summaryrefslogtreecommitdiffstats
path: root/mlir/lib/Transforms/MaterializeVectors.cpp
diff options
context:
space:
mode:
authorNicolas Vasilache <ntv@google.com>2018-12-03 15:21:27 -0800
committerjpienaar <jpienaar@google.com>2019-03-29 14:15:25 -0700
commitb39d1f0bdb5052d447cdb0d8accedf292bb50d6c (patch)
treef5218495ea7cecb0304fa96128244c11674f3052 /mlir/lib/Transforms/MaterializeVectors.cpp
parentbb3ffc1c2226d81155bc5ad01c1397566c2e7ee9 (diff)
downloadbcm5719-llvm-b39d1f0bdb5052d447cdb0d8accedf292bb50d6c.tar.gz
bcm5719-llvm-b39d1f0bdb5052d447cdb0d8accedf292bb50d6c.zip
[MLIR] Add VectorTransferOps
This CL implements and uses VectorTransferOps in lieu of the former custom call op. Tests are updated accordingly. VectorTransferOps come in 2 flavors: VectorTransferReadOp and VectorTransferWriteOp. VectorTransferOps can be thought of as a backend-independent pseudo op/library call that needs to be legalized to MLIR (whiteboxed) before it can be lowered to backend-dependent IR. Note that the current implementation does not yet support a real permutation map. Proper support will come in a followup CL. VectorTransferReadOp ==================== VectorTransferReadOp performs a blocking read from a scalar memref location into a super-vector of the same elemental type. This operation is called 'read' by opposition to 'load' because the super-vector granularity is generally not representable with a single hardware register. As a consequence, memory transfers will generally be required when lowering VectorTransferReadOp. A VectorTransferReadOp is thus a mid-level abstraction that supports super-vectorization with non-effecting padding for full-tile only code. A vector transfer read has semantics similar to a vector load, with additional support for: 1. an optional value of the elemental type of the MemRef. This value supports non-effecting padding and is inserted in places where the vector read exceeds the MemRef bounds. If the value is not specified, the access is statically guaranteed to be within bounds; 2. an attribute of type AffineMap to specify a slice of the original MemRef access and its transposition into the super-vector shape. The permutation_map is an unbounded AffineMap that must represent a permutation from the MemRef dim space projected onto the vector dim space. Example: ```mlir %A = alloc(%size1, %size2, %size3, %size4) : memref<?x?x?x?xf32> ... %val = `ssa-value` : f32 // let %i, %j, %k, %l be ssa-values of type index %v0 = vector_transfer_read %src, %i, %j, %k, %l {permutation_map: (d0, d1, d2, d3) -> (d3, d1, d2)} : (memref<?x?x?x?xf32>, index, index, index, index) -> vector<16x32x64xf32> %v1 = vector_transfer_read %src, %i, %j, %k, %l, %val {permutation_map: (d0, d1, d2, d3) -> (d3, d1, d2)} : (memref<?x?x?x?xf32>, index, index, index, index, f32) -> vector<16x32x64xf32> ``` VectorTransferWriteOp ===================== VectorTransferWriteOp performs a blocking write from a super-vector to a scalar memref of the same elemental type. This operation is called 'write' by opposition to 'store' because the super-vector granularity is generally not representable with a single hardware register. As a consequence, memory transfers will generally be required when lowering VectorTransferWriteOp. A VectorTransferWriteOp is thus a mid-level abstraction that supports super-vectorization with non-effecting padding for full-tile only code. A vector transfer write has semantics similar to a vector store, with additional support for handling out-of-bounds situations. Example: ```mlir %A = alloc(%size1, %size2, %size3, %size4) : memref<?x?x?x?xf32>. %val = `ssa-value` : vector<16x32x64xf32> // let %i, %j, %k, %l be ssa-values of type index vector_transfer_write %val, %src, %i, %j, %k, %l {permutation_map: (d0, d1, d2, d3) -> (d3, d1, d2)} : (vector<16x32x64xf32>, memref<?x?x?x?xf32>, index, index, index, index) ``` PiperOrigin-RevId: 223873234
Diffstat (limited to 'mlir/lib/Transforms/MaterializeVectors.cpp')
-rw-r--r--mlir/lib/Transforms/MaterializeVectors.cpp245
1 files changed, 131 insertions, 114 deletions
diff --git a/mlir/lib/Transforms/MaterializeVectors.cpp b/mlir/lib/Transforms/MaterializeVectors.cpp
index 60f0c06aad5..400b4fdf934 100644
--- a/mlir/lib/Transforms/MaterializeVectors.cpp
+++ b/mlir/lib/Transforms/MaterializeVectors.cpp
@@ -89,6 +89,7 @@ using llvm::SetVector;
using namespace mlir;
+using functional::makePtrDynCaster;
using functional::map;
static llvm::cl::list<int>
@@ -243,11 +244,11 @@ substitute(SSAValue *v,
/// TODO(ntv): support a concrete AffineMap and compose with it.
