summaryrefslogtreecommitdiffstats
path: root/polly/lib/Analysis/ScopDetection.cpp
diff options
context:
space:
mode:
authorTobias Grosser <grosser@fim.uni-passau.de>2011-04-29 06:27:02 +0000
committerTobias Grosser <grosser@fim.uni-passau.de>2011-04-29 06:27:02 +0000
commit758053788bde4747953f5f276ded345cd01323b1 (patch)
tree02f38df95a5327cb8644906d148b5bd8facf63f9 /polly/lib/Analysis/ScopDetection.cpp
parent011eae75123217b9125270ae08132a308cee7061 (diff)
downloadbcm5719-llvm-758053788bde4747953f5f276ded345cd01323b1.tar.gz
bcm5719-llvm-758053788bde4747953f5f276ded345cd01323b1.zip
Add initial version of Polly
This version is equivalent to commit ba26ebece8f5be84e9bd6315611d412af797147e in the old git repository. llvm-svn: 130476
Diffstat (limited to 'polly/lib/Analysis/ScopDetection.cpp')
-rw-r--r--polly/lib/Analysis/ScopDetection.cpp659
1 files changed, 659 insertions, 0 deletions
diff --git a/polly/lib/Analysis/ScopDetection.cpp b/polly/lib/Analysis/ScopDetection.cpp
new file mode 100644
index 00000000000..7bbd89da824
--- /dev/null
+++ b/polly/lib/Analysis/ScopDetection.cpp
@@ -0,0 +1,659 @@
+//===----- ScopDetection.cpp - Detect Scops --------------------*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// Detect the maximal Scops of a function.
+//
+// A static control part (Scop) is a subgraph of the control flow graph (CFG)
+// that only has statically known control flow and can therefore be described
+// within the polyhedral model.
+//
+// Every Scop fullfills these restrictions:
+//
+// * It is a single entry single exit region
+//
+// * Only affine linear bounds in the loops
+//
+// Every natural loop in a Scop must have a number of loop iterations that can
+// be described as an affine linear function in surrounding loop iterators or
+// parameters. (A parameter is a scalar that does not change its value during
+// execution of the Scop).
+//
+// * Only comparisons of affine linear expressions in conditions
+//
+// * All loops and conditions perfectly nested
+//
+// The control flow needs to be structured such that it could be written using
+// just 'for' and 'if' statements, without the need for any 'goto', 'break' or
+// 'continue'.
+//
+// * Side effect free functions call
+//
+// Only function calls and intrinsics that do not have side effects are allowed
+// (readnone).
+//
+// The Scop detection finds the largest Scops by checking if the largest
+// region is a Scop. If this is not the case, its canonical subregions are
+// checked until a region is a Scop. It is now tried to extend this Scop by
+// creating a larger non canonical region.
+//
+//===----------------------------------------------------------------------===//
+
+#include "polly/ScopDetection.h"
+
+#include "polly/LinkAllPasses.h"
+#include "polly/Support/ScopHelper.h"
+#include "polly/Support/AffineSCEVIterator.h"
+
+#include "llvm/LLVMContext.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/Analysis/AliasAnalysis.h"
+#include "llvm/Analysis/RegionIterator.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Assembly/Writer.h"
+
+#define DEBUG_TYPE "polly-detect"
+#include "llvm/Support/Debug.h"
+
+using namespace llvm;
+using namespace polly;
+
+//===----------------------------------------------------------------------===//
+// Statistics.
+
+STATISTIC(ValidRegion, "Number of regions that a valid part of Scop");
+
+#define BADSCOP_STAT(NAME, DESC) STATISTIC(Bad##NAME##ForScop, \
+ "Number of bad regions for Scop: "\
+ DESC)
+
+#define STATSCOP(NAME); assert(!Context.Verifying && #NAME); \
+ if (!Context.Verifying) ++Bad##NAME##ForScop;
+
+BADSCOP_STAT(CFG, "CFG too complex");
+BADSCOP_STAT(IndVar, "Non canonical induction variable in loop");
+BADSCOP_STAT(LoopBound, "Loop bounds can not be computed");
+BADSCOP_STAT(FuncCall, "Function call with side effects appeared");
+BADSCOP_STAT(AffFunc, "Expression not affine");
+BADSCOP_STAT(Scalar, "Found scalar dependency");
+BADSCOP_STAT(Alias, "Found base address alias");
+BADSCOP_STAT(SimpleRegion, "Region not simple");
+BADSCOP_STAT(Other, "Others");
+
+//===----------------------------------------------------------------------===//
+// ScopDetection.
