summaryrefslogtreecommitdiffstats
path: root/openmp/runtime/src/kmp_affinity.cpp
diff options
context:
space:
mode:
authorJim Cownie <james.h.cownie@intel.com>2013-09-27 10:38:44 +0000
committerJim Cownie <james.h.cownie@intel.com>2013-09-27 10:38:44 +0000
commit5e8470af093f8d8106ca22e37133b41e0bdc5e85 (patch)
treebd4a1e15b4c04aa8a0887f11186e5c3ac4057094 /openmp/runtime/src/kmp_affinity.cpp
parent041f7176802074daf7ed0d0c349491415888b5e0 (diff)
downloadbcm5719-llvm-5e8470af093f8d8106ca22e37133b41e0bdc5e85.tar.gz
bcm5719-llvm-5e8470af093f8d8106ca22e37133b41e0bdc5e85.zip
First attempt to import OpenMP runtime
llvm-svn: 191506
Diffstat (limited to 'openmp/runtime/src/kmp_affinity.cpp')
-rw-r--r--openmp/runtime/src/kmp_affinity.cpp4540
1 files changed, 4540 insertions, 0 deletions
diff --git a/openmp/runtime/src/kmp_affinity.cpp b/openmp/runtime/src/kmp_affinity.cpp
new file mode 100644
index 00000000000..0840fa3fd8d
--- /dev/null
+++ b/openmp/runtime/src/kmp_affinity.cpp
@@ -0,0 +1,4540 @@
+/*
+ * kmp_affinity.cpp -- affinity management
+ * $Revision: 42613 $
+ * $Date: 2013-08-23 13:29:50 -0500 (Fri, 23 Aug 2013) $
+ */
+
+
+//===----------------------------------------------------------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is dual licensed under the MIT and the University of Illinois Open
+// Source Licenses. See LICENSE.txt for details.
+//
+//===----------------------------------------------------------------------===//
+
+
+#include "kmp.h"
+#include "kmp_i18n.h"
+#include "kmp_io.h"
+#include "kmp_str.h"
+
+
+#if KMP_OS_WINDOWS || KMP_OS_LINUX
+
+//
+// Print the affinity mask to the character array in a pretty format.
+//
+char *
+__kmp_affinity_print_mask(char *buf, int buf_len, kmp_affin_mask_t *mask)
+{
+ KMP_ASSERT(buf_len >= 40);
+ char *scan = buf;
+ char *end = buf + buf_len - 1;
+
+ //
+ // Find first element / check for empty set.
+ //
+ size_t i;
+ for (i = 0; i < KMP_CPU_SETSIZE; i++) {
+ if (KMP_CPU_ISSET(i, mask)) {
+ break;
+ }
+ }
+ if (i == KMP_CPU_SETSIZE) {
+ sprintf(scan, "{<empty>}");
+ while (*scan != '\0') scan++;
+ KMP_ASSERT(scan <= end);
+ return buf;
+ }
+
+ sprintf(scan, "{%ld", i);
+ while (*scan != '\0') scan++;
+ i++;
+ for (; i < KMP_CPU_SETSIZE; i++) {
+ if (! KMP_CPU_ISSET(i, mask)) {
+ continue;
+ }
+
+ //
+ // Check for buffer overflow. A string of the form ",<n>" will have
+ // at most 10 characters, plus we want to leave room to print ",...}"
+ // if the set is too large to print for a total of 15 characters.
+ // We already left room for '\0' in setting end.
+ //
+ if (end - scan < 15) {
+ break;
+ }
+ sprintf(scan, ",%-ld", i);
+ while (*scan != '\0') scan++;
+ }
+ if (i < KMP_CPU_SETSIZE) {
+ sprintf(scan, ",...");
+ while (*scan != '\0') scan++;
+ }
+ sprintf(scan, "}");
+ while (*scan != '\0') scan++;
+ KMP_ASSERT(scan <= end);
+ return buf;
+}
+
+
+void
+__kmp_affinity_entire_machine_mask(kmp_affin_mask_t *mask)
+{
+ KMP_CPU_ZERO(mask);
+
+# if KMP_OS_WINDOWS && KMP_ARCH_X86_64
+
+ if (__kmp_num_proc_groups > 1) {
+ int group;
+ struct GROUP_AFFINITY ga;
+ KMP_DEBUG_ASSERT(__kmp_GetActiveProcessorCount != NULL);
+ for (group = 0; group < __kmp_num_proc_groups; group++) {
+ int i;
+ int num = __kmp_GetActiveProcessorCount(group);
+ for (i = 0; i < num; i++) {
+ KMP_CPU_SET(i + group * (CHAR_BIT * sizeof(DWORD_PTR)), mask);
+ }
+ }
+ }
+ else
+
+# endif /* KMP_OS_WINDOWS && KMP_ARCH_X86_64 */
+
+ {
+ int proc;
+ for (proc = 0; proc < __kmp_xproc; proc++) {
+ KMP_CPU_SET(proc, mask);
+ }
+ }
+}
+
+
+//
+// In Linux* OS debug & cover (-O0) builds, we need to avoid inline member
+// functions.
+//
+// The icc codegen emits sections with extremely long names, of the form
+// ".gnu.linkonce.<mangled_name>". There seems to have been a linker bug
+// introduced between GNU ld version 2.14.90.0.4 and 2.15.92.0.2 involving
+// some sort of memory corruption or table overflow that is triggered by
+// these long strings. I checked the latest version of the linker -
+// GNU ld (Linux* OS/GNU Binutils) 2.18.50.0.7.20080422 - and the bug is not
+// fixed.
+//
+// Unfortunately, my attempts to reproduce it in a smaller example have
+// failed - I'm not sure what the prospects are of getting it fixed
+// properly - but we need a reproducer smaller than all of libiomp.
+//
+// Work around the problem by avoiding inline constructors in such builds.
+// We do this for all platforms, not just Linux* OS - non-inline functions are
+// more debuggable and provide better coverage into than inline functions.
+// Use inline functions in shipping libs, for performance.
+//
+
+# if !defined(KMP_DEBUG) && !defined(COVER)
+
+class Address {
+public:
+ static const unsigned maxDepth = 32;
+ unsigned labels[maxDepth];
+ unsigned childNums[maxDepth];
+ unsigned depth;
+ unsigned leader;
+ Address(unsigned _depth)
+ : depth(_depth), leader(FALSE) {
+ }
+ Address &operator=(const Address &b) {
+ depth = b.depth;
+ for (unsigned i = 0; i < depth; i++) {
+ labels[i] = b.labels[i];
+ childNums[i] = b.childNums[i];
+ }
+ leader = FALSE;
+ return *this;
+ }
+ bool operator==(const Address &b) const {
+ if (depth != b.depth)
+ return false;
+ for (unsigned i = 0; i < depth; i++)
+ if(labels[i] != b.labels[i])
+ return false;
+ return true;
+ }
+ bool isClose(const Address &b, int level) const {
+ if (depth != b.depth)
+ return false;
+ if ((unsigned)level >= depth)
+ return true;
+ for (unsigned i = 0; i < (depth - level); i++)
+ if(labels[i] != b.labels[i])
+ return false;
+ return true;
+ }
+ bool operator!=(const Address &b) const {
+ return !operator==(b);
+ }
+};
+
+class AddrUnsPair {
+public:
+ Address first;
+ unsigned second;
+ AddrUnsPair(Address _first, unsigned _second)
+ : first(_first), second(_second) {
+ }
+ AddrUnsPair &operator=(const AddrUnsPair &b)
+ {
+ first = b.first;
+ second = b.second;
+ return *this;
+ }
+};
+
+# else
+
+class Address {
+public:
+ static const unsigned maxDepth = 32;
+ unsigned labels[maxDepth];
+ unsigned childNums[maxDepth];
+ unsigned depth;
+ unsigned leader;
+ Address(unsigned _depth);
+ Address &operator=(const Address &b);
+ bool operator==(const Address &b) const;
+ bool isClose(const Address &b, int level) const;
+ bool operator!=(const Address &b) const;
+};
+
+Address::Address(unsigned _depth)
+{
+ depth = _depth;
+ leader = FALSE;
+}
+
+Address &Address::operator=(const Address &b) {
+ depth = b.depth;
+ for (unsigned i = 0; i < depth; i++) {
+ labels[i] = b.labels[i];
+ childNums[i] = b.childNums[i];
+ }
+ leader = FALSE;
+ return *this;
+}
+
+bool Address::operator==(const Address &b) const {
+ if (depth != b.depth)
+ return false;
+ for (unsigned i = 0; i < depth; i++)
+ if(labels[i] != b.labels[i])
+ return false;
+ return true;
+}
+
+bool Address::isClose(const Address &b, int level) const {
+ if (depth != b.depth)
+ return false;
+ if ((unsigned)level >= depth)
+ return true;
+ for (unsigned i = 0; i < (depth - level); i++)
+ if(labels[i] != b.labels[i])
+ return false;
+ return true;
+}
+
+bool Address::operator!=(const Address &b) const {
+ return !operator==(b);
+}
+
+class AddrUnsPair {
+public:
+ Address first;
+ unsigned second;
+ AddrUnsPair(Address _first, unsigned _second);
+ AddrUnsPair &operator=(const AddrUnsPair &b);
+};
+
+AddrUnsPair::AddrUnsPair(Address _first, unsigned _second)
+ : first(_first), second(_second)
+{
+}
+
+AddrUnsPair &AddrUnsPair::operator=(const AddrUnsPair &b)
+{
+ first = b.first;
+ second = b.second;
+ return *this;
+}
+
+# endif /* !defined(KMP_DEBUG) && !defined(COVER) */
+
+
+static int
+__kmp_affinity_cmp_Address_labels(const void *a, const void *b)
+{
+ const Address *aa = (const Address *)&(((AddrUnsPair *)a)
+ ->first);
+ const Address *bb = (const Address *)&(((AddrUnsPair *)b)
+ ->first);
+ unsigned depth = aa->depth;
+ unsigned i;
+ KMP_DEBUG_ASSERT(depth == bb->depth);
+ for (i = 0; i < depth; i++) {
+ if (aa->labels[i] < bb->labels[i]) return -1;
+ if (aa->labels[i] > bb->labels[i]) return 1;
+ }
+ return 0;
+}
+
+
+static int
+__kmp_affinity_cmp_Address_child_num(const void *a, const void *b)
+{
+ const Address *aa = (const Address *)&(((AddrUnsPair *)a)
+ ->first);
+ const Address *bb = (const Address *)&(((AddrUnsPair *)b)
+ ->first);
+ unsigned depth = aa->depth;
+ unsigned i;
+ KMP_DEBUG_ASSERT(depth == bb->depth);
+ KMP_DEBUG_ASSERT((unsigned)__kmp_affinity_compact <= depth);
+ KMP_DEBUG_ASSERT(__kmp_affinity_compact >= 0);
+ for (i = 0; i < (unsigned)__kmp_affinity_compact; i++) {
+ int j = depth - i - 1;
+ if (aa->childNums[j] < bb->childNums[j]) return -1;
+ if (aa->childNums[j] > bb->childNums[j]) return 1;
+ }
+ for (; i < depth; i++) {
+ int j = i - __kmp_affinity_compact;
+ if (aa->childNums[j] < bb->childNums[j]) return -1;
+ if (aa->childNums[j] > bb->childNums[j]) return 1;
+ }
+ return 0;
+}
+
+
+//
+// When sorting by labels, __kmp_affinity_assign_child_nums() must first be
+// called to renumber the labels from [0..n] and place them into the child_num
+// vector of the address object. This is done in case the labels used for
+// the children at one node of the heirarchy differ from those used for
+// another node at the same level. Example: suppose the machine has 2 nodes
+// with 2 packages each. The first node contains packages 601 and 602, and
+// second node contains packages 603 and 604. If we try to sort the table
+// for "scatter" affinity, the table will still be sorted 601, 602, 603, 604
+// because we are paying attention to the labels themselves, not the ordinal
+// child numbers. By using the child numbers in the sort, the result is
+// {0,0}=601, {0,1}=603, {1,0}=602, {1,1}=604.
+//
+static void
+__kmp_affinity_assign_child_nums(AddrUnsPair *address2os,
+ int numAddrs)
+{
+ KMP_DEBUG_ASSERT(numAddrs > 0);
+ int depth = address2os->first.depth;
+ unsigned *counts = (unsigned *)__kmp_allocate(depth * sizeof(unsigned));
+ unsigned *lastLabel = (unsigned *)__kmp_allocate(depth
+ * sizeof(unsigned));
+ int labCt;
+ for (labCt = 0; labCt < depth; labCt++) {
+ address2os[0].first.childNums[labCt] = counts[labCt] = 0;
+ lastLabel[labCt] = address2os[0].first.labels[labCt];
+ }
+ int i;
+ for (i = 1; i < numAddrs; i++) {
+ for (labCt = 0; labCt < depth; labCt++) {
+ if (address2os[i].first.labels[labCt] != lastLabel[labCt]) {
+ int labCt2;
+ for (labCt2 = labCt + 1; labCt2 < depth; labCt2++) {
+ counts[labCt2] = 0;
+ lastLabel[labCt2] = address2os[i].first.labels[labCt2];
+ }
+ counts[labCt]++;
+ lastLabel[labCt] = address2os[i].first.labels[labCt];
+ break;
+ }
+ }
+ for (labCt = 0; labCt < depth; labCt++) {
+ address2os[i].first.childNums[labCt] = counts[labCt];
+ }
+ for (; labCt < (int)Address::maxDepth; labCt++) {
+ address2os[i].first.childNums[labCt] = 0;
+ }
+ }
+}
+
+
+//
+// All of the __kmp_affinity_create_*_map() routines should set
+// __kmp_affinity_masks to a vector of affinity mask objects of length
+// __kmp_affinity_num_masks, if __kmp_affinity_type != affinity_none, and
+// return the number of levels in the machine topology tree (zero if
+// __kmp_affinity_type == affinity_none).
+//
+// All of the __kmp_affinity_create_*_map() routines should set *fullMask
+// to the affinity mask for the initialization thread. They need to save and
+// restore the mask, and it could be needed later, so saving it is just an
+// optimization to avoid calling kmp_get_system_affinity() again.
+//
+static kmp_affin_mask_t *fullMask = NULL;
+
+kmp_affin_mask_t *
+__kmp_affinity_get_fullMask() { return fullMask; }
+
+
+static int nCoresPerPkg, nPackages;
+int __kmp_nThreadsPerCore;
+
+//
+// __kmp_affinity_uniform_topology() doesn't work when called from
+// places which support arbitrarily many levels in the machine topology
+// map, i.e. the non-default cases in __kmp_affinity_create_cpuinfo_map()
+// __kmp_affinity_create_x2apicid_map().
+//
+inline static bool
+__kmp_affinity_uniform_topology()
+{
+ return __kmp_avail_proc == (__kmp_nThreadsPerCore * nCoresPerPkg * nPackages);
+}
+
+
+//
+// Print out the detailed machine topology map, i.e. the physical locations
+// of each OS proc.
+//
+static void
+__kmp_affinity_print_topology(AddrUnsPair *address2os, int len, int depth,
+ int pkgLevel, int coreLevel, int threadLevel)
+{
+ int proc;
+
+ KMP_INFORM(OSProcToPhysicalThreadMap, "KMP_AFFINITY");
+ for (proc = 0; proc < len; proc++) {
+ int level;
+ kmp_str_buf_t buf;
+ __kmp_str_buf_init(&buf);
+ for (level = 0; level < depth; level++) {
+ if (level == threadLevel) {
+ __kmp_str_buf_print(&buf, "%s ", KMP_I18N_STR(Thread));
+ }
+ else if (level == coreLevel) {
+ __kmp_str_buf_print(&buf, "%s ", KMP_I18N_STR(Core));
+ }
+ else if (level == pkgLevel) {
+ __kmp_str_buf_print(&buf, "%s ", KMP_I18N_STR(Package));
+ }
+ else if (level > pkgLevel) {
+ __kmp_str_buf_print(&buf, "%s_%d ", KMP_I18N_STR(Node),
+ level - pkgLevel - 1);
+ }
+ else {
+ __kmp_str_buf_print(&buf, "L%d ", level);
+ }
+ __kmp_str_buf_print(&buf, "%d ",
+ address2os[proc].first.labels[level]);
+ }
+ KMP_INFORM(OSProcMapToPack, "KMP_AFFINITY", address2os[proc].second,
+ buf.str);
+ __kmp_str_buf_free(&buf);
+ }
+}
+
+
+//
+// If we don't know how to retrieve the machine's processor topology, or
+// encounter an error in doing so, this routine is called to form a "flat"
+// mapping of os thread id's <-> processor id's.
+//
+static int
+__kmp_affinity_create_flat_map(AddrUnsPair **address2os,
+ kmp_i18n_id_t *const msg_id)
+{
+ *address2os = NULL;
+ *msg_id = kmp_i18n_null;
+
+ //
+ // Even if __kmp_affinity_type == affinity_none, this routine might still
+ // called to set __kmp_ht_enabled, & __kmp_ncores, as well as
+ // __kmp_nThreadsPerCore, nCoresPerPkg, & nPackages.
+ //
+ if (! KMP_AFFINITY_CAPABLE()) {
+ KMP_ASSERT(__kmp_affinity_type == affinity_none);
+ __kmp_ncores = nPackages = __kmp_xproc;
+ __kmp_nThreadsPerCore = nCoresPerPkg = 1;
+ __kmp_ht_enabled = FALSE;
+ if (__kmp_affinity_verbose) {
+ KMP_INFORM(AffFlatTopology, "KMP_AFFINITY");
+ KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc);
+ KMP_INFORM(Uniform, "KMP_AFFINITY");
+ KMP_INFORM(Topology, "KMP_AFFINITY", nPackages, nCoresPerPkg,
+ __kmp_nThreadsPerCore, __kmp_ncores);
+ }
+ return 0;
+ }
+
+ //
+ // When affinity is off, this routine will still be called to set
+ // __kmp_ht_enabled, & __kmp_ncores, as well as __kmp_nThreadsPerCore,
+ // nCoresPerPkg, & nPackages. Make sure all these vars are set
+ // correctly, and return now if affinity is not enabled.
+ //
+ __kmp_ncores = nPackages = __kmp_avail_proc;
+ __kmp_nThreadsPerCore = nCoresPerPkg = 1;
+ __kmp_ht_enabled = FALSE;
+ if (__kmp_affinity_verbose) {
+ char buf[KMP_AFFIN_MASK_PRINT_LEN];
+ __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, fullMask);
+
+ KMP_INFORM(AffCapableUseFlat, "KMP_AFFINITY");
+ if (__kmp_affinity_respect_mask) {
+ KMP_INFORM(InitOSProcSetRespect, "KMP_AFFINITY", buf);
+ } else {
+ KMP_INFORM(InitOSProcSetNotRespect, "KMP_AFFINITY", buf);
+ }
+ KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc);
+ KMP_INFORM(Uniform, "KMP_AFFINITY");
+ KMP_INFORM(Topology, "KMP_AFFINITY", nPackages, nCoresPerPkg,
+ __kmp_nThreadsPerCore, __kmp_ncores);
+ }
+ if (__kmp_affinity_type == affinity_none) {
+ return 0;
+ }
+
+ //
+ // Contruct the data structure to be returned.
+ //
+ *address2os = (AddrUnsPair*)
+ __kmp_allocate(sizeof(**address2os) * __kmp_avail_proc);
+ int avail_ct = 0;
+ unsigned int i;
+ for (i = 0; i < KMP_CPU_SETSIZE; ++i) {
+ //
+ // Skip this proc if it is not included in the machine model.
+ //
+ if (! KMP_CPU_ISSET(i, fullMask)) {
+ continue;
+ }
+
+ Address addr(1);
+ addr.labels[0] = i;
+ (*address2os)[avail_ct++] = AddrUnsPair(addr,i);
+ }
+ if (__kmp_affinity_verbose) {
+ KMP_INFORM(OSProcToPackage, "KMP_AFFINITY");
+ }
+
+ if (__kmp_affinity_gran_levels < 0) {
+ //
+ // Only the package level is modeled in the machine topology map,
+ // so the #levels of granularity is either 0 or 1.
+ //
+ if (__kmp_affinity_gran > affinity_gran_package) {
+ __kmp_affinity_gran_levels = 1;
+ }
+ else {
+ __kmp_affinity_gran_levels = 0;
+ }
+ }
+ return 1;
+}
+
+
+# if KMP_OS_WINDOWS && KMP_ARCH_X86_64
+
+//
+// If multiple Windows* OS processor groups exist, we can create a 2-level
+// topology map with the groups at level 0 and the individual procs at
+// level 1.
