diff options
author | Hongbin Zheng <etherzhhb@gmail.com> | 2012-03-30 08:46:18 +0000 |
---|---|---|
committer | Hongbin Zheng <etherzhhb@gmail.com> | 2012-03-30 08:46:18 +0000 |
commit | 609089f2544d25df617dbfbf6ef9d6299fb6ff65 (patch) | |
tree | e5ed35d98f6f5be29ba5e89d58299a4814d6ac2f /polly/lib/CodeGen/CodeGeneration.cpp | |
parent | 675de5d16c748ac799104f5fc263b6d6575816e6 (diff) | |
download | bcm5719-llvm-609089f2544d25df617dbfbf6ef9d6299fb6ff65.tar.gz bcm5719-llvm-609089f2544d25df617dbfbf6ef9d6299fb6ff65.zip |
Move the CodeGeneration.cpp to the CodeGen folder and update the build system.
Patched by Tsingray.
llvm-svn: 153736
Diffstat (limited to 'polly/lib/CodeGen/CodeGeneration.cpp')
-rw-r--r-- | polly/lib/CodeGen/CodeGeneration.cpp | 1689 |
1 files changed, 1689 insertions, 0 deletions
diff --git a/polly/lib/CodeGen/CodeGeneration.cpp b/polly/lib/CodeGen/CodeGeneration.cpp new file mode 100644 index 00000000000..69f27c00758 --- /dev/null +++ b/polly/lib/CodeGen/CodeGeneration.cpp @@ -0,0 +1,1689 @@ +//===------ CodeGeneration.cpp - Code generate the Scops. -----------------===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// The CodeGeneration pass takes a Scop created by ScopInfo and translates it +// back to LLVM-IR using Cloog. +// +// The Scop describes the high level memory behaviour of a control flow region. +// Transformation passes can update the schedule (execution order) of statements +// in the Scop. Cloog is used to generate an abstract syntax tree (clast) that +// reflects the updated execution order. This clast is used to create new +// LLVM-IR that is computational equivalent to the original control flow region, +// but executes its code in the new execution order defined by the changed +// scattering. +// +//===----------------------------------------------------------------------===// + +#define DEBUG_TYPE "polly-codegen" + +#include "polly/Cloog.h" +#include "polly/CodeGeneration.h" +#include "polly/Dependences.h" +#include "polly/LinkAllPasses.h" +#include "polly/ScopInfo.h" +#include "polly/TempScopInfo.h" +#include "polly/Support/GICHelper.h" +#include "polly/LoopGenerators.h" + +#include "llvm/Module.h" +#include "llvm/ADT/SetVector.h" +#include "llvm/ADT/PostOrderIterator.h" +#include "llvm/Analysis/LoopInfo.h" +#include "llvm/Analysis/ScalarEvolutionExpander.h" +#include "llvm/Support/CommandLine.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/IRBuilder.h" +#include "llvm/Target/TargetData.h" +#include "llvm/Transforms/Utils/BasicBlockUtils.h" + +#define CLOOG_INT_GMP 1 +#include "cloog/cloog.h" +#include "cloog/isl/cloog.h" + +#include "isl/aff.h" + +#include <vector> +#include <utility> + +using namespace polly; +using namespace llvm; + +struct isl_set; + +namespace polly { + +bool EnablePollyVector; + +static cl::opt<bool, true> +Vector("enable-polly-vector", + cl::desc("Enable polly vector code generation"), cl::Hidden, + cl::location(EnablePollyVector), cl::init(false), cl::ZeroOrMore); + +static cl::opt<bool> +OpenMP("enable-polly-openmp", + cl::desc("Generate OpenMP parallel code"), cl::Hidden, + cl::value_desc("OpenMP code generation enabled if true"), + cl::init(false), cl::ZeroOrMore); + +static cl::opt<bool> +AtLeastOnce("enable-polly-atLeastOnce", + cl::desc("Give polly the hint, that every loop is executed at least" + "once"), cl::Hidden, + cl::value_desc("OpenMP code generation enabled if true"), + cl::init(false), cl::ZeroOrMore); + +static cl::opt<bool> +Aligned("enable-polly-aligned", + cl::desc("Assumed aligned memory accesses."), cl::Hidden, + cl::value_desc("OpenMP code generation enabled if true"), + cl::init(false), cl::ZeroOrMore); + +typedef DenseMap<const Value*, Value*> ValueMapT; +typedef DenseMap<const char*, Value*> CharMapT; +typedef std::vector<ValueMapT> VectorValueMapT; + +class IslGenerator; + +class IslGenerator { +public: + IslGenerator(IRBuilder<> &Builder, std::vector<Value *> &IVS) : + Builder(Builder), IVS(IVS) {} + Value *generateIslInt(__isl_take isl_int Int); + Value *generateIslAff(__isl_take isl_aff *Aff); + Value *generateIslPwAff(__isl_take isl_pw_aff *PwAff); + +private: + typedef struct { + Value *Result; + class IslGenerator *Generator; + } IslGenInfo; + + IRBuilder<> &Builder; + std::vector<Value *> &IVS; + static int mergeIslAffValues(__isl_take isl_set *Set, + __isl_take isl_aff *Aff, void *User); +}; + +Value *IslGenerator::generateIslInt(isl_int Int) { + mpz_t IntMPZ; + mpz_init(IntMPZ); + isl_int_get_gmp(Int, IntMPZ); + Value *IntValue = Builder.getInt(APInt_from_MPZ(IntMPZ)); + mpz_clear(IntMPZ); + return IntValue; +} + +Value *IslGenerator::generateIslAff(__isl_take isl_aff *Aff) { + Value *Result; + Value *ConstValue; + isl_int ConstIsl; + + isl_int_init(ConstIsl); + isl_aff_get_constant(Aff, &ConstIsl); + ConstValue = generateIslInt(ConstIsl); + Type *Ty = Builder.getInt64Ty(); + + // FIXME: We should give the constant and coefficients the right type. Here + // we force it into i64. + Result = Builder.CreateSExtOrBitCast(ConstValue, Ty); + + unsigned int NbInputDims = isl_aff_dim(Aff, isl_dim_in); + + assert((IVS.size() == NbInputDims) && "The Dimension of Induction Variables" + "must match the dimension of the affine space."); + + isl_int CoefficientIsl; + isl_int_init(CoefficientIsl); + + for (unsigned int i = 0; i < NbInputDims; ++i) { + Value *CoefficientValue; + isl_aff_get_coefficient(Aff, isl_dim_in, i, &CoefficientIsl); + + if (isl_int_is_zero(CoefficientIsl)) + continue; + + CoefficientValue = generateIslInt(CoefficientIsl); + CoefficientValue = Builder.CreateIntCast(CoefficientValue, Ty, true); + Value *IV = Builder.CreateIntCast(IVS[i], Ty, true); + Value *PAdd = Builder.CreateMul(CoefficientValue, IV, "p_mul_coeff"); + Result = Builder.CreateAdd(Result, PAdd, "p_sum_coeff"); + } + + isl_int_clear(CoefficientIsl); + isl_int_clear(ConstIsl); + isl_aff_free(Aff); + + return Result; +} + +int IslGenerator::mergeIslAffValues(__isl_take isl_set *Set, + __isl_take isl_aff *Aff, void *User) { + IslGenInfo *GenInfo = (IslGenInfo *)User; + + assert((GenInfo->Result == NULL) && "Result is already set." + "Currently only single isl_aff is supported"); + assert(isl_set_plain_is_universe(Set) + && "Code generation failed because the set is not universe"); + + GenInfo->Result = GenInfo->Generator->generateIslAff(Aff); + + isl_set_free(Set); + return 0; +} + +Value *IslGenerator::generateIslPwAff(__isl_take isl_pw_aff *PwAff) { + IslGenInfo User; + User.Result = NULL; + User.Generator = this; + isl_pw_aff_foreach_piece(PwAff, mergeIslAffValues, &User); + assert(User.Result && "Code generation for isl_pw_aff failed"); + + isl_pw_aff_free(PwAff); + return User.Result; +} + +/// @brief Generate a new basic block for a polyhedral statement. +/// +/// The only