+
+bool ScopDetection::isMaxRegionInScop(const Region &R) const {
+ // The Region is valid only if it could be found in the set.
+ return ValidRegions.count(&R);
+}
+
+bool ScopDetection::isValidAffineFunction(const SCEV *S, Region &RefRegion,
+ Value **BasePtr) const {
+ assert(S && "S must not be null!");
+ bool isMemoryAccess = (BasePtr != 0);
+ if (isMemoryAccess) *BasePtr = 0;
+ DEBUG(dbgs() << "Checking " << *S << " ... ");
+
+ if (isa<SCEVCouldNotCompute>(S)) {
+ DEBUG(dbgs() << "Non Affine: SCEV could not be computed\n");
+ return false;
+ }
+
+ for (AffineSCEVIterator I = affine_begin(S, SE), E = affine_end(); I != E;
+ ++I) {
+ // The constant part must be a SCEVConstant.
+ // TODO: support sizeof in coefficient.
+ if (!isa<SCEVConstant>(I->second)) {
+ DEBUG(dbgs() << "Non Affine: Right hand side is not constant\n");
+ return false;
+ }
+
+ const SCEV *Var = I->first;
+
+ // A constant offset is affine.
+ if(isa<SCEVConstant>(Var))
+ continue;
+
+ // Memory accesses are allowed to have a base pointer.
+ if (Var->getType()->isPointerTy()) {
+ if (!isMemoryAccess) {
+ DEBUG(dbgs() << "Non Affine: Pointer in non memory access\n");
+ return false;
+ }
+
+ assert(I->second->isOne() && "Only one as pointer coefficient allowed.\n");
+ const SCEVUnknown *BaseAddr = dyn_cast<SCEVUnknown>(Var);
+
+ if (!BaseAddr || isa<UndefValue>(BaseAddr->getValue())){
+ DEBUG(dbgs() << "Cannot handle base: " << *Var << "\n");
+ return false;
+ }
+
+ // BaseAddr must be invariant in Scop.
+ if (!isParameter(BaseAddr, RefRegion, *LI, *SE)) {
+ DEBUG(dbgs() << "Non Affine: Base address not invariant in SCoP\n");
+ return false;
+ }
+
+ assert(*BasePtr == 0 && "Found second base pointer.\n");
+ *BasePtr = BaseAddr->getValue();
+ continue;
+ }
+
+ if (isParameter(Var, RefRegion, *LI, *SE)
+ || isIndVar(Var, RefRegion, *LI, *SE))
+ continue;
+
+ DEBUG(dbgs() << "Non Affine: " ;
+ Var->print(dbgs());
+ dbgs() << " is neither parameter nor induction variable\n");
+ return false;
+ }
+
+ DEBUG(dbgs() << " is affine.\n");
+ return !isMemoryAccess || (*BasePtr != 0);
+}
+
+bool ScopDetection::isValidCFG(BasicBlock &BB, DetectionContext &Context) const
+{
+ Region &RefRegion = Context.CurRegion;
+ TerminatorInst *TI = BB.getTerminator();
+
+ // Return instructions are only valid if the region is the top level region.
+ if (isa<ReturnInst>(TI) && !RefRegion.getExit() && TI->getNumOperands() == 0)
+ return true;
+
+ BranchInst *Br = dyn_cast<BranchInst>(TI);
+
+ if (!Br) {
+ DEBUG(dbgs() << "Non branch instruction as terminator of BB: ";
+ WriteAsOperand(dbgs(), &BB, false);
+ dbgs() << "\n");
+ STATSCOP(CFG);
+ return false;
+ }
+
+ if (Br->isUnconditional()) return true;
+
+ Value *Condition = Br->getCondition();
+
+ // UndefValue is not allowed as condition.
+ if (isa<UndefValue>(Condition)) {
+ DEBUG(dbgs() << "Undefined value in branch instruction of BB: ";
+ WriteAsOperand(dbgs(), &BB, false);
+ dbgs() << "\n");
+ STATSCOP(AffFunc);
+ return false;
+ }
+
+ // Only Constant and ICmpInst are allowed as condition.