+//
+// This facilitates letting the threads float among all procs in a group,
+// if granularity=group (the default when there are multiple groups).
+//
+static int
+__kmp_affinity_create_proc_group_map(AddrUnsPair **address2os,
+ kmp_i18n_id_t *const msg_id)
+{
+ *address2os = NULL;
+ *msg_id = kmp_i18n_null;
+
+ //
+ // If we don't have multiple processor groups, return now.
+ // The flat mapping will be used.
+ //
+ if ((! KMP_AFFINITY_CAPABLE()) || (__kmp_get_proc_group(fullMask) >= 0)) {
+ // FIXME set *msg_id
+ return -1;
+ }
+
+ //
+ // Contruct the data structure to be returned.
+ //
+ *address2os = (AddrUnsPair*)
+ __kmp_allocate(sizeof(**address2os) * __kmp_avail_proc);
+ int avail_ct = 0;
+ int i;
+ for (i = 0; i < KMP_CPU_SETSIZE; ++i) {
+ //
+ // Skip this proc if it is not included in the machine model.
+ //
+ if (! KMP_CPU_ISSET(i, fullMask)) {
+ continue;
+ }
+
+ Address addr(2);
+ addr.labels[0] = i / (CHAR_BIT * sizeof(DWORD_PTR));
+ addr.labels[1] = i % (CHAR_BIT * sizeof(DWORD_PTR));
+ (*address2os)[avail_ct++] = AddrUnsPair(addr,i);
+
+ if (__kmp_affinity_verbose) {
+ KMP_INFORM(AffOSProcToGroup, "KMP_AFFINITY", i, addr.labels[0],
+ addr.labels[1]);
+ }
+ }
+
+ if (__kmp_affinity_gran_levels < 0) {
+ if (__kmp_affinity_gran == affinity_gran_group) {
+ __kmp_affinity_gran_levels = 1;
+ }
+ else if ((__kmp_affinity_gran == affinity_gran_fine)
+ || (__kmp_affinity_gran == affinity_gran_thread)) {
+ __kmp_affinity_gran_levels = 0;
+ }
+ else {
+ const char *gran_str = NULL;
+ if (__kmp_affinity_gran == affinity_gran_core) {
+ gran_str = "core";
+ }
+ else if (__kmp_affinity_gran == affinity_gran_package) {
+ gran_str = "package";
+ }
+ else if (__kmp_affinity_gran == affinity_gran_node) {
+ gran_str = "node";
+ }
+ else {
+ KMP_ASSERT(0);
+ }
+
+ // Warning: can't use affinity granularity \"gran\" with group topology method, using "thread"
+ __kmp_affinity_gran_levels = 0;
+ }
+ }
+ return 2;
+}
+
+# endif /* KMP_OS_WINDOWS && KMP_ARCH_X86_64 */
+
+
+# if KMP_ARCH_X86 || KMP_ARCH_X86_64
+
+static int
+__kmp_cpuid_mask_width(int count) {
+ int r = 0;
+
+ while((1<<r) < count)
+ ++r;
+ return r;
+}
+
+
+class apicThreadInfo {
+public:
+ unsigned osId; // param to __kmp_affinity_bind_thread
+ unsigned apicId; // from cpuid after binding
+ unsigned maxCoresPerPkg; // ""
+ unsigned maxThreadsPerPkg; // ""
+ unsigned pkgId; // inferred from above values
+ unsigned coreId; // ""
+ unsigned threadId; // ""
+};
+
+
+static int
+__kmp_affinity_cmp_apicThreadInfo_os_id(const void *a, const void *b)
+{
+ const apicThreadInfo *aa = (const apicThreadInfo *)a;
+ const apicThreadInfo *bb = (const apicThreadInfo *)b;
+ if (aa->osId < bb->osId) return -1;
+ if (aa->osId > bb->osId) return 1;
+ return 0;
+}
+
+
+static int
+__kmp_affinity_cmp_apicThreadInfo_phys_id(const void *a, const void *b)
+{
+ const apicThreadInfo *aa = (const apicThreadInfo *)a;
+ const apicThreadInfo *bb = (const apicThreadInfo *)b;
+ if (aa->pkgId < bb->pkgId) return -1;
+ if (aa->pkgId > bb->pkgId) return 1;
+ if (aa->coreId < bb->coreId) return -1;
+ if (aa->coreId > bb->coreId) return 1;
+ if (aa->threadId < bb->threadId) return -1;
+ if (aa->threadId > bb->threadId) return 1;
+ return 0;
+}
+
+
+//
+// On IA-32 architecture and Intel(R) 64 architecture, we attempt to use
+// an algorithm which cycles through the available os threads, setting
+// the current thread's affinity mask to that thread, and then retrieves
+// the Apic Id for each thread context using the cpuid instruction.
+//
+static int
+__kmp_affinity_create_apicid_map(AddrUnsPair **address2os,
+ kmp_i18n_id_t *const msg_id)
+{
+ int rc;
+ *address2os = NULL;
+ *msg_id = kmp_i18n_null;
+
+# if KMP_MIC
+ {
+ // The code below will use cpuid(4).
+ // Check if cpuid(4) is supported.
+ // FIXME? - this really doesn't need to be specific to MIC.
+ kmp_cpuid buf;
+ __kmp_x86_cpuid(0, 0, &buf);
+ if (buf.eax < 4) {
+ *msg_id = kmp_i18n_str_NoLeaf4Support;
+ return -1;
+ }
+ }
+# endif // KMP_MIC
+
+ //
+ // Even if __kmp_affinity_type == affinity_none, this routine is still
+ // called to set __kmp_ht_enabled, & __kmp_ncores, as well as
+ // __kmp_nThreadsPerCore, nCoresPerPkg, & nPackages.
+ //
+ // The algorithm used starts by setting the affinity to each available
+ // thread and retreiving info from the cpuid instruction, so if we are not
+ // capable of calling __kmp_affinity_get_map()/__kmp_affinity_get_map(),
+ // then we need to do something else.
+ //
+ if (! KMP_AFFINITY_CAPABLE()) {
+ //
+ // Hack to try and infer the machine topology using only the data
+ // available from cpuid on the current thread, and __kmp_xproc.
+ //
+ KMP_ASSERT(__kmp_affinity_type == affinity_none);
+
+ //
+ // Get an upper bound on the number of threads per package using
+ // cpuid(1).
+ //
+ // On some OS/chps combinations where HT is supported by the chip
+ // but is disabled, this value will be 2 on a single core chip.
+ // Usually, it will be 2 if HT is enabled and 1 if HT is disabled.
+ //
+ kmp_cpuid buf;
+ __kmp_x86_cpuid(1, 0, &buf);
+ int maxThreadsPerPkg = (buf.ebx >> 16) & 0xff;
+ if (maxThreadsPerPkg == 0) {
+ maxThreadsPerPkg = 1;
+ }
+
+ //
+ // The num cores per pkg comes from cpuid(4).
+ // 1 must be added to the encoded value.
+ //
+ // The author of cpu_count.cpp treated this only an upper bound
+ // on the number of cores, but I haven't seen any cases where it
+ // was greater than the actual number of cores, so we will treat
+ // it as exact in this block of code.
+ //
+ // First, we need to check if cpuid(4) is supported on this chip.
+ // To see if cpuid(n) is supported, issue cpuid(0) and check if eax
+ // has the value n or greater.
+ //
+ __kmp_x86_cpuid(0, 0, &buf);
+ if (buf.eax >= 4) {
+ __kmp_x86_cpuid(4, 0, &buf);
+ nCoresPerPkg = ((buf.eax >> 26) & 0x3f) + 1;
+ }
+ else {
+ nCoresPerPkg = 1;
+ }
+
+ //
+ // There is no way to reliably tell if HT is enabled without issuing
+ // the cpuid instruction from every thread, can correlating the cpuid
+ // info, so if the machine is not affinity capable, we assume that HT
+ // is off. We have seen quite a few machines where maxThreadsPerPkg
+ // is 2, yet the machine does not support HT.
+ //
+ // - Older OSes are usually found on machines with older chips, which
+ // do not support HT.
+ //
+ // - The performance penalty for mistakenly identifying a machine as
+ // HT when it isn't (which results in blocktime being incorrecly set
+ // to 0) is greater than the penalty when for mistakenly identifying
+ // a machine as being 1 thread/core when it is really HT enabled
+ // (which results in blocktime being incorrectly set to a positive
+ // value).
+ //
+ __kmp_ncores = __kmp_xproc;
+ nPackages = (__kmp_xproc + nCoresPerPkg - 1) / nCoresPerPkg;
+ __kmp_nThreadsPerCore = 1;
+ __kmp_ht_enabled = FALSE;
+ if (__kmp_affinity_verbose) {
+ KMP_INFORM(AffNotCapableUseLocCpuid, "KMP_AFFINITY");
+ KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc);
+ if (__kmp_affinity_uniform_topology()) {
+ KMP_INFORM(Uniform, "KMP_AFFINITY");
+ } else {
+ KMP_INFORM(NonUniform, "KMP_AFFINITY");
+ }
+ KMP_INFORM(Topology, "KMP_AFFINITY", nPackages, nCoresPerPkg,
+ __kmp_nThreadsPerCore, __kmp_ncores);
+ }
+ return 0;
+ }
+
+ //
+ //
+ // From here on, we can assume that it is safe to call
+ // __kmp_get_system_affinity() and __kmp_set_system_affinity(),
+ // even if __kmp_affinity_type = affinity_none.
+ //
+
+ //
+ // Save the affinity mask for the current thread.
+ //
+ kmp_affin_mask_t *oldMask;
+ KMP_CPU_ALLOC(oldMask);
+ KMP_ASSERT(oldMask != NULL);
+ __kmp_get_system_affinity(oldMask, TRUE);
+
+ //
+ // Run through each of the available contexts, binding the current thread
+ // to it, and obtaining the pertinent information using the cpuid instr.
+ //
+ // The relevant information is:
+ //
+ // Apic Id: Bits 24:31 of ebx after issuing cpuid(1) - each thread context
+ // has a uniqie Apic Id, which is of the form pkg# : core# : thread#.
+ //
+ // Max Threads Per Pkg: Bits 16:23 of ebx after issuing cpuid(1). The
+ // value of this field determines the width of the core# + thread#
+ // fields in the Apic Id. It is also an upper bound on the number
+ // of threads per package, but it has been verified that situations
+ // happen were it is not exact. In particular, on certain OS/chip
+ // combinations where Intel(R) Hyper-Threading Technology is supported
+ // by the chip but has
+ // been disabled, the value of this field will be 2 (for a single core
+ // chip). On other OS/chip combinations supporting
+ // Intel(R) Hyper-Threading Technology, the value of
+ // this field will be 1 when Intel(R) Hyper-Threading Technology is
+ // disabled and 2 when it is enabled.
+ //
+ // Max Cores Per Pkg: Bits 26:31 of eax after issuing cpuid(4). The
+ // value of this field (+1) determines the width of the core# field in
+ // the Apic Id. The comments in "cpucount.cpp" say that this value is
+ // an upper bound, but the IA-32 architecture manual says that it is
+ // exactly the number of cores per package, and I haven't seen any
+ // case where it wasn't.
+ //
+ // From this information, deduce the package Id, core Id, and thread Id,
+ // and set the corresponding fields in the apicThreadInfo struct.
+ //
+ unsigned i;
+ apicThreadInfo *threadInfo = (apicThreadInfo *)__kmp_allocate(
+ __kmp_avail_proc * sizeof(apicThreadInfo));
+ unsigned nApics = 0;
+ for (i = 0; i < KMP_CPU_SETSIZE; ++i) {
+ //
+ // Skip this proc if it is not included in the machine model.
+ //
+ if (! KMP_CPU_ISSET(i, fullMask)) {
+ continue;
+ }
+ KMP_DEBUG_ASSERT((int)nApics < __kmp_avail_proc);
+
+ __kmp_affinity_bind_thread(i);
+ threadInfo[nApics].osId = i;
+
+ //
+ // The apic id and max threads per pkg come from cpuid(1).
+ //
+ kmp_cpuid buf;
+ __kmp_x86_cpuid(1, 0, &buf);
+ if (! (buf.edx >> 9) & 1) {
+ __kmp_set_system_affinity(oldMask, TRUE);
+ __kmp_free(threadInfo);
+ KMP_CPU_FREE(oldMask);
+ *msg_id = kmp_i18n_str_ApicNotPresent;
+ return -1;
+ }
+ threadInfo[nApics].apicId = (buf.ebx >> 24) & 0xff;
+ threadInfo[nApics].maxThreadsPerPkg = (buf.ebx >> 16) & 0xff;
+ if (threadInfo[nApics].maxThreadsPerPkg == 0) {
+ threadInfo[nApics].maxThreadsPerPkg = 1;
+ }
+
+ //
+ // Max cores per pkg comes from cpuid(4).
+ // 1 must be added to the encoded value.
+ //
+ // First, we need to check if cpuid(4) is supported on this chip.
+ // To see if cpuid(n) is supported, issue cpuid(0) and check if eax
+ // has the value n or greater.
+ //
+ __kmp_x86_cpuid(0, 0, &buf);
+ if (buf.eax >= 4) {
+ __kmp_x86_cpuid(4, 0, &buf);
+ threadInfo[nApics].maxCoresPerPkg = ((buf.eax >> 26) & 0x3f) + 1;
+ }
+ else {
+ threadInfo[nApics].maxCoresPerPkg = 1;
+ }
+
+ //
+ // Infer the pkgId / coreId / threadId using only the info
+ // obtained locally.
+ //
+ int widthCT = __kmp_cpuid_mask_width(
+ threadInfo[nApics].maxThreadsPerPkg);
+ threadInfo[nApics].pkgId = threadInfo[nApics].apicId >> widthCT;
+
+ int widthC = __kmp_cpuid_mask_width(
+ threadInfo[nApics].maxCoresPerPkg);
+ int widthT = widthCT - widthC;
+ if (widthT < 0) {
+ //
+ // I've never seen this one happen, but I suppose it could, if
+ // the cpuid instruction on a chip was really screwed up.
+ // Make sure to restore the affinity mask before the tail call.
+ //
+ __kmp_set_system_affinity(oldMask, TRUE);
+ __kmp_free(threadInfo);
+ KMP_CPU_FREE(oldMask);
+ *msg_id = kmp_i18n_str_InvalidCpuidInfo;
+ return -1;
+ }
+
+ int maskC = (1 << widthC) - 1;
+ threadInfo[nApics].coreId = (threadInfo[nApics].apicId >> widthT)
+ &maskC;
+
+ int maskT = (1 << widthT) - 1;
+ threadInfo[nApics].threadId = threadInfo[nApics].apicId &maskT;
+
+ nApics++;
+ }
+
+ //
+ // We've collected all the info we need.
+ // Restore the old affinity mask for this thread.
+ //
+ __kmp_set_system_affinity(oldMask, TRUE);
+
+ //
+ // If there's only one thread context to bind to, form an Address object
+ // with depth 1 and return immediately (or, if affinity is off, set
+ // address2os to NULL and return).
+ //
+ // If it is configured to omit the package level when there is only a
+ // single package, the logic at the end of this routine won't work if
+ // there is only a single thread - it would try to form an Address
+ // object with depth 0.
+ //
+ KMP_ASSERT(nApics > 0);
+ if (nApics == 1) {
+ __kmp_ncores = nPackages = 1;
+ __kmp_nThreadsPerCore = nCoresPerPkg = 1;
+ __kmp_ht_enabled = FALSE;
+ if (__kmp_affinity_verbose) {
+ char buf[KMP_AFFIN_MASK_PRINT_LEN];
+ __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, oldMask);
+
+ KMP_INFORM(AffUseGlobCpuid, "KMP_AFFINITY");
+ if (__kmp_affinity_respect_mask) {
+ KMP_INFORM(InitOSProcSetRespect, "KMP_AFFINITY", buf);
+ } else {
+ KMP_INFORM(InitOSProcSetNotRespect, "KMP_AFFINITY", buf);
+ }
+ KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc);
+ KMP_INFORM(Uniform, "KMP_AFFINITY");
+ KMP_INFORM(Topology, "KMP_AFFINITY", nPackages, nCoresPerPkg,
+ __kmp_nThreadsPerCore, __kmp_ncores);
+ }
+
+ if (__kmp_affinity_type == affinity_none) {
+ __kmp_free(threadInfo);
+ KMP_CPU_FREE(oldMask);
+ return 0;
+ }
+
+ *address2os = (AddrUnsPair*)__kmp_allocate(sizeof(AddrUnsPair));
+ Address addr(1);
+ addr.labels[0] = threadInfo[0].pkgId;
+ (*address2os)[0] = AddrUnsPair(addr, threadInfo[0].osId);
+
+ if (__kmp_affinity_gran_levels < 0) {
+ __kmp_affinity_gran_levels = 0;
+ }
+
+ if (__kmp_affinity_verbose) {
+ __kmp_affinity_print_topology(*address2os, 1, 1, 0, -1, -1);
+ }
+
+ __kmp_free(threadInfo);
+ KMP_CPU_FREE(oldMask);
+ return 1;
+ }
+
+ //
+ // Sort the threadInfo table by physical Id.
+ //
+ qsort(threadInfo, nApics, sizeof(*threadInfo),
+ __kmp_affinity_cmp_apicThreadInfo_phys_id);
+
+ //
+ // The table is now sorted by pkgId / coreId / threadId, but we really
+ // don't know the radix of any of the fields. pkgId's may be sparsely
+ // assigned among the chips on a system. Although coreId's are usually
+ // assigned [0 .. coresPerPkg-1] and threadId's are usually assigned
+ // [0..threadsPerCore-1], we don't want to make any such assumptions.
+ //
+ // For that matter, we don't know what coresPerPkg and threadsPerCore
+ // (or the total # packages) are at this point - we want to determine
+ // that now. We only have an upper bound on the first two figures.
+ //
+ // We also perform a consistency check at this point: the values returned
+ // by the cpuid instruction for any thread bound to a given package had
+ // better return the same info for maxThreadsPerPkg and maxCoresPerPkg.
+ //
+ nPackages = 1;
+ nCoresPerPkg = 1;
+ __kmp_nThreadsPerCore = 1;
+ unsigned nCores = 1;
+
+ unsigned pkgCt = 1; // to determine radii
+ unsigned lastPkgId = threadInfo[0].pkgId;
+ unsigned coreCt = 1;
+ unsigned lastCoreId = threadInfo[0].coreId;
+ unsigned threadCt = 1;
+ unsigned lastThreadId = threadInfo[0].threadId;
+
+ // intra-pkg consist checks
+ unsigned prevMaxCoresPerPkg = threadInfo[0].maxCoresPerPkg;
+ unsigned prevMaxThreadsPerPkg = threadInfo[0].maxThreadsPerPkg;
+
+ for (i = 1; i < nApics; i++) {
+ if (threadInfo[i].pkgId != lastPkgId) {
+ nCores++;
+ pkgCt++;
+ lastPkgId = threadInfo[i].pkgId;
+ if ((int)coreCt > nCoresPerPkg) nCoresPerPkg = coreCt;
+ coreCt = 1;
+ lastCoreId = threadInfo[i].coreId;
+ if ((int)threadCt > __kmp_nThreadsPerCore) __kmp_nThreadsPerCore = threadCt;
+ threadCt = 1;
+ lastThreadId = threadInfo[i].threadId;
+
+ //
+ // This is a different package, so go on to the next iteration
+ // without doing any consistency checks. Reset the consistency
+ // check vars, though.
+ //
+ prevMaxCoresPerPkg = threadInfo[i].maxCoresPerPkg;
+ prevMaxThreadsPerPkg = threadInfo[i].maxThreadsPerPkg;
+ continue;
+ }
+
+ if (threadInfo[i].coreId != lastCoreId) {
+ nCores++;
+ coreCt++;
+ lastCoreId = threadInfo[i].coreId;
+ if ((int)threadCt > __kmp_nThreadsPerCore) __kmp_nThreadsPerCore = threadCt;
+ threadCt = 1;
+ lastThreadId = threadInfo[i].threadId;
+ }
+ else if (threadInfo[i].threadId != lastThreadId) {
+ threadCt++;
+ lastThreadId = threadInfo[i].threadId;
+ }
+ else {
+ __kmp_free(threadInfo);
+ KMP_CPU_FREE(oldMask);
+ *msg_id = kmp_i18n_str_LegacyApicIDsNotUnique;
+ return -1;
+ }
+
+ //
+ // Check to make certain that the maxCoresPerPkg and maxThreadsPerPkg
+ // fields agree between all the threads bounds to a given package.