public function exposed is generate(). +class BlockGenerator { +public: + /// @brief Generate a new BasicBlock for a ScopStmt. + /// + /// @param Builder The LLVM-IR Builder used to generate the statement. The + /// code is generated at the location, the Builder points to. + /// @param Stmt The statement to code generate. + /// @param GlobalMap A map that defines for certain Values referenced from the + /// original code new Values they should be replaced with. + /// @param P A reference to the pass this function is called from. + /// The pass is needed to update other analysis. + static void generate(IRBuilder<> &Builder, ScopStmt &Stmt, + ValueMapT &GlobalMap, Pass *P) { + BlockGenerator Generator(Builder, Stmt, P); + Generator.copyBB(GlobalMap); + } + +protected: + IRBuilder<> &Builder; + ScopStmt &Statement; + Pass *P; + + BlockGenerator(IRBuilder<> &B, ScopStmt &Stmt, Pass *P); + + /// @brief Get the new version of a Value. + /// + /// @param Old The old Value. + /// @param BBMap A mapping from old values to their new values + /// (for values recalculated within this basic block). + /// @param GlobalMap A mapping from old values to their new values + /// (for values recalculated in the new ScoP, but not + /// within this basic block). + /// + /// @returns o The old value, if it is still valid. + /// o The new value, if available. + /// o NULL, if no value is found. + Value *getNewValue(const Value *Old, ValueMapT &BBMap, ValueMapT &GlobalMap); + + void copyInstScalar(const Instruction *Inst, ValueMapT &BBMap, + ValueMapT &GlobalMap); + + /// @brief Get the memory access offset to be added to the base address + std::vector<Value*> getMemoryAccessIndex(__isl_keep isl_map *AccessRelation, + Value *BaseAddress, ValueMapT &BBMap, + ValueMapT &GlobalMap); + + /// @brief Get the new operand address according to the changed access in + /// JSCOP file. + Value *getNewAccessOperand(__isl_keep isl_map *NewAccessRelation, + Value *BaseAddress, const Value *OldOperand, + ValueMapT &BBMap, ValueMapT &GlobalMap); + + /// @brief Generate the operand address + Value *generateLocationAccessed(const Instruction *Inst, + const Value *Pointer, ValueMapT &BBMap, + ValueMapT &GlobalMap); + + Value *generateScalarLoad(const LoadInst *load, ValueMapT &BBMap, + ValueMapT &GlobalMap); + + Value *generateScalarStore(const StoreInst *store, ValueMapT &BBMap, + ValueMapT &GlobalMap); + + /// @brief Copy a single Instruction. + /// + /// This copies a single Instruction and updates references to old values + /// with references to new values, as defined by GlobalMap and BBMap. + /// + /// @param BBMap A mapping from old values to their new values + /// (for values recalculated within this basic block). + /// @param GlobalMap A mapping from old values to their new values + /// (for values recalculated in the new ScoP, but not + /// within this basic block). + void copyInstruction(const Instruction *Inst, ValueMapT &BBMap, + ValueMapT &GlobalMap); + + /// @brief Copy the basic block. + /// + /// This copies the entire basic block and updates references to old values + /// with references to new values, as defined by GlobalMap. + /// + /// @param GlobalMap A mapping from old values to their new values + /// (for values recalculated in the new ScoP, but not + /// within this basic block). + void copyBB(ValueMapT &GlobalMap); +}; + +BlockGenerator::BlockGenerator(IRBuilder<> &B, ScopStmt &Stmt, Pass *P): + Builder(B), Statement(Stmt), P(P) {} + +Value *BlockGenerator::getNewValue(const Value *Old, ValueMapT &BBMap, + ValueMapT &GlobalMap) { + const Instruction *Inst = dyn_cast<Instruction>(Old); + + if (!Inst) + return const_cast<Value*>(Old); + + // OldOperand was redefined outside of this BasicBlock. + if (GlobalMap.count(Old)) { + Value *New = GlobalMap[Old]; + + if (Old->getType()->getScalarSizeInBits() + < New->getType()->getScalarSizeInBits()) + New = Builder.CreateTruncOrBitCast(New, Old->getType()); + + return New; + } + + // OldOperand was recalculated within this BasicBlock. + if (BBMap.count(Old)) { + return BBMap[Old]; + } + + // OldOperand is SCoP invariant. + if (!Statement.getParent()->getRegion().contains(Inst->getParent())) + return const_cast<Value*>(Old); + + // We could not find any valid new operand. + return NULL; +} + +void BlockGenerator::copyInstScalar(const Instruction *Inst, ValueMapT &BBMap, + ValueMapT &GlobalMap) { + Instruction *NewInst = Inst->clone(); + + // Replace old operands with the new ones. + for (Instruction::const_op_iterator OI = Inst->op_begin(), + OE = Inst->op_end(); OI != OE; ++OI) { + Value *OldOperand = *OI; + Value *NewOperand = getNewValue(OldOperand, BBMap, GlobalMap); + + if (!NewOperand) { + assert(!isa<StoreInst>(NewInst) + && "Store instructions are always needed!"); + delete NewInst; + return; + } + + NewInst->replaceUsesOfWith(OldOperand, NewOperand); + } + + Builder.Insert(NewInst); + BBMap[Inst] = NewInst; + + if (!NewInst->getType()->isVoidTy()) + NewInst->setName("p_" + Inst->getName()); +} + +std::vector<Value*> BlockGenerator::getMemoryAccessIndex( + __isl_keep isl_map *AccessRelation, Value *BaseAddress, + ValueMapT &BBMap, ValueMapT &GlobalMap) { + + assert((isl_map_dim(AccessRelation, isl_dim_out) == 1) + && "Only single dimensional access functions supported"); + + std::vector<Value *> IVS; + for (unsigned i = 0; i < Statement.getNumIterators(); ++i) { + const Value *OriginalIV = Statement.getInductionVariableForDimension(i); + Value *NewIV = getNewValue(OriginalIV, BBMap, GlobalMap); + IVS.push_back(NewIV); + } + + isl_pw_aff *PwAff = isl_map_dim_max(isl_map_copy(AccessRelation), 0); + IslGenerator IslGen(Builder, IVS); + Value *OffsetValue = IslGen.generateIslPwAff(PwAff); + + Type *Ty = Builder.getInt64Ty(); + OffsetValue = Builder.CreateIntCast(OffsetValue, Ty, true); + + std::vector<Value*> IndexArray; + Value *NullValue = Constant::getNullValue(Ty); + IndexArray.push_back(NullValue); + IndexArray.push_back(OffsetValue); + return IndexArray; +} + +Value *BlockGenerator::getNewAccessOperand( + __isl_keep isl_map *NewAccessRelation, Value *BaseAddress, const Value + *OldOperand, ValueMapT &BBMap, ValueMapT &GlobalMap) { + std::vector<Value*> IndexArray = getMemoryAccessIndex(NewAccessRelation, + BaseAddress, + BBMap, GlobalMap); + Value *NewOperand = Builder.CreateGEP(BaseAddress, IndexArray, + "p_newarrayidx_"); + return NewOperand; +} + +Value *BlockGenerator::generateLocationAccessed(const Instruction *Inst, + const Value *Pointer, + ValueMapT &BBMap, + ValueMapT &GlobalMap) { + MemoryAccess &Access = Statement.getAccessFor(Inst); + isl_map *CurrentAccessRelation = Access.getAccessRelation(); + isl_map *NewAccessRelation = Access.getNewAccessRelation(); + + assert(isl_map_has_equal_space(CurrentAccessRelation, NewAccessRelation) + && "Current