diff options
author | Jim Cownie <james.h.cownie@intel.com> | 2013-09-27 10:38:44 +0000 |
---|---|---|
committer | Jim Cownie <james.h.cownie@intel.com> | 2013-09-27 10:38:44 +0000 |
commit | 5e8470af093f8d8106ca22e37133b41e0bdc5e85 (patch) | |
tree | bd4a1e15b4c04aa8a0887f11186e5c3ac4057094 /openmp/runtime/src/kmp_affinity.cpp | |
parent | 041f7176802074daf7ed0d0c349491415888b5e0 (diff) | |
download | bcm5719-llvm-5e8470af093f8d8106ca22e37133b41e0bdc5e85.tar.gz bcm5719-llvm-5e8470af093f8d8106ca22e37133b41e0bdc5e85.zip |
First attempt to import OpenMP runtime
llvm-svn: 191506
Diffstat (limited to 'openmp/runtime/src/kmp_affinity.cpp')
-rw-r--r-- | openmp/runtime/src/kmp_affinity.cpp | 4540 |
1 files changed, 4540 insertions, 0 deletions
diff --git a/openmp/runtime/src/kmp_affinity.cpp b/openmp/runtime/src/kmp_affinity.cpp new file mode 100644 index 00000000000..0840fa3fd8d --- /dev/null +++ b/openmp/runtime/src/kmp_affinity.cpp @@ -0,0 +1,4540 @@ +/* + * kmp_affinity.cpp -- affinity management + * $Revision: 42613 $ + * $Date: 2013-08-23 13:29:50 -0500 (Fri, 23 Aug 2013) $ + */ + + +//===----------------------------------------------------------------------===// +// +// The LLVM Compiler Infrastructure +// +// This file is dual licensed under the MIT and the University of Illinois Open +// Source Licenses. See LICENSE.txt for details. +// +//===----------------------------------------------------------------------===// + + +#include "kmp.h" +#include "kmp_i18n.h" +#include "kmp_io.h" +#include "kmp_str.h" + + +#if KMP_OS_WINDOWS || KMP_OS_LINUX + +// +// Print the affinity mask to the character array in a pretty format. +// +char * +__kmp_affinity_print_mask(char *buf, int buf_len, kmp_affin_mask_t *mask) +{ + KMP_ASSERT(buf_len >= 40); + char *scan = buf; + char *end = buf + buf_len - 1; + + // + // Find first element / check for empty set. + // + size_t i; + for (i = 0; i < KMP_CPU_SETSIZE; i++) { + if (KMP_CPU_ISSET(i, mask)) { + break; + } + } + if (i == KMP_CPU_SETSIZE) { + sprintf(scan, "{<empty>}"); + while (*scan != '\0') scan++; + KMP_ASSERT(scan <= end); + return buf; + } + + sprintf(scan, "{%ld", i); + while (*scan != '\0') scan++; + i++; + for (; i < KMP_CPU_SETSIZE; i++) { + if (! KMP_CPU_ISSET(i, mask)) { + continue; + } + + // + // Check for buffer overflow. A string of the form ",<n>" will have + // at most 10 characters, plus we want to leave room to print ",...}" + // if the set is too large to print for a total of 15 characters. + // We already left room for '\0' in setting end. + // + if (end - scan < 15) { + break; + } + sprintf(scan, ",%-ld", i); + while (*scan != '\0') scan++; + } + if (i < KMP_CPU_SETSIZE) { + sprintf(scan, ",..."); + while (*scan != '\0') scan++; + } + sprintf(scan, "}"); + while (*scan != '\0') scan++; + KMP_ASSERT(scan <= end); + return buf; +} + + +void +__kmp_affinity_entire_machine_mask(kmp_affin_mask_t *mask) +{ + KMP_CPU_ZERO(mask); + +# if KMP_OS_WINDOWS && KMP_ARCH_X86_64 + + if (__kmp_num_proc_groups > 1) { + int group; + struct GROUP_AFFINITY ga; + KMP_DEBUG_ASSERT(__kmp_GetActiveProcessorCount != NULL); + for (group = 0; group < __kmp_num_proc_groups; group++) { + int i; + int num = __kmp_GetActiveProcessorCount(group); + for (i = 0; i < num; i++) { + KMP_CPU_SET(i + group * (CHAR_BIT * sizeof(DWORD_PTR)), mask); + } + } + } + else + +# endif /* KMP_OS_WINDOWS && KMP_ARCH_X86_64 */ + + { + int proc; + for (proc = 0; proc < __kmp_xproc; proc++) { + KMP_CPU_SET(proc, mask); + } + } +} + + +// +// In Linux* OS debug & cover (-O0) builds, we need to avoid inline member +// functions. +// +// The icc codegen emits sections with extremely long names, of the form +// ".gnu.linkonce.<mangled_name>". There seems to have been a linker bug +// introduced between GNU ld version 2.14.90.0.4 and 2.15.92.0.2 involving +// some sort of memory corruption or table overflow that is triggered by +// these long strings. I checked the latest version of the linker - +// GNU ld (Linux* OS/GNU Binutils) 2.18.50.0.7.20080422 - and the bug is not +// fixed. +// +// Unfortunately, my attempts to reproduce it in a smaller example have +// failed - I'm not sure what the prospects are of getting it fixed +// properly - but we need a reproducer smaller than all of libiomp. +// +// Work around the problem by avoiding inline constructors in such builds. +// We do this for all platforms, not just Linux* OS - non-inline functions are +// more debuggable and provide better coverage into than inline functions. +// Use inline functions in shipping libs, for performance. +// + +# if !defined(KMP_DEBUG) && !defined(COVER) + +class Address { +public: + static const unsigned maxDepth = 32; + unsigned labels[maxDepth]; + unsigned childNums[maxDepth]; + unsigned depth; + unsigned leader; + Address(unsigned _depth) + : depth(_depth), leader(FALSE) { + } + Address &operator=(const Address &b) { + depth = b.depth; + for (unsigned i = 0; i < depth; i++) { + labels[i] = b.labels[i]; + childNums[i] = b.childNums[i]; + } + leader = FALSE; + return *this; + } + bool operator==(const Address &b) const { + if (depth != b.depth) + return false; + for (unsigned i = 0; i < depth; i++) + if(labels[i] != b.labels[i]) + return false; + return true; + } + bool isClose(const Address &b, int level) const { + if (depth != b.depth) + return false; + if ((unsigned)level >= depth) + return true; + for (unsigned i = 0; i < (depth - level); i++) + if(labels[i] != b.labels[i]) + return false; + return true; + } + bool operator!=(const Address &b) const { + return !operator==(b); + } +}; + +class AddrUnsPair { +public: + Address first; + unsigned second; + AddrUnsPair(Address _first, unsigned _second) + : first(_first), second(_second) { + } + AddrUnsPair &operator=(const AddrUnsPair &b) + { + first = b.first; + second = b.second; + return *this; + } +}; + +# else + +class Address { +public: + static const unsigned maxDepth = 32; + unsigned labels[maxDepth]; + unsigned childNums[maxDepth]; + unsigned depth; + unsigned leader; + Address(unsigned _depth); + Address &operator=(const Address &b); + bool operator==(const Address &b) const; + bool isClose(const Address &b, int level) const; + bool operator!=(const Address &b) const; +}; + +Address::Address(unsigned _depth) +{ + depth = _depth; + leader = FALSE; +} + +Address &Address::operator=(const Address &b) { + depth = b.depth; + for (unsigned i = 0; i < depth; i++) { + labels[i] = b.labels[i]; + childNums[i] = b.childNums[i]; + } + leader = FALSE; + return *this; +} + +bool Address::operator==(const Address &b) const { + if (depth != b.depth) + return false; + for (unsigned i = 0; i < depth; i++) + if(labels[i] != b.labels[i]) + return false; + return true; +} + +bool Address::isClose(const Address &b, int level) const { + if (depth != b.depth) + return false; + if ((unsigned)level >= depth) + return true; + for (unsigned i = 0; i < (depth - level); i++) + if(labels[i] != b.labels[i]) + return false; + return true; +} + +bool Address::operator!=(const Address &b) const { + return !operator==(b); +} + +class AddrUnsPair { +public: + Address first; + unsigned second; + AddrUnsPair(Address _first, unsigned _second); + AddrUnsPair &operator=(const AddrUnsPair &b); +}; + +AddrUnsPair::AddrUnsPair(Address _first, unsigned _second) + : first(_first), second(_second) +{ +} + +AddrUnsPair &AddrUnsPair::operator=(const AddrUnsPair &b) +{ + first = b.first; + second = b.second; + return *this; +} + +# endif /* !defined(KMP_DEBUG) && !defined(COVER) */ + + +static int +__kmp_affinity_cmp_Address_labels(const void *a, const void *b) +{ + const Address *aa = (const Address *)&(((AddrUnsPair *)a) + ->first); + const Address *bb = (const Address *)&(((AddrUnsPair *)b) + ->first); + unsigned depth = aa->depth; + unsigned i; + KMP_DEBUG_ASSERT(depth == bb->depth); + for (i = 0; i < depth; i++) { + if (aa->labels[i] < bb->labels[i]) return -1; + if (aa->labels[i] > bb->labels[i]) return 1; + } + return 0; +} + + +static int +__kmp_affinity_cmp_Address_child_num(const void *a, const void *b) +{ + const Address *aa = (const Address *)&(((AddrUnsPair *)a) + ->first); + const Address *bb = (const Address *)&(((AddrUnsPair *)b) + ->first); + unsigned depth = aa->depth; + unsigned i; + KMP_DEBUG_ASSERT(depth == bb->depth); + KMP_DEBUG_ASSERT((unsigned)__kmp_affinity_compact <= depth); + KMP_DEBUG_ASSERT(__kmp_affinity_compact >= 0); + for (i = 0; i < (unsigned)__kmp_affinity_compact; i++) { + int j = depth - i - 1; + if (aa->childNums[j] < bb->childNums[j]) return -1; + if (aa->childNums[j] > bb->childNums[j]) return 1; + } + for (; i < depth; i++) { + int j = i - __kmp_affinity_compact; + if (aa->childNums[j] < bb->childNums[j]) return -1; + if (aa->childNums[j] > bb->childNums[j]) return 1; + } + return 0; +} + + +// +// When sorting by labels, __kmp_affinity_assign_child_nums() must first be +// called to renumber the labels from [0..n] and place them into the child_num +// vector of the address object. This is done in case the labels used for +// the children at one node of the heirarchy differ from those used for +// another node at the same level. Example: suppose the machine has 2 nodes +// with 2 packages each. The first node contains packages 601 and 602, and +// second node contains packages 603 and 604. If we try to sort the table +// for "scatter" affinity, the table will still be sorted 601, 602, 603, 604 +// because we are paying attention to the labels themselves, not the ordinal +// child numbers. By using the child numbers in the sort, the result is +// {0,0}=601, {0,1}=603, {1,0}=602, {1,1}=604. +// +static void +__kmp_affinity_assign_child_nums(AddrUnsPair *address2os, + int numAddrs) +{ + KMP_DEBUG_ASSERT(numAddrs > 0); + int depth = address2os->first.depth; + unsigned *counts = (unsigned *)__kmp_allocate(depth * sizeof(unsigned)); + unsigned *lastLabel = (unsigned *)__kmp_allocate(depth + * sizeof(unsigned)); + int labCt; + for (labCt = 0; labCt < depth; labCt++) { + address2os[0].first.childNums[labCt] = counts[labCt] = 0; + lastLabel[labCt] = address2os[0].first.labels[labCt]; + } + int i; + for (i = 1; i < numAddrs; i++) { + for (labCt = 0; labCt < depth; labCt++) { + if (address2os[i].first.labels[labCt] != lastLabel[labCt]) { + int labCt2; + for (labCt2 = labCt + 1; labCt2 < depth; labCt2++) { + counts[labCt2] = 0; + lastLabel[labCt2] = address2os[i].first.labels[labCt2]; + } + counts[labCt]++; + lastLabel[labCt] = address2os[i].first.labels[labCt]; + break; + } + } + for (labCt = 0; labCt < depth; labCt++) { + address2os[i].first.childNums[labCt] = counts[labCt]; + } + for (; labCt < (int)Address::maxDepth; labCt++) { + address2os[i].first.childNums[labCt] = 0; + } + } +} + + +// +// All of the __kmp_affinity_create_*_map() routines should set +// __kmp_affinity_masks to a vector of affinity mask objects of length +// __kmp_affinity_num_masks, if __kmp_affinity_type != affinity_none, and +// return the number of levels in the machine topology tree (zero if +// __kmp_affinity_type == affinity_none). +// +// All of the __kmp_affinity_create_*_map() routines should set *fullMask +// to the affinity mask for the initialization thread. They need to save and +// restore the mask, and it could be needed later, so saving it is just an +// optimization to avoid calling kmp_get_system_affinity() again. +// +static kmp_affin_mask_t *fullMask = NULL; + +kmp_affin_mask_t * +__kmp_affinity_get_fullMask() { return fullMask; } + + +static int nCoresPerPkg, nPackages; +int __kmp_nThreadsPerCore; + +// +// __kmp_affinity_uniform_topology() doesn't work when called from +// places which support arbitrarily many levels in the machine topology +// map, i.e. the non-default cases in __kmp_affinity_create_cpuinfo_map() +// __kmp_affinity_create_x2apicid_map(). +// +inline static bool +__kmp_affinity_uniform_topology() +{ + return __kmp_avail_proc == (__kmp_nThreadsPerCore * nCoresPerPkg * nPackages); +} + + +// +// Print out the detailed machine topology map, i.e. the physical locations +// of each OS proc. +// +static void +__kmp_affinity_print_topology(AddrUnsPair *address2os, int len, int depth, + int pkgLevel, int coreLevel, int threadLevel) +{ + int proc; + + KMP_INFORM(OSProcToPhysicalThreadMap, "KMP_AFFINITY"); + for (proc = 0; proc < len; proc++) { + int level; + kmp_str_buf_t buf; + __kmp_str_buf_init(&buf); + for (level = 0; level < depth; level++) { + if (level == threadLevel) { + __kmp_str_buf_print(&buf, "%s ", KMP_I18N_STR(Thread)); + } + else if (level == coreLevel) { + __kmp_str_buf_print(&buf, "%s ", KMP_I18N_STR(Core)); + } + else if (level == pkgLevel) { + __kmp_str_buf_print(&buf, "%s ", KMP_I18N_STR(Package)); + } + else if (level > pkgLevel) { + __kmp_str_buf_print(&buf, "%s_%d ", KMP_I18N_STR(Node), + level - pkgLevel - 1); + } + else { + __kmp_str_buf_print(&buf, "L%d ", level); + } + __kmp_str_buf_print(&buf, "%d ", + address2os[proc].first.labels[level]); + } + KMP_INFORM(OSProcMapToPack, "KMP_AFFINITY", address2os[proc].second, + buf.str); + __kmp_str_buf_free(&buf); + } +} + + +// +// If we don't know how to retrieve the machine's processor topology, or +// encounter an error in doing so, this routine is called to form a "flat" +// mapping of os thread id's <-> processor id's. +// +static int +__kmp_affinity_create_flat_map(AddrUnsPair **address2os, + kmp_i18n_id_t *const msg_id) +{ + *address2os = NULL; + *msg_id = kmp_i18n_null; + + // + // Even if __kmp_affinity_type == affinity_none, this routine might still + // called to set __kmp_ht_enabled, & __kmp_ncores, as well as + // __kmp_nThreadsPerCore, nCoresPerPkg, & nPackages. + // + if (! KMP_AFFINITY_CAPABLE()) { + KMP_ASSERT(__kmp_affinity_type == affinity_none); + __kmp_ncores = nPackages = __kmp_xproc; + __kmp_nThreadsPerCore = nCoresPerPkg = 1; + __kmp_ht_enabled = FALSE; + if (__kmp_affinity_verbose) { + KMP_INFORM(AffFlatTopology, "KMP_AFFINITY"); + KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc); + KMP_INFORM(Uniform, "KMP_AFFINITY"); + KMP_INFORM(Topology, "KMP_AFFINITY", nPackages, nCoresPerPkg, + __kmp_nThreadsPerCore, __kmp_ncores); + } + return 0; + } + + // + // When affinity is off, this routine will still be called to set + // __kmp_ht_enabled, & __kmp_ncores, as well as __kmp_nThreadsPerCore, + // nCoresPerPkg, & nPackages. Make sure all these vars are set + // correctly, and return now if affinity is not enabled. + // + __kmp_ncores = nPackages = __kmp_avail_proc; + __kmp_nThreadsPerCore = nCoresPerPkg = 1; + __kmp_ht_enabled = FALSE; + if (__kmp_affinity_verbose) { + char buf[KMP_AFFIN_MASK_PRINT_LEN]; + __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, fullMask); + + KMP_INFORM(AffCapableUseFlat, "KMP_AFFINITY"); + if (__kmp_affinity_respect_mask) { + KMP_INFORM(InitOSProcSetRespect, "KMP_AFFINITY", buf); + } else { + KMP_INFORM(InitOSProcSetNotRespect, "KMP_AFFINITY", buf); + } + KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc); + KMP_INFORM(Uniform, "KMP_AFFINITY"); + KMP_INFORM(Topology, "KMP_AFFINITY", nPackages, nCoresPerPkg, + __kmp_nThreadsPerCore, __kmp_ncores); + } + if (__kmp_affinity_type == affinity_none) { + return 0; + } + + // + // Contruct the data structure to be returned. + // + *address2os = (AddrUnsPair*) + __kmp_allocate(sizeof(**address2os) * __kmp_avail_proc); + int avail_ct = 0; + unsigned