summaryrefslogtreecommitdiffstats
path: root/mlir/lib/Transforms/Utils
diff options
context:
space:
mode:
authorUday Bondhugula <bondhugula@google.com>2018-10-30 17:43:06 -0700
committerjpienaar <jpienaar@google.com>2019-03-29 13:46:08 -0700
commit8201e19e3dc63e0c3edd0fb38f498158a8f67568 (patch)
tree4f2dcd6c4a9b1066fae98758957d502344e518b6 /mlir/lib/Transforms/Utils
parent4c465a181db49c436f62da303e8fdd3ed317fee7 (diff)
downloadbcm5719-llvm-8201e19e3dc63e0c3edd0fb38f498158a8f67568.tar.gz
bcm5719-llvm-8201e19e3dc63e0c3edd0fb38f498158a8f67568.zip
Introduce memref bound checking.
Introduce analysis to check memref accesses (in MLFunctions) for out of bound ones. It works as follows: $ mlir-opt -memref-bound-check test/Transforms/memref-bound-check.mlir /tmp/single.mlir:10:12: error: 'load' op memref out of upper bound access along dimension tensorflow/mlir#1 %x = load %A[%idxtensorflow/mlir#0, %idxtensorflow/mlir#1] : memref<9 x 9 x i32> ^ /tmp/single.mlir:10:12: error: 'load' op memref out of lower bound access along dimension tensorflow/mlir#1 %x = load %A[%idxtensorflow/mlir#0, %idxtensorflow/mlir#1] : memref<9 x 9 x i32> ^ /tmp/single.mlir:10:12: error: 'load' op memref out of upper bound access along dimension tensorflow/mlir#2 %x = load %A[%idxtensorflow/mlir#0, %idxtensorflow/mlir#1] : memref<9 x 9 x i32> ^ /tmp/single.mlir:10:12: error: 'load' op memref out of lower bound access along dimension tensorflow/mlir#2 %x = load %A[%idxtensorflow/mlir#0, %idxtensorflow/mlir#1] : memref<9 x 9 x i32> ^ /tmp/single.mlir:12:12: error: 'load' op memref out of upper bound access along dimension tensorflow/mlir#1 %y = load %B[%idy] : memref<128 x i32> ^ /tmp/single.mlir:12:12: error: 'load' op memref out of lower bound access along dimension tensorflow/mlir#1 %y = load %B[%idy] : memref<128 x i32> ^ #map0 = (d0, d1) -> (d0, d1) #map1 = (d0, d1) -> (d0 * 128 - d1) mlfunc @test() { %0 = alloc() : memref<9x9xi32> %1 = alloc() : memref<128xi32> for %i0 = -1 to 9 { for %i1 = -1 to 9 { %2 = affine_apply #map0(%i0, %i1) %3 = load %0[%2tensorflow/mlir#0, %2tensorflow/mlir#1] : memref<9x9xi32> %4 = affine_apply #map1(%i0, %i1) %5 = load %1[%4] : memref<128xi32> } } return } - Improves productivity while manually / semi-automatically developing MLIR for testing / prototyping; also provides an indirect way to catch errors in transformations. - This pass is an easy way to test the underlying affine analysis machinery including low level routines. Some code (in getMemoryRegion()) borrowed from @andydavis cl/218263256. While on this: - create mlir/Analysis/Passes.h; move Pass.h up from mlir/Transforms/ to mlir/ - fix a bug in AffineAnalysis.cpp::toAffineExpr TODO: extend to non-constant loop bounds (straightforward). Will transparently work for all accesses once floordiv, mod, ceildiv are supported in the AffineMap -> FlatAffineConstraints conversion. PiperOrigin-RevId: 219397961
Diffstat (limited to 'mlir/lib/Transforms/Utils')
-rw-r--r--mlir/lib/Transforms/Utils/Pass.cpp53
1 files changed, 0 insertions, 53 deletions
diff --git a/mlir/lib/Transforms/Utils/Pass.cpp b/mlir/lib/Transforms/Utils/Pass.cpp
deleted file mode 100644
index e4edee31900..00000000000
--- a/mlir/lib/Transforms/Utils/Pass.cpp
+++ /dev/null
@@ -1,53 +0,0 @@
-//===- Pass.cpp - Pass infrastructure implementation ----------------------===//
-//
-// Copyright 2019 The MLIR Authors.
-//
-// Licensed under the Apache License, Version 2.0 (the "License");
-// you may not use this file except in compliance with the License.
-// You may obtain a copy of the License at
-//
-// http://www.apache.org/licenses/LICENSE-2.0
-//
-// Unless required by applicable law or agreed to in writing, software
-// distributed under the License is distributed on an "AS IS" BASIS,
-// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-// See the License for the specific language governing permissions and
-// limitations under the License.
-// =============================================================================
-//
-// This file implements common pass infrastructure.
-//
-//===----------------------------------------------------------------------===//
-
-#include "mlir/Transforms/Pass.h"
-#include "mlir/IR/CFGFunction.h"
-#include "mlir/IR/MLFunction.h"
-#include "mlir/IR/Module.h"
-using namespace mlir;
-
-/// Out of line virtual method to ensure vtables and metadata are emitted to a
-/// single .o file.
-void Pass::anchor() {}
-
-/// Out of line virtual method to ensure vtables and metadata are emitted to a
-/// single .o file.
-void ModulePass::anchor() {}
-
-/// Function passes walk a module and look at each function with their
-/// corresponding hooks and terminates upon error encountered.
-PassResult FunctionPass::runOnModule(Module *m) {
- for (auto &fn : *m) {
- if (runOnFunction(&fn))
- return failure();
- }
- return success();
-}
-
-PassResult FunctionPass::runOnFunction(Function *fn) {
- if (auto *mlFunc = dyn_cast<MLFunction>(fn))
- return runOnMLFunction(mlFunc);
- if (auto *cfgFunc = dyn_cast<CFGFunction>(fn))
- return runOnCFGFunction(cfgFunc);
-
- return success();
-}
OpenPOWER on IntegriCloud