+ //
+ if ((prevMaxCoresPerPkg != threadInfo[i].maxCoresPerPkg)
+ || (prevMaxThreadsPerPkg != threadInfo[i].maxThreadsPerPkg)) {
+ __kmp_free(threadInfo);
+ KMP_CPU_FREE(oldMask);
+ *msg_id = kmp_i18n_str_InconsistentCpuidInfo;
+ return -1;
+ }
+ }
+ nPackages = pkgCt;
+ if ((int)coreCt > nCoresPerPkg) nCoresPerPkg = coreCt;
+ if ((int)threadCt > __kmp_nThreadsPerCore) __kmp_nThreadsPerCore = threadCt;
+
+ //
+ // When affinity is off, this routine will still be called to set
+ // __kmp_ht_enabled, & __kmp_ncores, as well as __kmp_nThreadsPerCore,
+ // nCoresPerPkg, & nPackages. Make sure all these vars are set
+ // correctly, and return now if affinity is not enabled.
+ //
+ __kmp_ht_enabled = (__kmp_nThreadsPerCore > 1);
+ __kmp_ncores = nCores;
+ if (__kmp_affinity_verbose) {
+ char buf[KMP_AFFIN_MASK_PRINT_LEN];
+ __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, oldMask);
+
+ KMP_INFORM(AffUseGlobCpuid, "KMP_AFFINITY");
+ if (__kmp_affinity_respect_mask) {
+ KMP_INFORM(InitOSProcSetRespect, "KMP_AFFINITY", buf);
+ } else {
+ KMP_INFORM(InitOSProcSetNotRespect, "KMP_AFFINITY", buf);
+ }
+ KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc);
+ if (__kmp_affinity_uniform_topology()) {
+ KMP_INFORM(Uniform, "KMP_AFFINITY");
+ } else {
+ KMP_INFORM(NonUniform, "KMP_AFFINITY");
+ }
+ KMP_INFORM(Topology, "KMP_AFFINITY", nPackages, nCoresPerPkg,
+ __kmp_nThreadsPerCore, __kmp_ncores);
+
+ }
+
+ if (__kmp_affinity_type == affinity_none) {
+ __kmp_free(threadInfo);
+ KMP_CPU_FREE(oldMask);
+ return 0;
+ }
+
+ //
+ // Now that we've determined the number of packages, the number of cores
+ // per package, and the number of threads per core, we can construct the
+ // data structure that is to be returned.
+ //
+ int pkgLevel = 0;
+ int coreLevel = (nCoresPerPkg <= 1) ? -1 : 1;
+ int threadLevel = (__kmp_nThreadsPerCore <= 1) ? -1 : ((coreLevel >= 0) ? 2 : 1);
+ unsigned depth = (pkgLevel >= 0) + (coreLevel >= 0) + (threadLevel >= 0);
+
+ KMP_ASSERT(depth > 0);
+ *address2os = (AddrUnsPair*)__kmp_allocate(sizeof(AddrUnsPair) * nApics);
+
+ for (i = 0; i < nApics; ++i) {
+ Address addr(depth);
+ unsigned os = threadInfo[i].osId;
+ int d = 0;
+
+ if (pkgLevel >= 0) {
+ addr.labels[d++] = threadInfo[i].pkgId;
+ }
+ if (coreLevel >= 0) {
+ addr.labels[d++] = threadInfo[i].coreId;
+ }
+ if (threadLevel >= 0) {
+ addr.labels[d++] = threadInfo[i].threadId;
+ }
+ (*address2os)[i] = AddrUnsPair(addr, os);
+ }
+
+ if (__kmp_affinity_gran_levels < 0) {
+ //
+ // Set the granularity level based on what levels are modeled
+ // in the machine topology map.
+ //
+ __kmp_affinity_gran_levels = 0;
+ if ((threadLevel >= 0)
+ && (__kmp_affinity_gran > affinity_gran_thread)) {
+ __kmp_affinity_gran_levels++;
+ }
+ if ((coreLevel >= 0) && (__kmp_affinity_gran > affinity_gran_core)) {
+ __kmp_affinity_gran_levels++;
+ }
+ if ((pkgLevel >= 0) && (__kmp_affinity_gran > affinity_gran_package)) {
+ __kmp_affinity_gran_levels++;
+ }
+ }
+
+ if (__kmp_affinity_verbose) {
+ __kmp_affinity_print_topology(*address2os, nApics, depth, pkgLevel,
+ coreLevel, threadLevel);
+ }
+
+ __kmp_free(threadInfo);
+ KMP_CPU_FREE(oldMask);
+ return depth;
+}
+
+
+//
+// Intel(R) microarchitecture code name Nehalem, Dunnington and later
+// architectures support a newer interface for specifying the x2APIC Ids,
+// based on cpuid leaf 11.
+//
+static int
+__kmp_affinity_create_x2apicid_map(AddrUnsPair **address2os,
+ kmp_i18n_id_t *const msg_id)
+{
+ kmp_cpuid buf;
+
+ *address2os = NULL;
+ *msg_id = kmp_i18n_null;
+
+ //
+ // Check to see if cpuid leaf 11 is supported.
+ //
+ __kmp_x86_cpuid(0, 0, &buf);
+ if (buf.eax < 11) {
+ *msg_id = kmp_i18n_str_NoLeaf11Support;
+ return -1;
+ }
+ __kmp_x86_cpuid(11, 0, &buf);
+ if (buf.ebx == 0) {
+ *msg_id = kmp_i18n_str_NoLeaf11Support;
+ return -1;
+ }
+
+ //
+ // Find the number of levels in the machine topology. While we're at it,
+ // get the default values for __kmp_nThreadsPerCore & nCoresPerPkg. We will
+ // try to get more accurate values later by explicitly counting them,
+ // but get reasonable defaults now, in case we return early.
+ //
+ int level;
+ int threadLevel = -1;
+ int coreLevel = -1;
+ int pkgLevel = -1;
+ __kmp_nThreadsPerCore = nCoresPerPkg = nPackages = 1;
+
+ for (level = 0;; level++) {
+ if (level > 31) {
+ //
+ // FIXME: Hack for DPD200163180
+ //
+ // If level is big then something went wrong -> exiting
+ //
+ // There could actually be 32 valid levels in the machine topology,
+ // but so far, the only machine we have seen which does not exit
+ // this loop before iteration 32 has fubar x2APIC settings.
+ //
+ // For now, just reject this case based upon loop trip count.
+ //
+ *msg_id = kmp_i18n_str_InvalidCpuidInfo;
+ return -1;
+ }
+ __kmp_x86_cpuid(11, level, &buf);
+ if (buf.ebx == 0) {
+ if (pkgLevel < 0) {
+ //
+ // Will infer nPackages from __kmp_xproc
+ //
+ pkgLevel = level;
+ level++;
+ }
+ break;
+ }
+ int kind = (buf.ecx >> 8) & 0xff;
+ if (kind == 1) {
+ //
+ // SMT level
+ //
+ threadLevel = level;
+ coreLevel = -1;
+ pkgLevel = -1;
+ __kmp_nThreadsPerCore = buf.ebx & 0xff;
+ if (__kmp_nThreadsPerCore == 0) {
+ *msg_id = kmp_i18n_str_InvalidCpuidInfo;
+ return -1;
+ }
+ }
+ else if (kind == 2) {
+ //
+ // core level
+ //
+ coreLevel = level;
+ pkgLevel = -1;
+ nCoresPerPkg = buf.ebx & 0xff;
+ if (nCoresPerPkg == 0) {
+ *msg_id = kmp_i18n_str_InvalidCpuidInfo;
+ return -1;
+ }
+ }
+ else {
+ if (level <= 0) {
+ *msg_id = kmp_i18n_str_InvalidCpuidInfo;
+ return -1;
+ }
+ if (pkgLevel >= 0) {
+ continue;
+ }
+ pkgLevel = level;
+ nPackages = buf.ebx & 0xff;
+ if (nPackages == 0) {
+ *msg_id = kmp_i18n_str_InvalidCpuidInfo;
+ return -1;
+ }
+ }
+ }
+ int depth = level;
+
+ //
+ // In the above loop, "level" was counted from the finest level (usually
+ // thread) to the coarsest. The caller expects that we will place the
+ // labels in (*address2os)[].first.labels[] in the inverse order, so
+ // we need to invert the vars saying which level means what.
+ //
+ if (threadLevel >= 0) {
+ threadLevel = depth - threadLevel - 1;
+ }
+ if (coreLevel >= 0) {
+ coreLevel = depth - coreLevel - 1;
+ }
+ KMP_DEBUG_ASSERT(pkgLevel >= 0);
+ pkgLevel = depth - pkgLevel - 1;
+
+ //
+ // The algorithm used starts by setting the affinity to each available
+ // thread and retrieving info from the cpuid instruction, so if we are not
+ // capable of calling __kmp_affinity_get_map()/__kmp_affinity_get_map(),
+ // then we need to do something else - use the defaults that we calculated
+ // from issuing cpuid without binding to each proc.
+ //
+ if (! KMP_AFFINITY_CAPABLE())
+ {
+ //
+ // Hack to try and infer the machine topology using only the data
+ // available from cpuid on the current thread, and __kmp_xproc.
+ //
+ KMP_ASSERT(__kmp_affinity_type == affinity_none);
+
+ __kmp_ncores = __kmp_xproc / __kmp_nThreadsPerCore;
+ nPackages = (__kmp_xproc + nCoresPerPkg - 1) / nCoresPerPkg;
+ __kmp_ht_enabled = (__kmp_nThreadsPerCore > 1);
+ if (__kmp_affinity_verbose) {
+ KMP_INFORM(AffNotCapableUseLocCpuidL11, "KMP_AFFINITY");
+ KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc);
+ if (__kmp_affinity_uniform_topology()) {
+ KMP_INFORM(Uniform, "KMP_AFFINITY");
+ } else {
+ KMP_INFORM(NonUniform, "KMP_AFFINITY");
+ }
+ KMP_INFORM(Topology, "KMP_AFFINITY", nPackages, nCoresPerPkg,
+ __kmp_nThreadsPerCore, __kmp_ncores);
+ }
+ return 0;
+ }
+
+ //
+ //
+ // From here on, we can assume that it is safe to call
+ // __kmp_get_system_affinity() and __kmp_set_system_affinity(),
+ // even if __kmp_affinity_type = affinity_none.
+ //
+
+ //
+ // Save the affinity mask for the current thread.
+ //
+ kmp_affin_mask_t *oldMask;
+ KMP_CPU_ALLOC(oldMask);
+ __kmp_get_system_affinity(oldMask, TRUE);
+
+ //
+ // Allocate the data structure to be returned.
+ //
+ AddrUnsPair *retval = (AddrUnsPair *)
+ __kmp_allocate(sizeof(AddrUnsPair) * __kmp_avail_proc);
+
+ //
+ // Run through each of the available contexts, binding the current thread
+ // to it, and obtaining the pertinent information using the cpuid instr.
+ //
+ unsigned int proc;
+ int nApics = 0;
+ for (proc = 0; proc < KMP_CPU_SETSIZE; ++proc) {
+ //
+ // Skip this proc if it is not included in the machine model.
+ //
+ if (! KMP_CPU_ISSET(proc, fullMask)) {
+ continue;
+ }
+ KMP_DEBUG_ASSERT(nApics < __kmp_avail_proc);
+
+ __kmp_affinity_bind_thread(proc);
+
+ //
+ // Extrach the labels for each level in the machine topology map
+ // from the Apic ID.
+ //
+ Address addr(depth);
+ int prev_shift = 0;
+
+ for (level = 0; level < depth; level++) {
+ __kmp_x86_cpuid(11, level, &buf);
+ unsigned apicId = buf.edx;
+ if (buf.ebx == 0) {
+ if (level != depth - 1) {
+ KMP_CPU_FREE(oldMask);
+ *msg_id = kmp_i18n_str_InconsistentCpuidInfo;
+ return -1;
+ }
+ addr.labels[depth - level - 1] = apicId >> prev_shift;
+ level++;
+ break;
+ }
+ int shift = buf.eax & 0x1f;
+ int mask = (1 << shift) - 1;
+ addr.labels[depth - level - 1] = (apicId & mask) >> prev_shift;
+ prev_shift = shift;
+ }
+ if (level != depth) {
+ KMP_CPU_FREE(oldMask);
+ *msg_id = kmp_i18n_str_InconsistentCpuidInfo;
+ return -1;
+ }
+
+ retval[nApics] = AddrUnsPair(addr, proc);
+ nApics++;
+ }
+
+ //
+ // We've collected all the info we need.
+ // Restore the old affinity mask for this thread.
+ //
+ __kmp_set_system_affinity(oldMask, TRUE);
+
+ //
+ // If there's only one thread context to bind to, return now.
+ //
+ KMP_ASSERT(nApics > 0);
+ if (nApics == 1) {
+ __kmp_ncores = nPackages = 1;
+ __kmp_nThreadsPerCore = nCoresPerPkg = 1;
+ __kmp_ht_enabled = FALSE;
+ if (__kmp_affinity_verbose) {
+ char buf[KMP_AFFIN_MASK_PRINT_LEN];
+ __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, oldMask);
+
+ KMP_INFORM(AffUseGlobCpuidL11, "KMP_AFFINITY");
+ if (__kmp_affinity_respect_mask) {
+ KMP_INFORM(InitOSProcSetRespect, "KMP_AFFINITY", buf);
+ } else {
+ KMP_INFORM(InitOSProcSetNotRespect, "KMP_AFFINITY", buf);
+ }
+ KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc);
+ KMP_INFORM(Uniform, "KMP_AFFINITY");
+ KMP_INFORM(Topology, "KMP_AFFINITY", nPackages, nCoresPerPkg,
+ __kmp_nThreadsPerCore, __kmp_ncores);
+ }
+
+ if (__kmp_affinity_type == affinity_none) {
+ __kmp_free(retval);
+ KMP_CPU_FREE(oldMask);
+ return 0;
+ }
+
+ //
+ // Form an Address object which only includes the package level.
+ //
+ Address addr(1);
+ addr.labels[0] = retval[0].first.labels[pkgLevel];
+ retval[0].first = addr;
+
+ if (__kmp_affinity_gran_levels < 0) {
+ __kmp_affinity_gran_levels = 0;
+ }
+
+ if (__kmp_affinity_verbose) {
+ __kmp_affinity_print_topology(retval, 1, 1, 0, -1, -1);
+ }
+
+ *address2os = retval;
+ KMP_CPU_FREE(oldMask);
+ return 1;
+ }
+
+ //
+ // Sort the table by physical Id.
+ //
+ qsort(retval, nApics, sizeof(*retval), __kmp_affinity_cmp_Address_labels);
+
+ //
+ // Find the radix at each of the levels.
+ //
+ unsigned *totals = (unsigned *)__kmp_allocate(depth * sizeof(unsigned));
+ unsigned *counts = (unsigned *)__kmp_allocate(depth * sizeof(unsigned));
+ unsigned *maxCt = (unsigned *)__kmp_allocate(depth * sizeof(unsigned));
+ unsigned *last = (unsigned *)__kmp_allocate(depth * sizeof(unsigned));
+ for (level = 0; level < depth; level++) {
+ totals[level] = 1;
+ maxCt[level] = 1;
+ counts[level] = 1;
+ last[level] = retval[0].first.labels[level];
+ }
+
+ //
+ // From here on, the iteration variable "level" runs from the finest
+ // level to the coarsest, i.e. we iterate forward through
+ // (*address2os)[].first.labels[] - in the previous loops, we iterated
+ // backwards.
+ //
+ for (proc = 1; (int)proc < nApics; proc++) {
+ int level;
+ for (level = 0; level < depth; level++) {
+ if (retval[proc].first.labels[level] != last[level]) {
+ int j;
+ for (j = level + 1; j < depth; j++) {
+ totals[j]++;
+ counts[j] = 1;
+ // The line below causes printing incorrect topology information
+ // in case the max value for some level (maxCt[level]) is encountered earlier than
+ // some less value while going through the array.
+ // For example, let pkg0 has 4 cores and pkg1 has 2 cores. Then maxCt[1] == 2
+ // whereas it must be 4.
+ // TODO!!! Check if it can be commented safely
+ //maxCt[j] = 1;
+ last[j] = retval[proc].first.labels[j];
+ }
+ totals[level]++;
+ counts[level]++;
+ if (counts[level] > maxCt[level]) {
+ maxCt[level] = counts[level];
+ }
+ last[level] = retval[proc].first.labels[level];
+ break;
+ }
+ else if (level == depth - 1) {
+ __kmp_free(last);
+ __kmp_free(maxCt);
+ __kmp_free(counts);
+ __kmp_free(totals);
+ __kmp_free(retval);
+ KMP_CPU_FREE(oldMask);
+ *msg_id = kmp_i18n_str_x2ApicIDsNotUnique;
+ return -1;
+ }
+ }
+ }
+
+ //
+ // When affinity is off, this routine will still be called to set
+ // __kmp_ht_enabled, & __kmp_ncores, as well as __kmp_nThreadsPerCore,
+ // nCoresPerPkg, & nPackages. Make sure all these vars are set
+ // correctly, and return if affinity is not enabled.
+ //
+ if (threadLevel >= 0) {
+ __kmp_nThreadsPerCore = maxCt[threadLevel];
+ }
+ else {
+ __kmp_nThreadsPerCore = 1;
+ }
+ __kmp_ht_enabled = (__kmp_nThreadsPerCore > 1);
+
+ nPackages = totals[pkgLevel];
+
+ if (coreLevel >= 0) {
+ __kmp_ncores = totals[coreLevel];
+ nCoresPerPkg = maxCt[coreLevel];
+ }
+ else {
+ __kmp_ncores = nPackages;
+ nCoresPerPkg = 1;
+ }
+
+ //
+ // Check to see if the machine topology is uniform
+ //
+ unsigned prod = maxCt[0];
+ for (level = 1; level < depth; level++) {
+ prod *= maxCt[level];
+ }
+ bool uniform = (prod == totals[level - 1]);
+
+ //
+ // Print the machine topology summary.
+ //
+ if (__kmp_affinity_verbose) {
+ char mask[KMP_AFFIN_MASK_PRINT_LEN];
+ __kmp_affinity_print_mask(mask, KMP_AFFIN_MASK_PRINT_LEN, oldMask);
+
+ KMP_INFORM(AffUseGlobCpuidL11, "KMP_AFFINITY");
+ if (__kmp_affinity_respect_mask) {
+ KMP_INFORM(InitOSProcSetRespect, "KMP_AFFINITY", mask);
+ } else {
+ KMP_INFORM(InitOSProcSetNotRespect, "KMP_AFFINITY", mask);
+ }
+ KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc);
+ if (uniform) {
+ KMP_INFORM(Uniform, "KMP_AFFINITY");
+ } else {
+ KMP_INFORM(NonUniform, "KMP_AFFINITY");
+ }
+
+ kmp_str_buf_t buf;
+ __kmp_str_buf_init(&buf);
+
+ __kmp_str_buf_print(&buf, "%d", totals[0]);
+ for (level = 1; level <= pkgLevel; level++) {
+ __kmp_str_buf_print(&buf, " x %d", maxCt[level]);
+ }
+ KMP_INFORM(TopologyExtra, "KMP_AFFINITY", buf.str, nCoresPerPkg,
+ __kmp_nThreadsPerCore, __kmp_ncores);
+
+ __kmp_str_buf_free(&buf);
+ }
+
+ if (__kmp_affinity_type == affinity_none) {
+ __kmp_free(last);
+ __kmp_free(maxCt);
+ __kmp_free(counts);
+ __kmp_free(totals);
+ __kmp_free(retval);
+ KMP_CPU_FREE(oldMask);
+ return 0;
+ }
+
+ //
+ // Find any levels with radiix 1, and remove them from the map
+ // (except for the package level).
+ //
+ int new_depth = 0;
+ for (level = 0; level < depth; level++) {
+ if ((maxCt[level] == 1) && (level != pkgLevel)) {
+ continue;
+ }
+ new_depth++;
+ }
+
+ //
+ // If we are removing any levels, allocate a new vector to return,
+ // and copy the relevant information to it.