+ if (!(isa<Constant>(Condition) || isa<ICmpInst>(Condition))) {
+ DEBUG(dbgs() << "Non Constant and non ICmpInst instruction in BB: ";
+ WriteAsOperand(dbgs(), &BB, false);
+ dbgs() << "\n");
+ STATSCOP(AffFunc);
+ return false;
+ }
+
+ // Allow perfectly nested conditions.
+ assert(Br->getNumSuccessors() == 2 && "Unexpected number of successors");
+
+ if (ICmpInst *ICmp = dyn_cast<ICmpInst>(Condition)) {
+ // Unsigned comparisons are not allowed. They trigger overflow problems
+ // in the code generation.
+ //
+ // TODO: This is not sufficient and just hides bugs. However it does pretty
+ // well.
+ if(ICmp->isUnsigned())
+ return false;
+
+ // Are both operands of the ICmp affine?
+ if (isa<UndefValue>(ICmp->getOperand(0))
+ || isa<UndefValue>(ICmp->getOperand(1))) {
+ DEBUG(dbgs() << "Undefined operand in branch instruction of BB: ";
+ WriteAsOperand(dbgs(), &BB, false);
+ dbgs() << "\n");
+ STATSCOP(AffFunc);
+ return false;
+ }
+
+ const SCEV *ScevLHS = SE->getSCEV(ICmp->getOperand(0));
+ const SCEV *ScevRHS = SE->getSCEV(ICmp->getOperand(1));
+
+ bool affineLHS = isValidAffineFunction(ScevLHS, RefRegion);
+ bool affineRHS = isValidAffineFunction(ScevRHS, RefRegion);
+
+ if (!affineLHS || !affineRHS) {
+ DEBUG(dbgs() << "Non affine branch instruction in BB: ";
+ WriteAsOperand(dbgs(), &BB, false);
+ dbgs() << "\n");
+ STATSCOP(AffFunc);
+ return false;
+ }
+ }
+
+ // Allow loop exit conditions.
+ Loop *L = LI->getLoopFor(&BB);
+ if (L && L->getExitingBlock() == &BB)
+ return true;
+
+ // Allow perfectly nested conditions.
+ Region *R = RI->getRegionFor(&BB);
+ if (R->getEntry() != &BB) {
+ DEBUG(dbgs() << "Non well structured condition starting at BB: ";
+ WriteAsOperand(dbgs(), &BB, false);
+ dbgs() << "\n");
+ STATSCOP(CFG);
+ return false;
+ }
+
+ return true;
+}
+
+bool ScopDetection::isValidCallInst(CallInst &CI) {
+ if (CI.mayHaveSideEffects() || CI.doesNotReturn())
+ return false;
+
+ if (CI.doesNotAccessMemory())
+ return true;
+
+ Function *CalledFunction = CI.getCalledFunction();
+
+ // Indirect calls are not supported.
+ if (CalledFunction == 0)
+ return false;
+
+ // TODO: Intrinsics.
+ return false;
+}
+
+bool ScopDetection::isValidMemoryAccess(Instruction &Inst,
+ DetectionContext &Context) const {
+ Value *Ptr = getPointerOperand(Inst), *BasePtr;
+ const SCEV *AccessFunction = SE->getSCEV(Ptr);
+
+ if (!isValidAffineFunction(AccessFunction, Context.CurRegion, &BasePtr)) {
+ DEBUG(dbgs() << "Bad memory addr " << *AccessFunction << "\n");
+ STATSCOP(AffFunc);
+ return false;
+ }
+
+ // FIXME: Alias Analysis thinks IntToPtrInst aliases with alloca instructions
+ // created by IndependentBlocks Pass.
+ if (isa<IntToPtrInst>(BasePtr)) {
+ DEBUG(dbgs() << "Find bad intoptr prt: " << *BasePtr << '\n');
+ STATSCOP(Other);
+ return false;
+ }
+
+ // Check if the base pointer of the memory access does alias with
+ // any other pointer. This cannot be handled at the moment.
+ AliasSet &AS =
+ Context.AST.getAliasSetForPointer(BasePtr, AliasAnalysis::UnknownSize,
+ Inst.getMetadata(LLVMContext::MD_tbaa));
+ if (!AS.isMustAlias()) {
+ DEBUG(dbgs() << "Bad pointer alias found:" << *BasePtr << "\nAS:\n" << AS);
+
+ // STATSCOP triggers an assertion if we are in verifying mode.