int i; + for (i = 0; i < KMP_CPU_SETSIZE; ++i) { + // + // Skip this proc if it is not included in the machine model. + // + if (! KMP_CPU_ISSET(i, fullMask)) { + continue; + } + + Address addr(1); + addr.labels[0] = i; + (*address2os)[avail_ct++] = AddrUnsPair(addr,i); + } + if (__kmp_affinity_verbose) { + KMP_INFORM(OSProcToPackage, "KMP_AFFINITY"); + } + + if (__kmp_affinity_gran_levels < 0) { + // + // Only the package level is modeled in the machine topology map, + // so the #levels of granularity is either 0 or 1. + // + if (__kmp_affinity_gran > affinity_gran_package) { + __kmp_affinity_gran_levels = 1; + } + else { + __kmp_affinity_gran_levels = 0; + } + } + return 1; +} + + +# if KMP_OS_WINDOWS && KMP_ARCH_X86_64 + +// +// If multiple Windows* OS processor groups exist, we can create a 2-level +// topology map with the groups at level 0 and the individual procs at +// level 1. +// +// This facilitates letting the threads float among all procs in a group, +// if granularity=group (the default when there are multiple groups). +// +static int +__kmp_affinity_create_proc_group_map(AddrUnsPair **address2os, + kmp_i18n_id_t *const msg_id) +{ + *address2os = NULL; + *msg_id = kmp_i18n_null; + + // + // If we don't have multiple processor groups, return now. + // The flat mapping will be used. + // + if ((! KMP_AFFINITY_CAPABLE()) || (__kmp_get_proc_group(fullMask) >= 0)) { + // FIXME set *msg_id + return -1; + } + + // + // Contruct the data structure to be returned. + // + *address2os = (AddrUnsPair*) + __kmp_allocate(sizeof(**address2os) * __kmp_avail_proc); + int avail_ct = 0; + int i; + for (i = 0; i < KMP_CPU_SETSIZE; ++i) { + // + // Skip this proc if it is not included in the machine model. + // + if (! KMP_CPU_ISSET(i, fullMask)) { + continue; + } + + Address addr(2); + addr.labels[0] = i / (CHAR_BIT * sizeof(DWORD_PTR)); + addr.labels[1] = i % (CHAR_BIT * sizeof(DWORD_PTR)); + (*address2os)[avail_ct++] = AddrUnsPair(addr,i); + + if (__kmp_affinity_verbose) { + KMP_INFORM(AffOSProcToGroup, "KMP_AFFINITY", i, addr.labels[0], + addr.labels[1]); + } + } + + if (__kmp_affinity_gran_levels < 0) { + if (__kmp_affinity_gran == affinity_gran_group) { + __kmp_affinity_gran_levels = 1; + } + else if ((__kmp_affinity_gran == affinity_gran_fine) + || (__kmp_affinity_gran == affinity_gran_thread)) { + __kmp_affinity_gran_levels = 0; + } + else { + const char *gran_str = NULL; + if (__kmp_affinity_gran == affinity_gran_core) { + gran_str = "core"; + } + else if (__kmp_affinity_gran == affinity_gran_package) { + gran_str = "package"; + } + else if (__kmp_affinity_gran == affinity_gran_node) { + gran_str = "node"; + } + else { + KMP_ASSERT(0); + } + + // Warning: can't use affinity granularity \"gran\" with group topology method, using "thread" + __kmp_affinity_gran_levels = 0; + } + } + return 2; +} + +# endif /* KMP_OS_WINDOWS && KMP_ARCH_X86_64 */ + + +# if KMP_ARCH_X86 || KMP_ARCH_X86_64 + +static int +__kmp_cpuid_mask_width(int count) { + int r = 0; + + while((1<<r) < count) + ++r; + return r; +} + + +class apicThreadInfo { +public: + unsigned osId; // param to __kmp_affinity_bind_thread + unsigned apicId; // from cpuid after binding + unsigned maxCoresPerPkg; // "" + unsigned maxThreadsPerPkg; // "" + unsigned pkgId; // inferred from above values + unsigned coreId; // "" + unsigned threadId; // "" +}; + + +static int +__kmp_affinity_cmp_apicThreadInfo_os_id(const void *a, const void *b) +{ + const apicThreadInfo *aa = (const apicThreadInfo *)a; + const apicThreadInfo *bb = (const apicThreadInfo *)b; + if (aa->osId < bb->osId) return -1; + if (aa->osId > bb->osId) return 1; + return 0; +} + + +static int +__kmp_affinity_cmp_apicThreadInfo_phys_id(const void *a, const void *b) +{ + const apicThreadInfo *aa = (const apicThreadInfo *)a; + const apicThreadInfo *bb = (const apicThreadInfo *)b; + if (aa->pkgId < bb->pkgId) return -1; + if (aa->pkgId > bb->pkgId) return 1; + if (aa->coreId < bb->coreId) return -1; + if (aa->coreId > bb->coreId) return 1; + if (aa->threadId < bb->threadId) return -1; + if (aa->threadId > bb->threadId) return 1; + return 0; +} + + +// +// On IA-32 architecture and Intel(R) 64 architecture, we attempt to use +// an algorithm which cycles through the available os threads, setting +// the current thread's affinity mask to that thread, and then retrieves +// the Apic Id for each thread context using the cpuid instruction. +// +static int +__kmp_affinity_create_apicid_map(AddrUnsPair **address2os, + kmp_i18n_id_t *const msg_id) +{ + int rc; + *address2os = NULL; + *msg_id = kmp_i18n_null; + +# if KMP_MIC + { + // The code below will use cpuid(4). + // Check if cpuid(4) is supported. + // FIXME? - this really doesn't need to be specific to MIC. + kmp_cpuid buf; + __kmp_x86_cpuid(0, 0, &buf); + if (buf.eax < 4) { + *msg_id = kmp_i18n_str_NoLeaf4Support; + return -1; + } + } +# endif // KMP_MIC + + // + // Even if __kmp_affinity_type == affinity_none, this routine is still + // called to set __kmp_ht_enabled, & __kmp_ncores, as well as + // __kmp_nThreadsPerCore, nCoresPerPkg, & nPackages. + // + // The algorithm used starts by setting the affinity to each available + // thread and retreiving info from the cpuid instruction, so if we are not + // capable of calling __kmp_affinity_get_map()/__kmp_affinity_get_map(), + // then we need to do something else. + // + if (! KMP_AFFINITY_CAPABLE()) { + // + // Hack to try and infer the machine topology using only the data + // available from cpuid on the current thread, and __kmp_xproc. + // + KMP_ASSERT(__kmp_affinity_type == affinity_none); + + // + // Get an upper bound on the number of threads per package using + // cpuid(1). + // + // On some OS/chps combinations where HT is supported by the chip + // but is disabled, this value will be 2 on a single core chip. + // Usually, it will be 2 if HT is enabled and 1 if HT is disabled. + // + kmp_cpuid buf; + __kmp_x86_cpuid(1, 0, &buf); + int maxThreadsPerPkg = (buf.ebx >> 16) & 0xff; + if (maxThreadsPerPkg == 0) { + maxThreadsPerPkg = 1; + } + + // + // The num cores per pkg comes from cpuid(4). + // 1 must be added to the encoded value. + // + // The author of cpu_count.cpp treated this only an upper bound + // on the number of cores, but I haven't seen any cases where it + // was greater than the actual number of cores, so we will treat + // it as exact in this block of code. + // + // First, we need to check if cpuid(4) is supported on this chip. + // To see if cpuid(n) is supported, issue cpuid(0) and check if eax + // has the value n or greater. + // + __kmp_x86_cpuid(0, 0, &buf); + if (buf.eax >= 4) { + __kmp_x86_cpuid(4, 0, &buf); + nCoresPerPkg = ((buf.eax >> 26) & 0x3f) + 1; + } + else { + nCoresPerPkg = 1; + } + + // + // There is no way to reliably tell if HT is enabled without issuing + // the cpuid instruction from every thread, can correlating the cpuid + // info, so if the machine is not affinity capable, we assume that HT + // is off. We have seen quite a few machines where maxThreadsPerPkg + // is 2, yet the machine does not support HT. + // + // - Older OSes are usually found on machines with older chips, which + // do not support HT. + // + // - The performance penalty for mistakenly identifying a machine as + // HT when it isn't (which results in blocktime being incorrecly set + // to 0) is greater than the penalty when for mistakenly identifying + // a machine as being 1 thread/core when it is really HT enabled + // (which results in blocktime being incorrectly set to a positive + // value). + // + __kmp_ncores = __kmp_xproc; + nPackages = (__kmp_xproc + nCoresPerPkg - 1) / nCoresPerPkg; + __kmp_nThreadsPerCore = 1; + __kmp_ht_enabled = FALSE; + if (__kmp_affinity_verbose) { + KMP_INFORM(AffNotCapableUseLocCpuid, "KMP_AFFINITY"); + KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc); + if (__kmp_affinity_uniform_topology()) { + KMP_INFORM(Uniform, "KMP_AFFINITY"); + } else { + KMP_INFORM(NonUniform, "KMP_AFFINITY"); + } + KMP_INFORM(Topology, "KMP_AFFINITY", nPackages, nCoresPerPkg, + __kmp_nThreadsPerCore, __kmp_ncores); + } + return 0; + } + + // + // + // From here on, we can assume that it is safe to call + // __kmp_get_system_affinity() and __kmp_set_system_affinity(), + // even if __kmp_affinity_type = affinity_none. + // + + // + // Save the affinity mask for the current thread. + // + kmp_affin_mask_t *oldMask; + KMP_CPU_ALLOC(oldMask); + KMP_ASSERT(oldMask != NULL); + __kmp_get_system_affinity(oldMask, TRUE); + + // + // Run through each of the available contexts, binding the current thread + // to it, and obtaining the pertinent information using the cpuid instr. + // + // The relevant information is: + // + // Apic Id: Bits 24:31 of ebx after issuing cpuid(1) - each thread context + // has a uniqie Apic Id, which is of the form pkg# : core# : thread#. + // + // Max Threads Per Pkg: Bits 16:23 of ebx after issuing cpuid(1). The + // value of this field determines the width of the core# + thread# + // fields in the Apic Id. It is also an upper bound on the number + // of threads per package, but it has been verified that situations + // happen were it is not exact. In particular, on certain OS/chip + // combinations where Intel(R) Hyper-Threading Technology is supported + // by the chip but has + // been disabled, the value of this field will be 2 (for a single core + // chip). On other OS/chip combinations supporting + // Intel(R) Hyper-Threading Technology, the value of + // this field will be 1 when Intel(R) Hyper-Threading Technology is + // disabled and 2 when it is enabled. + // + // Max Cores Per Pkg: Bits 26:31 of eax after issuing cpuid(4). The + // value of this field (+1) determines the width of the core# field in + // the Apic Id. The comments in "cpucount.cpp" say that this value is + // an upper bound, but the IA-32 architecture manual says that it is + // exactly the number of cores per package, and I haven't seen any + // case where it wasn't. + // + // From this information, deduce the package Id, core Id, and thread Id, + // and set the corresponding fields in the apicThreadInfo struct. + // + unsigned i; + apicThreadInfo *threadInfo = (apicThreadInfo *)__kmp_allocate( + __kmp_avail_proc * sizeof(apicThreadInfo)); + unsigned nApics = 0; + for (i = 0; i < KMP_CPU_SETSIZE; ++i) { + // + // Skip this proc if it is not included in the machine model. + // + if (! KMP_CPU_ISSET(i, fullMask)) { + continue; + } + KMP_DEBUG_ASSERT((int)nApics < __kmp_avail_proc); + + __kmp_affinity_bind_thread(i); + threadInfo[nApics].osId = i; + + // + // The apic id and max threads per pkg come from cpuid(1). + // + kmp_cpuid buf; + __kmp_x86_cpuid(1, 0, &buf); + if (! (buf.edx >> 9) & 1) { + __kmp_set_system_affinity(oldMask, TRUE); + __kmp_free(threadInfo); + KMP_CPU_FREE(oldMask); + *msg_id = kmp_i18n_str_ApicNotPresent; + return -1; + } + threadInfo[nApics].apicId = (buf.ebx >> 24) & 0xff; + threadInfo[nApics].maxThreadsPerPkg = (buf.ebx >> 16) & 0xff; + if (threadInfo[nApics].maxThreadsPerPkg == 0) { + threadInfo[nApics].maxThreadsPerPkg = 1; + } + + // + // Max cores per pkg comes from cpuid(4). + // 1 must be added to the encoded value. + // + // First, we need to check if cpuid(4) is supported on this chip. + // To see if cpuid(n) is supported, issue cpuid(0) and check if eax + // has the value n or greater. + // + __kmp_x86_cpuid(0, 0, &buf); + if (buf.eax >= 4) { + __kmp_x86_cpuid(4, 0, &buf); + threadInfo[nApics].maxCoresPerPkg = ((buf.eax >> 26) & 0x3f) + 1; + } + else { + threadInfo[nApics].maxCoresPerPkg = 1; + } + + // + // Infer the pkgId / coreId / threadId using only the info + // obtained locally. + // + int widthCT = __kmp_cpuid_mask_width( + threadInfo[nApics].maxThreadsPerPkg); + threadInfo[nApics].pkgId = threadInfo[nApics].apicId >> widthCT; + + int widthC = __kmp_cpuid_mask_width( + threadInfo[nApics].maxCoresPerPkg); + int widthT = widthCT - widthC; + if (widthT < 0) { + // + // I've never seen this one happen, but I suppose it could, if + // the cpuid instruction on a chip was really screwed up. + // Make sure to restore the affinity mask before the tail call. + // + __kmp_set_system_affinity(oldMask, TRUE); + __kmp_free(threadInfo); + KMP_CPU_FREE(oldMask); + *msg_id = kmp_i18n_str_InvalidCpuidInfo; + return -1; + } + + int maskC = (1 << widthC) - 1; + threadInfo[nApics].coreId = (threadInfo[nApics].apicId >> widthT) + &maskC; + + int maskT = (1 << widthT) - 1; + threadInfo[nApics].threadId = threadInfo[nApics].apicId &maskT; + + nApics++; + } + + // + // We've collected all the info we need. + // Restore the old affinity mask for this thread. + // + __kmp_set_system_affinity(oldMask, TRUE); + + // + // If there's only one thread context to bind to, form an Address object + // with depth 1 and return immediately (or, if affinity is off, set + // address2os to NULL and return). + // + // If it is configured to omit the package level when there is only a + // single package, the logic at the end of this routine won't work if + // there is only a single thread - it would try to form an Address + // object with depth 0. + // + KMP_ASSERT(nApics > 0); + if (nApics == 1) { + __kmp_ncores = nPackages = 1; + __kmp_nThreadsPerCore = nCoresPerPkg = 1; + __kmp_ht_enabled = FALSE; + if (__kmp_affinity_verbose) { + char buf[KMP_AFFIN_MASK_PRINT_LEN]; + __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, oldMask); + + KMP_INFORM(AffUseGlobCpuid, "KMP_AFFINITY"); + if (__kmp_affinity_respect_mask) { + KMP_INFORM(InitOSProcSetRespect, "KMP_AFFINITY", buf); + } else { + KMP_INFORM(InitOSProcSetNotRespect, "KMP_AFFINITY", buf); + } + KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc); + KMP_INFORM(Uniform, "KMP_AFFINITY"); + KMP_INFORM(Topology, "KMP_AFFINITY", nPackages, nCoresPerPkg, + __kmp_nThreadsPerCore, __kmp_ncores); + } + + if (__kmp_affinity_type == affinity_none) { + __kmp_free(threadInfo); + KMP_CPU_FREE(oldMask); + return 0; + } + + *address2os = (AddrUnsPair*)__kmp_allocate(sizeof(AddrUnsPair)); + Address addr(1); + addr.labels[0] = threadInfo[0].pkgId; + (*address2os)[0] = AddrUnsPair(addr, threadInfo[0].osId); + + if (__kmp_affinity_gran_levels < 0) { + __kmp_affinity_gran_levels = 0; + } + + if (__kmp_affinity_verbose) { + __kmp_affinity_print_topology(*address2os, 1, 1, 0, -1, -1); + } + + __kmp_free(threadInfo); + KMP_CPU_FREE(oldMask); + return 1; + } + + // + // Sort the threadInfo table by physical Id. + // + qsort(threadInfo, nApics, sizeof(*threadInfo), + __kmp_affinity_cmp_apicThreadInfo_phys_id); + + // + // The table is now sorted by pkgId / coreId / threadId, but we really + // don't know the radix of any of the fields. pkgId's may be sparsely + // assigned among the chips on a system. Although coreId's are usually + // assigned [0 .. coresPerPkg-1] and threadId's are usually assigned + // [0..threadsPerCore-1], we don't want to make any such assumptions. + // + // For that matter, we don't know what coresPerPkg and threadsPerCore + // (or the total # packages) are at this point - we want to determine + // that now. We only have an upper bound on the first two figures. + // + // We also perform a consistency check at this point: the values returned + // by the cpuid instruction for any thread bound to a given package had + // better return the same info for maxThreadsPerPkg