+ //
+ if (new_depth != depth) {
+ AddrUnsPair *new_retval = (AddrUnsPair *)__kmp_allocate(
+ sizeof(AddrUnsPair) * nApics);
+ for (proc = 0; (int)proc < nApics; proc++) {
+ Address addr(new_depth);
+ new_retval[proc] = AddrUnsPair(addr, retval[proc].second);
+ }
+ int new_level = 0;
+ for (level = 0; level < depth; level++) {
+ if ((maxCt[level] == 1) && (level != pkgLevel)) {
+ if (level == threadLevel) {
+ threadLevel = -1;
+ }
+ else if ((threadLevel >= 0) && (level < threadLevel)) {
+ threadLevel--;
+ }
+ if (level == coreLevel) {
+ coreLevel = -1;
+ }
+ else if ((coreLevel >= 0) && (level < coreLevel)) {
+ coreLevel--;
+ }
+ if (level < pkgLevel) {
+ pkgLevel--;
+ }
+ continue;
+ }
+ for (proc = 0; (int)proc < nApics; proc++) {
+ new_retval[proc].first.labels[new_level]
+ = retval[proc].first.labels[level];
+ }
+ new_level++;
+ }
+
+ __kmp_free(retval);
+ retval = new_retval;
+ depth = new_depth;
+ }
+
+ if (__kmp_affinity_gran_levels < 0) {
+ //
+ // Set the granularity level based on what levels are modeled
+ // in the machine topology map.
+ //
+ __kmp_affinity_gran_levels = 0;
+ if ((threadLevel >= 0) && (__kmp_affinity_gran > affinity_gran_thread)) {
+ __kmp_affinity_gran_levels++;
+ }
+ if ((coreLevel >= 0) && (__kmp_affinity_gran > affinity_gran_core)) {
+ __kmp_affinity_gran_levels++;
+ }
+ if (__kmp_affinity_gran > affinity_gran_package) {
+ __kmp_affinity_gran_levels++;
+ }
+ }
+
+ if (__kmp_affinity_verbose) {
+ __kmp_affinity_print_topology(retval, nApics, depth, pkgLevel,
+ coreLevel, threadLevel);
+ }
+
+ __kmp_free(last);
+ __kmp_free(maxCt);
+ __kmp_free(counts);
+ __kmp_free(totals);
+ KMP_CPU_FREE(oldMask);
+ *address2os = retval;
+ return depth;
+}
+
+
+# endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */
+
+
+#define osIdIndex 0
+#define threadIdIndex 1
+#define coreIdIndex 2
+#define pkgIdIndex 3
+#define nodeIdIndex 4
+
+typedef unsigned *ProcCpuInfo;
+static unsigned maxIndex = pkgIdIndex;
+
+
+static int
+__kmp_affinity_cmp_ProcCpuInfo_os_id(const void *a, const void *b)
+{
+ const unsigned *aa = (const unsigned *)a;
+ const unsigned *bb = (const unsigned *)b;
+ if (aa[osIdIndex] < bb[osIdIndex]) return -1;
+ if (aa[osIdIndex] > bb[osIdIndex]) return 1;
+ return 0;
+};
+
+
+static int
+__kmp_affinity_cmp_ProcCpuInfo_phys_id(const void *a, const void *b)
+{
+ unsigned i;
+ const unsigned *aa = *((const unsigned **)a);
+ const unsigned *bb = *((const unsigned **)b);
+ for (i = maxIndex; ; i--) {
+ if (aa[i] < bb[i]) return -1;
+ if (aa[i] > bb[i]) return 1;
+ if (i == osIdIndex) break;
+ }
+ return 0;
+}
+
+
+//
+// Parse /proc/cpuinfo (or an alternate file in the same format) to obtain the
+// affinity map.
+//
+static int
+__kmp_affinity_create_cpuinfo_map(AddrUnsPair **address2os, int *line,
+ kmp_i18n_id_t *const msg_id, FILE *f)
+{
+ *address2os = NULL;
+ *msg_id = kmp_i18n_null;
+
+ //
+ // Scan of the file, and count the number of "processor" (osId) fields,
+ // and find the higest value of <n> for a node_<n> field.
+ //
+ char buf[256];
+ unsigned num_records = 0;
+ while (! feof(f)) {
+ buf[sizeof(buf) - 1] = 1;
+ if (! fgets(buf, sizeof(buf), f)) {
+ //
+ // Read errors presumably because of EOF
+ //
+ break;
+ }
+
+ char s1[] = "processor";
+ if (strncmp(buf, s1, sizeof(s1) - 1) == 0) {
+ num_records++;
+ continue;
+ }
+
+ //
+ // FIXME - this will match "node_<n> <garbage>"
+ //
+ unsigned level;
+ if (sscanf(buf, "node_%d id", &level) == 1) {
+ if (nodeIdIndex + level >= maxIndex) {
+ maxIndex = nodeIdIndex + level;
+ }
+ continue;
+ }
+ }
+
+ //
+ // Check for empty file / no valid processor records, or too many.
+ // The number of records can't exceed the number of valid bits in the
+ // affinity mask.
+ //
+ if (num_records == 0) {
+ *line = 0;
+ *msg_id = kmp_i18n_str_NoProcRecords;
+ return -1;
+ }
+ if (num_records > (unsigned)__kmp_xproc) {
+ *line = 0;
+ *msg_id = kmp_i18n_str_TooManyProcRecords;
+ return -1;
+ }
+
+ //
+ // Set the file pointer back to the begginning, so that we can scan the
+ // file again, this time performing a full parse of the data.
+ // Allocate a vector of ProcCpuInfo object, where we will place the data.
+ // Adding an extra element at the end allows us to remove a lot of extra
+ // checks for termination conditions.
+ //
+ if (fseek(f, 0, SEEK_SET) != 0) {
+ *line = 0;
+ *msg_id = kmp_i18n_str_CantRewindCpuinfo;
+ return -1;
+ }
+
+ //
+ // Allocate the array of records to store the proc info in. The dummy
+ // element at the end makes the logic in filling them out easier to code.
+ //
+ unsigned **threadInfo = (unsigned **)__kmp_allocate((num_records + 1)
+ * sizeof(unsigned *));
+ unsigned i;
+ for (i = 0; i <= num_records; i++) {
+ threadInfo[i] = (unsigned *)__kmp_allocate((maxIndex + 1)
+ * sizeof(unsigned));
+ }
+
+#define CLEANUP_THREAD_INFO \
+ for (i = 0; i <= num_records; i++) { \
+ __kmp_free(threadInfo[i]); \
+ } \
+ __kmp_free(threadInfo);
+
+ //
+ // A value of UINT_MAX means that we didn't find the field
+ //
+ unsigned __index;
+
+#define INIT_PROC_INFO(p) \
+ for (__index = 0; __index <= maxIndex; __index++) { \
+ (p)[__index] = UINT_MAX; \
+ }
+
+ for (i = 0; i <= num_records; i++) {
+ INIT_PROC_INFO(threadInfo[i]);
+ }
+
+ unsigned num_avail = 0;
+ *line = 0;
+ while (! feof(f)) {
+ //
+ // Create an inner scoping level, so that all the goto targets at the
+ // end of the loop appear in an outer scoping level. This avoids
+ // warnings about jumping past an initialization to a target in the
+ // same block.
+ //
+ {
+ buf[sizeof(buf) - 1] = 1;
+ bool long_line = false;
+ if (! fgets(buf, sizeof(buf), f)) {
+ //
+ // Read errors presumably because of EOF
+ //
+ // If there is valid data in threadInfo[num_avail], then fake
+ // a blank line in ensure that the last address gets parsed.
+ //
+ bool valid = false;
+ for (i = 0; i <= maxIndex; i++) {
+ if (threadInfo[num_avail][i] != UINT_MAX) {
+ valid = true;
+ }
+ }
+ if (! valid) {
+ break;
+ }
+ buf[0] = 0;
+ } else if (!buf[sizeof(buf) - 1]) {
+ //
+ // The line is longer than the buffer. Set a flag and don't
+ // emit an error if we were going to ignore the line, anyway.
+ //
+ long_line = true;
+
+#define CHECK_LINE \
+ if (long_line) { \
+ CLEANUP_THREAD_INFO; \
+ *msg_id = kmp_i18n_str_LongLineCpuinfo; \
+ return -1; \
+ }
+ }
+ (*line)++;
+
+ char s1[] = "processor";
+ if (strncmp(buf, s1, sizeof(s1) - 1) == 0) {
+ CHECK_LINE;
+ char *p = strchr(buf + sizeof(s1) - 1, ':');
+ unsigned val;
+ if ((p == NULL) || (sscanf(p + 1, "%u\n", &val) != 1)) goto no_val;
+ if (threadInfo[num_avail][osIdIndex] != UINT_MAX) goto dup_field;
+ threadInfo[num_avail][osIdIndex] = val;
+ continue;
+ }
+ char s2[] = "physical id";
+ if (strncmp(buf, s2, sizeof(s2) - 1) == 0) {
+ CHECK_LINE;
+ char *p = strchr(buf + sizeof(s2) - 1, ':');
+ unsigned val;
+ if ((p == NULL) || (sscanf(p + 1, "%u\n", &val) != 1)) goto no_val;
+ if (threadInfo[num_avail][pkgIdIndex] != UINT_MAX) goto dup_field;
+ threadInfo[num_avail][pkgIdIndex] = val;
+ continue;
+ }
+ char s3[] = "core id";
+ if (strncmp(buf, s3, sizeof(s3) - 1) == 0) {
+ CHECK_LINE;
+ char *p = strchr(buf + sizeof(s3) - 1, ':');
+ unsigned val;
+ if ((p == NULL) || (sscanf(p + 1, "%u\n", &val) != 1)) goto no_val;
+ if (threadInfo[num_avail][coreIdIndex] != UINT_MAX) goto dup_field;
+ threadInfo[num_avail][coreIdIndex] = val;
+ continue;
+ }
+ char s4[] = "thread id";
+ if (strncmp(buf, s4, sizeof(s4) - 1) == 0) {
+ CHECK_LINE;
+ char *p = strchr(buf + sizeof(s4) - 1, ':');
+ unsigned val;
+ if ((p == NULL) || (sscanf(p + 1, "%u\n", &val) != 1)) goto no_val;
+ if (threadInfo[num_avail][threadIdIndex] != UINT_MAX) goto dup_field;
+ threadInfo[num_avail][threadIdIndex] = val;
+ continue;
+ }
+ unsigned level;
+ if (sscanf(buf, "node_%d id", &level) == 1) {
+ CHECK_LINE;
+ char *p = strchr(buf + sizeof(s4) - 1, ':');
+ unsigned val;
+ if ((p == NULL) || (sscanf(p + 1, "%u\n", &val) != 1)) goto no_val;
+ KMP_ASSERT(nodeIdIndex + level <= maxIndex);
+ if (threadInfo[num_avail][nodeIdIndex + level] != UINT_MAX) goto dup_field;
+ threadInfo[num_avail][nodeIdIndex + level] = val;
+ continue;
+ }
+
+ //
+ // We didn't recognize the leading token on the line.
+ // There are lots of leading tokens that we don't recognize -
+ // if the line isn't empty, go on to the next line.
+ //
+ if ((*buf != 0) && (*buf != '\n')) {
+ //
+ // If the line is longer than the buffer, read characters
+ // until we find a newline.
+ //
+ if (long_line) {
+ int ch;
+ while (((ch = fgetc(f)) != EOF) && (ch != '\n'));
+ }
+ continue;
+ }
+
+ //
+ // A newline has signalled the end of the processor record.
+ // Check that there aren't too many procs specified.
+ //
+ if (num_avail == __kmp_xproc) {
+ CLEANUP_THREAD_INFO;
+ *msg_id = kmp_i18n_str_TooManyEntries;
+ return -1;
+ }
+
+ //
+ // Check for missing fields. The osId field must be there, and we
+ // currently require that the physical id field is specified, also.
+ //
+ if (threadInfo[num_avail][osIdIndex] == UINT_MAX) {
+ CLEANUP_THREAD_INFO;
+ *msg_id = kmp_i18n_str_MissingProcField;
+ return -1;
+ }
+ if (threadInfo[0][pkgIdIndex] == UINT_MAX) {
+ CLEANUP_THREAD_INFO;
+ *msg_id = kmp_i18n_str_MissingPhysicalIDField;
+ return -1;
+ }
+
+ //
+ // Skip this proc if it is not included in the machine model.
+ //
+ if (! KMP_CPU_ISSET(threadInfo[num_avail][osIdIndex], fullMask)) {
+ INIT_PROC_INFO(threadInfo[num_avail]);
+ continue;
+ }
+
+ //
+ // We have a successful parse of this proc's info.
+ // Increment the counter, and prepare for the next proc.
+ //
+ num_avail++;
+ KMP_ASSERT(num_avail <= num_records);
+ INIT_PROC_INFO(threadInfo[num_avail]);
+ }
+ continue;
+
+ no_val:
+ CLEANUP_THREAD_INFO;
+ *msg_id = kmp_i18n_str_MissingValCpuinfo;
+ return -1;
+
+ dup_field:
+ CLEANUP_THREAD_INFO;
+ *msg_id = kmp_i18n_str_DuplicateFieldCpuinfo;
+ return -1;
+ }
+ *line = 0;
+
+# if KMP_MIC && REDUCE_TEAM_SIZE
+ unsigned teamSize = 0;
+# endif // KMP_MIC && REDUCE_TEAM_SIZE
+
+ // check for num_records == __kmp_xproc ???
+
+ //
+ // If there's only one thread context to bind to, form an Address object
+ // with depth 1 and return immediately (or, if affinity is off, set
+ // address2os to NULL and return).
+ //
+ // If it is configured to omit the package level when there is only a
+ // single package, the logic at the end of this routine won't work if
+ // there is only a single thread - it would try to form an Address
+ // object with depth 0.
+ //
+ KMP_ASSERT(num_avail > 0);
+ KMP_ASSERT(num_avail <= num_records);
+ if (num_avail == 1) {
+ __kmp_ncores = 1;
+ __kmp_nThreadsPerCore = nCoresPerPkg = nPackages = 1;
+ __kmp_ht_enabled = FALSE;
+ if (__kmp_affinity_verbose) {
+ if (! KMP_AFFINITY_CAPABLE()) {
+ KMP_INFORM(AffNotCapableUseCpuinfo, "KMP_AFFINITY");
+ KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc);
+ KMP_INFORM(Uniform, "KMP_AFFINITY");
+ }
+ else {
+ char buf[KMP_AFFIN_MASK_PRINT_LEN];
+ __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
+ fullMask);
+ KMP_INFORM(AffCapableUseCpuinfo, "KMP_AFFINITY");
+ if (__kmp_affinity_respect_mask) {
+ KMP_INFORM(InitOSProcSetRespect, "KMP_AFFINITY", buf);
+ } else {
+ KMP_INFORM(InitOSProcSetNotRespect, "KMP_AFFINITY", buf);
+ }
+ KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc);
+ KMP_INFORM(Uniform, "KMP_AFFINITY");
+ }
+ int index;
+ kmp_str_buf_t buf;
+ __kmp_str_buf_init(&buf);
+ __kmp_str_buf_print(&buf, "1");
+ for (index = maxIndex - 1; index > pkgIdIndex; index--) {
+ __kmp_str_buf_print(&buf, " x 1");
+ }
+ KMP_INFORM(TopologyExtra, "KMP_AFFINITY", buf.str, 1, 1, 1);
+ __kmp_str_buf_free(&buf);
+ }
+
+ if (__kmp_affinity_type == affinity_none) {
+ CLEANUP_THREAD_INFO;
+ return 0;
+ }
+
+ *address2os = (AddrUnsPair*)__kmp_allocate(sizeof(AddrUnsPair));
+ Address addr(1);
+ addr.labels[0] = threadInfo[0][pkgIdIndex];
+ (*address2os)[0] = AddrUnsPair(addr, threadInfo[0][osIdIndex]);
+
+ if (__kmp_affinity_gran_levels < 0) {
+ __kmp_affinity_gran_levels = 0;
+ }
+
+ if (__kmp_affinity_verbose) {
+ __kmp_affinity_print_topology(*address2os, 1, 1, 0, -1, -1);
+ }
+
+ CLEANUP_THREAD_INFO;
+ return 1;
+ }
+
+ //
+ // Sort the threadInfo table by physical Id.
+ //
+ qsort(threadInfo, num_avail, sizeof(*threadInfo),
+ __kmp_affinity_cmp_ProcCpuInfo_phys_id);
+
+ //
+ // The table is now sorted by pkgId / coreId / threadId, but we really
+ // don't know the radix of any of the fields. pkgId's may be sparsely
+ // assigned among the chips on a system. Although coreId's are usually
+ // assigned [0 .. coresPerPkg-1] and threadId's are usually assigned
+ // [0..threadsPerCore-1], we don't want to make any such assumptions.
+ //
+ // For that matter, we don't know what coresPerPkg and threadsPerCore
+ // (or the total # packages) are at this point - we want to determine
+ // that now. We only have an upper bound on the first two figures.
+ //
+ unsigned *counts = (unsigned *)__kmp_allocate((maxIndex + 1)
+ * sizeof(unsigned));
+ unsigned *maxCt = (unsigned *)__kmp_allocate((maxIndex + 1)
+ * sizeof(unsigned));
+ unsigned *totals = (unsigned *)__kmp_allocate((maxIndex + 1)
+ * sizeof(unsigned));
+ unsigned *lastId = (unsigned *)__kmp_allocate((maxIndex + 1)
+ * sizeof(unsigned));
+
+ bool assign_thread_ids = false;
+ unsigned threadIdCt;
+ unsigned index;
+
+ restart_radix_check:
+ threadIdCt = 0;
+
+ //
+ // Initialize the counter arrays with data from threadInfo[0].
+ //
+ if (assign_thread_ids) {
+ if (threadInfo[0][threadIdIndex] == UINT_MAX) {
+ threadInfo[0][threadIdIndex] = threadIdCt++;
+ }
+ else if (threadIdCt <= threadInfo[0][threadIdIndex]) {
+ threadIdCt = threadInfo[0][threadIdIndex] + 1;
+ }
+ }
+ for (index = 0; index <= maxIndex; index++) {
+ counts[index] = 1;
+ maxCt[index] = 1;
+ totals[index] = 1;
+ lastId[index] = threadInfo[0][index];;
+ }
+
+ //
+ // Run through the rest of the OS procs.
+ //
+ for (i = 1; i < num_avail; i++) {
+ //
+ // Find the most significant index whose id differs
+ // from the id for the previous OS proc.
+ //
+ for (index = maxIndex; index >= threadIdIndex; index--) {
+ if (assign_thread_ids && (index == threadIdIndex)) {
+ //
+ // Auto-assign the thread id field if it wasn't specified.
+ //
+ if (threadInfo[i][threadIdIndex] == UINT_MAX) {
+ threadInfo[i][threadIdIndex] = threadIdCt++;
+ }
+
+ //
+ // Aparrently the thread id field was specified for some
+ // entries and not others. Start the thread id counter
+ // off at the next higher thread id.
+ //
+ else if (threadIdCt <= threadInfo[i][threadIdIndex]) {
+ threadIdCt = threadInfo[i][threadIdIndex] + 1;
+ }
+ }
+ if (threadInfo[i][index] != lastId[index]) {
+ //
+ // Run through all indices which are less significant,
+ // and reset the counts to 1.
+ //
+ // At all levels up to and including index, we need to
+ // increment the totals and record the last id.
+ //
+ unsigned index2;
+ for (index2 = threadIdIndex; index2 < index; index2++) {
+ totals[index2]++;
+ if (counts[index2] > maxCt[index2]) {
+ maxCt[index2] = counts[index2];
+ }
+ counts[index2] = 1;
+ lastId[index2] = threadInfo[i][index2];
+ }
+ counts[index]++;
+ totals[index]++;
+ lastId[index] = threadInfo[i][index];
+
+ if (assign_thread_ids && (index > threadIdIndex)) {
+
+# if KMP_MIC && REDUCE_TEAM_SIZE
+ //
+ // The default team size is the total #threads in the machine
+ // minus 1 thread for every core that has 3 or more threads.
+ //
+ teamSize += ( threadIdCt <= 2 ) ? ( threadIdCt ) : ( threadIdCt - 1 );
+# endif // KMP_MIC && REDUCE_TEAM_SIZE
+
+ //
+ // Restart the thread counter, as we are on a new core.
+ //
+ threadIdCt = 0;
+
+ //
+ // Auto-assign the thread id field if it wasn't specified.
+ //
+ if (threadInfo[i][threadIdIndex] == UINT_MAX) {
+ threadInfo[i][threadIdIndex] = threadIdCt++;
+ }
+
+ //
+ // Aparrently the thread id field was specified for some
+ // entries and not others. Start the thread id counter
+ // off at the next higher thread id.
