg2, double %arg3, double %arg4, [1056 x double]* %arg5, [1024 x double]* %arg6, [1056 x double]* %arg7) #0 {
+bb:
+ br label %bb8
+
+bb8: ; preds = %bb29, %bb
+ %tmp = phi i64 [ 0, %bb ], [ %tmp30, %bb29 ]
+ br label %bb9
+
+bb9: ; preds = %bb26, %bb8
+ %tmp10 = phi i64 [ 0, %bb8 ], [ %tmp27, %bb26 ]
+ %tmp11 = getelementptr inbounds [1056 x double], [1056 x double]* %arg5, i64 %tmp, i64 %tmp10
+ %tmp12 = load double, double* %tmp11, align 8
+ %tmp13 = fmul double %tmp12, %arg4
+ store double %tmp13, double* %tmp11, align 8
+ br label %bb14
+
+bb14: ; preds = %bb14, %bb9
+ %tmp15 = phi i64 [ 0, %bb9 ], [ %tmp24, %bb14 ]
+ %tmp16 = getelementptr inbounds [1024 x double], [1024 x double]* %arg6, i64 %tmp, i64 %tmp15
+ %tmp17 = load double, double* %tmp16, align 8
+ %tmp18 = fmul double %tmp17, %arg3
+ %tmp19 = getelementptr inbounds [1056 x double], [1056 x double]* %arg7, i64 %tmp15, i64 %tmp10
+ %tmp20 = load double, double* %tmp19, align 8
+ %tmp21 = fmul double %tmp18, %tmp20
+ %tmp22 = load double, double* %tmp11, align 8
+ %tmp23 = fadd double %tmp22, %tmp21
+ store double %tmp23, double* %tmp11, align 8
+ %tmp24 = add nuw nsw i64 %tmp15, 1
+ %tmp25 = icmp ne i64 %tmp24, 1024
+ br i1 %tmp25, label %bb14, label %bb26
+
+bb26: ; preds = %bb14
+ %tmp27 = add nuw nsw i64 %tmp10, 1
+ %tmp28 = icmp ne i64 %tmp27, 1056
+ br i1 %tmp28, label %bb9, label %bb29
+
+bb29: ; preds = %bb26
+ %tmp30 = add nuw nsw i64 %tmp, 1
+ %tmp31 = icmp ne i64 %tmp30, 1056
+ br i1 %tmp31, label %bb8, label %bb32
+
+bb32: ; preds = %bb29
+ ret void
+}
+
+attributes #0 = { nounwind uwtable "target-cpu"="x86-64" "target-features"="+aes,+avx,+cmov,+cx16,+fxsr,+mmx,+pclmul,+popcnt,+sse,+sse2,+sse3,+sse4.1,+sse4.2,+ssse3,+x87,+xsave,+xsaveopt" }
OpenPOWER on IntegriCloud