and maxCoresPerPkg. + // + nPackages = 1; + nCoresPerPkg = 1; + __kmp_nThreadsPerCore = 1; + unsigned nCores = 1; + + unsigned pkgCt = 1; // to determine radii + unsigned lastPkgId = threadInfo[0].pkgId; + unsigned coreCt = 1; + unsigned lastCoreId = threadInfo[0].coreId; + unsigned threadCt = 1; + unsigned lastThreadId = threadInfo[0].threadId; + + // intra-pkg consist checks + unsigned prevMaxCoresPerPkg = threadInfo[0].maxCoresPerPkg; + unsigned prevMaxThreadsPerPkg = threadInfo[0].maxThreadsPerPkg; + + for (i = 1; i < nApics; i++) { + if (threadInfo[i].pkgId != lastPkgId) { + nCores++; + pkgCt++; + lastPkgId = threadInfo[i].pkgId; + if ((int)coreCt > nCoresPerPkg) nCoresPerPkg = coreCt; + coreCt = 1; + lastCoreId = threadInfo[i].coreId; + if ((int)threadCt > __kmp_nThreadsPerCore) __kmp_nThreadsPerCore = threadCt; + threadCt = 1; + lastThreadId = threadInfo[i].threadId; + + // + // This is a different package, so go on to the next iteration + // without doing any consistency checks. Reset the consistency + // check vars, though. + // + prevMaxCoresPerPkg = threadInfo[i].maxCoresPerPkg; + prevMaxThreadsPerPkg = threadInfo[i].maxThreadsPerPkg; + continue; + } + + if (threadInfo[i].coreId != lastCoreId) { + nCores++; + coreCt++; + lastCoreId = threadInfo[i].coreId; + if ((int)threadCt > __kmp_nThreadsPerCore) __kmp_nThreadsPerCore = threadCt; + threadCt = 1; + lastThreadId = threadInfo[i].threadId; + } + else if (threadInfo[i].threadId != lastThreadId) { + threadCt++; + lastThreadId = threadInfo[i].threadId; + } + else { + __kmp_free(threadInfo); + KMP_CPU_FREE(oldMask); + *msg_id = kmp_i18n_str_LegacyApicIDsNotUnique; + return -1; + } + + // + // Check to make certain that the maxCoresPerPkg and maxThreadsPerPkg + // fields agree between all the threads bounds to a given package. + // + if ((prevMaxCoresPerPkg != threadInfo[i].maxCoresPerPkg) + || (prevMaxThreadsPerPkg != threadInfo[i].maxThreadsPerPkg)) { + __kmp_free(threadInfo); + KMP_CPU_FREE(oldMask); + *msg_id = kmp_i18n_str_InconsistentCpuidInfo; + return -1; + } + } + nPackages = pkgCt; + if ((int)coreCt > nCoresPerPkg) nCoresPerPkg = coreCt; + if ((int)threadCt > __kmp_nThreadsPerCore) __kmp_nThreadsPerCore = threadCt; + + // + // When affinity is off, this routine will still be called to set + // __kmp_ht_enabled, & __kmp_ncores, as well as __kmp_nThreadsPerCore, + // nCoresPerPkg, & nPackages. Make sure all these vars are set + // correctly, and return now if affinity is not enabled. + // + __kmp_ht_enabled = (__kmp_nThreadsPerCore > 1); + __kmp_ncores = nCores; + if (__kmp_affinity_verbose) { + char buf[KMP_AFFIN_MASK_PRINT_LEN]; + __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, oldMask); + + KMP_INFORM(AffUseGlobCpuid, "KMP_AFFINITY"); + if (__kmp_affinity_respect_mask) { + KMP_INFORM(InitOSProcSetRespect, "KMP_AFFINITY", buf); + } else { + KMP_INFORM(InitOSProcSetNotRespect, "KMP_AFFINITY", buf); + } + KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc); + if (__kmp_affinity_uniform_topology()) { + KMP_INFORM(Uniform, "KMP_AFFINITY"); + } else { + KMP_INFORM(NonUniform, "KMP_AFFINITY"); + } + KMP_INFORM(Topology, "KMP_AFFINITY", nPackages, nCoresPerPkg, + __kmp_nThreadsPerCore, __kmp_ncores); + + } + + if (__kmp_affinity_type == affinity_none) { + __kmp_free(threadInfo); + KMP_CPU_FREE(oldMask); + return 0; + } + + // + // Now that we've determined the number of packages, the number of cores + // per package, and the number of threads per core, we can construct the + // data structure that is to be returned. + // + int pkgLevel = 0; + int coreLevel = (nCoresPerPkg <= 1) ? -1 : 1; + int threadLevel = (__kmp_nThreadsPerCore <= 1) ? -1 : ((coreLevel >= 0) ? 2 : 1); + unsigned depth = (pkgLevel >= 0) + (coreLevel >= 0) + (threadLevel >= 0); + + KMP_ASSERT(depth > 0); + *address2os = (AddrUnsPair*)__kmp_allocate(sizeof(AddrUnsPair) * nApics); + + for (i = 0; i < nApics; ++i) { + Address addr(depth); + unsigned os = threadInfo[i].osId; + int d = 0; + + if (pkgLevel >= 0) { + addr.labels[d++] = threadInfo[i].pkgId; + } + if (coreLevel >= 0) { + addr.labels[d++] = threadInfo[i].coreId; + } + if (threadLevel >= 0) { + addr.labels[d++] = threadInfo[i].threadId; + } + (*address2os)[i] = AddrUnsPair(addr, os); + } + + if (__kmp_affinity_gran_levels < 0) { + // + // Set the granularity level based on what levels are modeled + // in the machine topology map. + // + __kmp_affinity_gran_levels = 0; + if ((threadLevel >= 0) + && (__kmp_affinity_gran > affinity_gran_thread)) { + __kmp_affinity_gran_levels++; + } + if ((coreLevel >= 0) && (__kmp_affinity_gran > affinity_gran_core)) { + __kmp_affinity_gran_levels++; + } + if ((pkgLevel >= 0) && (__kmp_affinity_gran > affinity_gran_package)) { + __kmp_affinity_gran_levels++; + } + } + + if (__kmp_affinity_verbose) { + __kmp_affinity_print_topology(*address2os, nApics, depth, pkgLevel, + coreLevel, threadLevel); + } + + __kmp_free(threadInfo); + KMP_CPU_FREE(oldMask); + return depth; +} + + +// +// Intel(R) microarchitecture code name Nehalem, Dunnington and later +// architectures support a newer interface for specifying the x2APIC Ids, +// based on cpuid leaf 11. +// +static int +__kmp_affinity_create_x2apicid_map(AddrUnsPair **address2os, + kmp_i18n_id_t *const msg_id) +{ + kmp_cpuid buf; + + *address2os = NULL; + *msg_id = kmp_i18n_null; + + // + // Check to see if cpuid leaf 11 is supported. + // + __kmp_x86_cpuid(0, 0, &buf); + if (buf.eax < 11) { + *msg_id = kmp_i18n_str_NoLeaf11Support; + return -1; + } + __kmp_x86_cpuid(11, 0, &buf); + if (buf.ebx == 0) { + *msg_id = kmp_i18n_str_NoLeaf11Support; + return -1; + } + + // + // Find the number of levels in the machine topology. While we're at it, + // get the default values for __kmp_nThreadsPerCore & nCoresPerPkg. We will + // try to get more accurate values later by explicitly counting them, + // but get reasonable defaults now, in case we return early. + // + int level; + int threadLevel = -1; + int coreLevel = -1; + int pkgLevel = -1; + __kmp_nThreadsPerCore = nCoresPerPkg = nPackages = 1; + + for (level = 0;; level++) { + if (level > 31) { + // + // FIXME: Hack for DPD200163180 + // + // If level is big then something went wrong -> exiting + // + // There could actually be 32 valid levels in the machine topology, + // but so far, the only machine we have seen which does not exit + // this loop before iteration 32 has fubar x2APIC settings. + // + // For now, just reject this case based upon loop trip count. + // + *msg_id = kmp_i18n_str_InvalidCpuidInfo; + return -1; + } + __kmp_x86_cpuid(11, level, &buf); + if (buf.ebx == 0) { + if (pkgLevel < 0) { + // + // Will infer nPackages from __kmp_xproc + // + pkgLevel = level; + level++; + } + break; + } + int kind = (buf.ecx >> 8) & 0xff; + if (kind == 1) { + // + // SMT level + // + threadLevel = level; + coreLevel = -1; + pkgLevel = -1; + __kmp_nThreadsPerCore = buf.ebx & 0xff; + if (__kmp_nThreadsPerCore == 0) { + *msg_id = kmp_i18n_str_InvalidCpuidInfo; + return -1; + } + } + else if (kind == 2) { + // + // core level + // + coreLevel = level; + pkgLevel = -1; + nCoresPerPkg = buf.ebx & 0xff; + if (nCoresPerPkg == 0) { + *msg_id = kmp_i18n_str_InvalidCpuidInfo; + return -1; + } + } + else { + if (level <= 0) { + *msg_id = kmp_i18n_str_InvalidCpuidInfo; + return -1; + } + if (pkgLevel >= 0) { + continue; + } + pkgLevel = level; + nPackages = buf.ebx & 0xff; + if (nPackages == 0) { + *msg_id = kmp_i18n_str_InvalidCpuidInfo; + return -1; + } + } + } + int depth = level; + + // + // In the above loop, "level" was counted from the finest level (usually + // thread) to the coarsest. The caller expects that we will place the + // labels in (*address2os)[].first.labels[] in the inverse order, so + // we need to invert the vars saying which level means what. + // + if (threadLevel >= 0) { + threadLevel = depth - threadLevel - 1; + } + if (coreLevel >= 0) { + coreLevel = depth - coreLevel - 1; + } + KMP_DEBUG_ASSERT(pkgLevel >= 0); + pkgLevel = depth - pkgLevel - 1; + + // + // The algorithm used starts by setting the affinity to each available + // thread and retrieving info from the cpuid instruction, so if we are not + // capable of calling __kmp_affinity_get_map()/__kmp_affinity_get_map(), + // then we need to do something else - use the defaults that we calculated + // from issuing cpuid without binding to each proc. + // + if (! KMP_AFFINITY_CAPABLE()) + { + // + // Hack to try and infer the machine topology using only the data + // available from cpuid on the current thread, and __kmp_xproc. + // + KMP_ASSERT(__kmp_affinity_type == affinity_none); + + __kmp_ncores = __kmp_xproc / __kmp_nThreadsPerCore; + nPackages = (__kmp_xproc + nCoresPerPkg - 1) / nCoresPerPkg; + __kmp_ht_enabled = (__kmp_nThreadsPerCore > 1); + if (__kmp_affinity_verbose) { + KMP_INFORM(AffNotCapableUseLocCpuidL11, "KMP_AFFINITY"); + KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc); + if (__kmp_affinity_uniform_topology()) { + KMP_INFORM(Uniform, "KMP_AFFINITY"); + } else { + KMP_INFORM(NonUniform, "KMP_AFFINITY"); + } + KMP_INFORM(Topology, "KMP_AFFINITY", nPackages, nCoresPerPkg, + __kmp_nThreadsPerCore, __kmp_ncores); + } + return 0; + } + + // + // + // From here on, we can assume that it is safe to call + // __kmp_get_system_affinity() and __kmp_set_system_affinity(), + // even if __kmp_affinity_type = affinity_none. + // + + // + // Save the affinity mask for the current thread. + // + kmp_affin_mask_t *oldMask; + KMP_CPU_ALLOC(oldMask); + __kmp_get_system_affinity(oldMask, TRUE); + + // + // Allocate the data structure to be returned. + // + AddrUnsPair *retval = (AddrUnsPair *) + __kmp_allocate(sizeof(AddrUnsPair) * __kmp_avail_proc); + + // + // Run through each of the available contexts, binding the current thread + // to it, and obtaining the pertinent information using the cpuid instr. + // + unsigned int proc; + int nApics = 0; + for (proc = 0; proc < KMP_CPU_SETSIZE; ++proc) { + // + // Skip this proc if it is not included in the machine model. + // + if (! KMP_CPU_ISSET(proc, fullMask)) { + continue; + } + KMP_DEBUG_ASSERT(nApics < __kmp_avail_proc); + + __kmp_affinity_bind_thread(proc); + + // + // Extrach the labels for each level in the machine topology map + // from the Apic ID. + // + Address addr(depth); + int prev_shift = 0; + + for (level = 0; level < depth; level++) { + __kmp_x86_cpuid(11, level, &buf); + unsigned apicId = buf.edx; + if (buf.ebx == 0) { + if (level != depth - 1) { + KMP_CPU_FREE(oldMask); + *msg_id = kmp_i18n_str_InconsistentCpuidInfo; + return -1; + } + addr.labels[depth - level - 1] = apicId >> prev_shift; + level++; + break; + } + int shift = buf.eax & 0x1f; + int mask = (1 << shift) - 1; + addr.labels[depth - level - 1] = (apicId & mask) >> prev_shift; + prev_shift = shift; + } + if (level != depth) { + KMP_CPU_FREE(oldMask); + *msg_id = kmp_i18n_str_InconsistentCpuidInfo; + return -1; + } + + retval[nApics] = AddrUnsPair(addr, proc); + nApics++; + } + + // + // We've collected all the info we need. + // Restore the old affinity mask for this thread. + // + __kmp_set_system_affinity(oldMask, TRUE); + + // + // If there's only one thread context to bind to, return now. + // + KMP_ASSERT(nApics > 0); + if (nApics == 1) { + __kmp_ncores = nPackages = 1; + __kmp_nThreadsPerCore = nCoresPerPkg = 1; + __kmp_ht_enabled = FALSE; + if (__kmp_affinity_verbose) { + char buf[KMP_AFFIN_MASK_PRINT_LEN]; + __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, oldMask); + + KMP_INFORM(AffUseGlobCpuidL11, "KMP_AFFINITY"); + if (__kmp_affinity_respect_mask) { + KMP_INFORM(InitOSProcSetRespect, "KMP_AFFINITY", buf); + } else { + KMP_INFORM(InitOSProcSetNotRespect, "KMP_AFFINITY", buf); + } + KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc); + KMP_INFORM(Uniform, "KMP_AFFINITY"); + KMP_INFORM(Topology, "KMP_AFFINITY", nPackages, nCoresPerPkg, + __kmp_nThreadsPerCore, __kmp_ncores); + } + + if (__kmp_affinity_type == affinity_none) { + __kmp_free(retval); + KMP_CPU_FREE(oldMask); + return 0; + } + + // + // Form an Address object which only includes the package level. + // + Address addr(1); + addr.labels[0] = retval[0].first.labels[pkgLevel]; + retval[0].first = addr; + + if (__kmp_affinity_gran_levels < 0) { + __kmp_affinity_gran_levels = 0; + } + + if (__kmp_affinity_verbose) { + __kmp_affinity_print_topology(retval, 1, 1, 0, -1, -1); + } + + *address2os = retval; + KMP_CPU_FREE(oldMask); + return 1; + } + + // + // Sort the table by physical Id. + // + qsort(retval, nApics, sizeof(*retval), __kmp_affinity_cmp_Address_labels); + + // + // Find the radix at each of the levels. + // + unsigned *totals = (unsigned *)__kmp_allocate(depth * sizeof(unsigned)); + unsigned *counts = (unsigned *)__kmp_allocate(depth * sizeof(unsigned)); + unsigned *maxCt = (unsigned *)__kmp_allocate(depth * sizeof(unsigned)); + unsigned *last = (unsigned *)__kmp_allocate(depth * sizeof(unsigned)); + for (level = 0; level < depth; level++) { + totals[level] = 1; + maxCt[level] = 1; + counts[level] = 1; + last[level] = retval[0].first.labels[level]; + } + + // + // From here on, the iteration variable "level" runs from the finest + // level to the coarsest, i.e. we iterate forward through + // (*address2os)[].first.labels[] - in the previous loops, we iterated + // backwards. + // + for (proc = 1; (int)proc < nApics; proc++) { + int level; + for (level = 0; level < depth; level++) { + if (retval[proc].first.labels[level] != last[level]) { + int j; + for (j = level + 1; j < depth; j++) { + totals[j]++; + counts[j] = 1; + // The line below causes printing incorrect topology information + // in case the max value for some level (maxCt[level]) is encountered earlier than + // some less value while going through the array. + // For example, let pkg0 has 4 cores and pkg1 has 2 cores. Then maxCt[1] == 2 + // whereas it must be 4. + // TODO!!! Check if it can be commented safely + //maxCt[j] = 1; + last[j] = retval[proc].first.labels[j]; + } + totals[level]++; + counts[level]++; + if (counts[level] > maxCt[level]) { + maxCt[level] = counts[level]; + } + last[level] = retval[proc].first.labels[level]; + break; + } + else if (level == depth - 1) { + __kmp_free(last); + __kmp_free(maxCt); + __kmp_free(counts); + __kmp_free(totals); + __kmp_free(retval); + KMP_CPU_FREE(oldMask); + *msg_id = kmp_i18n_str_x2ApicIDsNotUnique; + return -1; + } + } + } + + // + // When affinity is off, this routine will still be called to set + // __kmp_ht_enabled, & __kmp_ncores, as well as __kmp_nThreadsPerCore, + // nCoresPerPkg, & nPackages. Make sure all these vars are set + // correctly, and return if affinity is not enabled. + // + if (threadLevel >= 0) { + __kmp_nThreadsPerCore = maxCt[threadLevel]; + } + else { + __kmp_nThreadsPerCore = 1; + } + __kmp_ht_enabled = (__kmp_nThreadsPerCore > 1); + + nPackages = totals[pkgLevel]; + + if (coreLevel >= 0) { + __kmp_ncores = totals[coreLevel]; + nCoresPerPkg = maxCt[coreLevel]; + } + else { + __kmp_ncores = nPackages; + nCoresPerPkg = 1; + } + + // + // Check to see if the machine topology is uniform + // + unsigned prod = maxCt[0]; + for (level = 1; level < depth; level++) { + prod *= maxCt[level]; + } + bool uniform = (prod == totals[level - 1]); + + // + // Print the machine topology summary. + // + if (__kmp_affinity_verbose) { + char mask[KMP_AFFIN_MASK_PRINT_LEN]; + __kmp_affinity_print_mask(mask, KMP_AFFIN_MASK_PRINT_LEN, oldMask); + + KMP_INFORM(AffUseGlobCpuidL11, "KMP_AFFINITY"); + if (__kmp_affinity_respect_mask) { + KMP_INFORM(InitOSProcSetRespect, "KMP_AFFINITY", mask); + } else { + KMP_INFORM(InitOSProcSetNotRespect, "KMP_AFFINITY", mask); + } + KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc); + if (uniform) { + KMP_INFORM(Uniform, "KMP_AFFINITY"); + } else { + KMP_INFORM(NonUniform, "KMP_AFFINITY"); + } + + kmp_str_buf_t buf; + __kmp_str_buf_init(&buf); + + __kmp_str_buf_print(&buf, "%d", totals[0]); + for (level = 1; level <= pkgLevel; level++) { + __kmp_str_buf_print(&buf, " x %d", maxCt[level]); + } + KMP_INFORM(TopologyExtra, "KMP_AFFINITY", buf.str, nCoresPerPkg, + __kmp_nThreadsPerCore, __kmp_ncores); + + __kmp_str_buf_free(&buf); + } + + if (__kmp_affinity_type == affinity_none) { + __kmp_free(last); + __kmp_free(maxCt); + __kmp_free(counts); + __kmp_free(totals); + __kmp_free(retval); + KMP_CPU_FREE(oldMask); + return 0; + } + + // + // Find any levels with radiix 1, and remove them from the map + // (except for the package level). + // + int new_depth = 0; + for (level = 0; level < depth; level++) { + if ((maxCt[level] == 1) && (level != pkgLevel)) { + continue; + } + new_depth++; + } + + // + // If we are removing any levels, allocate a new vector to return, + // and copy the relevant information to it. + // + if (new_depth != depth) { + AddrUnsPair *new_retval = (AddrUnsPair *)__kmp_allocate( + sizeof(AddrUnsPair) * nApics); + for (proc = 0; (int)proc < nApics; proc++) { + Address addr(new_depth); + new_retval[proc] = AddrUnsPair(addr, retval[proc].second); + } + int new_level = 0; + for (level = 0; level < depth; level++) { + if ((maxCt[level] == 1) && (level != pkgLevel)) { + if (level == threadLevel) { + threadLevel = -1; + } + else if ((threadLevel >= 0) && (level < threadLevel)) { + threadLevel--; + } + if (level == coreLevel) { + coreLevel = -1; + } + else if ((coreLevel >= 0) && (level < coreLevel)) { + coreLevel--; + } + if (level < pkgLevel) { + pkgLevel--; + } + continue; + } + for (proc = 0; (int)proc < nApics; proc++) { + new_retval[proc].first.labels[new_level] + = retval[proc].first.labels[level]; + } + new_level++; + } + + __kmp_free(retval); + retval = new_retval; + depth = new_depth; + } + + if (__kmp_affinity_gran_levels < 0) { + // + // Set the granularity level based on what levels are modeled + // in the machine topology map. + // + __kmp_affinity_gran_levels = 0; + if ((threadLevel >= 0) && (__kmp_affinity_gran > affinity_gran_thread)) { + __kmp_affinity_gran_levels++; + } + if ((coreLevel >= 0) && (__kmp_affinity_gran > affinity_gran_core)) { + __kmp_affinity_gran_levels++; + } + if (__kmp_affinity_gran > affinity_gran_package) { + __kmp_affinity_gran_levels++; + } + } + + if (__kmp_affinity_verbose) { + __kmp_affinity_print_topology(retval, nApics, depth, pkgLevel, + coreLevel, threadLevel); + } + + __kmp_free(last); + __kmp_free(maxCt); + __kmp_free(counts); + __kmp_free(totals); + KMP_CPU_FREE(oldMask); + *address2os = retval; + return depth; +} + + +# endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */ + + +#define osIdIndex 0 +#define threadIdIndex 1 +#define coreIdIndex 2 +#define pkgIdIndex 3 +#define nodeIdIndex 4 + +typedef unsigned *ProcCpuInfo; +static unsigned maxIndex = pkgIdIndex; + + +static int +__kmp_affinity_cmp_ProcCpuInfo_os_id(const void *a, const void *b) +{ + const unsigned *aa = (const unsigned *)a; + const unsigned *bb = (const unsigned *)b; + if (aa[osIdIndex] < bb[osIdIndex]) return -1; + if (aa[osIdIndex] > bb[osIdIndex]) return 1; + return 0; +}; + + +static int +__kmp_affinity_cmp_ProcCpuInfo_phys_id(const void *a, const void *b) +{ + unsigned i; + const unsigned *aa = *((const unsigned **)a); + const unsigned *bb = *((const unsigned **)b); + for (i = maxIndex; ; i--) { + if (aa[i] < bb[i]) return -1; + if (aa[i] > bb[i]) return 1; + if (i == osIdIndex) break; + } + return 0; +} + + +// +// Parse /proc/cpuinfo (or an alternate file in the same format) to obtain the +// affinity map. +// +static int +__kmp_affinity_create_cpuinfo_map(AddrUnsPair **address2os, int *line, + kmp_i18n_id_t *const msg_id, FILE *f) +{ + *address2os = NULL; + *msg_id = kmp_i18n_null; + + // + // Scan of the file, and count the number of "processor" (osId) fields, + // and find the higest value of <n> for a node_<n> field. + // + char buf[256]; + unsigned num_records = 0; + while (! feof(f)) { + buf[sizeof(buf) - 1] = 1; + if (! fgets(buf, sizeof(buf), f)) { + // + // Read errors presumably because of EOF + // + break; + } + + char s1[] = "processor"; + if (strncmp(buf, s1, sizeof(s1) - 1) == 0) { + num_records++; + continue; + } + + // + // FIXME - this will match "node_<n> <garbage>" + // + unsigned level; + if (sscanf(buf, "node_%d id", &level) == 1) { + if (nodeIdIndex + level >= maxIndex) { + maxIndex = nodeIdIndex + level; + } + continue; + } + } + + // + // Check for empty file / no valid processor records, or too many. + // The number of records can't exceed the number of valid bits in the + // affinity mask. + // + if (num_records == 0) { + *line = 0; + *msg_id = kmp_i18n_str_NoProcRecords; + return -1; + } + if (num_records > (unsigned)__kmp_xproc) { + *line = 0; + *msg_id = kmp_i18n_str_TooManyProcRecords; + return -1; + } + + // + // Set the file pointer back to the begginning, so that we can scan the + // file again, this time performing a full parse of the data. + // Allocate a vector of ProcCpuInfo object, where we will place the data. + // Adding an extra element at the end allows us to remove a lot of extra + // checks for termination conditions. + // + if (fseek(f, 0, SEEK_SET) != 0) { + *line = 0; + *msg_id = kmp_i18n_str_CantRewindCpuinfo; + return -1; + } + + // + // Allocate the array of records to store the proc info in. The dummy + // element at the end makes the logic in filling them out easier to code. + // + unsigned **threadInfo = (unsigned **)__kmp_allocate((num_records + 1) + * sizeof(unsigned *)); + unsigned i; + for (i = 0; i <= num_records; i++) { + threadInfo[i] = (unsigned *)__kmp_allocate((maxIndex + 1) + * sizeof(unsigned)); + } + +#define CLEANUP_THREAD_INFO \ + for (i = 0; i <= num_records; i++) { \ + __kmp_free(threadInfo[i]); \ + } \ + __kmp_free(threadInfo); + + // + // A value of UINT_MAX means that we didn't find the field + // + unsigned __index; + +#define INIT_PROC_INFO(p) \ + for (__index = 0; __index <= maxIndex; __index++) { \ + (p)[__index] = UINT_MAX; \ + } + + for (i = 0; i <= num_records; i++) { + INIT_PROC_INFO(threadInfo[i]); + } + + unsigned num_avail = 0; + *line = 0; + while (! feof(f)) { + // + // Create an inner scoping level, so that all the goto targets at the + // end of the loop appear in an outer scoping level. This avoids + // warnings about jumping past an initialization to a target in the + // same block. + // + { + buf[sizeof(buf) - 1] = 1; + bool long_line = false; + if (! fgets(buf, sizeof(buf), f)) { + // + // Read errors presumably because of EOF + // + // If there is valid data in threadInfo[num_avail], then fake + // a blank line in ensure that the last address gets parsed. + // + bool valid = false; + for (i = 0; i <= maxIndex; i++) { + if (threadInfo[num_avail][i] != UINT_MAX) { + valid = true; + } + } + if (! valid) { + break; + } + buf[0] = 0; + } else if (!buf[sizeof(buf) - 1]) { + // + // The line is longer than the buffer. Set a flag and don't + // emit an error if we were going to ignore the line, anyway. + // + long_line = true; + +#define CHECK_LINE \ + if (long_line) { \ + CLEANUP_THREAD_INFO; \ + *msg_id = kmp_i18n_str_LongLineCpuinfo; \ + return -1; \ + } + } + (*line)++; + + char s1[] = "processor"; + if (strncmp(buf, s1, sizeof(s1) - 1) == 0) { + CHECK_LINE; + char *p = strchr(buf + sizeof(s1) - 1, ':'); + unsigned val; + if ((p == NULL) || (sscanf(p + 1, "%u\n", &val) != 1)) goto no_val; + if (threadInfo[num_avail][osIdIndex] != UINT_MAX) goto dup_field; + threadInfo[num_avail][osIdIndex] = val; + continue; + } + char s2[] = "physical id"; + if (strncmp(buf, s2, sizeof(s2) - 1) == 0) { + CHECK_LINE; + char *p = strchr(buf + sizeof(s2) - 1, ':'); + unsigned val; + if ((p == NULL) || (sscanf(p + 1, "%u\n", &val) != 1)) goto no_val; + if (threadInfo[num_avail][pkgIdIndex] != UINT_MAX) goto dup_field; + threadInfo[num_avail][pkgIdIndex] = val; + continue; + } + char s3[] = "core id"; + if (strncmp(buf, s3, sizeof(s3) - 1) == 0) { + CHECK_LINE; + char *p = strchr(buf + sizeof(s3) - 1, ':'); + unsigned val; + if ((p == NULL) || (sscanf(p + 1, "%u\n", &val) != 1)) goto no_val; + if (threadInfo[num_avail][coreIdIndex] != UINT_MAX) goto dup_field; + threadInfo[num_avail][coreIdIndex] = val; + continue; + } + char s4[] = "thread id"; + if (strncmp(buf, s4, sizeof(s4) - 1) == 0) { + CHECK_LINE; + char *p = strchr(buf + sizeof(s4) - 1, ':'); + unsigned val; + if ((p == NULL) || (sscanf(p + 1, "%u\n", &val) != 1)) goto no_val; + if (threadInfo[num_avail][threadIdIndex] != UINT_MAX) goto dup_field; + threadInfo[num_avail][threadIdIndex] = val; + continue; + } + unsigned level; + if (sscanf(buf, "node_%d id", &level) == 1) { + CHECK_LINE; + char *p = strchr(buf + sizeof(s4) - 1, ':'); + unsigned val; + if ((p == NULL) || (sscanf(p + 1, "%u\n", &val) != 1)) goto no_val; + KMP_ASSERT(nodeIdIndex + level <= maxIndex); + if (threadInfo[num_avail][nodeIdIndex + level] != UINT_MAX) goto dup_field; + threadInfo[num_avail][nodeIdIndex + level] = val; + continue; + } + + // + // We didn't recognize the leading token on the line. + // There are lots of leading tokens that we don't recognize - + // if the line isn't empty, go on to the next line. + // + if ((*buf != 0) && (*buf != '\n')) { + // + // If the line is longer than the buffer, read characters + // until we find a newline. + // + if (long_line) { + int ch; + while (((ch = fgetc(f)) != EOF) && (ch != '\n')); + } + continue; + } + + // + // A newline has signalled the end of the processor record. + // Check that there aren't too many procs specified. + // + if (num_avail == __kmp_xproc) { + CLEANUP_THREAD_INFO; + *msg_id = kmp_i18n_str_TooManyEntries; + return -1; + } + + // + // Check for missing fields. The osId field must be there, and we + // currently require that the physical id field is specified, also. + // + if (threadInfo[num_avail][osIdIndex] == UINT_MAX) { + CLEANUP_THREAD_INFO; + *msg_id = kmp_i18n_str_MissingProcField; + return -1; + } + if (threadInfo[0][pkgIdIndex] == UINT_MAX) { + CLEANUP_THREAD_INFO; + *msg_id = kmp_i18n_str_MissingPhysicalIDField; + return -1; + } + + // + // Skip this proc if it is not included in the machine model. + // + if (! KMP_CPU_ISSET(threadInfo[num_avail][osIdIndex], fullMask)) { + INIT_PROC_INFO(threadInfo[num_avail]); + continue; + } + + // + // We have a successful parse of this proc's info. + // Increment the counter, and prepare for the next proc. + // + num_avail++; + KMP_ASSERT(num_avail <= num_records); + INIT_PROC_INFO(threadInfo[num_avail]); + } + continue; + + no_val: + CLEANUP_THREAD_INFO; + *msg_id = kmp_i18n_str_MissingValCpuinfo; + return -1; + + dup_field: + CLEANUP_THREAD_INFO; + *msg_id = kmp_i18n_str_DuplicateFieldCpuinfo; + return -1; + } + *line = 0; + +# if KMP_MIC && REDUCE_TEAM_SIZE + unsigned teamSize = 0; +# endif // KMP_MIC && REDUCE_TEAM_SIZE + + // check for num_records == __kmp_xproc ??? + + // + // If there's only one thread context to bind to, form an Address object + // with depth 1 and return immediately (or, if affinity is off, set + // address2os to NULL and return). + // + // If it is configured to omit the package level when there is only a + // single package, the logic at the end of this routine won't work if + // there is only a single thread - it would try to form an Address + // object with depth 0. + // + KMP_ASSERT(num_avail > 0); + KMP_ASSERT(num_avail <= num_records); + if (num_avail == 1) { + __kmp_ncores = 1; + __kmp_nThreadsPerCore = nCoresPerPkg = nPackages = 1; + __kmp_ht_enabled = FALSE; + if (__kmp_affinity_verbose) { + if (! KMP_AFFINITY_CAPABLE()) { + KMP_INFORM(AffNotCapableUseCpuinfo, "KMP_AFFINITY"); + KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc); + KMP_INFORM(Uniform, "KMP_AFFINITY"); + } + else { + char buf[KMP_AFFIN_MASK_PRINT_LEN]; + __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, + fullMask); + KMP_INFORM(AffCapableUseCpuinfo, "KMP_AFFINITY"); + if (__kmp_affinity_respect_mask) { + KMP_INFORM(InitOSProcSetRespect, "KMP_AFFINITY", buf); + } else { + KMP_INFORM(InitOSProcSetNotRespect, "KMP_AFFINITY", buf); + } + KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc); + KMP_INFORM(Uniform, "KMP_AFFINITY"); + } + int index; + kmp_str_buf_t buf; + __kmp_str_buf_init(&buf); + __kmp_str_buf_print(&buf, "1"); + for (index = maxIndex - 1; index > pkgIdIndex; index--) { + __kmp_str_buf_print(&buf, " x 1"); + } + KMP_INFORM(TopologyExtra, "KMP_AFFINITY", buf.str, 1, 1, 1); + __kmp_str_buf_free(&buf); + } + + if (__kmp_affinity_type == affinity_none) { + CLEANUP_THREAD_INFO; + return 0; + } + + *address2os = (AddrUnsPair*)__kmp_allocate(sizeof(AddrUnsPair)); + Address addr(1); + addr.labels[0] = threadInfo[0][pkgIdIndex]; + (*address2os)[0] = AddrUnsPair(addr, threadInfo[0][osIdIndex]); + + if (__kmp_affinity_gran_levels < 0) { + __kmp_affinity_gran_levels = 0; + } + + if (__kmp_affinity_verbose) { + __kmp_affinity_print_topology(*address2os, 1, 1, 0, -1, -1); + } + + CLEANUP_THREAD_INFO; + return 1; + } + + // + // Sort the threadInfo table by physical Id. + // + qsort(threadInfo, num_avail, sizeof(*threadInfo), + __kmp_affinity_cmp_ProcCpuInfo_phys_id); + + // + // The table is now sorted by pkgId / coreId / threadId, but we really + // don't know the radix of any of the fields. pkgId's may be sparsely + // assigned among the chips on a system. Although coreId's are usually + // assigned [0 .. coresPerPkg-1] and threadId's are usually assigned + // [0..threadsPerCore-1], we don't want to make any such assumptions. + // + // For that matter, we don't know what coresPerPkg and threadsPerCore + // (or the total # packages) are at this point - we want to determine + // that now. We only have an upper bound on the first two figures. + // + unsigned *counts = (unsigned *)__kmp_allocate((maxIndex + 1) + * sizeof(unsigned)); + unsigned *maxCt = (unsigned *)__kmp_allocate((maxIndex + 1) + * sizeof(unsigned)); + unsigned *totals = (unsigned *)__kmp_allocate((maxIndex + 1) + * sizeof(unsigned)); + unsigned *lastId = (unsigned *)__kmp_allocate((maxIndex + 1) + * sizeof(unsigned)); + + bool assign_thread_ids = false; + unsigned threadIdCt; + unsigned index; + + restart_radix_check: + threadIdCt = 0; + + // + // Initialize the counter arrays with data from threadInfo[0]. + // + if (assign_thread_ids) { + if (threadInfo[0][threadIdIndex] == UINT_MAX) { + threadInfo[0][threadIdIndex] = threadIdCt++; + } + else if (threadIdCt <= threadInfo[0][threadIdIndex]) { + threadIdCt = threadInfo[0][threadIdIndex] + 1; + } + } + for (index = 0; index <= maxIndex; index++) { + counts[index] = 1; + maxCt[index] = 1; + totals[index] = 1; + lastId[index] = threadInfo[0][index];; + } + + // + // Run through the rest of the OS procs. + // + for (i = 1; i < num_avail; i++) { + // + // Find