+ //
+ else if (threadIdCt <= threadInfo[i][threadIdIndex]) {
+ threadIdCt = threadInfo[i][threadIdIndex] + 1;
+ }
+ }
+ break;
+ }
+ }
+ if (index < threadIdIndex) {
+ //
+ // If thread ids were specified, it is an error if they are not
+ // unique. Also, check that we waven't already restarted the
+ // loop (to be safe - shouldn't need to).
+ //
+ if ((threadInfo[i][threadIdIndex] != UINT_MAX)
+ || assign_thread_ids) {
+ __kmp_free(lastId);
+ __kmp_free(totals);
+ __kmp_free(maxCt);
+ __kmp_free(counts);
+ CLEANUP_THREAD_INFO;
+ *msg_id = kmp_i18n_str_PhysicalIDsNotUnique;
+ return -1;
+ }
+
+ //
+ // If the thread ids were not specified and we see entries
+ // entries that are duplicates, start the loop over and
+ // assign the thread ids manually.
+ //
+ assign_thread_ids = true;
+ goto restart_radix_check;
+ }
+ }
+
+# if KMP_MIC && REDUCE_TEAM_SIZE
+ //
+ // The default team size is the total #threads in the machine
+ // minus 1 thread for every core that has 3 or more threads.
+ //
+ teamSize += ( threadIdCt <= 2 ) ? ( threadIdCt ) : ( threadIdCt - 1 );
+# endif // KMP_MIC && REDUCE_TEAM_SIZE
+
+ for (index = threadIdIndex; index <= maxIndex; index++) {
+ if (counts[index] > maxCt[index]) {
+ maxCt[index] = counts[index];
+ }
+ }
+
+ __kmp_nThreadsPerCore = maxCt[threadIdIndex];
+ nCoresPerPkg = maxCt[coreIdIndex];
+ nPackages = totals[pkgIdIndex];
+
+ //
+ // Check to see if the machine topology is uniform
+ //
+ unsigned prod = totals[maxIndex];
+ for (index = threadIdIndex; index < maxIndex; index++) {
+ prod *= maxCt[index];
+ }
+ bool uniform = (prod == totals[threadIdIndex]);
+
+ //
+ // When affinity is off, this routine will still be called to set
+ // __kmp_ht_enabled, & __kmp_ncores, as well as __kmp_nThreadsPerCore,
+ // nCoresPerPkg, & nPackages. Make sure all these vars are set
+ // correctly, and return now if affinity is not enabled.
+ //
+ __kmp_ht_enabled = (maxCt[threadIdIndex] > 1); // threads per core > 1
+ __kmp_ncores = totals[coreIdIndex];
+
+ if (__kmp_affinity_verbose) {
+ if (! KMP_AFFINITY_CAPABLE()) {
+ KMP_INFORM(AffNotCapableUseCpuinfo, "KMP_AFFINITY");
+ KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc);
+ if (uniform) {
+ KMP_INFORM(Uniform, "KMP_AFFINITY");
+ } else {
+ KMP_INFORM(NonUniform, "KMP_AFFINITY");
+ }
+ }
+ else {
+ char buf[KMP_AFFIN_MASK_PRINT_LEN];
+ __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, fullMask);
+ KMP_INFORM(AffCapableUseCpuinfo, "KMP_AFFINITY");
+ if (__kmp_affinity_respect_mask) {
+ KMP_INFORM(InitOSProcSetRespect, "KMP_AFFINITY", buf);
+ } else {
+ KMP_INFORM(InitOSProcSetNotRespect, "KMP_AFFINITY", buf);
+ }
+ KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc);
+ if (uniform) {
+ KMP_INFORM(Uniform, "KMP_AFFINITY");
+ } else {
+ KMP_INFORM(NonUniform, "KMP_AFFINITY");
+ }
+ }
+ kmp_str_buf_t buf;
+ __kmp_str_buf_init(&buf);
+
+ __kmp_str_buf_print(&buf, "%d", totals[maxIndex]);
+ for (index = maxIndex - 1; index >= pkgIdIndex; index--) {
+ __kmp_str_buf_print(&buf, " x %d", maxCt[index]);
+ }
+ KMP_INFORM(TopologyExtra, "KMP_AFFINITY", buf.str, maxCt[coreIdIndex],
+ maxCt[threadIdIndex], __kmp_ncores);
+
+ __kmp_str_buf_free(&buf);
+ }
+
+# if KMP_MIC && REDUCE_TEAM_SIZE
+ //
+ // Set the default team size.
+ //
+ if ((__kmp_dflt_team_nth == 0) && (teamSize > 0)) {
+ __kmp_dflt_team_nth = teamSize;
+ KA_TRACE(20, ("__kmp_affinity_create_cpuinfo_map: setting __kmp_dflt_team_nth = %d\n",
+ __kmp_dflt_team_nth));
+ }
+# endif // KMP_MIC && REDUCE_TEAM_SIZE
+
+ if (__kmp_affinity_type == affinity_none) {
+ __kmp_free(lastId);
+ __kmp_free(totals);
+ __kmp_free(maxCt);
+ __kmp_free(counts);
+ CLEANUP_THREAD_INFO;
+ return 0;
+ }
+
+ //
+ // Count the number of levels which have more nodes at that level than
+ // at the parent's level (with there being an implicit root node of
+ // the top level). This is equivalent to saying that there is at least
+ // one node at this level which has a sibling. These levels are in the
+ // map, and the package level is always in the map.
+ //
+ bool *inMap = (bool *)__kmp_allocate((maxIndex + 1) * sizeof(bool));
+ int level = 0;
+ for (index = threadIdIndex; index < maxIndex; index++) {
+ KMP_ASSERT(totals[index] >= totals[index + 1]);
+ inMap[index] = (totals[index] > totals[index + 1]);
+ }
+ inMap[maxIndex] = (totals[maxIndex] > 1);
+ inMap[pkgIdIndex] = true;
+
+ int depth = 0;
+ for (index = threadIdIndex; index <= maxIndex; index++) {
+ if (inMap[index]) {
+ depth++;
+ }
+ }
+ KMP_ASSERT(depth > 0);
+
+ //
+ // Construct the data structure that is to be returned.
+ //
+ *address2os = (AddrUnsPair*)
+ __kmp_allocate(sizeof(AddrUnsPair) * num_avail);
+ int pkgLevel = -1;
+ int coreLevel = -1;
+ int threadLevel = -1;
+
+ for (i = 0; i < num_avail; ++i) {
+ Address addr(depth);
+ unsigned os = threadInfo[i][osIdIndex];
+ int src_index;
+ int dst_index = 0;
+
+ for (src_index = maxIndex; src_index >= threadIdIndex; src_index--) {
+ if (! inMap[src_index]) {
+ continue;
+ }
+ addr.labels[dst_index] = threadInfo[i][src_index];
+ if (src_index == pkgIdIndex) {
+ pkgLevel = dst_index;
+ }
+ else if (src_index == coreIdIndex) {
+ coreLevel = dst_index;
+ }
+ else if (src_index == threadIdIndex) {
+ threadLevel = dst_index;
+ }
+ dst_index++;
+ }
+ (*address2os)[i] = AddrUnsPair(addr, os);
+ }
+
+ if (__kmp_affinity_gran_levels < 0) {
+ //
+ // Set the granularity level based on what levels are modeled
+ // in the machine topology map.
+ //
+ unsigned src_index;
+ __kmp_affinity_gran_levels = 0;
+ for (src_index = threadIdIndex; src_index <= maxIndex; src_index++) {
+ if (! inMap[src_index]) {
+ continue;
+ }
+ switch (src_index) {
+ case threadIdIndex:
+ if (__kmp_affinity_gran > affinity_gran_thread) {
+ __kmp_affinity_gran_levels++;
+ }
+
+ break;
+ case coreIdIndex:
+ if (__kmp_affinity_gran > affinity_gran_core) {
+ __kmp_affinity_gran_levels++;
+ }
+ break;
+
+ case pkgIdIndex:
+ if (__kmp_affinity_gran > affinity_gran_package) {
+ __kmp_affinity_gran_levels++;
+ }
+ break;
+ }
+ }
+ }
+
+ if (__kmp_affinity_verbose) {
+ __kmp_affinity_print_topology(*address2os, num_avail, depth, pkgLevel,
+ coreLevel, threadLevel);
+ }
+
+ __kmp_free(inMap);
+ __kmp_free(lastId);
+ __kmp_free(totals);
+ __kmp_free(maxCt);
+ __kmp_free(counts);
+ CLEANUP_THREAD_INFO;
+ return depth;
+}
+
+
+//
+// Create and return a table of affinity masks, indexed by OS thread ID.
+// This routine handles OR'ing together all the affinity masks of threads
+// that are sufficiently close, if granularity > fine.
+//
+static kmp_affin_mask_t *
+__kmp_create_masks(unsigned *maxIndex, unsigned *numUnique,
+ AddrUnsPair *address2os, unsigned numAddrs)
+{
+ //
+ // First form a table of affinity masks in order of OS thread id.
+ //
+ unsigned depth;
+ unsigned maxOsId;
+ unsigned i;
+
+ KMP_ASSERT(numAddrs > 0);
+ depth = address2os[0].first.depth;
+
+ maxOsId = 0;
+ for (i = 0; i < numAddrs; i++) {
+ unsigned osId = address2os[i].second;
+ if (osId > maxOsId) {
+ maxOsId = osId;
+ }
+ }
+ kmp_affin_mask_t *osId2Mask = (kmp_affin_mask_t *)__kmp_allocate(
+ (maxOsId + 1) * __kmp_affin_mask_size);
+
+ //
+ // Sort the address2os table according to physical order. Doing so
+ // will put all threads on the same core/package/node in consecutive
+ // locations.
+ //
+ qsort(address2os, numAddrs, sizeof(*address2os),
+ __kmp_affinity_cmp_Address_labels);
+
+ KMP_ASSERT(__kmp_affinity_gran_levels >= 0);
+ if (__kmp_affinity_verbose && (__kmp_affinity_gran_levels > 0)) {
+ KMP_INFORM(ThreadsMigrate, "KMP_AFFINITY", __kmp_affinity_gran_levels);
+ }
+ if (__kmp_affinity_gran_levels >= (int)depth) {
+ if (__kmp_affinity_verbose || (__kmp_affinity_warnings
+ && (__kmp_affinity_type != affinity_none))) {
+ KMP_WARNING(AffThreadsMayMigrate);
+ }
+ }
+
+ //
+ // Run through the table, forming the masks for all threads on each
+ // core. Threads on the same core will have identical "Address"
+ // objects, not considering the last level, which must be the thread
+ // id. All threads on a core will appear consecutively.
+ //
+ unsigned unique = 0;
+ unsigned j = 0; // index of 1st thread on core
+ unsigned leader = 0;
+ Address *leaderAddr = &(address2os[0].first);
+ kmp_affin_mask_t *sum
+ = (kmp_affin_mask_t *)alloca(__kmp_affin_mask_size);
+ KMP_CPU_ZERO(sum);
+ KMP_CPU_SET(address2os[0].second, sum);
+ for (i = 1; i < numAddrs; i++) {
+ //
+ // If this thread is sufficiently close to the leader (withing the
+ // granularity setting), then set the bit for this os thread in the
+ // affinity mask for this group, and go on to the next thread.
+ //
+ if (leaderAddr->isClose(address2os[i].first,
+ __kmp_affinity_gran_levels)) {
+ KMP_CPU_SET(address2os[i].second, sum);
+ continue;
+ }
+
+ //
+ // For every thread in this group, copy the mask to the thread's
+ // entry in the osId2Mask table. Mark the first address as a
+ // leader.
+ //
+ for (; j < i; j++) {
+ unsigned osId = address2os[j].second;
+ KMP_DEBUG_ASSERT(osId <= maxOsId);
+ kmp_affin_mask_t *mask = KMP_CPU_INDEX(osId2Mask, osId);
+ KMP_CPU_COPY(mask, sum);
+ address2os[j].first.leader = (j == leader);
+ }
+ unique++;
+
+ //
+ // Start a new mask.
+ //
+ leader = i;
+ leaderAddr = &(address2os[i].first);
+ KMP_CPU_ZERO(sum);
+ KMP_CPU_SET(address2os[i].second, sum);
+ }
+
+ //
+ // For every thread in last group, copy the mask to the thread's
+ // entry in the osId2Mask table.
+ //
+ for (; j < i; j++) {
+ unsigned osId = address2os[j].second;
+ KMP_DEBUG_ASSERT(osId <= maxOsId);
+ kmp_affin_mask_t *mask = KMP_CPU_INDEX(osId2Mask, osId);
+ KMP_CPU_COPY(mask, sum);
+ address2os[j].first.leader = (j == leader);
+ }
+ unique++;
+
+ *maxIndex = maxOsId;
+ *numUnique = unique;
+ return osId2Mask;
+}
+
+
+//
+// Stuff for the affinity proclist parsers. It's easier to declare these vars
+// as file-static than to try and pass them through the calling sequence of
+// the recursive-descent OMP_PLACES parser.
+//
+static kmp_affin_mask_t *newMasks;
+static int numNewMasks;
+static int nextNewMask;
+
+#define ADD_MASK(_mask) \
+ { \
+ if (nextNewMask >= numNewMasks) { \
+ numNewMasks *= 2; \
+ newMasks = (kmp_affin_mask_t *)KMP_INTERNAL_REALLOC(newMasks, \
+ numNewMasks * __kmp_affin_mask_size); \
+ } \
+ KMP_CPU_COPY(KMP_CPU_INDEX(newMasks, nextNewMask), (_mask)); \
+ nextNewMask++; \
+ }
+
+#define ADD_MASK_OSID(_osId,_osId2Mask,_maxOsId) \
+ { \
+ if (((_osId) > _maxOsId) || \
+ (! KMP_CPU_ISSET((_osId), KMP_CPU_INDEX(_osId2Mask, (_osId))))) {\
+ if (__kmp_affinity_verbose || (__kmp_affinity_warnings \
+ && (__kmp_affinity_type != affinity_none))) { \
+ KMP_WARNING(AffIgnoreInvalidProcID, _osId); \
+ } \
+ } \
+ else { \
+ ADD_MASK(KMP_CPU_INDEX(_osId2Mask, (_osId))); \
+ } \
+ }
+
+
+//
+// Re-parse the proclist (for the explicit affinity type), and form the list
+// of affinity newMasks indexed by gtid.
+//
+static void
+__kmp_affinity_process_proclist(kmp_affin_mask_t **out_masks,
+ unsigned int *out_numMasks, const char *proclist,
+ kmp_affin_mask_t *osId2Mask, int maxOsId)
+{
+ const char *scan = proclist;
+ const char *next = proclist;
+
+ //
+ // We use malloc() for the temporary mask vector,
+ // so that we can use realloc() to extend it.
+ //
+ numNewMasks = 2;
+ newMasks = (kmp_affin_mask_t *)KMP_INTERNAL_MALLOC(numNewMasks
+ * __kmp_affin_mask_size);
+ nextNewMask = 0;
+ kmp_affin_mask_t *sumMask = (kmp_affin_mask_t *)__kmp_allocate(
+ __kmp_affin_mask_size);
+ int setSize = 0;
+
+ for (;;) {
+ int start, end, stride;
+
+ SKIP_WS(scan);
+ next = scan;
+ if (*next == '\0') {
+ break;
+ }
+
+ if (*next == '{') {
+ int num;
+ setSize = 0;
+ next++; // skip '{'
+ SKIP_WS(next);
+ scan = next;
+
+ //
+ // Read the first integer in the set.
+ //
+ KMP_ASSERT2((*next >= '0') && (*next <= '9'),
+ "bad proclist");
+ SKIP_DIGITS(next);
+ num = __kmp_str_to_int(scan, *next);
+ KMP_ASSERT2(num >= 0, "bad explicit proc list");
+
+ //
+ // Copy the mask for that osId to the sum (union) mask.
+ //
+ if ((num > maxOsId) ||
+ (! KMP_CPU_ISSET(num, KMP_CPU_INDEX(osId2Mask, num)))) {
+ if (__kmp_affinity_verbose || (__kmp_affinity_warnings
+ && (__kmp_affinity_type != affinity_none))) {
+ KMP_WARNING(AffIgnoreInvalidProcID, num);
+ }
+ KMP_CPU_ZERO(sumMask);
+ }
+ else {
+ KMP_CPU_COPY(sumMask, KMP_CPU_INDEX(osId2Mask, num));
+ setSize = 1;
+ }
+
+ for (;;) {
+ //
+ // Check for end of set.
+ //
+ SKIP_WS(next);
+ if (*next == '}') {
+ next++; // skip '}'
+ break;
+ }
+
+ //
+ // Skip optional comma.
+ //
+ if (*next == ',') {
+ next++;
+ }
+ SKIP_WS(next);
+
+ //
+ // Read the next integer in the set.
+ //
+ scan = next;
+ KMP_ASSERT2((*next >= '0') && (*next <= '9'),
+ "bad explicit proc list");
+
+ SKIP_DIGITS(next);
+ num = __kmp_str_to_int(scan, *next);
+ KMP_ASSERT2(num >= 0, "bad explicit proc list");
+
+ //
+ // Add the mask for that osId to the sum mask.
+ //
+ if ((num > maxOsId) ||
+ (! KMP_CPU_ISSET(num, KMP_CPU_INDEX(osId2Mask, num)))) {
+ if (__kmp_affinity_verbose || (__kmp_affinity_warnings
+ && (__kmp_affinity_type != affinity_none))) {
+ KMP_WARNING(AffIgnoreInvalidProcID, num);
+ }
+ }
+ else {
+ KMP_CPU_UNION(sumMask, KMP_CPU_INDEX(osId2Mask, num));
+ setSize++;
+ }
+ }
+ if (setSize > 0) {
+ ADD_MASK(sumMask);
+ }
+
+ SKIP_WS(next);
+ if (*next == ',') {
+ next++;
+ }
+ scan = next;
+ continue;
+ }
+
+ //
+ // Read the first integer.
+ //
+ KMP_ASSERT2((*next >= '0') && (*next <= '9'), "bad explicit proc list");
+ SKIP_DIGITS(next);
+ start = __kmp_str_to_int(scan, *next);
+ KMP_ASSERT2(start >= 0, "bad explicit proc list");
+ SKIP_WS(next);
+
+ //
+ // If this isn't a range, then add a mask to the list and go on.
+ //
+ if (*next != '-') {
+ ADD_MASK_OSID(start, osId2Mask, maxOsId);
+
+ //
+ // Skip optional comma.
+ //
+ if (*next == ',') {
+ next++;
+ }
+ scan = next;
+ continue;
+ }
+
+ //
+ // This is a range. Skip over the '-' and read in the 2nd int.
+ //
+ next++; // skip '-'
+ SKIP_WS(next);
+ scan = next;
+ KMP_ASSERT2((*next >= '0') && (*next <= '9'), "bad explicit proc list");
+ SKIP_DIGITS(next);
+ end = __kmp_str_to_int(scan, *next);
+ KMP_ASSERT2(end >= 0, "bad explicit proc list");
+
+ //
+ // Check for a stride parameter
+ //
+ stride = 1;
+ SKIP_WS(next);
+ if (*next == ':') {
+ //
+ // A stride is specified. Skip over the ':" and read the 3rd int.
+ //
+ int sign = +1;
+ next++; // skip ':'
+ SKIP_WS(next);
+ scan = next;
+ if (*next == '-') {
+ sign = -1;
+ next++;
+ SKIP_WS(next);
+ scan = next;
+ }
+ KMP_ASSERT2((*next >= '0') && (*next <= '9'),
+ "bad explicit proc list");
+ SKIP_DIGITS(next);
+ stride = __kmp_str_to_int(scan, *next);
+ KMP_ASSERT2(stride >= 0, "bad explicit proc list");
+ stride *= sign;
+ }
+
+ //
+ // Do some range checks.
+ //
+ KMP_ASSERT2(stride != 0, "bad explicit proc list");
+ if (stride > 0) {
+ KMP_ASSERT2(start <= end, "bad explicit proc list");
+ }
+ else {
+ KMP_ASSERT2(start >= end, "bad explicit proc list");
+ }
+ KMP_ASSERT2((end - start) / stride <= 65536, "bad explicit proc list");
+
+ //
+ // Add the mask for each OS proc # to the list.
+ //
+ if (stride > 0) {
+ do {
+ ADD_MASK_OSID(start, osId2Mask, maxOsId);
+ start += stride;
+ } while (start <= end);
+ }
+ else {
+ do {
+ ADD_MASK_OSID(start, osId2Mask, maxOsId);
+ start += stride;
+ } while (start >= end);
+ }
+
+ //
+ // Skip optional comma.