/// TODO(ntv): these implementation details should be captured in a
/// vectorization trait at the op level directly.
-static SmallVector<MLValue *, 8>
-reindexAffineIndices(MLFuncBuilder *b, Type hwVectorType,
+static SmallVector<SSAValue *, 8>
+reindexAffineIndices(MLFuncBuilder *b, VectorType hwVectorType,
ArrayRef<unsigned> hwVectorInstance,
ArrayRef<SSAValue *> memrefIndices) {
- auto vectorShape = hwVectorType.cast<VectorType>().getShape();
+ auto vectorShape = hwVectorType.getShape();
assert(hwVectorInstance.size() >= vectorShape.size());
unsigned numIndices = memrefIndices.size();
@@ -287,78 +288,21 @@ reindexAffineIndices(MLFuncBuilder *b, Type hwVectorType,
// TODO(ntv): support a concrete map and composition.
auto app = b->create<AffineApplyOp>(b->getInsertionPoint()->getLoc(),
affineMap, memrefIndices);
- unsigned numResults = app->getNumResults();
- SmallVector<MLValue *, 8> res;
- for (unsigned i = 0; i < numResults; ++i) {
- res.push_back(cast<MLValue>(app->getResult(i)));
- }
- return res;
+ return SmallVector<SSAValue *, 8>{app->getResults()};
}
-/// Returns the cloned operands of `opStmt` for the instance of
-/// `hwVectorInstance` when lowering from a super-vector type to
-/// `hwVectorType`. `hwVectorInstance` represents one particular instance of
-/// `hwVectorType` int the covering of the super-vector type. For a more
-/// detailed description of the problem, see the description of
-/// reindexAffineIndices.
-static SmallVector<MLValue *, 8>
-cloneAndUnrollOperands(OperationStmt *opStmt, Type hwVectorType,
- ArrayRef<unsigned> hwVectorInstance,
- DenseMap<const MLValue *, MLValue *> *substitutionsMap) {
- using functional::map;
-
- // For Ops that are not vector_transfer_read/vector_transfer_write we can just
- // substitute and be done.
- if (!isaVectorTransferRead(*opStmt) && !isaVectorTransferWrite(*opStmt)) {
- return map([substitutionsMap](
- SSAValue *v) { return substitute(v, *substitutionsMap); },
- opStmt->getOperands());
- }
-
- // TODO(ntv): this error-prone boilerplate can be removed once we have a
- // proper Op for vectr_transfer.
- unsigned offset = 0;
- unsigned numIndices = 0;
- SmallVector<MLValue *, 8> res;
- auto operands = opStmt->getOperands();
- if (isaVectorTransferRead(*opStmt)) {
- offset = 1;
- numIndices = opStmt->getNumOperands() - 1;
- } else if (isaVectorTransferWrite(*opStmt)) {
- offset = 2;
- numIndices = opStmt->getNumOperands() - 2;
- }
- // Copy as-is the [optional valueToStore], memref.
- for (unsigned i = 0; i < offset; ++i) {
- res.push_back(substitute(*(operands.begin() + i), *substitutionsMap));
- }
-
- MLFuncBuilder b(opStmt);
- // TODO(ntv): indices extraction is brittle and unsafe before we have an Op.