and new access function use different spaces"); + + Value *NewPointer; + + if (!NewAccessRelation) { + NewPointer = getNewValue(Pointer, BBMap, GlobalMap); + } else { + Value *BaseAddress = const_cast<Value*>(Access.getBaseAddr()); + NewPointer = getNewAccessOperand(NewAccessRelation, BaseAddress, Pointer, + BBMap, GlobalMap); + } + + isl_map_free(CurrentAccessRelation); + isl_map_free(NewAccessRelation); + return NewPointer; +} + +Value *BlockGenerator::generateScalarLoad(const LoadInst *Load, + ValueMapT &BBMap, + ValueMapT &GlobalMap) { + const Value *Pointer = Load->getPointerOperand(); + const Instruction *Inst = dyn_cast<Instruction>(Load); + Value *NewPointer = generateLocationAccessed(Inst, Pointer, BBMap, GlobalMap); + Value *ScalarLoad = Builder.CreateLoad(NewPointer, + Load->getName() + "_p_scalar_"); + return ScalarLoad; +} + +Value *BlockGenerator::generateScalarStore(const StoreInst *Store, + ValueMapT &BBMap, + ValueMapT &GlobalMap) { + const Value *Pointer = Store->getPointerOperand(); + Value *NewPointer = generateLocationAccessed(Store, Pointer, BBMap, + GlobalMap); + Value *ValueOperand = getNewValue(Store->getValueOperand(), BBMap, GlobalMap); + + return Builder.CreateStore(ValueOperand, NewPointer); +} + +void BlockGenerator::copyInstruction(const Instruction *Inst, + ValueMapT &BBMap, ValueMapT &GlobalMap) { + // Terminator instructions control the control flow. They are explicitly + // expressed in the clast and do not need to be copied. + if (Inst->isTerminator()) + return; + + if (const LoadInst *Load = dyn_cast<LoadInst>(Inst)) { + BBMap[Load] = generateScalarLoad(Load, BBMap, GlobalMap); + return; + } + + if (const StoreInst *Store = dyn_cast<StoreInst>(Inst)) { + BBMap[Store] = generateScalarStore(Store, BBMap, GlobalMap); + return; + } + + copyInstScalar(Inst, BBMap, GlobalMap); +} + + +void BlockGenerator::copyBB(ValueMapT &GlobalMap) { + BasicBlock *BB = Statement.getBasicBlock(); + BasicBlock *CopyBB = SplitBlock(Builder.GetInsertBlock(), + Builder.GetInsertPoint(), P); + CopyBB->setName("polly.stmt." + BB->getName()); + Builder.SetInsertPoint(CopyBB->begin()); + + ValueMapT BBMap; + + for (BasicBlock::const_iterator II = BB->begin(), IE = BB->end(); II != IE; + ++II) + copyInstruction(II, BBMap, GlobalMap); +} + +/// @brief Generate a new vector basic block for a polyhedral statement. +/// +/// The only public function exposed is generate(). +class VectorBlockGenerator : BlockGenerator { +public: + /// @brief Generate a new vector basic block for a ScoPStmt. + /// + /// This code generation is similar to the normal, scalar code generation, + /// except that each instruction is code generated for several vector lanes + /// at a time. If possible instructions are issued as actual vector + /// instructions, but e.g. for address calculation instructions we currently + /// generate scalar instructions for each vector lane. + /// + /// @param Builder The LLVM-IR Builder used to generate the statement. The + /// code is generated at the location, the builder points + /// to. + /// @param Stmt The statement to code generate. + /// @param GlobalMaps A vector of maps that define for certain Values + /// referenced from the original code new Values they should + /// be replaced with. Each map in the vector of maps is + /// used for one vector lane. The number of elements in the + /// vector defines the width of the generated vector + /// instructions. + /// @param P A reference to the pass this function is called from. + /// The pass is needed to update other analysis. + static void generate(IRBuilder<> &B, ScopStmt &Stmt, + VectorValueMapT &GlobalMaps, __isl_keep isl_set *Domain, + Pass *P) { + VectorBlockGenerator Generator(B, GlobalMaps, Stmt, Domain, P); + Generator.copyBB(); + } + +private: + // This is a vector of global value maps. The first map is used for the first + // vector lane, ... + // Each map, contains information about Instructions in the old ScoP, which + // are recalculated in the new SCoP. When copying the basic block, we replace + // all referenes to the old instructions with their recalculated values. + VectorValueMapT &GlobalMaps; + + isl_set *Domain; + + VectorBlockGenerator(IRBuilder<> &B, VectorValueMapT &GlobalMaps, + ScopStmt &Stmt, __isl_keep isl_set *Domain, Pass *P); + + int getVectorWidth(); + + Value *getVectorValue(const Value *Old, ValueMapT &VectorMap, + VectorValueMapT &ScalarMaps); + + Type *getVectorPtrTy(const Value *V, int Width); + + /// @brief Load a vector from a set of adjacent scalars + /// + /// In case a set of scalars is known to be next to each other in memory, + /// create a vector load that loads those scalars + /// + /// %vector_ptr= bitcast double* %p to <4 x double>* + /// %vec_full = load <4 x double>* %vector_ptr + /// + Value *generateStrideOneLoad(const LoadInst *Load, ValueMapT &BBMap); + + /// @brief Load a vector initialized from a single scalar in memory + /// + /// In case all elements of a vector are initialized to the same + /// scalar value, this value is loaded and shuffeled into all elements + /// of the vector. + /// + /// %splat_one = load <1 x double>* %p + /// %splat = shufflevector <1 x double> %splat_one, <1 x + /// double> %splat_one, <4 x i32> zeroinitializer + /// + Value *generateStrideZeroLoad(const LoadInst *Load, ValueMapT &BBMap); + + /// @Load a vector from scalars distributed in memory + /// + /// In case some scalars a distributed randomly in memory. Create a vector + /// by loading each scalar and by inserting one after the other into the + /// vector. + /// + /// %scalar_1= load double* %p_1 + /// %vec_1 = insertelement <2 x double> undef, double %scalar_1, i32 0 + /// %scalar 2 = load double* %p_2 + /// %vec_2 = insertelement <2 x double> %vec_1, double %scalar_1, i32 1 + /// + Value *generateUnknownStrideLoad(const LoadInst *Load, + VectorValueMapT &ScalarMaps); + + void generateLoad(const LoadInst *Load, ValueMapT &VectorMap, + VectorValueMapT &ScalarMaps); + + void copyUnaryInst(const UnaryInstruction *Inst, ValueMapT &VectorMap, + VectorValueMapT &ScalarMaps); + + void copyBinaryInst(const BinaryOperator *Inst, ValueMapT &VectorMap, + VectorValueMapT &ScalarMaps); + + void copyStore(const StoreInst *Store, ValueMapT &VectorMap, + VectorValueMapT &ScalarMaps); + + bool hasVectorOperands(const Instruction *Inst, ValueMapT &VectorMap); + + void copyInstruction(const Instruction *Inst, ValueMapT &VectorMap, + VectorValueMapT &ScalarMaps); + + void copyBB(); +}; + +VectorBlockGenerator::VectorBlockGenerator(IRBuilder<> &B, + VectorValueMapT &GlobalMaps, ScopStmt &Stmt, __isl_keep isl_set *Domain, + Pass *P) : BlockGenerator(B, Stmt, P), GlobalMaps(GlobalMaps), + Domain(Domain) { + assert(GlobalMaps.size() > 1 && "Only one vector lane found"); + assert(Domain && "No statement domain provided"); + } + +Value *VectorBlockGenerator::getVectorValue(const Value *Old, + ValueMapT &VectorMap, + VectorValueMapT &ScalarMaps) { + if (VectorMap.count(Old)) + return VectorMap[Old]; + + int Width = getVectorWidth(); + + Value *Vector = UndefValue::get(VectorType::get(Old->getType(), Width)); + + for (int Lane = 0; Lane < Width; Lane++) + Vector = Builder.CreateInsertElement(Vector, + getNewValue(Old, + ScalarMaps[Lane], + GlobalMaps[Lane]), + Builder.getInt32(Lane)); + + VectorMap[Old] = Vector; + + return Vector; +} + +Type *VectorBlockGenerator::getVectorPtrTy(const Value *Val, int Width) { + PointerType *PointerTy = dyn_cast<PointerType>(Val->getType()); + assert(PointerTy && "PointerType expected"); + + Type *ScalarType = PointerTy->getElementType(); + VectorType *VectorType = VectorType::get(ScalarType, Width); + + return PointerType::getUnqual(VectorType); +} + +Value *VectorBlockGenerator::generateStrideOneLoad(const LoadInst *Load, + ValueMapT &BBMap) { + const Value *Pointer = Load->getPointerOperand(); + Type *VectorPtrType = getVectorPtrTy(Pointer, getVectorWidth()); + Value *NewPointer = getNewValue(Pointer, BBMap, GlobalMaps[0]); + Value *VectorPtr = Builder.CreateBitCast(NewPointer, VectorPtrType, + "vector_ptr"); + LoadInst *VecLoad = Builder.CreateLoad(VectorPtr, + Load->getName() + "_p_vec_full"); + if (!Aligned) + VecLoad->setAlignment(8); + + return VecLoad; +} + +Value *VectorBlockGenerator::generateStrideZeroLoad(const LoadInst *Load, + ValueMapT &BBMap) { + const Value *Pointer = Load->getPointerOperand(); + Type *VectorPtrType = getVectorPtrTy(Pointer, 1); + Value *NewPointer = getNewValue(Pointer, BBMap, GlobalMaps[0]); + Value *VectorPtr = Builder.CreateBitCast(NewPointer, VectorPtrType, + Load->getName() + "_p_vec_p"); + LoadInst *ScalarLoad= Builder.CreateLoad(VectorPtr, + Load->getName() + "_p_splat_one"); + + if (!Aligned) + ScalarLoad->setAlignment(8); + + Constant *SplatVector = + Constant::getNullValue(VectorType::get(Builder.getInt32Ty(), + getVectorWidth())); + + Value *VectorLoad = Builder.CreateShuffleVector(ScalarLoad, ScalarLoad, + SplatVector, + Load->getName() + + "_p_splat"); + return VectorLoad; +} + +Value *VectorBlockGenerator::generateUnknownStrideLoad(const LoadInst *Load, + VectorValueMapT &ScalarMaps) { + int VectorWidth = getVectorWidth(); + const Value *Pointer = Load->getPointerOperand(); + VectorType *VectorType = VectorType::get( + dyn_cast<PointerType>(Pointer->getType())->getElementType(), VectorWidth); + + Value *Vector = UndefValue::get(VectorType); + + for (int i = 0; i < VectorWidth; i++) { + Value *NewPointer = getNewValue(Pointer, ScalarMaps[i], GlobalMaps[i]); + Value *ScalarLoad = Builder.CreateLoad(NewPointer, + Load->getName() + "_p_scalar_"); + Vector = Builder.CreateInsertElement(Vector, ScalarLoad, + Builder.getInt32(i), + Load->getName() + "_p_vec_"); + } + + return Vector; +} + +void VectorBlockGenerator::generateLoad(const LoadInst *Load, + ValueMapT &VectorMap, + VectorValueMapT &ScalarMaps) { + Value *NewLoad; + + MemoryAccess &Access = Statement.getAccessFor(Load); + + if (Access.isStrideZero(isl_set_copy(Domain))) + NewLoad = generateStrideZeroLoad(Load, ScalarMaps[0]); + else if (Access.isStrideOne(isl_set_copy(Domain))) + NewLoad = generateStrideOneLoad(Load, ScalarMaps[0]); + else + NewLoad = generateUnknownStrideLoad(Load, ScalarMaps); + + VectorMap[Load] = NewLoad; +} + +void VectorBlockGenerator::copyUnaryInst(const UnaryInstruction *Inst, + ValueMapT &VectorMap, + VectorValueMapT &ScalarMaps) { + int VectorWidth = getVectorWidth(); + Value *NewOperand = getVectorValue(Inst->getOperand(0), VectorMap, + ScalarMaps); + + assert(isa<CastInst>(Inst) && "Can not generate vector code for instruction"); + + const CastInst *Cast = dyn_cast<CastInst>(Inst); + VectorType *DestType = VectorType::get(Inst->getType(), VectorWidth); + VectorMap[Inst] = Builder.CreateCast(Cast->getOpcode(), NewOperand, DestType); +} + +void VectorBlockGenerator::copyBinaryInst(const BinaryOperator *Inst, + ValueMapT &VectorMap, + VectorValueMapT &ScalarMaps) { + Value *OpZero = Inst->getOperand(0); + Value *OpOne = Inst->getOperand(1); + + Value *NewOpZero, *NewOpOne; + NewOpZero = getVectorValue(OpZero, VectorMap, ScalarMaps); + NewOpOne = getVectorValue(OpOne, VectorMap, ScalarMaps); + + Value *NewInst = Builder.CreateBinOp(Inst->getOpcode(), NewOpZero, + NewOpOne, + Inst->getName() + "p_vec"); + VectorMap[Inst] = NewInst; +} + +void VectorBlockGenerator::copyStore(const StoreInst *Store, + ValueMapT &VectorMap, + VectorValueMapT &ScalarMaps) { + int VectorWidth = getVectorWidth(); + + MemoryAccess &Access = Statement.getAccessFor(Store); + + const Value *Pointer = Store->getPointerOperand(); + Value *Vector = getVectorValue(Store->getValueOperand(), VectorMap, + ScalarMaps); + + if (Access.isStrideOne(isl_set_copy(Domain))) { + Type *VectorPtrType = getVectorPtrTy(Pointer, VectorWidth); + Value *NewPointer = getNewValue(Pointer, ScalarMaps[0], GlobalMaps[0]); + + Value *VectorPtr = Builder.CreateBitCast(NewPointer, VectorPtrType, + "vector_ptr"); + StoreInst *Store = Builder.CreateStore(Vector, VectorPtr); + + if (!Aligned) + Store->setAlignment(8); + } else { + for (unsigned i = 0; i < ScalarMaps.size(); i++) { + Value *Scalar = Builder.CreateExtractElement(Vector, + Builder.getInt32(i)); + Value *NewPointer = getNewValue(Pointer, ScalarMaps[i], GlobalMaps[i]); + Builder.CreateStore(Scalar, NewPointer); + } + } +} + +bool VectorBlockGenerator::hasVectorOperands(const Instruction *Inst, + ValueMapT &VectorMap) { + for (Instruction::const_op_iterator OI = Inst->op_begin(), + OE = Inst->op_end(); OI != OE; ++OI) + if (VectorMap.count(*OI)) + return true; + return false; +} + +int VectorBlockGenerator::getVectorWidth() { + return GlobalMaps.size(); +} + +void VectorBlockGenerator::copyInstruction(const Instruction *Inst, + ValueMapT &VectorMap, + VectorValueMapT &ScalarMaps) { + // Terminator instructions control the control flow. They are explicitly + // expressed in the clast and do not need to be copied. + if (Inst->isTerminator()) + return; + + if (const LoadInst *Load = dyn_cast<LoadInst>(Inst)) { + generateLoad(Load, VectorMap, ScalarMaps); + return; + } + + if (hasVectorOperands(Inst, VectorMap)) { + if (const StoreInst *Store = dyn_cast<StoreInst>(Inst)) { + copyStore(Store, VectorMap, ScalarMaps); + return; + } + + if (const UnaryInstruction *Unary = dyn_cast<UnaryInstruction>(Inst)) { + copyUnaryInst(Unary, VectorMap, ScalarMaps); + return; + } + + if (const BinaryOperator *Binary = dyn_cast<BinaryOperator>(Inst)) { + copyBinaryInst(Binary, VectorMap, ScalarMaps); + return; + } + + llvm_unreachable("Cannot issue vector