+ //
+ SKIP_WS(next);
+ if (*next == ',') {
+ next++;
+ }
+ scan = next;
+ }
+
+ *out_numMasks = nextNewMask;
+ if (nextNewMask == 0) {
+ *out_masks = NULL;
+ KMP_INTERNAL_FREE(newMasks);
+ return;
+ }
+ *out_masks
+ = (kmp_affin_mask_t *)__kmp_allocate(nextNewMask * __kmp_affin_mask_size);
+ memcpy(*out_masks, newMasks, nextNewMask * __kmp_affin_mask_size);
+ __kmp_free(sumMask);
+ KMP_INTERNAL_FREE(newMasks);
+}
+
+
+# if OMP_40_ENABLED
+
+/*-----------------------------------------------------------------------------
+
+Re-parse the OMP_PLACES proc id list, forming the newMasks for the different
+places. Again, Here is the grammar:
+
+place_list := place
+place_list := place , place_list
+place := num
+place := place : num
+place := place : num : signed
+place := { subplacelist }
+place := ! place // (lowest priority)
+subplace_list := subplace
+subplace_list := subplace , subplace_list
+subplace := num
+subplace := num : num
+subplace := num : num : signed
+signed := num
+signed := + signed
+signed := - signed
+
+-----------------------------------------------------------------------------*/
+
+static void
+__kmp_process_subplace_list(const char **scan, kmp_affin_mask_t *osId2Mask,
+ int maxOsId, kmp_affin_mask_t *tempMask, int *setSize)
+{
+ const char *next;
+
+ for (;;) {
+ int start, count, stride, i;
+
+ //
+ // Read in the starting proc id
+ //
+ SKIP_WS(*scan);
+ KMP_ASSERT2((**scan >= '0') && (**scan <= '9'),
+ "bad explicit places list");
+ next = *scan;
+ SKIP_DIGITS(next);
+ start = __kmp_str_to_int(*scan, *next);
+ KMP_ASSERT(start >= 0);
+ *scan = next;
+
+ //
+ // valid follow sets are ',' ':' and '}'
+ //
+ SKIP_WS(*scan);
+ if (**scan == '}' || **scan == ',') {
+ if ((start > maxOsId) ||
+ (! KMP_CPU_ISSET(start, KMP_CPU_INDEX(osId2Mask, start)))) {
+ if (__kmp_affinity_verbose || (__kmp_affinity_warnings
+ && (__kmp_affinity_type != affinity_none))) {
+ KMP_WARNING(AffIgnoreInvalidProcID, start);
+ }
+ }
+ else {
+ KMP_CPU_UNION(tempMask, KMP_CPU_INDEX(osId2Mask, start));
+ (*setSize)++;
+ }
+ if (**scan == '}') {
+ break;
+ }
+ (*scan)++; // skip ','
+ continue;
+ }
+ KMP_ASSERT2(**scan == ':', "bad explicit places list");
+ (*scan)++; // skip ':'
+
+ //
+ // Read count parameter
+ //
+ SKIP_WS(*scan);
+ KMP_ASSERT2((**scan >= '0') && (**scan <= '9'),
+ "bad explicit places list");
+ next = *scan;
+ SKIP_DIGITS(next);
+ count = __kmp_str_to_int(*scan, *next);
+ KMP_ASSERT(count >= 0);
+ *scan = next;
+
+ //
+ // valid follow sets are ',' ':' and '}'
+ //
+ SKIP_WS(*scan);
+ if (**scan == '}' || **scan == ',') {
+ for (i = 0; i < count; i++) {
+ if ((start > maxOsId) ||
+ (! KMP_CPU_ISSET(start, KMP_CPU_INDEX(osId2Mask, start)))) {
+ if (__kmp_affinity_verbose || (__kmp_affinity_warnings
+ && (__kmp_affinity_type != affinity_none))) {
+ KMP_WARNING(AffIgnoreInvalidProcID, start);
+ }
+ break; // don't proliferate warnings for large count
+ }
+ else {
+ KMP_CPU_UNION(tempMask, KMP_CPU_INDEX(osId2Mask, start));
+ start++;
+ (*setSize)++;
+ }
+ }
+ if (**scan == '}') {
+ break;
+ }
+ (*scan)++; // skip ','
+ continue;
+ }
+ KMP_ASSERT2(**scan == ':', "bad explicit places list");
+ (*scan)++; // skip ':'
+
+ //
+ // Read stride parameter
+ //
+ int sign = +1;
+ for (;;) {
+ SKIP_WS(*scan);
+ if (**scan == '+') {
+ (*scan)++; // skip '+'
+ continue;
+ }
+ if (**scan == '-') {
+ sign *= -1;
+ (*scan)++; // skip '-'
+ continue;
+ }
+ break;
+ }
+ SKIP_WS(*scan);
+ KMP_ASSERT2((**scan >= '0') && (**scan <= '9'),
+ "bad explicit places list");
+ next = *scan;
+ SKIP_DIGITS(next);
+ stride = __kmp_str_to_int(*scan, *next);
+ KMP_ASSERT(stride >= 0);
+ *scan = next;
+ stride *= sign;
+
+ //
+ // valid follow sets are ',' and '}'
+ //
+ SKIP_WS(*scan);
+ if (**scan == '}' || **scan == ',') {
+ for (i = 0; i < count; i++) {
+ if ((start > maxOsId) ||
+ (! KMP_CPU_ISSET(start, KMP_CPU_INDEX(osId2Mask, start)))) {
+ if (__kmp_affinity_verbose || (__kmp_affinity_warnings
+ && (__kmp_affinity_type != affinity_none))) {
+ KMP_WARNING(AffIgnoreInvalidProcID, start);
+ }
+ break; // don't proliferate warnings for large count
+ }
+ else {
+ KMP_CPU_UNION(tempMask, KMP_CPU_INDEX(osId2Mask, start));
+ start += stride;
+ (*setSize)++;
+ }
+ }
+ if (**scan == '}') {
+ break;
+ }
+ (*scan)++; // skip ','
+ continue;
+ }
+
+ KMP_ASSERT2(0, "bad explicit places list");
+ }
+}
+
+
+static void
+__kmp_process_place(const char **scan, kmp_affin_mask_t *osId2Mask,
+ int maxOsId, kmp_affin_mask_t *tempMask, int *setSize)
+{
+ const char *next;
+
+ //
+ // valid follow sets are '{' '!' and num
+ //
+ SKIP_WS(*scan);
+ if (**scan == '{') {
+ (*scan)++; // skip '{'
+ __kmp_process_subplace_list(scan, osId2Mask, maxOsId , tempMask,
+ setSize);
+ KMP_ASSERT2(**scan == '}', "bad explicit places list");
+ (*scan)++; // skip '}'
+ }
+ else if (**scan == '!') {
+ __kmp_process_place(scan, osId2Mask, maxOsId, tempMask, setSize);
+ KMP_CPU_COMPLEMENT(tempMask);
+ (*scan)++; // skip '!'
+ }
+ else if ((**scan >= '0') && (**scan <= '9')) {
+ next = *scan;
+ SKIP_DIGITS(next);
+ int num = __kmp_str_to_int(*scan, *next);
+ KMP_ASSERT(num >= 0);
+ if ((num > maxOsId) ||
+ (! KMP_CPU_ISSET(num, KMP_CPU_INDEX(osId2Mask, num)))) {
+ if (__kmp_affinity_verbose || (__kmp_affinity_warnings
+ && (__kmp_affinity_type != affinity_none))) {
+ KMP_WARNING(AffIgnoreInvalidProcID, num);
+ }
+ }
+ else {
+ KMP_CPU_UNION(tempMask, KMP_CPU_INDEX(osId2Mask, num));
+ (*setSize)++;
+ }
+ *scan = next; // skip num
+ }
+ else {
+ KMP_ASSERT2(0, "bad explicit places list");
+ }
+}
+
+
+static void
+__kmp_affinity_process_placelist(kmp_affin_mask_t **out_masks,
+ unsigned int *out_numMasks, const char *placelist,
+ kmp_affin_mask_t *osId2Mask, int maxOsId)
+{
+ const char *scan = placelist;
+ const char *next = placelist;
+
+ numNewMasks = 2;
+ newMasks = (kmp_affin_mask_t *)KMP_INTERNAL_MALLOC(numNewMasks
+ * __kmp_affin_mask_size);
+ nextNewMask = 0;
+
+ kmp_affin_mask_t *tempMask = (kmp_affin_mask_t *)__kmp_allocate(
+ __kmp_affin_mask_size);
+ KMP_CPU_ZERO(tempMask);
+ int setSize = 0;
+
+ for (;;) {
+ int start, count, stride;
+
+ __kmp_process_place(&scan, osId2Mask, maxOsId, tempMask, &setSize);
+
+ //
+ // valid follow sets are ',' ':' and EOL
+ //
+ SKIP_WS(scan);
+ if (*scan == '\0' || *scan == ',') {
+ if (setSize > 0) {
+ ADD_MASK(tempMask);
+ }
+ KMP_CPU_ZERO(tempMask);
+ setSize = 0;
+ if (*scan == '\0') {
+ break;
+ }
+ scan++; // skip ','
+ continue;
+ }
+
+ KMP_ASSERT2(*scan == ':', "bad explicit places list");
+ scan++; // skip ':'
+
+ //
+ // Read count parameter
+ //
+ SKIP_WS(scan);
+ KMP_ASSERT2((*scan >= '0') && (*scan <= '9'),
+ "bad explicit places list");
+ next = scan;
+ SKIP_DIGITS(next);
+ count = __kmp_str_to_int(scan, *next);
+ KMP_ASSERT(count >= 0);
+ scan = next;
+
+ //
+ // valid follow sets are ',' ':' and EOL
+ //
+ SKIP_WS(scan);
+ if (*scan == '\0' || *scan == ',') {
+ int i;
+ for (i = 0; i < count; i++) {
+ int j;
+ if (setSize == 0) {
+ break;
+ }
+ ADD_MASK(tempMask);
+ setSize = 0;
+ for (j = __kmp_affin_mask_size * CHAR_BIT - 1; j > 0; j--) {
+ //
+ // Use a temp var in case macro is changed to evaluate
+ // args multiple times.
+ //
+ if (KMP_CPU_ISSET(j - stride, tempMask)) {
+ KMP_CPU_SET(j, tempMask);
+ setSize++;
+ }
+ else {
+ KMP_CPU_CLR(j, tempMask);
+ }
+ }
+ for (; j >= 0; j--) {
+ KMP_CPU_CLR(j, tempMask);
+ }
+ }
+ KMP_CPU_ZERO(tempMask);
+ setSize = 0;
+
+ if (*scan == '\0') {
+ break;
+ }
+ scan++; // skip ','
+ continue;
+ }
+
+ KMP_ASSERT2(*scan == ':', "bad explicit places list");
+ scan++; // skip ':'
+
+ //
+ // Read stride parameter
+ //
+ int sign = +1;
+ for (;;) {
+ SKIP_WS(scan);
+ if (*scan == '+') {
+ scan++; // skip '+'
+ continue;
+ }
+ if (*scan == '-') {
+ sign *= -1;
+ scan++; // skip '-'
+ continue;
+ }
+ break;
+ }
+ SKIP_WS(scan);
+ KMP_ASSERT2((*scan >= '0') && (*scan <= '9'),
+ "bad explicit places list");
+ next = scan;
+ SKIP_DIGITS(next);
+ stride = __kmp_str_to_int(scan, *next);
+ KMP_DEBUG_ASSERT(stride >= 0);
+ scan = next;
+ stride *= sign;
+
+ if (stride > 0) {
+ int i;
+ for (i = 0; i < count; i++) {
+ int j;
+ if (setSize == 0) {
+ break;
+ }
+ ADD_MASK(tempMask);
+ setSize = 0;
+ for (j = __kmp_affin_mask_size * CHAR_BIT - 1; j >= stride; j--) {
+ if (KMP_CPU_ISSET(j - stride, tempMask)) {
+ KMP_CPU_SET(j, tempMask);
+ setSize++;
+ }
+ else {
+ KMP_CPU_CLR(j, tempMask);
+ }
+ }
+ for (; j >= 0; j--) {
+ KMP_CPU_CLR(j, tempMask);
+ }
+ }
+ }
+ else {
+ int i;
+ for (i = 0; i < count; i++) {
+ unsigned j;
+ if (setSize == 0) {
+ break;
+ }
+ ADD_MASK(tempMask);
+ setSize = 0;
+ for (j = 0; j < (__kmp_affin_mask_size * CHAR_BIT) + stride;
+ j++) {
+ if (KMP_CPU_ISSET(j - stride, tempMask)) {
+ KMP_CPU_SET(j, tempMask);
+ setSize++;
+ }
+ else {
+ KMP_CPU_CLR(j, tempMask);
+ }
+ }
+ for (; j < __kmp_affin_mask_size * CHAR_BIT; j++) {
+ KMP_CPU_CLR(j, tempMask);
+ }
+ }
+ }
+ KMP_CPU_ZERO(tempMask);
+ setSize = 0;
+
+ //
+ // valid follow sets are ',' and EOL
+ //
+ SKIP_WS(scan);
+ if (*scan == '\0') {
+ break;
+ }
+ if (*scan == ',') {
+ scan++; // skip ','
+ continue;
+ }
+
+ KMP_ASSERT2(0, "bad explicit places list");
+ }
+
+ *out_numMasks = nextNewMask;
+ if (nextNewMask == 0) {
+ *out_masks = NULL;
+ KMP_INTERNAL_FREE(newMasks);
+ return;
+ }
+ *out_masks
+ = (kmp_affin_mask_t *)__kmp_allocate(nextNewMask * __kmp_affin_mask_size);
+ memcpy(*out_masks, newMasks, nextNewMask * __kmp_affin_mask_size);
+ __kmp_free(tempMask);
+ KMP_INTERNAL_FREE(newMasks);
+}
+
+# endif /* OMP_40_ENABLED */
+
+#undef ADD_MASK
+#undef ADD_MASK_OSID
+
+
+# if KMP_MIC
+
+static void
+__kmp_apply_thread_places(AddrUnsPair **pAddr, int depth)
+{
+ if ( __kmp_place_num_cores == 0 ) {
+ if ( __kmp_place_num_threads_per_core == 0 ) {
+ return; // no cores limiting actions requested, exit
+ }
+ __kmp_place_num_cores = nCoresPerPkg; // use all available cores
+ }
+ if ( !__kmp_affinity_uniform_topology() || depth != 3 ) {
+ KMP_WARNING( AffThrPlaceUnsupported );
+ return; // don't support non-uniform topology or not-3-level architecture
+ }
+ if ( __kmp_place_num_threads_per_core == 0 ) {
+ __kmp_place_num_threads_per_core = __kmp_nThreadsPerCore; // use all HW contexts
+ }
+ if ( __kmp_place_core_offset + __kmp_place_num_cores > nCoresPerPkg ) {
+ KMP_WARNING( AffThrPlaceManyCores );
+ return;
+ }
+
+ AddrUnsPair *newAddr = (AddrUnsPair *)__kmp_allocate( sizeof(AddrUnsPair) *
+ nPackages * __kmp_place_num_cores * __kmp_place_num_threads_per_core);
+ int i, j, k, n_old = 0, n_new = 0;
+ for ( i = 0; i < nPackages; ++i ) {
+ for ( j = 0; j < nCoresPerPkg; ++j ) {
+ if ( j < __kmp_place_core_offset || j >= __kmp_place_core_offset + __kmp_place_num_cores ) {
+ n_old += __kmp_nThreadsPerCore; // skip not-requested core
+ } else {
+ for ( k = 0; k < __kmp_nThreadsPerCore; ++k ) {
+ if ( k < __kmp_place_num_threads_per_core ) {
+ newAddr[n_new] = (*pAddr)[n_old]; // copy requested core' data to new location
+ n_new++;
+ }
+ n_old++;
+ }
+ }
+ }
+ }
+ nCoresPerPkg = __kmp_place_num_cores; // correct nCoresPerPkg
+ __kmp_nThreadsPerCore = __kmp_place_num_threads_per_core; // correct __kmp_nThreadsPerCore
+ __kmp_avail_proc = n_new; // correct avail_proc
+ __kmp_ncores = nPackages * __kmp_place_num_cores; // correct ncores
+
+ __kmp_free( *pAddr );
+ *pAddr = newAddr; // replace old topology with new one
+}
+
+# endif /* KMP_MIC */
+
+
+static AddrUnsPair *address2os = NULL;
+static int * procarr = NULL;
+static int __kmp_aff_depth = 0;
+
+static void
+__kmp_aux_affinity_initialize(void)
+{
+ if (__kmp_affinity_masks != NULL) {
+ KMP_ASSERT(fullMask != NULL);
+ return;
+ }
+
+ //
+ // Create the "full" mask - this defines all of the processors that we
+ // consider to be in the machine model. If respect is set, then it is
+ // the initialization thread's affinity mask. Otherwise, it is all
+ // processors that we know about on the machine.
+ //
+ if (fullMask == NULL) {
+ fullMask = (kmp_affin_mask_t *)__kmp_allocate(__kmp_affin_mask_size);
+ }
+ if (KMP_AFFINITY_CAPABLE()) {
+ if (__kmp_affinity_respect_mask) {
+ __kmp_get_system_affinity(fullMask, TRUE);
+
+ //
+ // Count the number of available processors.
+ //
+ unsigned i;
+ __kmp_avail_proc = 0;
+ for (i = 0; i < KMP_CPU_SETSIZE; ++i) {
+ if (! KMP_CPU_ISSET(i, fullMask)) {
+ continue;
+ }
+ __kmp_avail_proc++;
+ }
+ if (__kmp_avail_proc > __kmp_xproc) {
+ if (__kmp_affinity_verbose || (__kmp_affinity_warnings
+ && (__kmp_affinity_type != affinity_none))) {
+ KMP_WARNING(ErrorInitializeAffinity);
+ }
+ __kmp_affinity_type = affinity_none;
+ __kmp_affin_mask_size = 0;
+ return;
+ }
+ }
+ else {
+ __kmp_affinity_entire_machine_mask(fullMask);
+ __kmp_avail_proc = __kmp_xproc;
+ }
+ }
+
+ int depth = -1;
+ kmp_i18n_id_t msg_id = kmp_i18n_null;
+
+ //
+ // For backward compatiblity, setting KMP_CPUINFO_FILE =>
+ // KMP_TOPOLOGY_METHOD=cpuinfo
+ //
+ if ((__kmp_cpuinfo_file != NULL) &&
+ (__kmp_affinity_top_method == affinity_top_method_all)) {
+ __kmp_affinity_top_method = affinity_top_method_cpuinfo;
+ }
+
+ if (__kmp_affinity_top_method == affinity_top_method_all) {
+ //
+ // In the default code path, errors are not fatal - we just try using
+ // another method. We only emit a warning message if affinity is on,
+ // or the verbose flag is set, an the nowarnings flag was not set.