+ // This is generally good to check that we do not change the SCoP after we
+ // run the SCoP detection and consequently to ensure that we can still
+ // represent that SCoP. However, in case of aliasing this does not work.
+ // The independent blocks pass may create memory references which seem to
+ // alias, if -basicaa is not available. They actually do not. As we do not
+ // not know this and we would fail here if we verify it.
+ if (!Context.Verifying) {
+ STATSCOP(Alias);
+ }
+
+ return false;
+ }
+
+ return true;
+}
+
+
+bool ScopDetection::hasScalarDependency(Instruction &Inst,
+ Region &RefRegion) const {
+ for (Instruction::use_iterator UI = Inst.use_begin(), UE = Inst.use_end();
+ UI != UE; ++UI)
+ if (Instruction *Use = dyn_cast<Instruction>(*UI))
+ if (!RefRegion.contains(Use->getParent())) {
+ // DirtyHack 1: PHINode user outside the Scop is not allow, if this
+ // PHINode is induction variable, the scalar to array transform may
+ // break it and introduce a non-indvar PHINode, which is not allow in
+ // Scop.
+ // This can be fix by:
+ // Introduce a IndependentBlockPrepare pass, which translate all
+ // PHINodes not in Scop to array.
+ // The IndependentBlockPrepare pass can also split the entry block of
+ // the function to hold the alloca instruction created by scalar to
+ // array. and split the exit block of the Scop so the new create load
+ // instruction for escape users will not break other Scops.
+ if (isa<PHINode>(Use))
+ return true;
+ }
+
+ return false;
+}
+
+bool ScopDetection::isValidInstruction(Instruction &Inst,
+ DetectionContext &Context) const {
+ // Only canonical IVs are allowed.
+ if (PHINode *PN = dyn_cast<PHINode>(&Inst))
+ if (!isIndVar(PN, LI)) {
+ DEBUG(dbgs() << "Non canonical PHI node found: ";
+ WriteAsOperand(dbgs(), &Inst, false);
+ dbgs() << "\n");
+ return false;
+ }
+
+ // Scalar dependencies are not allowed.
+ if (hasScalarDependency(Inst, Context.CurRegion)) {
+ DEBUG(dbgs() << "Scalar dependency found: ";
+ WriteAsOperand(dbgs(), &Inst, false);
+ dbgs() << "\n");
+ STATSCOP(Scalar);
+ return false;
+ }
+
+ // We only check the call instruction but not invoke instruction.
+ if (CallInst *CI = dyn_cast<CallInst>(&Inst)) {
+ if (isValidCallInst(*CI))
+ return true;
+
+ DEBUG(dbgs() << "Bad call Inst: ";
+ WriteAsOperand(dbgs(), &Inst, false);
+ dbgs() << "\n");
+ STATSCOP(FuncCall);
+ return false;
+ }
+
+ if (!Inst.mayWriteToMemory() && !Inst.mayReadFromMemory()) {
+ // Handle cast instruction.
+ if (isa<IntToPtrInst>(Inst) || isa<BitCastInst>(Inst)) {
+ DEBUG(dbgs() << "Bad cast Inst!\n");
+ STATSCOP(Other);
+ return false;
+ }
+
+ if (isa<AllocaInst>(Inst)) {
+ DEBUG(dbgs() << "AllocaInst is not allowed!!\n");
+ STATSCOP(Other);
+ return false;
+ }
+
+ return true;
+ }
+
+ // Check the access function.
+ if (isa<LoadInst>(Inst) || isa<StoreInst>(Inst))
+ return isValidMemoryAccess(Inst, Context);
+
+ // We do not know this instruction, therefore we assume it is invalid.
+ DEBUG(dbgs() << "Bad instruction found: ";
+ WriteAsOperand(dbgs(), &Inst, false);
+ dbgs() << "\n");
+ STATSCOP(Other);
+ return false;
+}
+
+bool ScopDetection::isValidBasicBlock(BasicBlock &BB,
+ DetectionContext &Context) const {
+ if (!isValidCFG(BB, Context))
+ return false;
+
+ // Check all instructions, except the terminator instruction.