the most significant index whose id differs + // from the id for the previous OS proc. + // + for (index = maxIndex; index >= threadIdIndex; index--) { + if (assign_thread_ids && (index == threadIdIndex)) { + // + // Auto-assign the thread id field if it wasn't specified. + // + if (threadInfo[i][threadIdIndex] == UINT_MAX) { + threadInfo[i][threadIdIndex] = threadIdCt++; + } + + // + // Aparrently the thread id field was specified for some + // entries and not others. Start the thread id counter + // off at the next higher thread id. + // + else if (threadIdCt <= threadInfo[i][threadIdIndex]) { + threadIdCt = threadInfo[i][threadIdIndex] + 1; + } + } + if (threadInfo[i][index] != lastId[index]) { + // + // Run through all indices which are less significant, + // and reset the counts to 1. + // + // At all levels up to and including index, we need to + // increment the totals and record the last id. + // + unsigned index2; + for (index2 = threadIdIndex; index2 < index; index2++) { + totals[index2]++; + if (counts[index2] > maxCt[index2]) { + maxCt[index2] = counts[index2]; + } + counts[index2] = 1; + lastId[index2] = threadInfo[i][index2]; + } + counts[index]++; + totals[index]++; + lastId[index] = threadInfo[i][index]; + + if (assign_thread_ids && (index > threadIdIndex)) { + +# if KMP_MIC && REDUCE_TEAM_SIZE + // + // The default team size is the total #threads in the machine + // minus 1 thread for every core that has 3 or more threads. + // + teamSize += ( threadIdCt <= 2 ) ? ( threadIdCt ) : ( threadIdCt - 1 ); +# endif // KMP_MIC && REDUCE_TEAM_SIZE + + // + // Restart the thread counter, as we are on a new core. + // + threadIdCt = 0; + + // + // Auto-assign the thread id field if it wasn't specified. + // + if (threadInfo[i][threadIdIndex] == UINT_MAX) { + threadInfo[i][threadIdIndex] = threadIdCt++; + } + + // + // Aparrently the thread id field was specified for some + // entries and not others. Start the thread id counter + // off at the next higher thread id. + // + else if (threadIdCt <= threadInfo[i][threadIdIndex]) { + threadIdCt = threadInfo[i][threadIdIndex] + 1; + } + } + break; + } + } + if (index < threadIdIndex) { + // + // If thread ids were specified, it is an error if they are not + // unique. Also, check that we waven't already restarted the + // loop (to be safe - shouldn't need to). + // + if ((threadInfo[i][threadIdIndex] != UINT_MAX) + || assign_thread_ids) { + __kmp_free(lastId); + __kmp_free(totals); + __kmp_free(maxCt); + __kmp_free(counts); + CLEANUP_THREAD_INFO; + *msg_id = kmp_i18n_str_PhysicalIDsNotUnique; + return -1; + } + + // + // If the thread ids were not specified and we see entries + // entries that are duplicates, start the loop over and + // assign the thread ids manually. + // + assign_thread_ids = true; + goto restart_radix_check; + } + } + +# if KMP_MIC && REDUCE_TEAM_SIZE + // + // The default team size is the total #threads in the machine + // minus 1 thread for every core that has 3 or more threads. + // + teamSize += ( threadIdCt <= 2 ) ? ( threadIdCt ) : ( threadIdCt - 1 ); +# endif // KMP_MIC && REDUCE_TEAM_SIZE + + for (index = threadIdIndex; index <= maxIndex; index++) { + if (counts[index] > maxCt[index]) { + maxCt[index] = counts[index]; + } + } + + __kmp_nThreadsPerCore = maxCt[threadIdIndex]; + nCoresPerPkg = maxCt[coreIdIndex]; + nPackages = totals[pkgIdIndex]; + + // + // Check to see if the machine topology is uniform + // + unsigned prod = totals[maxIndex]; + for (index = threadIdIndex; index < maxIndex; index++) { + prod *= maxCt[index]; + } + bool uniform = (prod == totals[threadIdIndex]); + + // + // When affinity is off, this routine will still be called to set + // __kmp_ht_enabled, & __kmp_ncores, as well as __kmp_nThreadsPerCore, + // nCoresPerPkg, & nPackages. Make sure all these vars are set + // correctly, and return now if affinity is not enabled. + // + __kmp_ht_enabled = (maxCt[threadIdIndex] > 1); // threads per core > 1 + __kmp_ncores = totals[coreIdIndex]; + + if (__kmp_affinity_verbose) { + if (! KMP_AFFINITY_CAPABLE()) { + KMP_INFORM(AffNotCapableUseCpuinfo, "KMP_AFFINITY"); + KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc); + if (uniform) { + KMP_INFORM(Uniform, "KMP_AFFINITY"); + } else { + KMP_INFORM(NonUniform, "KMP_AFFINITY"); + } + } + else { + char buf[KMP_AFFIN_MASK_PRINT_LEN]; + __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, fullMask); + KMP_INFORM(AffCapableUseCpuinfo, "KMP_AFFINITY"); + if (__kmp_affinity_respect_mask) { + KMP_INFORM(InitOSProcSetRespect, "KMP_AFFINITY", buf); + } else { + KMP_INFORM(InitOSProcSetNotRespect, "KMP_AFFINITY", buf); + } + KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc); + if (uniform) { + KMP_INFORM(Uniform, "KMP_AFFINITY"); + } else { + KMP_INFORM(NonUniform, "KMP_AFFINITY"); + } + } + kmp_str_buf_t buf; + __kmp_str_buf_init(&buf); + + __kmp_str_buf_print(&buf, "%d", totals[maxIndex]); + for (index = maxIndex - 1; index >= pkgIdIndex; index--) { + __kmp_str_buf_print(&buf, " x %d", maxCt[index]); + } + KMP_INFORM(TopologyExtra, "KMP_AFFINITY", buf.str, maxCt[coreIdIndex], + maxCt[threadIdIndex], __kmp_ncores); + + __kmp_str_buf_free(&buf); + } + +# if KMP_MIC && REDUCE_TEAM_SIZE + // + // Set the default team size. + // + if ((__kmp_dflt_team_nth == 0) && (teamSize > 0)) { + __kmp_dflt_team_nth = teamSize; + KA_TRACE(20, ("__kmp_affinity_create_cpuinfo_map: setting __kmp_dflt_team_nth = %d\n", + __kmp_dflt_team_nth)); + } +# endif // KMP_MIC && REDUCE_TEAM_SIZE + + if (__kmp_affinity_type == affinity_none) { + __kmp_free(lastId); + __kmp_free(totals); + __kmp_free(maxCt); + __kmp_free(counts); + CLEANUP_THREAD_INFO; + return 0; + } + + // + // Count the number of levels which have more nodes at that level than + // at the parent's level (with there being an implicit root node of + // the top level). This is equivalent to saying that there is at least + // one node at this level which has a sibling. These levels are in the + // map, and the package level is always in the map. + // + bool *inMap = (bool *)__kmp_allocate((maxIndex + 1) * sizeof(bool)); + int level = 0; + for (index = threadIdIndex; index < maxIndex; index++) { + KMP_ASSERT(totals[index] >= totals[index + 1]); + inMap[index] = (totals[index] > totals[index + 1]); + } + inMap[maxIndex] = (totals[maxIndex] > 1); + inMap[pkgIdIndex] = true; + + int depth = 0; + for (index = threadIdIndex; index <= maxIndex; index++) { + if (inMap[index]) { + depth++; + } + } + KMP_ASSERT(depth > 0); + + // + // Construct the data structure that is to be returned. + // + *address2os = (AddrUnsPair*) + __kmp_allocate(sizeof(AddrUnsPair) * num_avail); + int pkgLevel = -1; + int coreLevel = -1; + int threadLevel = -1; + + for (i = 0; i < num_avail; ++i) { + Address addr(depth); + unsigned os = threadInfo[i][osIdIndex]; + int src_index; + int dst_index = 0; + + for (src_index = maxIndex; src_index >= threadIdIndex; src_index--) { + if (! inMap[src_index]) { + continue; + } + addr.labels[dst_index] = threadInfo[i][src_index]; + if (src_index == pkgIdIndex) { + pkgLevel = dst_index; + } + else if (src_index == coreIdIndex) { + coreLevel = dst_index; + } + else if (src_index == threadIdIndex) { + threadLevel = dst_index; + } + dst_index++; + } + (*address2os)[i] = AddrUnsPair(addr, os); + } + + if (__kmp_affinity_gran_levels < 0) { + // + // Set the granularity level based on what levels are modeled + // in the machine topology map. + // + unsigned src_index; + __kmp_affinity_gran_levels = 0; + for (src_index = threadIdIndex; src_index <= maxIndex; src_index++) { + if (! inMap[src_index]) { + continue; + } + switch (src_index) { + case threadIdIndex: + if (__kmp_affinity_gran > affinity_gran_thread) { + __kmp_affinity_gran_levels++; + } + + break; + case coreIdIndex: + if (__kmp_affinity_gran > affinity_gran_core) { + __kmp_affinity_gran_levels++; + } + break; + + case pkgIdIndex: + if (__kmp_affinity_gran > affinity_gran_package) { + __kmp_affinity_gran_levels++; + } + break; + } + } + } + + if (__kmp_affinity_verbose) { + __kmp_affinity_print_topology(*address2os, num_avail, depth, pkgLevel, + coreLevel, threadLevel); + } + + __kmp_free(inMap); + __kmp_free(lastId); + __kmp_free(totals); + __kmp_free(maxCt); + __kmp_free(counts); + CLEANUP_THREAD_INFO; + return depth; +} + + +// +// Create and return a table of affinity masks, indexed by OS thread ID. +// This routine handles OR'ing together all the affinity masks of threads +// that are sufficiently close, if granularity > fine. +// +static kmp_affin_mask_t * +__kmp_create_masks(unsigned *maxIndex, unsigned *numUnique, + AddrUnsPair *address2os, unsigned numAddrs) +{ + // + // First form a table of affinity masks in order of OS thread id. + // + unsigned depth; + unsigned maxOsId; + unsigned i; + + KMP_ASSERT(numAddrs > 0); + depth = address2os[0].first.depth; + + maxOsId = 0; + for (i = 0; i < numAddrs; i++) { + unsigned osId = address2os[i].second; + if (osId > maxOsId) { + maxOsId = osId; + } + } + kmp_affin_mask_t *osId2Mask = (kmp_affin_mask_t *)__kmp_allocate( + (maxOsId + 1) * __kmp_affin_mask_size); + + // + // Sort the address2os table according to physical order. Doing so + // will put all threads on the same core/package/node in consecutive + // locations. + // + qsort(address2os, numAddrs, sizeof(*address2os), + __kmp_affinity_cmp_Address_labels); + + KMP_ASSERT(__kmp_affinity_gran_levels >= 0); + if (__kmp_affinity_verbose && (__kmp_affinity_gran_levels > 0)) { + KMP_INFORM(ThreadsMigrate, "KMP_AFFINITY", __kmp_affinity_gran_levels); + } + if (__kmp_affinity_gran_levels >= (int)depth) { + if (__kmp_affinity_verbose || (__kmp_affinity_warnings + && (__kmp_affinity_type != affinity_none))) { + KMP_WARNING(AffThreadsMayMigrate); + } + } + + // + // Run through the table, forming the masks for all threads on each + // core. Threads on the same core will have identical "Address" + // objects, not considering the last level, which must be the thread + // id. All threads on a core will appear consecutively. + // + unsigned unique = 0; + unsigned j = 0; // index of 1st thread on core + unsigned leader = 0; + Address *leaderAddr = &(address2os[0].first); + kmp_affin_mask_t *sum + = (kmp_affin_mask_t *)alloca(__kmp_affin_mask_size); + KMP_CPU_ZERO(sum); + KMP_CPU_SET(address2os[0].second, sum); + for (i = 1; i < numAddrs; i++) { + // + // If this thread is sufficiently close to the leader (withing the + // granularity setting), then set the bit for this os thread in the + // affinity mask for this group, and go on to the next thread. + // + if (leaderAddr->isClose(address2os[i].first, + __kmp_affinity_gran_levels)) { + KMP_CPU_SET(address2os[i].second, sum); + continue; + } + + // + // For every thread in this group, copy the mask to the thread's + // entry in the osId2Mask table. Mark the first address as a + // leader. + // + for (; j < i; j++) { + unsigned osId = address2os[j].second; + KMP_DEBUG_ASSERT(osId <= maxOsId); + kmp_affin_mask_t *mask = KMP_CPU_INDEX(osId2Mask, osId); + KMP_CPU_COPY(mask, sum); + address2os[j].first.leader = (j == leader); + } + unique++; + + // + // Start a new mask. + // + leader = i; + leaderAddr = &(address2os[i].first); + KMP_CPU_ZERO(sum); + KMP_CPU_SET(address2os[i].second, sum); + } + + // + // For every thread in last group, copy the mask to the thread's + // entry in the osId2Mask table. + // + for (; j < i; j++) { + unsigned osId = address2os[j].second; + KMP_DEBUG_ASSERT(osId <= maxOsId); + kmp_affin_mask_t *mask = KMP_CPU_INDEX(osId2Mask, osId); + KMP_CPU_COPY(mask, sum); + address2os[j].first.leader = (j == leader); + } + unique++; + + *maxIndex = maxOsId; + *numUnique = unique; + return osId2Mask; +} + + +// +// Stuff for the affinity proclist parsers. It's easier to declare these vars +// as file-static than to try and pass them through the calling sequence of +// the recursive-descent OMP_PLACES parser. +// +static kmp_affin_mask_t *newMasks; +static int numNewMasks; +static int nextNewMask; + +#define ADD_MASK(_mask) \ + { \ + if (nextNewMask >= numNewMasks) { \ + numNewMasks *= 2; \ + newMasks = (kmp_affin_mask_t *)KMP_INTERNAL_REALLOC(newMasks, \ + numNewMasks * __kmp_affin_mask_size); \ + } \ + KMP_CPU_COPY(KMP_CPU_INDEX(newMasks, nextNewMask), (_mask)); \ + nextNewMask++; \ + } + +#define ADD_MASK_OSID(_osId,_osId2Mask,_maxOsId) \ + { \ + if (((_osId) > _maxOsId) || \ + (! KMP_CPU_ISSET((_osId), KMP_CPU_INDEX(_osId2Mask, (_osId))))) {\ + if (__kmp_affinity_verbose || (__kmp_affinity_warnings \ + && (__kmp_affinity_type != affinity_none))) { \ + KMP_WARNING(AffIgnoreInvalidProcID, _osId); \ + } \ + } \ + else { \ + ADD_MASK(KMP_CPU_INDEX(_osId2Mask, (_osId))); \ + } \ + } + + +// +// Re-parse the proclist (for the explicit affinity type), and form the list +// of affinity newMasks indexed by gtid. +// +static void +__kmp_affinity_process_proclist(kmp_affin_mask_t **out_masks, + unsigned int *out_numMasks, const char *proclist, + kmp_affin_mask_t *osId2Mask, int maxOsId) +{ + const char *scan = proclist; + const char *next = proclist; + + // + // We use malloc() for the temporary mask vector, + // so that we can use realloc() to extend it. + // + numNewMasks = 2; + newMasks = (kmp_affin_mask_t *)KMP_INTERNAL_MALLOC(numNewMasks + * __kmp_affin_mask_size); + nextNewMask = 0; + kmp_affin_mask_t *sumMask = (kmp_affin_mask_t *)__kmp_allocate( + __kmp_affin_mask_size); + int setSize = 0; + + for (;;) { + int start, end, stride; + + SKIP_WS(scan); + next = scan; + if (*next == '\0') { + break; + } + + if (*next == '{') { + int num; + setSize = 0; + next++; // skip '{' + SKIP_WS(next); + scan = next; + + // + // Read the first integer in the set. + // + KMP_ASSERT2((*next >= '0') && (*next <= '9'), + "bad proclist"); + SKIP_DIGITS(next); + num = __kmp_str_to_int(scan, *next); + KMP_ASSERT2(num >= 0, "bad explicit proc list"); + + // + // Copy the mask for that osId to the sum (union) mask. + // + if ((num > maxOsId) || + (! KMP_CPU_ISSET(num, KMP_CPU_INDEX(osId2Mask, num)))) { + if (__kmp_affinity_verbose || (__kmp_affinity_warnings + && (__kmp_affinity_type != affinity_none))) { + KMP_WARNING(AffIgnoreInvalidProcID, num); + } + KMP_CPU_ZERO(sumMask); + } + else { + KMP_CPU_COPY(sumMask, KMP_CPU_INDEX(osId2Mask, num)); + setSize = 1; + } + + for (;;) { + // + // Check for end of set. + // + SKIP_WS(next); + if (*next == '}') { + next++; // skip '}' + break; + } + + // + // Skip optional comma. + // + if (*next == ',') { + next++; + } + SKIP_WS(next); + + // + // Read the next integer in the set. + // + scan = next; + KMP_ASSERT2((*next >= '0') && (*next <= '9'), + "bad explicit proc list"); + + SKIP_DIGITS(next); + num = __kmp_str_to_int(scan, *next); + KMP_ASSERT2(num >= 0, "bad explicit proc list"); + + // + // Add the mask for that osId to the sum mask. + // + if ((num > maxOsId) || + (! KMP_CPU_ISSET(num, KMP_CPU_INDEX(osId2Mask, num)))) { + if (__kmp_affinity_verbose || (__kmp_affinity_warnings + && (__kmp_affinity_type != affinity_none))) { + KMP_WARNING(AffIgnoreInvalidProcID, num); + } + } + else { + KMP_CPU_UNION(sumMask, KMP_CPU_INDEX(osId2Mask, num)); + setSize++; + } + } + if (setSize > 0) { + ADD_MASK(sumMask); + } + + SKIP_WS(next); + if (*next == ',') { + next++; + } + scan = next; + continue; + } + + // + // Read the first integer. + // + KMP_ASSERT2((*next >= '0') && (*next <= '9'), "bad explicit proc list"); + SKIP_DIGITS(next); + start = __kmp_str_to_int(scan, *next); + KMP_ASSERT2(start >= 0, "bad explicit proc list"); + SKIP_WS(next); + + // + // If this isn't a range, then add a mask to the list and go on. + // + if (*next != '-') { + ADD_MASK_OSID(start, osId2Mask, maxOsId); + + // + // Skip optional comma. + // + if (*next == ',') { + next++; + } + scan = next; + continue; + } + + // + // This is a range. Skip over the '-' and read in the 2nd int. + // + next++; // skip '-' + SKIP_WS(next); + scan = next; + KMP_ASSERT2((*next >= '0') && (*next <= '9'), "bad explicit proc list"); + SKIP_DIGITS(next); + end = __kmp_str_to_int(scan, *next); + KMP_ASSERT2(end >= 0, "bad explicit proc list"); + + // + // Check for a stride parameter + // + stride = 1; + SKIP_WS(next); + if (*next == ':') { + // + // A stride is specified. Skip over the ':" and read the 3rd int. + // + int sign = +1; + next++; // skip ':' + SKIP_WS(next); + scan = next; + if (*next == '-') { + sign = -1; + next++; + SKIP_WS(next); + scan = next; + } + KMP_ASSERT2((*next >= '0') && (*next <= '9'), + "bad explicit proc list"); + SKIP_DIGITS(next); + stride = __kmp_str_to_int(scan, *next); + KMP_ASSERT2(stride >= 0, "bad explicit proc list"); + stride *= sign; + } + + // + // Do some range checks. + // + KMP_ASSERT2(stride != 0, "bad explicit proc list"); + if (stride > 0) { + KMP_ASSERT2(start <= end, "bad explicit proc list"); + } + else { + KMP_ASSERT2(start >= end, "bad explicit proc list"); + } + KMP_ASSERT2((end - start) / stride <= 65536, "bad explicit proc list"); + + // + // Add the mask for each OS proc # to the list. + // + if (stride > 0) { + do { + ADD_MASK_OSID(start, osId2Mask, maxOsId); + start += stride; + } while (start <= end); + } + else { + do { + ADD_MASK_OSID(start, osId2Mask, maxOsId); + start += stride; + } while (start >= end); + } + + // + // Skip optional comma. + // + SKIP_WS(next); + if (*next == ',') { + next++; + } + scan = next; + } + + *out_numMasks = nextNewMask; + if (nextNewMask == 0) { + *out_masks = NULL; + KMP_INTERNAL_FREE(newMasks); + return; + } + *out_masks + = (kmp_affin_mask_t *)__kmp_allocate(nextNewMask * __kmp_affin_mask_size); + memcpy(*out_masks, newMasks, nextNewMask * __kmp_affin_mask_size); + __kmp_free(sumMask); + KMP_INTERNAL_FREE(newMasks); +} + + +# if OMP_40_ENABLED + +/*----------------------------------------------------------------------------- + +Re-parse the OMP_PLACES proc id list, forming the newMasks for the different +places. Again, Here is the grammar: + +place_list := place +place_list := place , place_list +place := num +place := place : num +place := place : num : signed +place := { subplacelist } +place := ! place // (lowest priority) +subplace_list := subplace +subplace_list := subplace , subplace_list +subplace := num +subplace := num : num +subplace := num : num : signed +signed := num +signed := + signed +signed := - signed + +-----------------------------------------------------------------------------*/ + +static void +__kmp_process_subplace_list(const char **scan, kmp_affin_mask_t *osId2Mask, + int maxOsId, kmp_affin_mask_t *tempMask, int *setSize) +{ + const char *next; + + for (;;) { + int start, count, stride, i; + + // + // Read in the starting proc id + // + SKIP_WS(*scan); + KMP_ASSERT2((**scan >= '0') && (**scan <= '9'), + "bad explicit places list"); + next = *scan; + SKIP_DIGITS(next); + start = __kmp_str_to_int(*scan, *next); + KMP_ASSERT(start >= 0); + *scan = next; + + // + // valid follow sets are ',' ':' and '}' + // + SKIP_WS(*scan); + if (**scan == '}' || **scan == ',') { + if ((start > maxOsId) || + (! KMP_CPU_ISSET(start, KMP_CPU_INDEX(osId2Mask, start)))) { + if (__kmp_affinity_verbose || (__kmp_affinity_warnings + && (__kmp_affinity_type != affinity_none))) { + KMP_WARNING(AffIgnoreInvalidProcID, start); + } + } + else { + KMP_CPU_UNION(tempMask, KMP_CPU_INDEX(osId2Mask, start)); + (*setSize)++; + } + if (**scan == '}') { + break; + } + (*scan)++; // skip ',' + continue; + } + KMP_ASSERT2(**scan == ':', "bad explicit places list"); + (*scan)++; // skip ':' + + // + // Read count parameter + // + SKIP_WS(*scan); + KMP_ASSERT2((**scan >= '0') && (**scan <= '9'), + "bad explicit places list"); + next = *scan; + SKIP_DIGITS(next); + count = __kmp_str_to_int(*scan, *next); + KMP_ASSERT(count >= 0); + *scan = next; + + // + // valid follow sets are ',' ':' and '}' + // + SKIP_WS(*scan); + if (**scan == '}' || **scan == ',') { + for (i = 0; i < count; i++) { + if ((start > maxOsId) || + (! KMP_CPU_ISSET(start, KMP_CPU_INDEX(osId2Mask, start)))) { + if (__kmp_affinity_verbose || (__kmp_affinity_warnings + && (__kmp_affinity_type != affinity_none))) { + KMP_WARNING(AffIgnoreInvalidProcID, start); + } + break; // don't proliferate warnings for large count + } + else { + KMP_CPU_UNION(tempMask, KMP_CPU_INDEX(osId2Mask, start)); + start++; + (*setSize)++; + } + } + if (**scan == '}') { + break; + } + (*scan)++; // skip ',' + continue; + } + KMP_ASSERT2(**scan == ':', "bad explicit places list"); + (*scan)++; // skip ':' + + // + // Read stride parameter + // + int sign = +1; + for (;;) { + SKIP_WS(*scan); + if (**scan == '+') { + (*scan)++; // skip '+' + continue; + } + if (**scan == '-') { + sign *= -1; + (*scan)++; // skip '-' + continue; + } + break; + } + SKIP_WS(*scan); + KMP_ASSERT2((**scan >= '0') && (**scan <= '9'), + "bad explicit places list"); + next = *scan; + SKIP_DIGITS(next); + stride = __kmp_str_to_int(*scan, *next); + KMP_ASSERT(stride >= 0); + *scan = next; + stride *= sign; + + // + // valid follow sets are ',' and '}' + // + SKIP_WS(*scan); + if (**scan == '}' || **scan == ',') { + for (i = 0; i < count; i++) { + if ((start > maxOsId) || + (! KMP_CPU_ISSET(start, KMP_CPU_INDEX(osId2Mask, start)))) { + if (__kmp_affinity_verbose || (__kmp_affinity_warnings + && (__kmp_affinity_type != affinity_none))) { + KMP_WARNING(AffIgnoreInvalidProcID, start); + } + break; // don't proliferate warnings for large count + } + else { + KMP_CPU_UNION(tempMask, KMP_CPU_INDEX(osId2Mask, start)); + start += stride; + (*setSize)++; + } + } + if (**scan == '}') { + break; + } + (*scan)++; // skip ',' + continue; + } + + KMP_ASSERT2(0, "bad explicit places list"); + } +} + + +static void +__kmp_process_place(const char **scan, kmp_affin_mask_t *osId2Mask, + int maxOsId, kmp_affin_mask_t *tempMask, int *setSize) +{ + const char *next; + + // + // valid follow sets are '{' '!' and num + // + SKIP_WS(*scan); + if (**scan == '{') { + (*scan)++; // skip '{' + __kmp_process_subplace_list(scan, osId2Mask, maxOsId , tempMask, + setSize); + KMP_ASSERT2(**scan == '}', "bad explicit places list"); + (*scan)++; // skip '}' + } + else if (**scan == '!') { + __kmp_process_place(scan, osId2Mask, maxOsId, tempMask, setSize); + KMP_CPU_COMPLEMENT(tempMask); + (*scan)++; // skip '!' + } + else if ((**scan >= '0') && (**scan <= '9')) { + next = *scan; + SKIP_DIGITS(next); + int num = __kmp_str_to_int(*scan, *next); + KMP_ASSERT(num >= 0); + if ((num > maxOsId) || + (! KMP_CPU_ISSET(num, KMP_CPU_INDEX(osId2Mask, num)))) { + if (__kmp_affinity_verbose || (__kmp_affinity_warnings + && (__kmp_affinity_type != affinity_none))) { + KMP_WARNING(AffIgnoreInvalidProcID, num); + } + } + else { + KMP_CPU_UNION(tempMask, KMP_CPU_INDEX(osId2Mask, num)); + (*setSize)++; + } + *scan = next; // skip num + } + else { + KMP_ASSERT2(0, "bad explicit places list"); + } +} + + +static void +__kmp_affinity_process_placelist(kmp_affin_mask_t **out_masks, + unsigned int *out_numMasks, const char *placelist, + kmp_affin_mask_t *osId2Mask, int maxOsId) +{ + const char *scan = placelist; + const char *next = placelist; + + numNewMasks = 2; + newMasks = (kmp_affin_mask_t *)KMP_INTERNAL_MALLOC(numNewMasks + * __kmp_affin_mask_size); + nextNewMask = 0; + + kmp_affin_mask_t *tempMask = (kmp_affin_mask_t *)__kmp_allocate( + __kmp_affin_mask_size); + KMP_CPU_ZERO(tempMask); + int setSize = 0; + + for (;;) { + int start, count, stride; + + __kmp_process_place(&scan, osId2Mask, maxOsId, tempMask, &setSize); + + // + // valid follow sets are ',' ':' and EOL + // + SKIP_WS(scan); + if (*scan == '\0' || *scan == ',') { + if (setSize > 0) { + ADD_MASK(tempMask); + } + KMP_CPU_ZERO(tempMask); + setSize = 0; + if (*scan == '\0') { + break; + } + scan++; // skip ',' + continue; + } + + KMP_ASSERT2(*scan == ':', "bad explicit places list"); + scan++; // skip ':' + + // + // Read count parameter + // + SKIP_WS(scan); + KMP_ASSERT2((*scan >= '0') && (*scan <= '9'), + "bad explicit places list"); + next = scan; + SKIP_DIGITS(next); + count = __kmp_str_to_int(scan, *next); + KMP_ASSERT(count >= 0); + scan = next; + + // + // valid follow sets are ',' ':' and EOL + // + SKIP_WS(scan); + if (*scan == '\0' || *scan == ',') { + int i; + for (i = 0; i < count; i++) { + int j; + if (setSize == 0) { + break; + } + ADD_MASK(tempMask); + setSize = 0; + for (j = __kmp_affin_mask_size * CHAR_BIT - 1; j > 0; j--) { + // + // Use a temp var in case macro is changed to evaluate + // args multiple times. + // + if (KMP_CPU_ISSET(j - stride, tempMask)) { + KMP_CPU_SET(j, tempMask); + setSize++; + } + else { + KMP_CPU_CLR(j, tempMask); + } + } + for (; j >= 0; j--) { + KMP_CPU_CLR(j, tempMask); + } + } + KMP_CPU_ZERO(tempMask); + setSize = 0; + + if (*scan == '\0') { + break; + } + scan++; // skip ',' + continue; + } + + KMP_ASSERT2(*scan == ':', "bad explicit places list"); + scan++; // skip ':' + + // + // Read stride parameter + // + int sign = +1; + for (;;) { + SKIP_WS(scan); + if (*scan == '+') { + scan++; // skip '+' + continue; + } + if (*scan == '-') { + sign *= -1; + scan++; // skip '-' + continue; + } + break; + } + SKIP_WS(scan); + KMP_ASSERT2((*scan >= '0') && (*scan <= '9'), + "bad explicit places list"); + next = scan; + SKIP_DIGITS(next); + stride = __kmp_str_to_int(scan, *next); + KMP_DEBUG_ASSERT(stride >= 0); + scan = next; + stride *= sign; + + if (stride > 0) { + int i; + for (i = 0; i < count; i++) { + int j; + if (setSize == 0) { + break; + } + ADD_MASK(tempMask); + setSize = 0; + for (j = __kmp_affin_mask_size * CHAR_BIT - 1; j >= stride; j--) { + if (KMP_CPU_ISSET(j - stride, tempMask)) { + KMP_CPU_SET(j, tempMask); + setSize++; + } + else { + KMP_CPU_CLR(j, tempMask); + } + } + for (; j >= 0; j--) { + KMP_CPU_CLR(j, tempMask); + } + } + } + else { + int i; + for (i = 0; i < count; i++) { + unsigned j; + if (setSize == 0) { + break; + } + ADD_MASK(tempMask); + setSize = 0; + for (j = 0; j < (__kmp_affin_mask_size * CHAR_BIT) + stride; + j++) { + if (KMP_CPU_ISSET(j - stride, tempMask)) { + KMP_CPU_SET(j, tempMask); + setSize++; + } + else { + KMP_CPU_CLR(j, tempMask); + } + } + for (; j < __kmp_affin_mask_size * CHAR_BIT; j++) { + KMP_CPU_CLR(j, tempMask); + } + } + } + KMP_CPU_ZERO(tempMask); + setSize = 0; + + // + // valid follow sets are ',' and EOL + // + SKIP_WS(scan); + if (*scan == '\0') { + break; + } + if (*scan == ',') { + scan++; // skip ',' + continue; + } + + KMP_ASSERT2(0, "bad explicit places list"); + } + + *out_numMasks = nextNewMask; + if (nextNewMask == 0) { + *out_masks = NULL; + KMP_INTERNAL_FREE(newMasks); + return; + } + *out_masks + = (kmp_affin_mask_t *)__kmp_allocate(nextNewMask * __kmp_affin_mask_size); + memcpy(*out_masks, newMasks, nextNewMask * __kmp_affin_mask_size); + __kmp_free(tempMask); + KMP_INTERNAL_FREE(newMasks); +} + +# endif /* OMP_40_ENABLED */ + +#undef ADD_MASK +#undef ADD_MASK_OSID + + +# if KMP_MIC + +static void +__kmp_apply_thread_places(AddrUnsPair **pAddr, int depth) +{ + if ( __kmp_place_num_cores == 0 ) { + if ( __kmp_place_num_threads_per_core == 0 ) { + return; // no cores limiting actions requested, exit + } + __kmp_place_num_cores = nCoresPerPkg; // use all available cores + } + if ( !__kmp_affinity_uniform_topology() || depth != 3 ) { + KMP_WARNING( AffThrPlaceUnsupported ); + return; // don't support non-uniform topology or not-3-level architecture + } + if ( __kmp_place_num_threads_per_core == 0 ) { + __kmp_place_num_threads_per_core = __kmp_nThreadsPerCore; // use all HW contexts + } + if ( __kmp_place_core_offset + __kmp_place_num_cores > nCoresPerPkg ) { + KMP_WARNING( AffThrPlaceManyCores ); + return; + } + + AddrUnsPair *newAddr = (AddrUnsPair *)__kmp_allocate( sizeof(AddrUnsPair) * + nPackages * __kmp_place_num_cores * __kmp_place_num_threads_per_core); + int i, j, k, n_old = 0, n_new = 0; + for ( i = 0; i < nPackages; ++i ) { + for ( j = 0; j < nCoresPerPkg; ++j ) { + if ( j < __kmp_place_core_offset || j >= __kmp_place_core_offset + __kmp_place_num_cores ) { + n_old += __kmp_nThreadsPerCore; // skip not-requested core + } else { + for ( k = 0; k < __kmp_nThreadsPerCore; ++k ) { + if ( k < __kmp_place_num_threads_per_core ) { + newAddr[n_new] = (*pAddr)[n_old]; // copy requested core' data to new location + n_new++; + } + n_old++; + } + } + } + } + nCoresPerPkg = __kmp_place_num_cores; // correct nCoresPerPkg + __kmp_nThreadsPerCore = __kmp_place_num_threads_per_core; // correct __kmp_nThreadsPerCore + __kmp_avail_proc = n_new; // correct avail_proc + __kmp_ncores = nPackages * __kmp_place_num_cores; // correct ncores + + __kmp_free( *pAddr ); + *pAddr = newAddr; // replace old topology with new one +} + +# endif /* KMP_MIC */ + + +static AddrUnsPair *address2os = NULL; +static int * procarr = NULL; +static int __kmp_aff_depth = 0; + +static void +__kmp_aux_affinity_initialize(void) +{ + if (__kmp_affinity_masks != NULL) { + KMP_ASSERT(fullMask != NULL); + return; + } + + // + // Create the "full" mask - this defines all of the processors that we + // consider to be in the machine model. If respect is set, then it is + // the initialization thread's affinity mask. Otherwise, it is all + // processors that we know about on the machine. + // + if (fullMask == NULL) { + fullMask = (kmp_affin_mask_t *)__kmp_allocate(__kmp_affin_mask_size); + } + if (KMP_AFFINITY_CAPABLE()) { + if (__kmp_affinity_respect_mask) { + __kmp_get_system_affinity(fullMask, TRUE); + + // + // Count the number of available processors. + // + unsigned i; + __kmp_avail_proc = 0; + for (i = 0; i < KMP_CPU_SETSIZE; ++i) { + if (! KMP_CPU_ISSET(i, fullMask)) { + continue; + } + __kmp_avail_proc++; + } + if (__kmp_avail_proc > __kmp_xproc) { + if (__kmp_affinity_verbose || (__kmp_affinity_warnings + && (__kmp_affinity_type != affinity_none))) { + KMP_WARNING(ErrorInitializeAffinity); + } + __kmp_affinity_type = affinity_none; + __kmp_affin_mask_size = 0; + return; + } + } + else { + __kmp_affinity_entire_machine_mask(fullMask); + __kmp_avail_proc = __kmp_xproc; + } + } + + int depth = -1; + kmp_i18n_id_t msg_id = kmp_i18n_null; + + // + // For backward compatiblity, setting KMP_CPUINFO_FILE => + // KMP_TOPOLOGY_METHOD=cpuinfo + // + if ((__kmp_cpuinfo_file != NULL) && + (__kmp_affinity_top_method == affinity_top_method_all)) { + __kmp_affinity_top_method = affinity_top_method_cpuinfo; + } + + if (__kmp_affinity_top_method == affinity_top_method_all) { + // + // In the default code path, errors are not fatal - we just try using + // another method. We only emit a warning message if affinity is on, + // or the verbose flag is set, an the nowarnings flag was not set. + // + const char *file_name = NULL; + int line = 0; + +# if KMP_ARCH_X86 || KMP_ARCH_X86_64 + + if (__kmp_affinity_verbose) { + KMP_INFORM(AffInfoStr, "KMP_AFFINITY", KMP_I18N_STR(Decodingx2APIC)); + } + + file_name = NULL; + depth = __kmp_affinity_create_x2apicid_map(&address2os, &msg_id); + if (depth == 0) { + KMP_ASSERT(__kmp_affinity_type == affinity_none); + KMP_ASSERT(address2os == NULL); + return; + } + + if (depth < 0) { + if ((msg_id != kmp_i18n_null) + && (__kmp_affinity_verbose || (__kmp_affinity_warnings + && (__kmp_affinity_type != affinity_none)))) { +# if KMP_MIC + if (__kmp_affinity_verbose) { + KMP_INFORM(AffInfoStrStr, "KMP_AFFINITY", __kmp_i18n_catgets(msg_id), + KMP_I18N_STR(DecodingLegacyAPIC)); + } +# else + KMP_WARNING(AffInfoStrStr, "KMP_AFFINITY", __kmp_i18n_catgets(msg_id), + KMP_I18N_STR(DecodingLegacyAPIC)); +# endif + } + + file_name = NULL; + depth = __kmp_affinity_create_apicid_map(&address2os, &msg_id); + if (depth == 0) { + KMP_ASSERT(__kmp_affinity_type == affinity_none); + KMP_ASSERT(address2os == NULL); + return; + } + } + +# endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */ + +# if KMP_OS_LINUX + + if (depth < 0) { + if ((msg_id != kmp_i18n_null) + && (__kmp_affinity_verbose || (__kmp_affinity_warnings + && (__kmp_affinity_type != affinity_none)))) { +# if KMP_MIC + if (__kmp_affinity_verbose) { + KMP_INFORM(AffStrParseFilename, "KMP_AFFINITY", __kmp_i18n_catgets(msg_id), "/proc/cpuinfo"); + } +# else + KMP_WARNING(AffStrParseFilename, "KMP_AFFINITY", __kmp_i18n_catgets(msg_id), "/proc/cpuinfo"); +# endif + } + else if (__kmp_affinity_verbose) { + KMP_INFORM(AffParseFilename, "KMP_AFFINITY", "/proc/cpuinfo"); + } + + FILE *f = fopen("/proc/cpuinfo", "r"); + if (f == NULL) { + msg_id = kmp_i18n_str_CantOpenCpuinfo; + } + else { + file_name = "/proc/cpuinfo"; + depth = __kmp_affinity_create_cpuinfo_map(&address2os, &line, &msg_id, f); + fclose(f); + if (depth == 0) { + KMP_ASSERT(__kmp_affinity_type == affinity_none); + KMP_ASSERT(address2os == NULL); + return; + } + } + } + +# endif /* KMP_OS_LINUX */ + + if (depth < 0) { + if (msg_id != kmp_i18n_null + && (__kmp_affinity_verbose || (__kmp_affinity_warnings + && (__kmp_affinity_type != affinity_none)))) { + if (file_name == NULL) { + KMP_WARNING(UsingFlatOS, __kmp_i18n_catgets(msg_id)); + } + else if (line == 0) { + KMP_WARNING(UsingFlatOSFile, file_name, __kmp_i18n_catgets(msg_id)); + } + else { + KMP_WARNING(UsingFlatOSFileLine, file_name, line, __kmp_i18n_catgets(msg_id)); + } + } + + file_name = ""; + depth = __kmp_affinity_create_flat_map(&address2os, &msg_id); + if (depth == 0) { + KMP_ASSERT(__kmp_affinity_type == affinity_none); + KMP_ASSERT(address2os == NULL); + return; + } + KMP_ASSERT(depth > 0); + KMP_ASSERT(address2os != NULL); + } + } + + // + // If the user has specified that a paricular topology discovery method + // is to be used, then we abort if that method fails. The exception is + // group affinity, which might have been implicitly set. + // + +# if KMP_ARCH_X86 || KMP_ARCH_X86_64 + + else if (__kmp_affinity_top_method == affinity_top_method_x2apicid) { + if (__kmp_affinity_verbose) { + KMP_INFORM(AffInfoStr, "KMP_AFFINITY", + KMP_I18N_STR(Decodingx2APIC)); + } + + depth = __kmp_affinity_create_x2apicid_map(&address2os, &msg_id); + if (depth == 0) { + KMP_ASSERT(__kmp_affinity_type == affinity_none); + KMP_ASSERT(address2os == NULL); + return; + } + + if (depth < 0) { + KMP_ASSERT(msg_id != kmp_i18n_null); + KMP_FATAL(MsgExiting, __kmp_i18n_catgets(msg_id)); + } + } + else if (__kmp_affinity_top_method == affinity_top_method_apicid) { + if (__kmp_affinity_verbose) { + KMP_INFORM(AffInfoStr, "KMP_AFFINITY", + KMP_I18N_STR(DecodingLegacyAPIC)); + } + + depth = __kmp_affinity_create_apicid_map(&address2os, &msg_id); + if (depth == 0) { + KMP_ASSERT(__kmp_affinity_type == affinity_none); + KMP_ASSERT(address2os == NULL); + return; + } + + if (depth < 0) { + KMP_ASSERT(msg_id != kmp_i18n_null); + KMP_FATAL(MsgExiting, __kmp_i18n_catgets(msg_id)); + } + } + +# endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */ + + else if (__kmp_affinity_top_method == affinity_top_method_cpuinfo) { + const char *filename; + if (__kmp_cpuinfo_file != NULL) { + filename = __kmp_cpuinfo_file; + } + else { + filename = "/proc/cpuinfo"; + } + + if (__kmp_affinity_verbose) { + KMP_INFORM(AffParseFilename, "KMP_AFFINITY", filename); + } + + FILE *f = fopen(filename, "r"); + if (f == NULL) { + int code = errno; + if (__kmp_cpuinfo_file != NULL) { + __kmp_msg( + kmp_ms_fatal, + KMP_MSG(CantOpenFileForReading, filename), + KMP_ERR(code), + KMP_HNT(NameComesFrom_CPUINFO_FILE), + __kmp_msg_null + ); + } + else { + __kmp_msg( + kmp_ms_fatal, + KMP_MSG(CantOpenFileForReading, filename), + KMP_ERR(code), + __kmp_msg_null + ); + } + } + int line = 0; + depth = __kmp_affinity_create_cpuinfo_map(&address2os, &line, &msg_id, f); + fclose(f); + if (depth < 0) { + KMP_ASSERT(msg_id != kmp_i18n_null); + if (line > 0) { + KMP_FATAL(FileLineMsgExiting, filename, line, __kmp_i18n_catgets(msg_id)); + } + else { + KMP_FATAL(FileMsgExiting, filename, __kmp_i18n_catgets(msg_id)); + } + } + if (__kmp_affinity_type == affinity_none) { + KMP_ASSERT(depth == 0); + KMP_ASSERT(address2os == NULL); + return; + } + } + +# if KMP_OS_WINDOWS && KMP_ARCH_X86_64 + + else if (__kmp_affinity_top_method == affinity_top_method_group) { + if (__kmp_affinity_verbose) { + KMP_INFORM(AffWindowsProcGroupMap, "KMP_AFFINITY"); + } + + depth = __kmp_affinity_create_proc_group_map(&address2os, &msg_id); + KMP_ASSERT(depth != 0); + + if (depth < 0) { + if ((msg_id != kmp_i18n_null) + && (__kmp_affinity_verbose || (__kmp_affinity_warnings + && (__kmp_affinity_type != affinity_none)))) { + KMP_WARNING(UsingFlatOS, __kmp_i18n_catgets(msg_id)); + } + + depth = __kmp_affinity_create_flat_map(&address2os, &msg_id); + if (depth == 0) { + KMP_ASSERT(__kmp_affinity_type == affinity_none); + KMP_ASSERT(address2os == NULL); + return; + } + // should not fail + KMP_ASSERT(depth > 0); + KMP_ASSERT(address2os != NULL); + } + } + +# endif /* KMP_OS_WINDOWS && KMP_ARCH_X86_64 */ + + else if (__kmp_affinity_top_method == affinity_top_method_flat) { + if (__kmp_affinity_verbose) { + KMP_INFORM(AffUsingFlatOS, "KMP_AFFINITY"); + } + + depth = __kmp_affinity_create_flat_map(&address2os, &msg_id); + if (depth == 0) { + KMP_ASSERT(__kmp_affinity_type == affinity_none); + KMP_ASSERT(address2os == NULL); + return; + } + // should not fail + KMP_ASSERT(depth > 0); + KMP_ASSERT(address2os != NULL); + } + + if (address2os == NULL) { + if (KMP_AFFINITY_CAPABLE() + && (__kmp_affinity_verbose || (__kmp_affinity_warnings + && (__kmp_affinity_type != affinity_none)))) { + KMP_WARNING(ErrorInitializeAffinity); + } + __kmp_affinity_type = affinity_none; + __kmp_affin_mask_size = 0; + return; + } + +# if KMP_MIC + __kmp_apply_thread_places(&address2os, depth); +# endif + + // + // Create the table of masks, indexed by thread Id. + // + unsigned maxIndex; + unsigned numUnique; + kmp_affin_mask_t *osId2Mask = __kmp_create_masks(&maxIndex, &numUnique, + address2os, __kmp_avail_proc); + if (__kmp_affinity_gran_levels == 0) { + KMP_DEBUG_ASSERT(numUnique == __kmp_avail_proc); + } + + // + // Set the childNums vector in all Address objects. This must be done + // before we can sort using __kmp_affinity_cmp_Address_child_num(), + // which takes into account the setting of __kmp_affinity_compact. + // + __kmp_affinity_assign_child_nums(address2os, __kmp_avail_proc); + + switch (__kmp_affinity_type) { + + case affinity_explicit: + KMP_DEBUG_ASSERT(__kmp_affinity_proclist != NULL); +# if OMP_40_ENABLED + if (__kmp_nested_proc_bind.bind_types[0] == proc_bind_intel) +# endif + { + __kmp_affinity_process_proclist(&__kmp_affinity_masks, + &__kmp_affinity_num_masks, __kmp_affinity_proclist, osId2Mask, + maxIndex); + } +# if OMP_40_ENABLED + else { + __kmp_affinity_process_placelist(&__kmp_affinity_masks, + &__kmp_affinity_num_masks, __kmp_affinity_proclist, osId2Mask, + maxIndex); + } +# endif + if (__kmp_affinity_num_masks == 0) { + if (__kmp_affinity_verbose || (__kmp_affinity_warnings + && (__kmp_affinity_type != affinity_none))) { + KMP_WARNING(AffNoValidProcID); + } + __kmp_affinity_type = affinity_none; + return; + } + break; + + // + // The other affinity types rely on sorting the Addresses according + // to some permutation of the machine topology tree. Set + // __kmp_affinity_compact and __kmp_affinity_offset appropriately, + // then jump to a common code fragment to do the sort and create + // the array of affinity masks. + // + + case affinity_logical: + __kmp_affinity_compact = 0; + if (__kmp_affinity_offset) { + __kmp_affinity_offset = __kmp_nThreadsPerCore * __kmp_affinity_offset + % __kmp_avail_proc; + } + goto sortAddresses; + + case affinity_physical: + if (__kmp_nThreadsPerCore > 1) { + __kmp_affinity_compact = 1; + if (__kmp_affinity_compact >= depth) { + __kmp_affinity_compact = 0; + } + } else { + __kmp_affinity_compact = 0; + } + if (__kmp_affinity_offset) { + __kmp_affinity_offset = __kmp_nThreadsPerCore * __kmp_affinity_offset + % __kmp_avail_proc; + } + goto sortAddresses; + + case affinity_scatter: + if (__kmp_affinity_compact >= depth) { + __kmp_affinity_compact = 0; + } + else { + __kmp_affinity_compact = depth - 1 - __kmp_affinity_compact; + } + goto sortAddresses; + + case affinity_compact: + if (__kmp_affinity_compact >= depth) { + __kmp_affinity_compact = depth - 1; + } + goto sortAddresses; + +# if KMP_MIC + case affinity_balanced: + // Balanced works only for the case of a single package and uniform topology + if( nPackages > 1 ) { + if( __kmp_affinity_verbose || __kmp_affinity_warnings ) { + KMP_WARNING( AffBalancedNotAvail, "KMP_AFFINITY" ); + } + __kmp_affinity_type = affinity_none; + return; + } else if( __kmp_affinity_uniform_topology() ) { + break; + } else { // Non-uniform topology + + // Save the depth for further usage + __kmp_aff_depth = depth; + + // Number of hyper threads per core in HT machine + int nth_per_core = __kmp_nThreadsPerCore; + + int core_level; + if( nth_per_core > 1 ) { + core_level = depth - 2; + } else { + core_level = depth - 1; + } + int ncores = address2os[ __kmp_avail_proc - 1 ].first.labels[ core_level ] + 1; + int nproc = nth_per_core * ncores; + + procarr = ( int * )__kmp_allocate( sizeof( int ) * nproc ); + for( int i = 0; i < nproc; i++ ) { + procarr[ i ] = -1; + } + + for( int i = 0; i < __kmp_avail_proc; i++ ) { + int proc = address2os[ i ].second; + // If depth == 3 then level=0 - package, level=1 - core, level=2 - thread. + // If there is only one thread per core then depth == 2: level 0 - package, + // level 1 - core. + int level = depth - 1; + + // __kmp_nth_per_core == 1 + int thread = 0; + int core = address2os[ i ].first.labels[ level ]; + // If the thread level exists, that is we have more than one thread context per core + if( nth_per_core > 1 ) { + thread = address2os[ i ].first.labels[ level ] % nth_per_core; + core = address2os[ i ].first.labels[ level - 1 ]; + } + procarr[ core * nth_per_core + thread ] = proc; + } + + break; + } +# endif + + sortAddresses: + // + // Allocate the gtid->affinity mask table. + // + if (__kmp_affinity_dups) { + __kmp_affinity_num_masks = __kmp_avail_proc; + } + else { + __kmp_affinity_num_masks = numUnique; + } + +# if OMP_40_ENABLED + if ( ( __kmp_nested_proc_bind.bind_types[0] != proc_bind_intel ) + && ( __kmp_affinity_num_places > 0 ) + && ( (unsigned)__kmp_affinity_num_places < __kmp_affinity_num_masks ) ) { + __kmp_affinity_num_masks = __kmp_affinity_num_places; + } +# endif + + __kmp_affinity_masks = (kmp_affin_mask_t*)__kmp_allocate( + __kmp_affinity_num_masks * __kmp_affin_mask_size); + + // + // Sort the address2os table according to the current setting of + // __kmp_affinity_compact, then fill out __kmp_affinity_masks. + // + qsort(address2os, __kmp_avail_proc, sizeof(*address2os), + __kmp_affinity_cmp_Address_child_num); + { + int i; + unsigned j; + for (i = 0, j = 0; i < __kmp_avail_proc; i++) { + if ((! __kmp_affinity_dups) && (! address2os[i].first.leader)) { + continue; + } + unsigned osId = address2os[i].second; + kmp_affin_mask_t *src = KMP_CPU_INDEX(osId2Mask, osId); + kmp_affin_mask_t *dest + = KMP_CPU_INDEX(__kmp_affinity_masks, j); + KMP_ASSERT(KMP_CPU_ISSET(osId, src)); + KMP_CPU_COPY(dest, src); + if (++j >= __kmp_affinity_num_masks) { + break; + } + } + KMP_DEBUG_ASSERT(j == __kmp_affinity_num_masks); + } + break; + + default: + KMP_ASSERT2(0, "Unexpected affinity setting"); + } + + __kmp_free(osId2Mask); +} + + +void +__kmp_affinity_initialize(void) +{ + // + // Much of the code above was written assumming that if a machine was not + // affinity capable, then __kmp_affinity_type == affinity_none. We now + // explicitly represent this as __kmp_affinity_type == affinity_disabled. + // + // There are too many checks for __kmp_affinity_type == affinity_none + // in this code. Instead of trying to change them all, check if + // __kmp_affinity_type == affinity_disabled, and if so, slam it with + // affinity_none, call the real initialization routine, then restore + // __kmp_affinity_type to affinity_disabled. + // + int disabled = (__kmp_affinity_type == affinity_disabled); + if (! KMP_AFFINITY_CAPABLE()) { + KMP_ASSERT(disabled); + } + if (disabled) { + __kmp_affinity_type = affinity_none; + } + __kmp_aux_affinity_initialize(); + if (disabled) { + __kmp_affinity_type = affinity_disabled; + } +} + + +void +__kmp_affinity_uninitialize(void) +{ + if (__kmp_affinity_masks != NULL) { + __kmp_free(__kmp_affinity_masks); + __kmp_affinity_masks = NULL; + } + if (fullMask != NULL) { + KMP_CPU_FREE(fullMask); + fullMask = NULL; + } + __kmp_affinity_num_masks = 0; +# if OMP_40_ENABLED + __kmp_affinity_num_places = 0; +# endif + if (__kmp_affinity_proclist != NULL) { + __kmp_free(__kmp_affinity_proclist); + __kmp_affinity_proclist = NULL; + } + if( address2os != NULL ) { + __kmp_free( address2os ); + address2os = NULL; + } + if( procarr != NULL ) { + __kmp_free( procarr ); + procarr = NULL; + } +} + + +void +__kmp_affinity_set_init_mask(int gtid, int isa_root) +{ + if (! KMP_AFFINITY_CAPABLE()) { + return; + } + + kmp_info_t *th = (kmp_info_t *)TCR_SYNC_PTR(__kmp_threads[gtid]); + if (th->th.th_affin_mask == NULL) { + KMP_CPU_ALLOC(th->th.th_affin_mask); + } + else { + KMP_CPU_ZERO(th->th.th_affin_mask); + } + + // + // Copy the thread mask to the kmp_info_t strucuture. + // If __kmp_affinity_type == affinity_none, copy the "full" mask, i.e. one + // that has all of the OS proc ids set, or if __kmp_affinity_respect_mask + // is set, then the full mask is the same as the mask of the initialization + // thread. + // + kmp_affin_mask_t *mask; + int i; + +# if OMP_40_ENABLED + if (__kmp_nested_proc_bind.bind_types[0] == proc_bind_intel) +# endif + { + if ((__kmp_affinity_type == affinity_none) +# if KMP_MIC + || (__kmp_affinity_type == affinity_balanced) +# endif + ) { +# if KMP_OS_WINDOWS && KMP_ARCH_X86_64 + if (__kmp_num_proc_groups > 1) { + return; + } +# endif + KMP_ASSERT(fullMask != NULL); + i = -1; + mask = fullMask; + } + else { + KMP_DEBUG_ASSERT( __kmp_affinity_num_masks > 0 ); + i = (gtid + __kmp_affinity_offset) % __kmp_affinity_num_masks; + mask = KMP_CPU_INDEX(__kmp_affinity_masks, i); + } + } +# if OMP_40_ENABLED + else { + if ((! isa_root) + || (__kmp_nested_proc_bind.bind_types[0] == proc_bind_false)) { +# if KMP_OS_WINDOWS && KMP_ARCH_X86_64 + if (__kmp_num_proc_groups > 1) { + return; + } +# endif + KMP_ASSERT(fullMask != NULL); + i = KMP_PLACE_ALL; + mask = fullMask; + } + else { + // + // int i = some hash function or just a counter that doesn't + // always start at 0. Use gtid for now. + // + KMP_DEBUG_ASSERT( __kmp_affinity_num_masks > 0 ); + i = (gtid + __kmp_affinity_offset) % __kmp_affinity_num_masks; + mask = KMP_CPU_INDEX(__kmp_affinity_masks, i); + } + } +# endif + +# if OMP_40_ENABLED + th->th.th_current_place = i; + if (isa_root) { + th->th.th_new_place = i; + th->th.th_first_place = 0; + th->th.th_last_place = __kmp_affinity_num_masks - 1; + } + + if (i == KMP_PLACE_ALL) { + KA_TRACE(100, ("__kmp_affinity_set_init_mask: binding T#%d to all places\n", + gtid)); + } + else { + KA_TRACE(100, ("__kmp_affinity_set_init_mask: binding T#%d to place %d\n", + gtid, i)); + } +# else + if (i == -1) { + KA_TRACE(100, ("__kmp_affinity_set_init_mask: binding T#%d to fullMask\n", + gtid)); + } + else { + KA_TRACE(100, ("__kmp_affinity_set_init_mask: binding T#%d to mask %d\n", + gtid, i)); + } +# endif /* OMP_40_ENABLED */ + + KMP_CPU_COPY(th->th.th_affin_mask, mask); + + if (__kmp_affinity_verbose) { + char buf[KMP_AFFIN_MASK_PRINT_LEN]; + __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, + th->th.th_affin_mask); + KMP_INFORM(BoundToOSProcSet, "KMP_AFFINITY", gtid, buf); + } + +# if KMP_OS_WINDOWS + // + // On Windows* OS, the process affinity mask might have changed. + // If the user didn't request affinity and this call fails, + // just continue silently. See CQ171393. + // + if ( __kmp_affinity_type == affinity_none ) { + __kmp_set_system_affinity(th->th.th_affin_mask, FALSE); + } + else +# endif + __kmp_set_system_affinity(th->th.th_affin_mask, TRUE); +} + + +# if OMP_40_ENABLED + +void +__kmp_affinity_set_place(int gtid) +{ + int retval; + + if (! KMP_AFFINITY_CAPABLE()) { + return; + } + + kmp_info_t *th = (kmp_info_t *)TCR_SYNC_PTR(__kmp_threads[gtid]); + + KA_TRACE(100, ("__kmp_affinity_set_place: binding T#%d to place %d (current place = %d)\n", + gtid, th->th.th_new_place, th->th.th_current_place)); + + // + // Check that the new place is withing this thread's partition. + // + KMP_DEBUG_ASSERT(th->th.th_affin_mask != NULL); + KMP_DEBUG_ASSERT(th->th.th_new_place >= 0); + KMP_DEBUG_ASSERT((unsigned)th->th.th_new_place <= __kmp_affinity_num_masks); + if (th->th.th_first_place <= th->th.th_last_place) { + KMP_DEBUG_ASSERT((th->th.th_new_place >= th->th.th_first_place) + && (th->th.th_new_place <= th->th.th_last_place)); + } + else { + KMP_DEBUG_ASSERT((th->th.th_new_place <= th->th.th_first_place) + || (th->th.th_new_place >= th->th.th_last_place)); + } + + // + // Copy the thread mask to the kmp_info_t strucuture, + // and set this thread's affinity. + // + kmp_affin_mask_t *mask = KMP_CPU_INDEX(__kmp_affinity_masks, + th->th.th_new_place); + KMP_CPU_COPY(th->th.th_affin_mask, mask); + th->th.th_current_place = th->th.th_new_place; + + if (__kmp_affinity_verbose) { + char buf[KMP_AFFIN_MASK_PRINT_LEN]; + __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, + th->th.th_affin_mask); + KMP_INFORM(BoundToOSProcSet, "OMP_PROC_BIND", gtid, buf); + } + __kmp_set_system_affinity(th->th.th_affin_mask, TRUE); +} + +# endif /* OMP_40_ENABLED */ + + +int +__kmp_aux_set_affinity(void **mask) +{ + int gtid; + kmp_info_t *th; + int retval; + + if (! KMP_AFFINITY_CAPABLE()) { + return -1; + } + + gtid = __kmp_entry_gtid(); + KA_TRACE(1000, ;{ + char buf[KMP_AFFIN_MASK_PRINT_LEN]; + __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, + (kmp_affin_mask_t *)(*mask)); + __kmp_debug_printf("kmp_set_affinity: setting affinity mask for thread %d = %s\n", + gtid, buf); + }); + + if (__kmp_env_consistency_check) { + if ((mask == NULL) || (*mask == NULL)) { + KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity"); + } + else { + unsigned proc; + int num_procs = 0; + + for (proc = 0; proc < KMP_CPU_SETSIZE; proc++) { + if (! KMP_CPU_ISSET(proc, (kmp_affin_mask_t *)(*mask))) { + continue; + } + num_procs++; + if (! KMP_CPU_ISSET(proc, fullMask)) { + KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity"); + break; + } + } + if (num_procs == 0) { + KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity"); + } + +# if KMP_OS_WINDOWS && KMP_ARCH_X86_64 + if (__kmp_get_proc_group((kmp_affin_mask_t *)(*mask)) < 0) { + KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity"); + } +# endif /* KMP_OS_WINDOWS && KMP_ARCH_X86_64 */ + + } + } + + th = __kmp_threads[gtid]; + KMP_DEBUG_ASSERT(th->th.th_affin_mask != NULL); + retval = __kmp_set_system_affinity((kmp_affin_mask_t *)(*mask), FALSE); + if (retval == 0) { + KMP_CPU_COPY(th->th.th_affin_mask, (kmp_affin_mask_t *)(*mask)); + } + +# if OMP_40_ENABLED + th->th.th_current_place = KMP_PLACE_UNDEFINED; + th->th.th_new_place = KMP_PLACE_UNDEFINED; + th->th.th_first_place = 0; + th->th.th_last_place = __kmp_affinity_num_masks - 1; +# endif + + return retval; +} + + +int +__kmp_aux_get_affinity(void **mask) +{ + int gtid; + int retval; + kmp_info_t *th; + + if (! KMP_AFFINITY_CAPABLE()) { + return -1; + } + + gtid = __kmp_entry_gtid(); + th = __kmp_threads[gtid]; + KMP_DEBUG_ASSERT(th->th.th_affin_mask != NULL); + + KA_TRACE(1000, ;{ + char buf[KMP_AFFIN_MASK_PRINT_LEN]; + __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, + th->th.th_affin_mask); + __kmp_printf("kmp_get_affinity: stored affinity mask for thread %d = %s\n", gtid, buf); + }); + + if (__kmp_env_consistency_check) { + if ((mask == NULL) || (*mask == NULL)) { + KMP_FATAL(AffinityInvalidMask, "kmp_get_affinity"); + } + } + +# if !KMP_OS_WINDOWS + + retval = __kmp_get_system_affinity((kmp_affin_mask_t *)(*mask), FALSE); + KA_TRACE(1000, ;{ + char buf[KMP_AFFIN_MASK_PRINT_LEN]; + __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, + (kmp_affin_mask_t *)(*mask)); + __kmp_printf("kmp_get_affinity: system affinity mask for thread %d = %s\n", gtid, buf); + }); + return retval; + +# else + + KMP_CPU_COPY((kmp_affin_mask_t *)(*mask), th->th.th_affin_mask); + return 0; + +# endif /* KMP_OS_WINDOWS */ + +} + + +int +__kmp_aux_set_affinity_mask_proc(int proc, void **mask) +{ + int retval; + + if (! KMP_AFFINITY_CAPABLE()) { + return -1; + } + + KA_TRACE(1000, ;{ + int gtid = __kmp_entry_gtid(); + char buf[KMP_AFFIN_MASK_PRINT_LEN]; + __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, + (kmp_affin_mask_t *)(*mask)); + __kmp_debug_printf("kmp_set_affinity_mask_proc: setting proc %d in affinity mask for thread %d = %s\n", + proc, gtid, buf); + }); + + if (__kmp_env_consistency_check) { + if ((mask == NULL) || (*mask == NULL)) { + KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity_mask_proc"); + } + } + + if ((proc < 0) || ((unsigned)proc >= KMP_CPU_SETSIZE)) { + return -1; + } + if (! KMP_CPU_ISSET(proc, fullMask)) { + return -2; + } + + KMP_CPU_SET(proc, (kmp_affin_mask_t *)(*mask)); + return 0; +} + + +int +__kmp_aux_unset_affinity_mask_proc(int proc, void **mask) +{ + int retval; + + if (! KMP_AFFINITY_CAPABLE()) { + return -1; + } + + KA_TRACE(1000, ;{ + int gtid = __kmp_entry_gtid(); + char buf[KMP_AFFIN_MASK_PRINT_LEN]; + __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, + (kmp_affin_mask_t *)(*mask)); + __kmp_debug_printf("kmp_unset_affinity_mask_proc: unsetting proc %d in affinity mask for thread %d = %s\n", + proc, gtid, buf); + }); + + if (__kmp_env_consistency_check) { + if ((mask == NULL) || (*mask == NULL)) { + KMP_FATAL(AffinityInvalidMask, "kmp_unset_affinity_mask_proc"); + } + } + + if ((proc < 0) || ((unsigned)proc >= KMP_CPU_SETSIZE)) { + return -1; + } + if (! KMP_CPU_ISSET(proc, fullMask)) { + return -2; + } + + KMP_CPU_CLR(proc, (kmp_affin_mask_t *)(*mask)); + return 0; +} + + +int +__kmp_aux_get_affinity_mask_proc(int proc, void **mask) +{ + int retval; + + if (! KMP_AFFINITY_CAPABLE()) { + return -1; + } + + KA_TRACE(1000, ;{ + int gtid = __kmp_entry_gtid(); + char buf[KMP_AFFIN_MASK_PRINT_LEN]; + __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, + (kmp_affin_mask_t *)(*mask)); + __kmp_debug_printf("kmp_get_affinity_mask_proc: getting proc %d in affinity mask for thread %d = %s\n", + proc, gtid, buf); + }); + + if (__kmp_env_consistency_check) { + if ((mask == NULL) || (*mask == NULL)) { + KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity_mask_proc"); + } + } + + if ((proc < 0) || ((unsigned)proc >= KMP_CPU_SETSIZE)) { + return 0; + } + if (! KMP_CPU_ISSET(proc, fullMask)) { + return 0; + } + + return KMP_CPU_ISSET(proc, (kmp_affin_mask_t *)(*mask)); +} + +# if KMP_MIC + +// Dynamic affinity settings - Affinity balanced +void __kmp_balanced_affinity( int tid, int nthreads ) +{ + if( __kmp_affinity_uniform_topology() ) { + int coreID; + int threadID; + // Number of hyper threads per core in HT machine + int __kmp_nth_per_core = __kmp_avail_proc / __kmp_ncores; + // Number of cores + int ncores = __kmp_ncores; + // How many threads will be bound to each core + int chunk = nthreads / ncores; + // How many cores will have an additional thread bound to it - "big cores" + int big_cores = nthreads % ncores; + // Number of threads on the big cores + int big_nth = ( chunk + 1 ) * big_cores; + if( tid < big_nth ) { + coreID = tid / (chunk + 1 ); + threadID = ( tid % (chunk + 1 ) ) % __kmp_nth_per_core ; + } else { //tid >= big_nth + coreID = ( tid - big_cores ) / chunk; + threadID = ( ( tid - big_cores ) % chunk ) % __kmp_nth_per_core ; + } + + KMP_DEBUG_ASSERT2(KMP_AFFINITY_CAPABLE(), + "Illegal set affinity operation when not capable"); + + kmp_affin_mask_t *mask = (kmp_affin_mask_t *)alloca(__kmp_affin_mask_size); + KMP_CPU_ZERO(mask); + + // Granularity == thread + if( __kmp_affinity_gran == affinity_gran_fine || __kmp_affinity_gran == affinity_gran_thread) { + int osID = address2os[ coreID * __kmp_nth_per_core + threadID ].second; + KMP_CPU_SET( osID, mask); + } else if( __kmp_affinity_gran == affinity_gran_core ) { // Granularity == core + for( int i = 0; i < __kmp_nth_per_core; i++ ) { + int osID; + osID = address2os[ coreID * __kmp_nth_per_core + i ].second; + KMP_CPU_SET( osID, mask); + } + } + if (__kmp_affinity_verbose) { + char buf[KMP_AFFIN_MASK_PRINT_LEN]; + __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, mask); + KMP_INFORM(BoundToOSProcSet, "KMP_AFFINITY", tid, buf); + } + __kmp_set_system_affinity( mask, TRUE ); + } else { // Non-uniform topology + + kmp_affin_mask_t *mask = (kmp_affin_mask_t *)alloca(__kmp_affin_mask_size); + KMP_CPU_ZERO(mask); + + // Number of hyper threads per core in HT machine + int nth_per_core = __kmp_nThreadsPerCore; + int core_level; + if( nth_per_core > 1 ) { + core_level = __kmp_aff_depth - 2; + } else { + core_level = __kmp_aff_depth - 1; + } + + // Number of cores - maximum value; it does not count trail cores with 0 processors + int ncores = address2os[ __kmp_avail_proc - 1 ].first.labels[ core_level ] + 1; + + // For performance gain consider the special case nthreads == __kmp_avail_proc + if( nthreads == __kmp_avail_proc ) { + if( __kmp_affinity_gran == affinity_gran_fine || __kmp_affinity_gran == affinity_gran_thread) { + int osID = address2os[ tid ].second; + KMP_CPU_SET( osID, mask); + } else if( __kmp_affinity_gran == affinity_gran_core ) { // Granularity == core + int coreID = address2os[ tid ].first.labels[ core_level ]; + // We'll count found osIDs for the current core; they can be not more than nth_per_core; + // since the address2os is sortied we can break when cnt==nth_per_core + int cnt = 0; + for( int i = 0; i < __kmp_avail_proc; i++ ) { + int osID = address2os[ i ].second; + int core = address2os[ i ].first.labels[ core_level ]; + if( core == coreID ) { + KMP_CPU_SET( osID, mask); + cnt++; + if( cnt == nth_per_core ) { + break; + } + } + } + } + } else if( nthreads <= __kmp_ncores ) { + + int core = 0; + for( int i = 0; i < ncores; i++ ) { + // Check if this core from procarr[] is in the mask + int in_mask = 0; + for( int j = 0; j < nth_per_core; j++ ) { + if( procarr[ i * nth_per_core + j ] != - 1 ) { + in_mask = 1; + break; + } + } + if( in_mask ) { + if( tid == core ) { + for( int j = 0; j < nth_per_core; j++ ) { + int osID = procarr[ i * nth_per_core + j ]; + if( osID != -1 ) { + KMP_CPU_SET( osID, mask ); + // For granularity=thread it is enough to set the first available osID for this core + if( __kmp_affinity_gran == affinity_gran_fine || __kmp_affinity_gran == affinity_gran_thread) { + break; + } + } + } + break; + } else { + core++; + } + } + } + + } else { // nthreads > __kmp_ncores + + // Array to save the number of processors at each core + int nproc_at_core[ ncores ]; + // Array to save the number of cores with "x" available processors; + int ncores_with_x_procs[ nth_per_core + 1 ]; + // Array to save the number of cores with # procs from x to nth_per_core + int ncores_with_x_to_max_procs[ nth_per_core + 1 ]; + + for( int i = 0; i <= nth_per_core; i++ ) { + ncores_with_x_procs[ i ] = 0; + ncores_with_x_to_max_procs[ i ] = 0; + } + + for( int i = 0; i < ncores; i++ ) { + int cnt = 0; + for( int j = 0; j < nth_per_core; j++ ) { + if( procarr[ i * nth_per_core + j ] != -1 ) { + cnt++; + } + } + nproc_at_core[ i ] = cnt; + ncores_with_x_procs[ cnt ]++; + } + + for( int i = 0; i <= nth_per_core; i++ ) { + for( int j = i; j <= nth_per_core; j++ ) { + ncores_with_x_to_max_procs[ i ] += ncores_with_x_procs[ j ]; + } + } + + // Max number of processors + int nproc = nth_per_core * ncores; + // An array to keep number of threads per each context + int * newarr = ( int * )__kmp_allocate( sizeof( int ) * nproc ); + for( int i = 0; i < nproc; i++ ) { + newarr[ i ] = 0; + } + + int nth = nthreads; + int flag = 0; + while( nth > 0 ) { + for( int j = 1; j <= nth_per_core; j++ ) { + int cnt = ncores_with_x_to_max_procs[ j ]; + for( int i = 0; i < ncores; i++ ) { + // Skip the core with 0 processors + if( nproc_at_core[ i ] == 0 ) { + continue; + } + for( int k = 0; k < nth_per_core; k++ ) { + if( procarr[ i * nth_per_core + k ] != -1 ) { + if( newarr[ i * nth_per_core + k ] == 0 ) { + newarr[ i * nth_per_core + k ] = 1; + cnt--; + nth--; + break; + } else { + if( flag != 0 ) { + newarr[ i * nth_per_core + k ] ++; + cnt--; + nth--; + break; + } + } + } + } + if( cnt == 0 || nth == 0 ) { + break; + } + } + if( nth == 0 ) { + break; + } + } + flag = 1; + } + int sum = 0; + for( int i = 0; i < nproc; i++ ) { + sum += newarr[ i ]; + if( sum > tid ) { + // Granularity == thread + if( __kmp_affinity_gran == affinity_gran_fine || __kmp_affinity_gran == affinity_gran_thread) { + int osID = procarr[ i ]; + KMP_CPU_SET( osID, mask); + } else if( __kmp_affinity_gran == affinity_gran_core ) { // Granularity == core + int coreID = i / nth_per_core; + for( int ii = 0; ii < nth_per_core; ii++ ) { + int osID = procarr[ coreID * nth_per_core + ii ]; + if( osID != -1 ) { + KMP_CPU_SET( osID, mask); + } + } + } + break; + } + } + __kmp_free( newarr ); + } + + if (__kmp_affinity_verbose) { + char buf[KMP_AFFIN_MASK_PRINT_LEN]; + __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, mask); + KMP_INFORM(BoundToOSProcSet, "KMP_AFFINITY", tid, buf); + } + __kmp_set_system_affinity( mask, TRUE ); + } +} + +# endif /* KMP_MIC */ + +#elif KMP_OS_DARWIN + // affinity not supported +#else + #error "Unknown or unsupported OS" +#endif // KMP_OS_WINDOWS || KMP_OS_LINUX + |