+ //
+ const char *file_name = NULL;
+ int line = 0;
+
+# if KMP_ARCH_X86 || KMP_ARCH_X86_64
+
+ if (__kmp_affinity_verbose) {
+ KMP_INFORM(AffInfoStr, "KMP_AFFINITY", KMP_I18N_STR(Decodingx2APIC));
+ }
+
+ file_name = NULL;
+ depth = __kmp_affinity_create_x2apicid_map(&address2os, &msg_id);
+ if (depth == 0) {
+ KMP_ASSERT(__kmp_affinity_type == affinity_none);
+ KMP_ASSERT(address2os == NULL);
+ return;
+ }
+
+ if (depth < 0) {
+ if ((msg_id != kmp_i18n_null)
+ && (__kmp_affinity_verbose || (__kmp_affinity_warnings
+ && (__kmp_affinity_type != affinity_none)))) {
+# if KMP_MIC
+ if (__kmp_affinity_verbose) {
+ KMP_INFORM(AffInfoStrStr, "KMP_AFFINITY", __kmp_i18n_catgets(msg_id),
+ KMP_I18N_STR(DecodingLegacyAPIC));
+ }
+# else
+ KMP_WARNING(AffInfoStrStr, "KMP_AFFINITY", __kmp_i18n_catgets(msg_id),
+ KMP_I18N_STR(DecodingLegacyAPIC));
+# endif
+ }
+
+ file_name = NULL;
+ depth = __kmp_affinity_create_apicid_map(&address2os, &msg_id);
+ if (depth == 0) {
+ KMP_ASSERT(__kmp_affinity_type == affinity_none);
+ KMP_ASSERT(address2os == NULL);
+ return;
+ }
+ }
+
+# endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */
+
+# if KMP_OS_LINUX
+
+ if (depth < 0) {
+ if ((msg_id != kmp_i18n_null)
+ && (__kmp_affinity_verbose || (__kmp_affinity_warnings
+ && (__kmp_affinity_type != affinity_none)))) {
+# if KMP_MIC
+ if (__kmp_affinity_verbose) {
+ KMP_INFORM(AffStrParseFilename, "KMP_AFFINITY", __kmp_i18n_catgets(msg_id), "/proc/cpuinfo");
+ }
+# else
+ KMP_WARNING(AffStrParseFilename, "KMP_AFFINITY", __kmp_i18n_catgets(msg_id), "/proc/cpuinfo");
+# endif
+ }
+ else if (__kmp_affinity_verbose) {
+ KMP_INFORM(AffParseFilename, "KMP_AFFINITY", "/proc/cpuinfo");
+ }
+
+ FILE *f = fopen("/proc/cpuinfo", "r");
+ if (f == NULL) {
+ msg_id = kmp_i18n_str_CantOpenCpuinfo;
+ }
+ else {
+ file_name = "/proc/cpuinfo";
+ depth = __kmp_affinity_create_cpuinfo_map(&address2os, &line, &msg_id, f);
+ fclose(f);
+ if (depth == 0) {
+ KMP_ASSERT(__kmp_affinity_type == affinity_none);
+ KMP_ASSERT(address2os == NULL);
+ return;
+ }
+ }
+ }
+
+# endif /* KMP_OS_LINUX */
+
+ if (depth < 0) {
+ if (msg_id != kmp_i18n_null
+ && (__kmp_affinity_verbose || (__kmp_affinity_warnings
+ && (__kmp_affinity_type != affinity_none)))) {
+ if (file_name == NULL) {
+ KMP_WARNING(UsingFlatOS, __kmp_i18n_catgets(msg_id));
+ }
+ else if (line == 0) {
+ KMP_WARNING(UsingFlatOSFile, file_name, __kmp_i18n_catgets(msg_id));
+ }
+ else {
+ KMP_WARNING(UsingFlatOSFileLine, file_name, line, __kmp_i18n_catgets(msg_id));
+ }
+ }
+
+ file_name = "";
+ depth = __kmp_affinity_create_flat_map(&address2os, &msg_id);
+ if (depth == 0) {
+ KMP_ASSERT(__kmp_affinity_type == affinity_none);
+ KMP_ASSERT(address2os == NULL);
+ return;
+ }
+ KMP_ASSERT(depth > 0);
+ KMP_ASSERT(address2os != NULL);
+ }
+ }
+
+ //
+ // If the user has specified that a paricular topology discovery method
+ // is to be used, then we abort if that method fails. The exception is
+ // group affinity, which might have been implicitly set.
+ //
+
+# if KMP_ARCH_X86 || KMP_ARCH_X86_64
+
+ else if (__kmp_affinity_top_method == affinity_top_method_x2apicid) {
+ if (__kmp_affinity_verbose) {
+ KMP_INFORM(AffInfoStr, "KMP_AFFINITY",
+ KMP_I18N_STR(Decodingx2APIC));
+ }
+
+ depth = __kmp_affinity_create_x2apicid_map(&address2os, &msg_id);
+ if (depth == 0) {
+ KMP_ASSERT(__kmp_affinity_type == affinity_none);
+ KMP_ASSERT(address2os == NULL);
+ return;
+ }
+
+ if (depth < 0) {
+ KMP_ASSERT(msg_id != kmp_i18n_null);
+ KMP_FATAL(MsgExiting, __kmp_i18n_catgets(msg_id));
+ }
+ }
+ else if (__kmp_affinity_top_method == affinity_top_method_apicid) {
+ if (__kmp_affinity_verbose) {
+ KMP_INFORM(AffInfoStr, "KMP_AFFINITY",
+ KMP_I18N_STR(DecodingLegacyAPIC));
+ }
+
+ depth = __kmp_affinity_create_apicid_map(&address2os, &msg_id);
+ if (depth == 0) {
+ KMP_ASSERT(__kmp_affinity_type == affinity_none);
+ KMP_ASSERT(address2os == NULL);
+ return;
+ }
+
+ if (depth < 0) {
+ KMP_ASSERT(msg_id != kmp_i18n_null);
+ KMP_FATAL(MsgExiting, __kmp_i18n_catgets(msg_id));
+ }
+ }
+
+# endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */
+
+ else if (__kmp_affinity_top_method == affinity_top_method_cpuinfo) {
+ const char *filename;
+ if (__kmp_cpuinfo_file != NULL) {
+ filename = __kmp_cpuinfo_file;
+ }
+ else {
+ filename = "/proc/cpuinfo";
+ }
+
+ if (__kmp_affinity_verbose) {
+ KMP_INFORM(AffParseFilename, "KMP_AFFINITY", filename);
+ }
+
+ FILE *f = fopen(filename, "r");
+ if (f == NULL) {
+ int code = errno;
+ if (__kmp_cpuinfo_file != NULL) {
+ __kmp_msg(
+ kmp_ms_fatal,
+ KMP_MSG(CantOpenFileForReading, filename),
+ KMP_ERR(code),
+ KMP_HNT(NameComesFrom_CPUINFO_FILE),
+ __kmp_msg_null
+ );
+ }
+ else {
+ __kmp_msg(
+ kmp_ms_fatal,
+ KMP_MSG(CantOpenFileForReading, filename),
+ KMP_ERR(code),
+ __kmp_msg_null
+ );
+ }
+ }
+ int line = 0;
+ depth = __kmp_affinity_create_cpuinfo_map(&address2os, &line, &msg_id, f);
+ fclose(f);
+ if (depth < 0) {
+ KMP_ASSERT(msg_id != kmp_i18n_null);
+ if (line > 0) {
+ KMP_FATAL(FileLineMsgExiting, filename, line, __kmp_i18n_catgets(msg_id));
+ }
+ else {
+ KMP_FATAL(FileMsgExiting, filename, __kmp_i18n_catgets(msg_id));
+ }
+ }
+ if (__kmp_affinity_type == affinity_none) {
+ KMP_ASSERT(depth == 0);
+ KMP_ASSERT(address2os == NULL);
+ return;
+ }
+ }
+
+# if KMP_OS_WINDOWS && KMP_ARCH_X86_64
+
+ else if (__kmp_affinity_top_method == affinity_top_method_group) {
+ if (__kmp_affinity_verbose) {
+ KMP_INFORM(AffWindowsProcGroupMap, "KMP_AFFINITY");
+ }
+
+ depth = __kmp_affinity_create_proc_group_map(&address2os, &msg_id);
+ KMP_ASSERT(depth != 0);
+
+ if (depth < 0) {
+ if ((msg_id != kmp_i18n_null)
+ && (__kmp_affinity_verbose || (__kmp_affinity_warnings
+ && (__kmp_affinity_type != affinity_none)))) {
+ KMP_WARNING(UsingFlatOS, __kmp_i18n_catgets(msg_id));
+ }
+
+ depth = __kmp_affinity_create_flat_map(&address2os, &msg_id);
+ if (depth == 0) {
+ KMP_ASSERT(__kmp_affinity_type == affinity_none);
+ KMP_ASSERT(address2os == NULL);
+ return;
+ }
+ // should not fail
+ KMP_ASSERT(depth > 0);
+ KMP_ASSERT(address2os != NULL);
+ }
+ }
+
+# endif /* KMP_OS_WINDOWS && KMP_ARCH_X86_64 */
+
+ else if (__kmp_affinity_top_method == affinity_top_method_flat) {
+ if (__kmp_affinity_verbose) {
+ KMP_INFORM(AffUsingFlatOS, "KMP_AFFINITY");
+ }
+
+ depth = __kmp_affinity_create_flat_map(&address2os, &msg_id);
+ if (depth == 0) {
+ KMP_ASSERT(__kmp_affinity_type == affinity_none);
+ KMP_ASSERT(address2os == NULL);
+ return;
+ }
+ // should not fail
+ KMP_ASSERT(depth > 0);
+ KMP_ASSERT(address2os != NULL);
+ }
+
+ if (address2os == NULL) {
+ if (KMP_AFFINITY_CAPABLE()
+ && (__kmp_affinity_verbose || (__kmp_affinity_warnings
+ && (__kmp_affinity_type != affinity_none)))) {
+ KMP_WARNING(ErrorInitializeAffinity);
+ }
+ __kmp_affinity_type = affinity_none;
+ __kmp_affin_mask_size = 0;
+ return;
+ }
+
+# if KMP_MIC
+ __kmp_apply_thread_places(&address2os, depth);
+# endif
+
+ //
+ // Create the table of masks, indexed by thread Id.
+ //
+ unsigned maxIndex;
+ unsigned numUnique;
+ kmp_affin_mask_t *osId2Mask = __kmp_create_masks(&maxIndex, &numUnique,
+ address2os, __kmp_avail_proc);
+ if (__kmp_affinity_gran_levels == 0) {
+ KMP_DEBUG_ASSERT(numUnique == __kmp_avail_proc);
+ }
+
+ //
+ // Set the childNums vector in all Address objects. This must be done
+ // before we can sort using __kmp_affinity_cmp_Address_child_num(),
+ // which takes into account the setting of __kmp_affinity_compact.
+ //
+ __kmp_affinity_assign_child_nums(address2os, __kmp_avail_proc);
+
+ switch (__kmp_affinity_type) {
+
+ case affinity_explicit:
+ KMP_DEBUG_ASSERT(__kmp_affinity_proclist != NULL);
+# if OMP_40_ENABLED
+ if (__kmp_nested_proc_bind.bind_types[0] == proc_bind_intel)
+# endif
+ {
+ __kmp_affinity_process_proclist(&__kmp_affinity_masks,
+ &__kmp_affinity_num_masks, __kmp_affinity_proclist, osId2Mask,
+ maxIndex);
+ }
+# if OMP_40_ENABLED
+ else {
+ __kmp_affinity_process_placelist(&__kmp_affinity_masks,
+ &__kmp_affinity_num_masks, __kmp_affinity_proclist, osId2Mask,
+ maxIndex);
+ }
+# endif
+ if (__kmp_affinity_num_masks == 0) {
+ if (__kmp_affinity_verbose || (__kmp_affinity_warnings
+ && (__kmp_affinity_type != affinity_none))) {
+ KMP_WARNING(AffNoValidProcID);
+ }
+ __kmp_affinity_type = affinity_none;
+ return;
+ }
+ break;
+
+ //
+ // The other affinity types rely on sorting the Addresses according
+ // to some permutation of the machine topology tree. Set
+ // __kmp_affinity_compact and __kmp_affinity_offset appropriately,
+ // then jump to a common code fragment to do the sort and create
+ // the array of affinity masks.
+ //
+
+ case affinity_logical:
+ __kmp_affinity_compact = 0;
+ if (__kmp_affinity_offset) {
+ __kmp_affinity_offset = __kmp_nThreadsPerCore * __kmp_affinity_offset
+ % __kmp_avail_proc;
+ }
+ goto sortAddresses;
+
+ case affinity_physical:
+ if (__kmp_nThreadsPerCore > 1) {
+ __kmp_affinity_compact = 1;
+ if (__kmp_affinity_compact >= depth) {
+ __kmp_affinity_compact = 0;
+ }
+ } else {
+ __kmp_affinity_compact = 0;
+ }
+ if (__kmp_affinity_offset) {
+ __kmp_affinity_offset = __kmp_nThreadsPerCore * __kmp_affinity_offset
+ % __kmp_avail_proc;
+ }
+ goto sortAddresses;
+
+ case affinity_scatter:
+ if (__kmp_affinity_compact >= depth) {
+ __kmp_affinity_compact = 0;
+ }
+ else {
+ __kmp_affinity_compact = depth - 1 - __kmp_affinity_compact;
+ }
+ goto sortAddresses;
+
+ case affinity_compact:
+ if (__kmp_affinity_compact >= depth) {
+ __kmp_affinity_compact = depth - 1;
+ }
+ goto sortAddresses;
+
+# if KMP_MIC
+ case affinity_balanced:
+ // Balanced works only for the case of a single package and uniform topology
+ if( nPackages > 1 ) {
+ if( __kmp_affinity_verbose || __kmp_affinity_warnings ) {
+ KMP_WARNING( AffBalancedNotAvail, "KMP_AFFINITY" );
+ }
+ __kmp_affinity_type = affinity_none;
+ return;
+ } else if( __kmp_affinity_uniform_topology() ) {
+ break;
+ } else { // Non-uniform topology
+
+ // Save the depth for further usage
+ __kmp_aff_depth = depth;
+
+ // Number of hyper threads per core in HT machine
+ int nth_per_core = __kmp_nThreadsPerCore;
+
+ int core_level;
+ if( nth_per_core > 1 ) {
+ core_level = depth - 2;
+ } else {
+ core_level = depth - 1;
+ }
+ int ncores = address2os[ __kmp_avail_proc - 1 ].first.labels[ core_level ] + 1;
+ int nproc = nth_per_core * ncores;
+
+ procarr = ( int * )__kmp_allocate( sizeof( int ) * nproc );
+ for( int i = 0; i < nproc; i++ ) {
+ procarr[ i ] = -1;
+ }
+
+ for( int i = 0; i < __kmp_avail_proc; i++ ) {
+ int proc = address2os[ i ].second;
+ // If depth == 3 then level=0 - package, level=1 - core, level=2 - thread.
+ // If there is only one thread per core then depth == 2: level 0 - package,
+ // level 1 - core.
+ int level = depth - 1;
+
+ // __kmp_nth_per_core == 1
+ int thread = 0;
+ int core = address2os[ i ].first.labels[ level ];
+ // If the thread level exists, that is we have more than one thread context per core
+ if( nth_per_core > 1 ) {
+ thread = address2os[ i ].first.labels[ level ] % nth_per_core;
+ core = address2os[ i ].first.labels[ level - 1 ];
+ }
+ procarr[ core * nth_per_core + thread ] = proc;
+ }
+
+ break;
+ }
+# endif
+
+ sortAddresses:
+ //
+ // Allocate the gtid->affinity mask table.
+ //
+ if (__kmp_affinity_dups) {
+ __kmp_affinity_num_masks = __kmp_avail_proc;
+ }
+ else {
+ __kmp_affinity_num_masks = numUnique;
+ }
+
+# if OMP_40_ENABLED
+ if ( ( __kmp_nested_proc_bind.bind_types[0] != proc_bind_intel )
+ && ( __kmp_affinity_num_places > 0 )
+ && ( (unsigned)__kmp_affinity_num_places < __kmp_affinity_num_masks ) ) {
+ __kmp_affinity_num_masks = __kmp_affinity_num_places;
+ }
+# endif
+
+ __kmp_affinity_masks = (kmp_affin_mask_t*)__kmp_allocate(
+ __kmp_affinity_num_masks * __kmp_affin_mask_size);
+
+ //
+ // Sort the address2os table according to the current setting of
+ // __kmp_affinity_compact, then fill out __kmp_affinity_masks.
+ //
+ qsort(address2os, __kmp_avail_proc, sizeof(*address2os),
+ __kmp_affinity_cmp_Address_child_num);
+ {
+ int i;
+ unsigned j;
+ for (i = 0, j = 0; i < __kmp_avail_proc; i++) {
+ if ((! __kmp_affinity_dups) && (! address2os[i].first.leader)) {
+ continue;
+ }
+ unsigned osId = address2os[i].second;
+ kmp_affin_mask_t *src = KMP_CPU_INDEX(osId2Mask, osId);
+ kmp_affin_mask_t *dest
+ = KMP_CPU_INDEX(__kmp_affinity_masks, j);
+ KMP_ASSERT(KMP_CPU_ISSET(osId, src));
+ KMP_CPU_COPY(dest, src);
+ if (++j >= __kmp_affinity_num_masks) {
+ break;
+ }
+ }
+ KMP_DEBUG_ASSERT(j == __kmp_affinity_num_masks);
+ }
+ break;
+
+ default:
+ KMP_ASSERT2(0, "Unexpected affinity setting");
+ }
+
+ __kmp_free(osId2Mask);
+}
+
+
+void
+__kmp_affinity_initialize(void)
+{
+ //
+ // Much of the code above was written assumming that if a machine was not
+ // affinity capable, then __kmp_affinity_type == affinity_none. We now
+ // explicitly represent this as __kmp_affinity_type == affinity_disabled.
+ //
+ // There are too many checks for __kmp_affinity_type == affinity_none
+ // in this code. Instead of trying to change them all, check if
+ // __kmp_affinity_type == affinity_disabled, and if so, slam it with
+ // affinity_none, call the real initialization routine, then restore
+ // __kmp_affinity_type to affinity_disabled.
+ //
+ int disabled = (__kmp_affinity_type == affinity_disabled);
+ if (! KMP_AFFINITY_CAPABLE()) {
+ KMP_ASSERT(disabled);
+ }
+ if (disabled) {
+ __kmp_affinity_type = affinity_none;
+ }
+ __kmp_aux_affinity_initialize();
+ if (disabled) {
+ __kmp_affinity_type = affinity_disabled;
+ }
+}
+
+
+void
+__kmp_affinity_uninitialize(void)
+{
+ if (__kmp_affinity_masks != NULL) {
+ __kmp_free(__kmp_affinity_masks);
+ __kmp_affinity_masks = NULL;
+ }
+ if (fullMask != NULL) {
+ KMP_CPU_FREE(fullMask);
+ fullMask = NULL;
+ }
+ __kmp_affinity_num_masks = 0;
+# if OMP_40_ENABLED
+ __kmp_affinity_num_places = 0;
+# endif
+ if (__kmp_affinity_proclist != NULL) {
+ __kmp_free(__kmp_affinity_proclist);
+ __kmp_affinity_proclist = NULL;
+ }
+ if( address2os != NULL ) {
+ __kmp_free( address2os );
+ address2os = NULL;
+ }
+ if( procarr != NULL ) {
+ __kmp_free( procarr );
+ procarr = NULL;
+ }
+}
+
+
+void
+__kmp_affinity_set_init_mask(int gtid, int isa_root)
+{
+ if (! KMP_AFFINITY_CAPABLE()) {
+ return;
+ }
+
+ kmp_info_t *th = (kmp_info_t *)TCR_SYNC_PTR(__kmp_threads[gtid]);
+ if (th->th.th_affin_mask == NULL) {
+ KMP_CPU_ALLOC(th->th.th_affin_mask);
+ }
+ else {
+ KMP_CPU_ZERO(th->th.th_affin_mask);
+ }
+
+ //
+ // Copy the thread mask to the kmp_info_t strucuture.
+ // If __kmp_affinity_type == affinity_none, copy the "full" mask, i.e. one
+ // that has all of the OS proc ids set, or if __kmp_affinity_respect_mask
+ // is set, then the full mask is the same as the mask of the initialization
+ // thread.
+ //
+ kmp_affin_mask_t *mask;
+ int i;
+
+# if OMP_40_ENABLED
+ if (__kmp_nested_proc_bind.bind_types[0] == proc_bind_intel)
+# endif
+ {
+ if ((__kmp_affinity_type == affinity_none)
+# if KMP_MIC
+ || (__kmp_affinity_type == affinity_balanced)
+# endif
+ ) {
+# if KMP_OS_WINDOWS && KMP_ARCH_X86_64
+ if (__kmp_num_proc_groups > 1) {
+ return;
+ }
+# endif
+ KMP_ASSERT(fullMask != NULL);
+ i = -1;
+ mask = fullMask;
+ }
+ else {
+ KMP_DEBUG_ASSERT( __kmp_affinity_num_masks > 0 );
+ i = (gtid + __kmp_affinity_offset) % __kmp_affinity_num_masks;
+ mask = KMP_CPU_INDEX(__kmp_affinity_masks, i);
+ }
+ }
+# if OMP_40_ENABLED
+ else {
+ if ((! isa_root)
+ || (__kmp_nested_proc_bind.bind_types[0] == proc_bind_false)) {
+# if KMP_OS_WINDOWS && KMP_ARCH_X86_64
+ if (__kmp_num_proc_groups > 1) {
+ return;
+ }
+# endif
+ KMP_ASSERT(fullMask != NULL);
+ i = KMP_PLACE_ALL;
+ mask = fullMask;
+ }
+ else {
+ //
+ // int i = some hash function or just a counter that doesn't
+ // always start at 0. Use gtid for now.