+ for (BasicBlock::iterator I = BB.begin(), E = --BB.end(); I != E; ++I)
+ if (!isValidInstruction(*I, Context))
+ return false;
+
+ Loop *L = LI->getLoopFor(&BB);
+ if (L && L->getHeader() == &BB && !isValidLoop(L, Context))
+ return false;
+
+ return true;
+}
+
+bool ScopDetection::isValidLoop(Loop *L, DetectionContext &Context) const {
+ PHINode *IndVar = L->getCanonicalInductionVariable();
+ // No canonical induction variable.
+ if (!IndVar) {
+ DEBUG(dbgs() << "No canonical iv for loop: ";
+ WriteAsOperand(dbgs(), L->getHeader(), false);
+ dbgs() << "\n");
+ STATSCOP(IndVar);
+ return false;
+ }
+
+ // Is the loop count affine?
+ const SCEV *LoopCount = SE->getBackedgeTakenCount(L);
+ if (!isValidAffineFunction(LoopCount, Context.CurRegion)) {
+ DEBUG(dbgs() << "Non affine loop bound for loop: ";
+ WriteAsOperand(dbgs(), L->getHeader(), false);
+ dbgs() << "\n");
+ STATSCOP(LoopBound);
+ return false;
+ }
+
+ return true;
+}
+
+Region *ScopDetection::expandRegion(Region &R) {
+ Region *CurrentRegion = &R;
+ Region *TmpRegion = R.getExpandedRegion();
+
+ DEBUG(dbgs() << "\tExpanding " << R.getNameStr() << "\n");
+
+ while (TmpRegion) {
+ DetectionContext Context(*TmpRegion, *AA, false /*verifying*/);
+ DEBUG(dbgs() << "\t\tTrying " << TmpRegion->getNameStr() << "\n");
+
+ if (!allBlocksValid(Context))
+ break;
+
+ if (isValidExit(Context)) {
+ if (CurrentRegion != &R)
+ delete CurrentRegion;
+
+ CurrentRegion = TmpRegion;
+ }
+
+ Region *TmpRegion2 = TmpRegion->getExpandedRegion();
+
+ if (TmpRegion != &R && TmpRegion != CurrentRegion)
+ delete TmpRegion;
+
+ TmpRegion = TmpRegion2;
+ }
+
+ if (&R == CurrentRegion)
+ return NULL;
+
+ DEBUG(dbgs() << "\tto " << CurrentRegion->getNameStr() << "\n");
+
+ return CurrentRegion;
+}
+
+
+void ScopDetection::findScops(Region &R) {
+ DetectionContext Context(R, *AA, false /*verifying*/);
+
+ if (isValidRegion(Context)) {
+ ++ValidRegion;
+ ValidRegions.insert(&R);
+ return;
+ }
+
+ for (Region::iterator I = R.begin(), E = R.end(); I != E; ++I)
+ findScops(**I);
+
+ // Try to expand regions.
+ //
+ // As the region tree normally only contains canonical regions, non canonical
+ // regions that form a Scop are not found. Therefore, those non canonical
+ // regions are checked by expanding the canonical ones.
+
+ std::vector<Region*> ToExpand;
+
+ for (Region::iterator I = R.begin(), E = R.end(); I != E; ++I)
+ ToExpand.push_back(*I);
+
+ for (std::vector<Region*>::iterator RI = ToExpand.begin(),
+ RE = ToExpand.end(); RI != RE; ++RI) {
+ Region *CurrentRegion = *RI;
+
+ // Skip invalid regions. Regions may become invalid, if they are element of
+ // an already expanded region.
+ if (ValidRegions.find(CurrentRegion) == ValidRegions.end())
+ continue;
+
+ Region *ExpandedR = expandRegion(*CurrentRegion);
+
+ if (!ExpandedR)
+ continue;
+
+ R.addSubRegion(ExpandedR, true);
+ ValidRegions.insert(ExpandedR);
+ ValidRegions.erase(CurrentRegion);
+
+ for (Region::iterator I = ExpandedR->begin(), E = ExpandedR->end(); I != E;
+ ++I)
+ ValidRegions.erase(*I);
+ }
+}
+
+bool ScopDetection::allBlocksValid(DetectionContext &Context) const {
+ Region &R = Context.CurRegion;
+
+ for (Region::block_iterator I = R.block_begin(), E = R.block_end(); I != E;
+ ++I)
+ if (!isValidBasicBlock(*(I->getNodeAs<BasicBlock>()), Context))
+ return false;
+
+ return true;
+}
+
+bool ScopDetection::isValidExit(DetectionContext &Context) const {
+ Region &R = Context.CurRegion;
+
+ // PHI nodes are not allowed in the exit basic block.