code for this instruction"); + } + + for (int VectorLane = 0; VectorLane < getVectorWidth(); VectorLane++) + copyInstScalar(Inst, ScalarMaps[VectorLane], GlobalMaps[VectorLane]); +} + +void VectorBlockGenerator::copyBB() { + BasicBlock *BB = Statement.getBasicBlock(); + BasicBlock *CopyBB = SplitBlock(Builder.GetInsertBlock(), + Builder.GetInsertPoint(), P); + CopyBB->setName("polly.stmt." + BB->getName()); + Builder.SetInsertPoint(CopyBB->begin()); + + // Create two maps that store the mapping from the original instructions of + // the old basic block to their copies in the new basic block. Those maps + // are basic block local. + // + // As vector code generation is supported there is one map for scalar values + // and one for vector values. + // + // In case we just do scalar code generation, the vectorMap is not used and + // the scalarMap has just one dimension, which contains the mapping. + // + // In case vector code generation is done, an instruction may either appear + // in the vector map once (as it is calculating >vectorwidth< values at a + // time. Or (if the values are calculated using scalar operations), it + // appears once in every dimension of the scalarMap. + VectorValueMapT ScalarBlockMap(getVectorWidth()); + ValueMapT VectorBlockMap; + + for (BasicBlock::const_iterator II = BB->begin(), IE = BB->end(); + II != IE; ++II) + copyInstruction(II, VectorBlockMap, ScalarBlockMap); +} + +/// Class to generate LLVM-IR that calculates the value of a clast_expr. +class ClastExpCodeGen { + IRBuilder<> &Builder; + const CharMapT &IVS; + + Value *codegen(const clast_name *e, Type *Ty); + Value *codegen(const clast_term *e, Type *Ty); + Value *codegen(const clast_binary *e, Type *Ty); + Value *codegen(const clast_reduction *r, Type *Ty); +public: + + // A generator for clast expressions. + // + // @param B The IRBuilder that defines where the code to calculate the + // clast expressions should be inserted. + // @param IVMAP A Map that translates strings describing the induction + // variables to the Values* that represent these variables + // on the LLVM side. + ClastExpCodeGen(IRBuilder<> &B, CharMapT &IVMap); + + // Generates code to calculate a given clast expression. + // + // @param e The expression to calculate. + // @return The Value that holds the result. + Value *codegen(const clast_expr *e, Type *Ty); +}; + +Value *ClastExpCodeGen::codegen(const clast_name *e, Type *Ty) { + CharMapT::const_iterator I = IVS.find(e->name); + + assert(I != IVS.end() && "Clast name not found"); + + return Builder.CreateSExtOrBitCast(I->second, Ty); +} + +Value *ClastExpCodeGen::codegen(const clast_term *e, Type *Ty) { + APInt a = APInt_from_MPZ(e->val); + + Value *ConstOne = ConstantInt::get(Builder.getContext(), a); + ConstOne = Builder.CreateSExtOrBitCast(ConstOne, Ty); + + if (!e->var) + return ConstOne; + + Value *var = codegen(e->var, Ty); + return Builder.CreateMul(ConstOne, var); +} + +Value *ClastExpCodeGen::codegen(const clast_binary *e, Type *Ty) { + Value *LHS = codegen(e->LHS, Ty); + + APInt RHS_AP = APInt_from_MPZ(e->RHS); + + Value *RHS = ConstantInt::get(Builder.getContext(), RHS_AP); + RHS = Builder.CreateSExtOrBitCast(RHS, Ty); + + switch (e->type) { + case clast_bin_mod: + return Builder.CreateSRem(LHS, RHS); + case clast_bin_fdiv: + { + // floord(n,d) ((n < 0) ? (n - d + 1) : n) / d + Value *One = ConstantInt::get(Ty, 1); + Value *Zero = ConstantInt::get(Ty, 0); + Value *Sum1 = Builder.CreateSub(LHS, RHS); + Value *Sum2 = Builder.CreateAdd(Sum1, One); + Value *isNegative = Builder.CreateICmpSLT(LHS, Zero); + Value *Dividend = Builder.CreateSelect(isNegative, Sum2, LHS); + return Builder.CreateSDiv(Dividend, RHS); + } + case clast_bin_cdiv: + { + // ceild(n,d) ((n < 0) ? n : (n + d - 1)) / d + Value *One = ConstantInt::get(Ty, 1); + Value *Zero = ConstantInt::get(Ty, 0); + Value *Sum1 = Builder.CreateAdd(LHS, RHS); + Value *Sum2 = Builder.CreateSub(Sum1, One); + Value *isNegative = Builder.CreateICmpSLT(LHS, Zero); + Value *Dividend = Builder.CreateSelect(isNegative, LHS, Sum2); + return Builder.CreateSDiv(Dividend, RHS); + } + case clast_bin_div: + return Builder.CreateSDiv(LHS, RHS); + }; + + llvm_unreachable("Unknown clast binary expression type"); +} + +Value *ClastExpCodeGen::codegen(const clast_reduction *r, Type *Ty) { + assert(( r->type == clast_red_min + || r->type == clast_red_max + || r->type == clast_red_sum) + && "Clast reduction type not supported"); + Value *old = codegen(r->elts[0], Ty); + + for (int i=1; i < r->n; ++i) { + Value *exprValue = codegen(r->elts[i], Ty); + + switch (r->type) { + case clast_red_min: + { + Value *cmp = Builder.CreateICmpSLT(old, exprValue); + old = Builder.CreateSelect(cmp, old, exprValue); + break; + } + case clast_red_max: + { + Value *cmp = Builder.CreateICmpSGT(old, exprValue); + old = Builder.CreateSelect(cmp, old, exprValue); + break; + } + case clast_red_sum: + old = Builder.CreateAdd(old, exprValue); + break; + } + } + + return old; +} + +ClastExpCodeGen::ClastExpCodeGen(IRBuilder<> &B, CharMapT &IVMap) + : Builder(B), IVS(IVMap) {} + +Value *ClastExpCodeGen::codegen(const clast_expr *e, Type *Ty) { + switch(e->type) { + case clast_expr_name: + return codegen((const clast_name *)e, Ty); + case clast_expr_term: + return codegen((const clast_term *)e, Ty); + case clast_expr_bin: + return codegen((const clast_binary *)e, Ty); + case clast_expr_red: + return codegen((const clast_reduction *)e, Ty); + } + + llvm_unreachable("Unknown clast expression!"); +} + +class ClastStmtCodeGen { +public: + const std::vector<std::string> &getParallelLoops(); + +private: + // The Scop we code generate. + Scop *S; + Pass *P; + + // The Builder specifies the current location to code generate at. + IRBuilder<> &Builder; + + // Map the Values from the old code to their counterparts in the new code. + ValueMapT ValueMap; + + // clastVars maps from the textual representation of a clast variable to its + // current *Value. clast variables are scheduling variables, original + // induction variables or parameters. They are used either in loop bounds or + // to define the statement instance that is executed. + // + // for (s = 0; s < n + 3; ++i) + // for (t = s; t < m; ++j) + // Stmt(i = s + 3 * m, j = t); + // + // {s,t,i,j,n,m} is the set of clast variables in this clast. + CharMapT ClastVars; + + // Codegenerator for clast expressions. + ClastExpCodeGen ExpGen; + + // Do we currently generate parallel code? + bool parallelCodeGeneration; + + std::vector<std::string> parallelLoops; + + void codegen(const clast_assignment *a); + + void codegen(const clast_assignment *a, ScopStmt *Statement, + unsigned Dimension, int vectorDim, + std::vector<ValueMapT> *VectorVMap = 0); + + void codegenSubstitutions(const clast_stmt *Assignment, + ScopStmt *Statement, int vectorDim = 0, + std::vector<ValueMapT> *VectorVMap = 0); + + void codegen(const clast_user_stmt *u, std::vector<Value*> *IVS = NULL, + const char *iterator = NULL, isl_set *scatteringDomain = 0); + + void codegen(const clast_block *b); + + /// @brief Create a classical sequential loop. + void codegenForSequential(const clast_for *f); + + /// @brief Create OpenMP structure values. + /// + /// Create a list of values that has to be stored into the OpenMP subfuncition + /// structure. + SetVector<Value*> getOMPValues(); + + /// @brief Update the internal structures according to a Value Map. + /// + /// @param VMap A map from old to new values. + /// @param Reverse If true, we assume the update should be reversed. + void updateWithValueMap(OMPGenerator::ValueToValueMapTy &VMap, + bool Reverse); + + /// @brief Create an OpenMP parallel for loop. + /// + /// This loop reflects a loop as if it would have been created by an OpenMP + /// statement. + void codegenForOpenMP(const clast_for *f); + + bool isInnermostLoop(const clast_for *f); + + /// @brief Get the number of loop iterations for this loop. + /// @param f The clast for loop to check. + int getNumberOfIterations(const clast_for *f); + + /// @brief Create vector instructions for this loop. + void codegenForVector(const clast_for *f); + + void codegen(const clast_for *f); + + Value *codegen(const clast_equation *eq); + + void codegen(const clast_guard *g); + + void codegen(const clast_stmt *stmt); + + void addParameters(const CloogNames *names); + + IntegerType *getIntPtrTy(); + + public: + void codegen(const clast_root *r); + + ClastStmtCodeGen(Scop *scop, IRBuilder<> &B, Pass *P); +}; +} + +IntegerType *ClastStmtCodeGen::getIntPtrTy() { + return P->getAnalysis<TargetData>().getIntPtrType(Builder.getContext()); +} + +const std::vector<std::string> &ClastStmtCodeGen::getParallelLoops() { + return parallelLoops; +} + +void ClastStmtCodeGen::codegen(const clast_assignment *a) { + Value *V= ExpGen.codegen(a->RHS, getIntPtrTy()); + ClastVars[a->LHS] = V; +} + +void ClastStmtCodeGen::codegen(const clast_assignment *a, ScopStmt *Statement, + unsigned Dimension, int vectorDim, + std::vector<ValueMapT> *VectorVMap) { + Value *RHS = ExpGen.codegen(a->RHS, getIntPtrTy()); + + assert(!a->LHS && "Statement assignments do not have left hand side"); + const PHINode *PN; + PN = Statement->getInductionVariableForDimension(Dimension); + const Value *V = PN; + + if (VectorVMap) + (*VectorVMap)[vectorDim][V] = RHS; + + ValueMap[V] = RHS; +} + +void ClastStmtCodeGen::codegenSubstitutions(const clast_stmt *Assignment, + ScopStmt *Statement, int vectorDim, + std::vector<ValueMapT> *VectorVMap) { + int Dimension = 0; + + while (Assignment) { + assert(CLAST_STMT_IS_A(Assignment, stmt_ass) + && "Substitions are expected to be assignments"); + codegen((const clast_assignment *)Assignment, Statement, Dimension, + vectorDim, VectorVMap); + Assignment = Assignment->next; + Dimension++; + } +} + +void ClastStmtCodeGen::codegen(const clast_user_stmt *u, + std::vector<Value*> *IVS , const char *iterator, + isl_set *Domain) { + ScopStmt *Statement = (ScopStmt *)u->statement->usr; + + if (u->substitutions) + codegenSubstitutions(u->substitutions, Statement); + + int VectorDimensions = IVS ? IVS->size() : 1; + + if (VectorDimensions == 1) { + BlockGenerator::generate(Builder, *Statement, ValueMap, P); + return; + } + + VectorValueMapT VectorMap(VectorDimensions); + + if (IVS) { + assert (u->substitutions && "Substitutions expected!"); + int i = 0; + for (std::vector<Value*>::iterator II = IVS->begin(), IE = IVS->end(); + II != IE; ++II) { + ClastVars[iterator] = *II; + codegenSubstitutions(u->substitutions, Statement, i, &VectorMap); + i++; + } + } + + VectorBlockGenerator::generate(Builder, *Statement, VectorMap, Domain, P); +} + +void ClastStmtCodeGen::codegen(const clast_block *b) { + if (b->body) + codegen(b->body); +} + +void ClastStmtCodeGen::codegenForSequential(const clast_for *f) { + Value *LowerBound, *UpperBound, *IV, *Stride; + BasicBlock *AfterBB; + Type *IntPtrTy = getIntPtrTy(); + + LowerBound = ExpGen.codegen(f->LB, IntPtrTy); + UpperBound = ExpGen.codegen(f->UB, IntPtrTy); + Stride = Builder.getInt(APInt_from_MPZ(f->stride)); + + IV = createLoop(LowerBound, UpperBound, Stride, &Builder, P, &AfterBB); + + // Add loop iv to symbols. + ClastVars[f->iterator] = IV; + + if (f->body) + codegen(f->body); + + // Loop is finished, so remove its iv from the live symbols. + ClastVars.erase(f->iterator); + Builder.SetInsertPoint(AfterBB->begin()); +} + +SetVector<Value*> ClastStmtCodeGen::getOMPValues() { + SetVector<Value*> Values; + + // The clast variables + for (CharMapT::iterator I = ClastVars.begin(), E = ClastVars.end(); + I != E; I++) + Values.insert(I->second); + + // The memory reference base addresses + for (Scop::iterator SI = S->begin(), SE = S->end(); SI != SE; ++SI) { + ScopStmt *Stmt = *SI; + for (SmallVector<MemoryAccess*, 8>::iterator I = Stmt->memacc_begin(), + E = Stmt->memacc_end(); I != E; ++I) { + Value *BaseAddr = const_cast<Value*>((*I)->getBaseAddr()); + Values.insert((BaseAddr)); + } + } + + return Values; +} + +void ClastStmtCodeGen::updateWithValueMap(OMPGenerator::ValueToValueMapTy &VMap, + bool Reverse) { + std::set<Value*> Inserted; + + if (Reverse) { + OMPGenerator::ValueToValueMapTy ReverseMap; + + for (std::map<Value*, Value*>::iterator I = VMap.begin(), E = VMap.end(); + I != E; ++I) + ReverseMap.insert(std::make_pair(I->second, I->first)); + + for (CharMapT::iterator I = ClastVars.begin(), E = ClastVars.end(); + I != E; I++) { + ClastVars[I->first] = ReverseMap[I->second]; + Inserted.insert(I->second); + } + + /// FIXME: At the moment we do not reverse the update of the ValueMap. + /// This is incomplet, but the failure should be obvious, such that + /// we can fix this later. + return; + } + + for (CharMapT::iterator I = ClastVars.begin(), E = ClastVars.end(); + I != E; I++) { + ClastVars[I->first] = VMap[I->second]; + Inserted.insert(I->second); + } + + for (std::map<Value*, Value*>::iterator I = VMap.begin(), E = VMap.end(); + I != E; ++I) { + if (Inserted.count(I->first)) + continue; + + ValueMap[I->first] = I->second; + } +} + +static void clearDomtree(Function *F, DominatorTree &DT) { + DomTreeNode *N = DT.getNode(&F->getEntryBlock()); + std::vector<BasicBlock*> Nodes; + for (po_iterator<DomTreeNode*> I = po_begin(N), E = po_end(N); I != E; ++I) + Nodes.push_back(I->getBlock()); + + for (std::vector<BasicBlock*>::iterator I = Nodes.begin(), E = Nodes.end(); + I != E; ++I) + DT.eraseNode(*I); +} + +void ClastStmtCodeGen::codegenForOpenMP(const clast_for *For) { + Value *Stride, *LB, *UB, *IV; + BasicBlock::iterator LoopBody; + IntegerType *IntPtrTy = getIntPtrTy(); + SetVector<Value*> Values; + OMPGenerator::ValueToValueMapTy VMap; + OMPGenerator OMPGen(Builder, P); + + Stride = Builder.getInt(APInt_from_MPZ(For->stride)); + Stride = Builder.CreateSExtOrBitCast(Stride, IntPtrTy); + LB = ExpGen.codegen(For->LB, IntPtrTy); + UB = ExpGen.codegen(For->UB, IntPtrTy); + + Values = getOMPValues(); + + IV = OMPGen.createParallelLoop(LB, UB, Stride, Values, VMap, &LoopBody); + BasicBlock::iterator AfterLoop = Builder.GetInsertPoint(); + Builder.SetInsertPoint(LoopBody); + + updateWithValueMap(VMap, /* reverse */ false); + ClastVars[For->iterator] = IV; + + if (For->body) + codegen(For->body); + + ClastVars.erase(For->iterator); + updateWithValueMap(VMap, /* reverse */ true); + + clearDomtree((*LoopBody).getParent()->getParent(), + P->getAnalysis<DominatorTree>()); + + Builder.SetInsertPoint(AfterLoop); +} + +bool ClastStmtCodeGen::isInnermostLoop(const clast_for *f) { + const clast_stmt *stmt = f->body; + + while (stmt) { + if (!CLAST_STMT_IS_A(stmt, stmt_user)) + return false; + + stmt = stmt->next; + } + + return true; +} + +int ClastStmtCodeGen::getNumberOfIterations(const clast_for *f) { + isl_set *loopDomain = isl_set_copy(isl_set_from_cloog_domain(f->domain)); + isl_set *tmp = isl_set_copy(loopDomain); + + // Calculate a map similar to the identity map, but with the last input + // and output dimension not related. + // [i0, i1, i2, i3] -> [i0, i1, i2, o0] + isl_space *Space = isl_set_get_space(loopDomain); + Space = isl_space_drop_outputs(Space, + isl_set_dim(loopDomain, isl_dim_set) - 2, 1); + Space = isl_space_map_from_set(Space); + isl_map *identity = isl_map_identity(Space); + identity = isl_map_add_dims(identity, isl_dim_in, 1); + identity = isl_map_add_dims(identity, isl_dim_out, 1); + + isl_map *map = isl_map_from_domain_and_range(tmp, loopDomain); + map = isl_map_intersect(map, identity); + + isl_map *lexmax = isl_map_lexmax(isl_map_copy(map)); + isl_map *lexmin = isl_map_lexmin(map); + isl_map *sub = isl_map_sum(lexmax, isl_map_neg(lexmin)); + + isl_set *elements = isl_map_range(sub); + + if (!isl_set_is_singleton(elements)) { + isl_set_free(elements); + return -1; + } + + isl_point *p = isl_set_sample_point(elements); + + isl_int v; + isl_int_init(v); + isl_point_get_coordinate(p, isl_dim_set, isl_set_n_dim(loopDomain) - 1, &v); + int numberIterations = isl_int_get_si(v); + isl_int_clear(v); + isl_point_free(p); + + return (numberIterations) / isl_int_get_si(f->stride) + 1; +} + +void ClastStmtCodeGen::codegenForVector(const clast_for *F) { + DEBUG(dbgs() << "Vectorizing loop '" << F->iterator << "'\n";); + int VectorWidth = getNumberOfIterations(F); + + Value *LB = ExpGen.codegen(F->LB, getIntPtrTy()); + + APInt Stride = APInt_from_MPZ(F->stride); + IntegerType *LoopIVType = dyn_cast<IntegerType>(LB->getType()); + Stride = Stride.zext(LoopIVType->getBitWidth()); + Value *StrideValue = ConstantInt::get(LoopIVType, Stride); + + std::vector<Value*> IVS(VectorWidth); + IVS[0] = LB; + + for (int i = 1; i < VectorWidth; i++) + IVS[i] = Builder.CreateAdd(IVS[i-1], StrideValue, "p_vector_iv"); + + isl_set *Domain = isl_set_from_cloog_domain(F->domain); + + // Add loop iv to symbols. + ClastVars[F->iterator] = LB; + + const clast_stmt *Stmt = F->body; + + while (Stmt) { + codegen((const clast_user_stmt *)Stmt, &IVS, F->iterator, + isl_set_copy(Domain)); + Stmt = Stmt->next; + } + + // Loop is finished, so remove its iv from the live symbols. + isl_set_free(Domain); + ClastVars.erase(F->iterator); +} + +void ClastStmtCodeGen::codegen(const clast_for *f) { + if ((Vector || OpenMP) && P->getAnalysis<Dependences>().isParallelFor(f)) { + if (Vector && isInnermostLoop(f) && (-1 != getNumberOfIterations(f)) + && (getNumberOfIterations(f) <= 16)) { + codegenForVector(f); + return; + } + + if (OpenMP && !parallelCodeGeneration) { + parallelCodeGeneration = true; + parallelLoops.push_back(f->iterator); + codegenForOpenMP(f); + parallelCodeGeneration = false; + return; + } + } + + codegenForSequential(f); +} + +Value *ClastStmtCodeGen::codegen(const clast_equation *eq) { + Value *LHS = ExpGen.codegen(eq->LHS, getIntPtrTy()); + Value *RHS = ExpGen.codegen(eq->RHS, getIntPtrTy()); + CmpInst::Predicate P; + + if (eq->sign == 0) + P = ICmpInst::ICMP_EQ; + else if (eq->sign > 0) + P = ICmpInst::ICMP_SGE; + else + P = ICmpInst::ICMP_SLE; + + return Builder.CreateICmp(P, LHS, RHS); +} + +void ClastStmtCodeGen::codegen(const clast_guard *g) { + Function *F = Builder.GetInsertBlock()->getParent(); + LLVMContext &Context = F->getContext(); + + BasicBlock *CondBB = SplitBlock(Builder.GetInsertBlock(), + Builder.GetInsertPoint(), P); + CondBB->setName("polly.cond"); + BasicBlock *MergeBB = SplitBlock(CondBB, CondBB->begin(), P); + MergeBB->setName("polly.merge"); + BasicBlock *ThenBB = BasicBlock::Create(Context, "polly.then", F); + + DominatorTree &DT = P->getAnalysis<DominatorTree>(); + DT.addNewBlock(ThenBB, CondBB); + DT.changeImmediateDominator(MergeBB, CondBB); + + CondBB->getTerminator()->eraseFromParent(); + + Builder.SetInsertPoint(CondBB); + + Value *Predicate = codegen(&(g->eq[0])); + + for (int i = 1; i < g->n; ++i) { + Value *TmpPredicate = codegen(&(g->eq[i])); + Predicate = Builder.CreateAnd(Predicate, TmpPredicate); + } + + Builder.CreateCondBr(Predicate, ThenBB, MergeBB); + Builder.SetInsertPoint(ThenBB); + Builder.CreateBr(MergeBB); + Builder.SetInsertPoint(ThenBB->begin()); + + codegen(g->then); + + Builder.SetInsertPoint(MergeBB->begin()); +} + +void ClastStmtCodeGen::codegen(const clast_stmt *stmt) { + if (CLAST_STMT_IS_A(stmt, stmt_root)) + assert(false && "No second root statement expected"); + else if (CLAST_STMT_IS_A(stmt, stmt_ass)) + codegen((const clast_assignment *)stmt); + else if (CLAST_STMT_IS_A(stmt, stmt_user)) + codegen((const clast_user_stmt *)stmt); + else if (CLAST_STMT_IS_A(stmt, stmt_block)) + codegen((const clast_block *)stmt); + else if (CLAST_STMT_IS_A(stmt, stmt_for)) + codegen((const clast_for *)stmt); + else if (CLAST_STMT_IS_A(stmt, stmt_guard)) + codegen((const clast_guard *)stmt); + + if (stmt->next) + codegen(stmt->next); +} + +void ClastStmtCodeGen::addParameters(const CloogNames *names) { + SCEVExpander Rewriter(P->getAnalysis<ScalarEvolution>(), "polly"); + + int i = 0; + for (Scop::param_iterator PI = S->param_begin(), PE = S->param_end(); + PI != PE; ++PI) { + assert(i < names->nb_parameters && "Not enough parameter names"); + + const SCEV *Param = *PI; + Type *Ty = Param->getType(); + + Instruction *insertLocation = --(Builder.GetInsertBlock()->end()); + Value *V = Rewriter.expandCodeFor(Param, Ty, insertLocation); + ClastVars[names->parameters[i]] = V; + + ++i; + } +} + +void ClastStmtCodeGen::codegen(const clast_root *r) { + addParameters(r->names); + + parallelCodeGeneration = false; + + const clast_stmt *stmt = (const clast_stmt*) r; + if (stmt->next) + codegen(stmt->next); +} + +ClastStmtCodeGen::ClastStmtCodeGen(Scop *scop, IRBuilder<> &B, Pass *P) : + S(scop), P(P), Builder(B), ExpGen(Builder, ClastVars) {} + +namespace { +class CodeGeneration : public ScopPass { + Region *region; + Scop *S; + DominatorTree *DT; + RegionInfo *RI; + + std::vector<std::string> parallelLoops; + + public: + static char ID; + + CodeGeneration() : ScopPass(ID) {} + + // Split the entry edge of the region and generate a new basic block on this + // edge. This function also updates ScopInfo and RegionInfo. + // + // @param region The region where the entry edge will be splitted. + BasicBlock *splitEdgeAdvanced(Region *region) { + BasicBlock *newBlock; + BasicBlock *splitBlock; + + newBlock = SplitEdge(region->getEnteringBlock(), region->getEntry(), this); + + if (DT->dominates(region->getEntry(), newBlock)) { + BasicBlock *OldBlock = region->getEntry(); + std::string OldName = OldBlock->getName(); + + // Update ScopInfo. + for (Scop::iterator SI = S->begin(), SE = S->end(); SI != SE; ++SI) + if ((*SI)->getBasicBlock() == OldBlock) { + (*SI)->setBasicBlock(newBlock); + break; + } + + // Update RegionInfo. + splitBlock = OldBlock; + OldBlock->setName("polly.split"); + newBlock->setName(OldName); + region->replaceEntry(newBlock); + RI->setRegionFor(newBlock, region); + } else { + RI->setRegionFor(newBlock, region->getParent()); + splitBlock = newBlock; + } + + return splitBlock; + } + + // Create a split block that branches either to the old code or to a new basic + // block where the new code can be inserted. + // + // @param Builder A builder that will be set to point to a basic block, where + // the new code can be generated. + // @return The split basic block. + BasicBlock *addSplitAndStartBlock(IRBuilder<> *Builder) { + BasicBlock *StartBlock, *SplitBlock; + + SplitBlock = splitEdgeAdvanced(region); + SplitBlock->setName("polly.split_new_and_old"); + Function *F = SplitBlock->getParent(); + StartBlock = BasicBlock::Create(F->getContext(), "polly.start", F); + SplitBlock->getTerminator()->eraseFromParent(); + Builder->SetInsertPoint(SplitBlock); + Builder->CreateCondBr(Builder->getTrue(), StartBlock, region->getEntry()); + DT->addNewBlock(StartBlock, SplitBlock); + Builder->SetInsertPoint(StartBlock); + return SplitBlock; + } + + // Merge the control flow of the newly generated code with the existing code. + // + // @param SplitBlock The basic block where the control flow was split between + // old and new version of the Scop. + // @param Builder An IRBuilder that points to the last instruction of the + // newly generated code. + void mergeControlFlow(BasicBlock *SplitBlock, IRBuilder<> *Builder) { + BasicBlock *MergeBlock; + Region *R = region; + + if (R->getExit()->getSinglePredecessor()) + // No splitEdge required. A block with a single predecessor cannot have + // PHI nodes that would complicate life. + MergeBlock = R->getExit(); + else { + MergeBlock = SplitEdge(R->getExitingBlock(), R->getExit(), this); + // SplitEdge will never split R->getExit(), as R->getExit() has more than + // one predecessor. Hence, mergeBlock is always a newly generated block. + R->replaceExit(MergeBlock); + } + + Builder->CreateBr(MergeBlock); + MergeBlock->setName("polly.merge_new_and_old"); + + if (DT->dominates(SplitBlock, MergeBlock)) + DT->changeImmediateDominator(MergeBlock, SplitBlock); + } + + bool runOnScop(Scop &scop) { + S = &scop; + region = &S->getRegion(); + DT = &getAnalysis<DominatorTree>(); + RI = &getAnalysis<RegionInfo>(); + + parallelLoops.clear(); + + assert(region->isSimple() && "Only simple regions are supported"); + + // In the CFG the optimized code of the SCoP is generated next to the + // original code. Both the new and the original version of the code remain + // in the CFG. A branch statement decides which version is executed. + // For now, we always execute the new version (the old one is dead code + // eliminated by the cleanup passes). In the future we may decide to execute + // the new version only if certain run time checks succeed. This will be + // useful to support constructs for which we cannot prove all assumptions at + // compile time. + // + // Before transformation: + // + // bb0 + // | + // orig_scop + // | + // bb1 + // + // After transformation: + // bb0 + // | + // polly.splitBlock + // / \. + // | startBlock + // | | + // orig_scop new_scop + // \ / + // \ / + // bb1 (joinBlock) + IRBuilder<> builder(region->getEntry()); + + // The builder will be set to startBlock. + BasicBlock *splitBlock = addSplitAndStartBlock(&builder); + BasicBlock *StartBlock = builder.GetInsertBlock(); + + mergeControlFlow(splitBlock, &builder); + builder.SetInsertPoint(StartBlock->begin()); + + ClastStmtCodeGen CodeGen(S, builder, this); + CloogInfo &C = getAnalysis<CloogInfo>(); + CodeGen.codegen(C.getClast()); + + parallelLoops.insert(parallelLoops.begin(), + CodeGen.getParallelLoops().begin(), + CodeGen.getParallelLoops().end()); + + return true; + } + + virtual void printScop(raw_ostream &OS) const { + for (std::vector<std::string>::const_iterator PI = parallelLoops.begin(), + PE = parallelLoops.end(); PI != PE; ++PI) + OS << "Parallel loop with iterator '" << *PI << "' generated\n"; + } + + virtual void getAnalysisUsage(AnalysisUsage &AU) const { + AU.addRequired<CloogInfo>(); + AU.addRequired<Dependences>(); + AU.addRequired<DominatorTree>(); + AU.addRequired<RegionInfo>(); + AU.addRequired<ScalarEvolution>(); + AU.addRequired<ScopDetection>(); + AU.addRequired<ScopInfo>(); + AU.addRequired<TargetData>(); + + AU.addPreserved<CloogInfo>(); + AU.addPreserved<Dependences>(); + + // FIXME: We do not create LoopInfo for the newly generated loops. + AU.addPreserved<LoopInfo>(); + AU.addPreserved<DominatorTree>(); + AU.addPreserved<ScopDetection>(); + AU.addPreserved<ScalarEvolution>(); + + // FIXME: We do not yet add regions for the newly generated code to the + // region tree. + AU.addPreserved<RegionInfo>(); + AU.addPreserved<TempScopInfo>(); + AU.addPreserved<ScopInfo>(); + AU.addPreservedID(IndependentBlocksID); + } +}; +} + +char CodeGeneration::ID = 1; + +INITIALIZE_PASS_BEGIN(CodeGeneration, "polly-codegen", + "Polly - Create LLVM-IR from SCoPs", false, false) +INITIALIZE_PASS_DEPENDENCY(CloogInfo) +INITIALIZE_PASS_DEPENDENCY(Dependences) +INITIALIZE_PASS_DEPENDENCY(DominatorTree) +INITIALIZE_PASS_DEPENDENCY(RegionInfo) +INITIALIZE_PASS_DEPENDENCY(ScalarEvolution) +INITIALIZE_PASS_DEPENDENCY(ScopDetection) +INITIALIZE_PASS_DEPENDENCY(TargetData) +INITIALIZE_PASS_END(CodeGeneration, "polly-codegen", + "Polly - Create LLVM-IR from SCoPs", false, false) + +Pass *polly::createCodeGenerationPass() { + return new CodeGeneration(); +} |