+ //
+ KMP_DEBUG_ASSERT( __kmp_affinity_num_masks > 0 );
+ i = (gtid + __kmp_affinity_offset) % __kmp_affinity_num_masks;
+ mask = KMP_CPU_INDEX(__kmp_affinity_masks, i);
+ }
+ }
+# endif
+
+# if OMP_40_ENABLED
+ th->th.th_current_place = i;
+ if (isa_root) {
+ th->th.th_new_place = i;
+ th->th.th_first_place = 0;
+ th->th.th_last_place = __kmp_affinity_num_masks - 1;
+ }
+
+ if (i == KMP_PLACE_ALL) {
+ KA_TRACE(100, ("__kmp_affinity_set_init_mask: binding T#%d to all places\n",
+ gtid));
+ }
+ else {
+ KA_TRACE(100, ("__kmp_affinity_set_init_mask: binding T#%d to place %d\n",
+ gtid, i));
+ }
+# else
+ if (i == -1) {
+ KA_TRACE(100, ("__kmp_affinity_set_init_mask: binding T#%d to fullMask\n",
+ gtid));
+ }
+ else {
+ KA_TRACE(100, ("__kmp_affinity_set_init_mask: binding T#%d to mask %d\n",
+ gtid, i));
+ }
+# endif /* OMP_40_ENABLED */
+
+ KMP_CPU_COPY(th->th.th_affin_mask, mask);
+
+ if (__kmp_affinity_verbose) {
+ char buf[KMP_AFFIN_MASK_PRINT_LEN];
+ __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
+ th->th.th_affin_mask);
+ KMP_INFORM(BoundToOSProcSet, "KMP_AFFINITY", gtid, buf);
+ }
+
+# if KMP_OS_WINDOWS
+ //
+ // On Windows* OS, the process affinity mask might have changed.
+ // If the user didn't request affinity and this call fails,
+ // just continue silently. See CQ171393.
+ //
+ if ( __kmp_affinity_type == affinity_none ) {
+ __kmp_set_system_affinity(th->th.th_affin_mask, FALSE);
+ }
+ else
+# endif
+ __kmp_set_system_affinity(th->th.th_affin_mask, TRUE);
+}
+
+
+# if OMP_40_ENABLED
+
+void
+__kmp_affinity_set_place(int gtid)
+{
+ int retval;
+
+ if (! KMP_AFFINITY_CAPABLE()) {
+ return;
+ }
+
+ kmp_info_t *th = (kmp_info_t *)TCR_SYNC_PTR(__kmp_threads[gtid]);
+
+ KA_TRACE(100, ("__kmp_affinity_set_place: binding T#%d to place %d (current place = %d)\n",
+ gtid, th->th.th_new_place, th->th.th_current_place));
+
+ //
+ // Check that the new place is withing this thread's partition.
+ //
+ KMP_DEBUG_ASSERT(th->th.th_affin_mask != NULL);
+ KMP_DEBUG_ASSERT(th->th.th_new_place >= 0);
+ KMP_DEBUG_ASSERT((unsigned)th->th.th_new_place <= __kmp_affinity_num_masks);
+ if (th->th.th_first_place <= th->th.th_last_place) {
+ KMP_DEBUG_ASSERT((th->th.th_new_place >= th->th.th_first_place)
+ && (th->th.th_new_place <= th->th.th_last_place));
+ }
+ else {
+ KMP_DEBUG_ASSERT((th->th.th_new_place <= th->th.th_first_place)
+ || (th->th.th_new_place >= th->th.th_last_place));
+ }
+
+ //
+ // Copy the thread mask to the kmp_info_t strucuture,
+ // and set this thread's affinity.
+ //
+ kmp_affin_mask_t *mask = KMP_CPU_INDEX(__kmp_affinity_masks,
+ th->th.th_new_place);
+ KMP_CPU_COPY(th->th.th_affin_mask, mask);
+ th->th.th_current_place = th->th.th_new_place;
+
+ if (__kmp_affinity_verbose) {
+ char buf[KMP_AFFIN_MASK_PRINT_LEN];
+ __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
+ th->th.th_affin_mask);
+ KMP_INFORM(BoundToOSProcSet, "OMP_PROC_BIND", gtid, buf);
+ }
+ __kmp_set_system_affinity(th->th.th_affin_mask, TRUE);
+}
+
+# endif /* OMP_40_ENABLED */
+
+
+int
+__kmp_aux_set_affinity(void **mask)
+{
+ int gtid;
+ kmp_info_t *th;
+ int retval;
+
+ if (! KMP_AFFINITY_CAPABLE()) {
+ return -1;
+ }
+
+ gtid = __kmp_entry_gtid();
+ KA_TRACE(1000, ;{
+ char buf[KMP_AFFIN_MASK_PRINT_LEN];
+ __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
+ (kmp_affin_mask_t *)(*mask));
+ __kmp_debug_printf("kmp_set_affinity: setting affinity mask for thread %d = %s\n",
+ gtid, buf);
+ });
+
+ if (__kmp_env_consistency_check) {
+ if ((mask == NULL) || (*mask == NULL)) {
+ KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity");
+ }
+ else {
+ unsigned proc;
+ int num_procs = 0;
+
+ for (proc = 0; proc < KMP_CPU_SETSIZE; proc++) {
+ if (! KMP_CPU_ISSET(proc, (kmp_affin_mask_t *)(*mask))) {
+ continue;
+ }
+ num_procs++;
+ if (! KMP_CPU_ISSET(proc, fullMask)) {
+ KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity");
+ break;
+ }
+ }
+ if (num_procs == 0) {
+ KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity");
+ }
+
+# if KMP_OS_WINDOWS && KMP_ARCH_X86_64
+ if (__kmp_get_proc_group((kmp_affin_mask_t *)(*mask)) < 0) {
+ KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity");
+ }
+# endif /* KMP_OS_WINDOWS && KMP_ARCH_X86_64 */
+
+ }
+ }
+
+ th = __kmp_threads[gtid];
+ KMP_DEBUG_ASSERT(th->th.th_affin_mask != NULL);
+ retval = __kmp_set_system_affinity((kmp_affin_mask_t *)(*mask), FALSE);
+ if (retval == 0) {
+ KMP_CPU_COPY(th->th.th_affin_mask, (kmp_affin_mask_t *)(*mask));
+ }
+
+# if OMP_40_ENABLED
+ th->th.th_current_place = KMP_PLACE_UNDEFINED;
+ th->th.th_new_place = KMP_PLACE_UNDEFINED;
+ th->th.th_first_place = 0;
+ th->th.th_last_place = __kmp_affinity_num_masks - 1;
+# endif
+
+ return retval;
+}
+
+
+int
+__kmp_aux_get_affinity(void **mask)
+{
+ int gtid;
+ int retval;
+ kmp_info_t *th;
+
+ if (! KMP_AFFINITY_CAPABLE()) {
+ return -1;
+ }
+
+ gtid = __kmp_entry_gtid();
+ th = __kmp_threads[gtid];
+ KMP_DEBUG_ASSERT(th->th.th_affin_mask != NULL);
+
+ KA_TRACE(1000, ;{
+ char buf[KMP_AFFIN_MASK_PRINT_LEN];
+ __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
+ th->th.th_affin_mask);
+ __kmp_printf("kmp_get_affinity: stored affinity mask for thread %d = %s\n", gtid, buf);
+ });
+
+ if (__kmp_env_consistency_check) {
+ if ((mask == NULL) || (*mask == NULL)) {
+ KMP_FATAL(AffinityInvalidMask, "kmp_get_affinity");
+ }
+ }
+
+# if !KMP_OS_WINDOWS
+
+ retval = __kmp_get_system_affinity((kmp_affin_mask_t *)(*mask), FALSE);
+ KA_TRACE(1000, ;{
+ char buf[KMP_AFFIN_MASK_PRINT_LEN];
+ __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
+ (kmp_affin_mask_t *)(*mask));
+ __kmp_printf("kmp_get_affinity: system affinity mask for thread %d = %s\n", gtid, buf);
+ });
+ return retval;
+
+# else
+
+ KMP_CPU_COPY((kmp_affin_mask_t *)(*mask), th->th.th_affin_mask);
+ return 0;
+
+# endif /* KMP_OS_WINDOWS */
+
+}
+
+
+int
+__kmp_aux_set_affinity_mask_proc(int proc, void **mask)
+{
+ int retval;
+
+ if (! KMP_AFFINITY_CAPABLE()) {
+ return -1;
+ }
+
+ KA_TRACE(1000, ;{
+ int gtid = __kmp_entry_gtid();
+ char buf[KMP_AFFIN_MASK_PRINT_LEN];
+ __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
+ (kmp_affin_mask_t *)(*mask));
+ __kmp_debug_printf("kmp_set_affinity_mask_proc: setting proc %d in affinity mask for thread %d = %s\n",
+ proc, gtid, buf);
+ });
+
+ if (__kmp_env_consistency_check) {
+ if ((mask == NULL) || (*mask == NULL)) {
+ KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity_mask_proc");
+ }
+ }
+
+ if ((proc < 0) || ((unsigned)proc >= KMP_CPU_SETSIZE)) {
+ return -1;
+ }
+ if (! KMP_CPU_ISSET(proc, fullMask)) {
+ return -2;
+ }
+
+ KMP_CPU_SET(proc, (kmp_affin_mask_t *)(*mask));
+ return 0;
+}
+
+
+int
+__kmp_aux_unset_affinity_mask_proc(int proc, void **mask)
+{
+ int retval;
+
+ if (! KMP_AFFINITY_CAPABLE()) {
+ return -1;
+ }
+
+ KA_TRACE(1000, ;{
+ int gtid = __kmp_entry_gtid();
+ char buf[KMP_AFFIN_MASK_PRINT_LEN];
+ __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
+ (kmp_affin_mask_t *)(*mask));
+ __kmp_debug_printf("kmp_unset_affinity_mask_proc: unsetting proc %d in affinity mask for thread %d = %s\n",
+ proc, gtid, buf);
+ });
+
+ if (__kmp_env_consistency_check) {
+ if ((mask == NULL) || (*mask == NULL)) {
+ KMP_FATAL(AffinityInvalidMask, "kmp_unset_affinity_mask_proc");
+ }
+ }
+
+ if ((proc < 0) || ((unsigned)proc >= KMP_CPU_SETSIZE)) {
+ return -1;
+ }
+ if (! KMP_CPU_ISSET(proc, fullMask)) {
+ return -2;
+ }
+
+ KMP_CPU_CLR(proc, (kmp_affin_mask_t *)(*mask));
+ return 0;
+}
+
+
+int
+__kmp_aux_get_affinity_mask_proc(int proc, void **mask)
+{
+ int retval;
+
+ if (! KMP_AFFINITY_CAPABLE()) {
+ return -1;
+ }
+
+ KA_TRACE(1000, ;{
+ int gtid = __kmp_entry_gtid();
+ char buf[KMP_AFFIN_MASK_PRINT_LEN];
+ __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
+ (kmp_affin_mask_t *)(*mask));
+ __kmp_debug_printf("kmp_get_affinity_mask_proc: getting proc %d in affinity mask for thread %d = %s\n",
+ proc, gtid, buf);
+ });
+
+ if (__kmp_env_consistency_check) {
+ if ((mask == NULL) || (*mask == NULL)) {
+ KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity_mask_proc");
+ }
+ }
+
+ if ((proc < 0) || ((unsigned)proc >= KMP_CPU_SETSIZE)) {
+ return 0;
+ }
+ if (! KMP_CPU_ISSET(proc, fullMask)) {
+ return 0;
+ }
+
+ return KMP_CPU_ISSET(proc, (kmp_affin_mask_t *)(*mask));
+}
+
+# if KMP_MIC
+
+// Dynamic affinity settings - Affinity balanced
+void __kmp_balanced_affinity( int tid, int nthreads )
+{
+ if( __kmp_affinity_uniform_topology() ) {
+ int coreID;
+ int threadID;
+ // Number of hyper threads per core in HT machine
+ int __kmp_nth_per_core = __kmp_avail_proc / __kmp_ncores;
+ // Number of cores
+ int ncores = __kmp_ncores;
+ // How many threads will be bound to each core
+ int chunk = nthreads / ncores;
+ // How many cores will have an additional thread bound to it - "big cores"
+ int big_cores = nthreads % ncores;
+ // Number of threads on the big cores
+ int big_nth = ( chunk + 1 ) * big_cores;
+ if( tid < big_nth ) {
+ coreID = tid / (chunk + 1 );
+ threadID = ( tid % (chunk + 1 ) ) % __kmp_nth_per_core ;
+ } else { //tid >= big_nth
+ coreID = ( tid - big_cores ) / chunk;
+ threadID = ( ( tid - big_cores ) % chunk ) % __kmp_nth_per_core ;
+ }
+
+ KMP_DEBUG_ASSERT2(KMP_AFFINITY_CAPABLE(),
+ "Illegal set affinity operation when not capable");
+
+ kmp_affin_mask_t *mask = (kmp_affin_mask_t *)alloca(__kmp_affin_mask_size);
+ KMP_CPU_ZERO(mask);
+
+ // Granularity == thread
+ if( __kmp_affinity_gran == affinity_gran_fine || __kmp_affinity_gran == affinity_gran_thread) {
+ int osID = address2os[ coreID * __kmp_nth_per_core + threadID ].second;
+ KMP_CPU_SET( osID, mask);
+ } else if( __kmp_affinity_gran == affinity_gran_core ) { // Granularity == core
+ for( int i = 0; i < __kmp_nth_per_core; i++ ) {
+ int osID;
+ osID = address2os[ coreID * __kmp_nth_per_core + i ].second;
+ KMP_CPU_SET( osID, mask);
+ }
+ }
+ if (__kmp_affinity_verbose) {
+ char buf[KMP_AFFIN_MASK_PRINT_LEN];
+ __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, mask);
+ KMP_INFORM(BoundToOSProcSet, "KMP_AFFINITY", tid, buf);
+ }
+ __kmp_set_system_affinity( mask, TRUE );
+ } else { // Non-uniform topology
+
+ kmp_affin_mask_t *mask = (kmp_affin_mask_t *)alloca(__kmp_affin_mask_size);
+ KMP_CPU_ZERO(mask);
+
+ // Number of hyper threads per core in HT machine
+ int nth_per_core = __kmp_nThreadsPerCore;
+ int core_level;
+ if( nth_per_core > 1 ) {
+ core_level = __kmp_aff_depth - 2;
+ } else {
+ core_level = __kmp_aff_depth - 1;
+ }
+
+ // Number of cores - maximum value; it does not count trail cores with 0 processors
+ int ncores = address2os[ __kmp_avail_proc - 1 ].first.labels[ core_level ] + 1;
+
+ // For performance gain consider the special case nthreads == __kmp_avail_proc
+ if( nthreads == __kmp_avail_proc ) {
+ if( __kmp_affinity_gran == affinity_gran_fine || __kmp_affinity_gran == affinity_gran_thread) {
+ int osID = address2os[ tid ].second;
+ KMP_CPU_SET( osID, mask);
+ } else if( __kmp_affinity_gran == affinity_gran_core ) { // Granularity == core
+ int coreID = address2os[ tid ].first.labels[ core_level ];
+ // We'll count found osIDs for the current core; they can be not more than nth_per_core;
+ // since the address2os is sortied we can break when cnt==nth_per_core
+ int cnt = 0;
+ for( int i = 0; i < __kmp_avail_proc; i++ ) {
+ int osID = address2os[ i ].second;
+ int core = address2os[ i ].first.labels[ core_level ];
+ if( core == coreID ) {
+ KMP_CPU_SET( osID, mask);
+ cnt++;
+ if( cnt == nth_per_core ) {
+ break;
+ }
+ }
+ }
+ }
+ } else if( nthreads <= __kmp_ncores ) {
+
+ int core = 0;
+ for( int i = 0; i < ncores; i++ ) {
+ // Check if this core from procarr[] is in the mask
+ int in_mask = 0;
+ for( int j = 0; j < nth_per_core; j++ ) {
+ if( procarr[ i * nth_per_core + j ] != - 1 ) {
+ in_mask = 1;
+ break;
+ }
+ }
+ if( in_mask ) {
+ if( tid == core ) {
+ for( int j = 0; j < nth_per_core; j++ ) {
+ int osID = procarr[ i * nth_per_core + j ];
+ if( osID != -1 ) {
+ KMP_CPU_SET( osID, mask );
+ // For granularity=thread it is enough to set the first available osID for this core
+ if( __kmp_affinity_gran == affinity_gran_fine || __kmp_affinity_gran == affinity_gran_thread) {
+ break;
+ }
+ }
+ }
+ break;
+ } else {
+ core++;
+ }
+ }
+ }
+
+ } else { // nthreads > __kmp_ncores
+
+ // Array to save the number of processors at each core
+ int nproc_at_core[ ncores ];
+ // Array to save the number of cores with "x" available processors;
+ int ncores_with_x_procs[ nth_per_core + 1 ];
+ // Array to save the number of cores with # procs from x to nth_per_core
+ int ncores_with_x_to_max_procs[ nth_per_core + 1 ];
+
+ for( int i = 0; i <= nth_per_core; i++ ) {
+ ncores_with_x_procs[ i ] = 0;
+ ncores_with_x_to_max_procs[ i ] = 0;
+ }
+
+ for( int i = 0; i < ncores; i++ ) {
+ int cnt = 0;
+ for( int j = 0; j < nth_per_core; j++ ) {
+ if( procarr[ i * nth_per_core + j ] != -1 ) {
+ cnt++;
+ }
+ }
+ nproc_at_core[ i ] = cnt;
+ ncores_with_x_procs[ cnt ]++;
+ }
+
+ for( int i = 0; i <= nth_per_core; i++ ) {
+ for( int j = i; j <= nth_per_core; j++ ) {
+ ncores_with_x_to_max_procs[ i ] += ncores_with_x_procs[ j ];
+ }
+ }
+
+ // Max number of processors
+ int nproc = nth_per_core * ncores;
+ // An array to keep number of threads per each context
+ int * newarr = ( int * )__kmp_allocate( sizeof( int ) * nproc );
+ for( int i = 0; i < nproc; i++ ) {
+ newarr[ i ] = 0;
+ }
+
+ int nth = nthreads;
+ int flag = 0;
+ while( nth > 0 ) {
+ for( int j = 1; j <= nth_per_core; j++ ) {
+ int cnt = ncores_with_x_to_max_procs[ j ];
+ for( int i = 0; i < ncores; i++ ) {
+ // Skip the core with 0 processors
+ if( nproc_at_core[ i ] == 0 ) {
+ continue;
+ }
+ for( int k = 0; k < nth_per_core; k++ ) {
+ if( procarr[ i * nth_per_core + k ] != -1 ) {
+ if( newarr[ i * nth_per_core + k ] == 0 ) {
+ newarr[ i * nth_per_core + k ] = 1;
+ cnt--;
+ nth--;
+ break;
+ } else {
+ if( flag != 0 ) {
+ newarr[ i * nth_per_core + k ] ++;
+ cnt--;
+ nth--;
+ break;
+ }
+ }
+ }
+ }
+ if( cnt == 0 || nth == 0 ) {
+ break;
+ }
+ }
+ if( nth == 0 ) {
+ break;
+ }
+ }
+ flag = 1;
+ }
+ int sum = 0;
+ for( int i = 0; i < nproc; i++ ) {
+ sum += newarr[ i ];
+ if( sum > tid ) {
+ // Granularity == thread
+ if( __kmp_affinity_gran == affinity_gran_fine || __kmp_affinity_gran == affinity_gran_thread) {
+ int osID = procarr[ i ];
+ KMP_CPU_SET( osID, mask);
+ } else if( __kmp_affinity_gran == affinity_gran_core ) { // Granularity == core
+ int coreID = i / nth_per_core;
+ for( int ii = 0; ii < nth_per_core; ii++ ) {
+ int osID = procarr[ coreID * nth_per_core + ii ];
+ if( osID != -1 ) {
+ KMP_CPU_SET( osID, mask);
+ }
+ }
+ }
+ break;
+ }
+ }
+ __kmp_free( newarr );
+ }
+
+ if (__kmp_affinity_verbose) {
+ char buf[KMP_AFFIN_MASK_PRINT_LEN];
+ __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, mask);
+ KMP_INFORM(BoundToOSProcSet, "KMP_AFFINITY", tid, buf);
+ }
+ __kmp_set_system_affinity( mask, TRUE );
+ }
+}
+
+# endif /* KMP_MIC */
+
+#elif KMP_OS_DARWIN
+ // affinity not supported
+#else
+ #error "Unknown or unsupported OS"
+#endif // KMP_OS_WINDOWS || KMP_OS_LINUX
+
OpenPOWER on IntegriCloud