+ if (BasicBlock *Exit = R.getExit()) {
+ BasicBlock::iterator I = Exit->begin();
+ if (I != Exit->end() && isa<PHINode> (*I)) {
+ DEBUG(dbgs() << "PHI node in exit";
+ dbgs() << "\n");
+ STATSCOP(Other);
+ return false;
+ }
+ }
+
+ return true;
+}
+
+bool ScopDetection::isValidRegion(DetectionContext &Context) const {
+ Region &R = Context.CurRegion;
+
+ DEBUG(dbgs() << "Checking region: " << R.getNameStr() << "\n\t");
+
+ // The toplevel region is no valid region.
+ if (!R.getParent()) {
+ DEBUG(dbgs() << "Top level region is invalid";
+ dbgs() << "\n");
+ return false;
+ }
+
+ // SCoP can not contains the entry block of the function, because we need
+ // to insert alloca instruction there when translate scalar to array.
+ if (R.getEntry() == &(R.getEntry()->getParent()->getEntryBlock())) {
+ DEBUG(dbgs() << "Region containing entry block of function is invalid!\n");
+ STATSCOP(Other);
+ return false;
+ }
+
+ // Only a simple region is allowed.
+ if (!R.isSimple()) {
+ DEBUG(dbgs() << "Region not simple: " << R.getNameStr() << '\n');
+ STATSCOP(SimpleRegion);
+ return false;
+ }
+
+ if (!allBlocksValid(Context))
+ return false;
+
+ if (!isValidExit(Context))
+ return false;
+
+ DEBUG(dbgs() << "OK\n");
+ return true;
+}
+
+bool ScopDetection::isValidFunction(llvm::Function &F) {
+ const std::string &Name = F.getNameStr();
+ size_t found = Name.find(".omp_subfn");
+ if (found != std::string::npos)
+ return false;
+ else
+ return true;
+}
+
+bool ScopDetection::runOnFunction(llvm::Function &F) {
+ AA = &getAnalysis<AliasAnalysis>();
+ SE = &getAnalysis<ScalarEvolution>();
+ LI = &getAnalysis<LoopInfo>();
+ RI = &getAnalysis<RegionInfo>();
+ Region *TopRegion = RI->getTopLevelRegion();
+
+ if(!isValidFunction(F))
+ return false;
+
+ findScops(*TopRegion);
+ return false;
+}
+
+
+void polly::ScopDetection::verifyRegion(const Region &R) const {
+ assert(isMaxRegionInScop(R) && "Expect R is a valid region.");
+ DetectionContext Context(const_cast<Region&>(R), *AA, true /*verifying*/);
+ isValidRegion(Context);
+}
+
+void polly::ScopDetection::verifyAnalysis() const {
+ for (RegionSet::const_iterator I = ValidRegions.begin(),
+ E = ValidRegions.end(); I != E; ++I)
+ verifyRegion(**I);
+}
+
+void ScopDetection::getAnalysisUsage(AnalysisUsage &AU) const {
+ AU.addRequired<DominatorTree>();
+ AU.addRequired<PostDominatorTree>();
+ AU.addRequired<LoopInfo>();
+ AU.addRequired<ScalarEvolution>();
+ // We also need AA and RegionInfo when we are verifying analysis.
+ AU.addRequiredTransitive<AliasAnalysis>();
+ AU.addRequiredTransitive<RegionInfo>();
+ AU.setPreservesAll();
+}
+
+void ScopDetection::print(raw_ostream &OS, const Module *) const {
+ for (RegionSet::const_iterator I = ValidRegions.begin(),
+ E = ValidRegions.end(); I != E; ++I)
+ OS << "Valid Region for Scop: " << (*I)->getNameStr() << '\n';
+
+ OS << "\n";
+}
+
+void ScopDetection::releaseMemory() {
+ ValidRegions.clear();
+}
+
+char ScopDetection::ID = 0;
+
+static RegisterPass<ScopDetection>
+X("polly-detect", "Polly - Detect Scops in functions");
+
OpenPOWER on IntegriCloud