- SmallVector<SSAValue *, 8> indices;
- for (auto it = operands.begin() + offset; it != operands.end(); ++it) {
- indices.push_back(*it);
- }
- auto affineValues =
- reindexAffineIndices(&b, hwVectorType, hwVectorInstance, indices);
- res.append(affineValues.begin(), affineValues.end());
-
- return res;
-}
-
-// Returns attributes with the following substitutions applied:
-// - splat of `superVectorType` is replaced by splat of `hwVectorType`.
-// TODO(ntv): add more substitutions on a per-need basis.
-static SmallVector<NamedAttribute, 2>
+/// Returns attributes with the following substitutions applied:
+/// - splat of `superVectorType` is replaced by splat of `hwVectorType`.
+/// TODO(ntv): add more substitutions on a per-need basis.
+static SmallVector<NamedAttribute, 1>
materializeAttributes(OperationStmt *opStmt, VectorType superVectorType,
VectorType hwVectorType) {
- SmallVector<NamedAttribute, 2> res;
+ SmallVector<NamedAttribute, 1> res;
for (auto a : opStmt->getAttrs()) {
auto splat = a.second.dyn_cast<SplatElementsAttr>();
bool splatOfSuperVectorType = splat && (splat.getType() == superVectorType);
if (splatOfSuperVectorType) {
- auto attr = SplatElementsAttr::get(hwVectorType.cast<VectorType>(),
- splat.getValue());
+ auto attr = SplatElementsAttr::get(hwVectorType, splat.getValue());
res.push_back(NamedAttribute(a.first, attr));
} else {
res.push_back(a);
@@ -367,6 +311,70 @@ materializeAttributes(OperationStmt *opStmt, VectorType superVectorType,
return res;
}
+/// Creates an instantiated version of `opStmt`.
+/// Ops other than VectorTransferReadOp/VectorTransferWriteOp require no
+/// affine reindexing. Just substitute their SSAValue* operands and be done. For
+/// this case the actual instance is irrelevant. Just use the SSA values in
+/// substitutionsMap.
+static OperationStmt *
+instantiate(MLFuncBuilder *b, OperationStmt *opStmt, VectorType superVectorType,
+ VectorType hwVectorType,
+ DenseMap<const MLValue *, MLValue *> *substitutionsMap) {
+ assert(!opStmt->isa<VectorTransferReadOp>() &&
+ "Should call the function specialized for VectorTransferReadOp");
+ assert(!opStmt->isa<VectorTransferWriteOp>() &&
+ "Should call the function specialized for VectorTransferWriteOp");
+ auto operands =
+ map([substitutionsMap](
+ SSAValue *v) { return substitute(v, *substitutionsMap); },
+ opStmt->getOperands());
+ return b->createOperation(
+ opStmt->getLoc(), opStmt->getName(), operands, {hwVectorType},
+ materializeAttributes(opStmt, superVectorType, hwVectorType));
+}
+
+/// Creates an instantiated version of `read` for the instance of
+/// `hwVectorInstance` when lowering from a super-vector type to
+/// `hwVectorType`. `hwVectorInstance` represents one particular instance of
+/// `hwVectorType` int the covering of the super-vector type. For a more
+/// detailed description of the problem, see the description of
+/// reindexAffineIndices.
+static OperationStmt *
+instantiate(MLFuncBuilder *b, VectorTransferReadOp *read,
+ VectorType hwVectorType, ArrayRef<unsigned> hwVectorInstance,
+ DenseMap<const MLValue *, MLValue *> *substitutionsMap) {
+ SmallVector<SSAValue *, 8> indices =
+ map(makePtrDynCaster<SSAValue>(), read->getIndices());
+ auto affineIndices =
+ reindexAffineIndices(b, hwVectorType, hwVectorInstance, indices);
+ auto cloned = b->create<VectorTransferReadOp>(
+ read->getLoc(), hwVectorType, read->getMemRef(), affineIndices,
+ makePermutationMap(read->getMemRefType(), hwVectorType),
+ read->getPaddingValue());
+ return cast<OperationStmt>(cloned->getOperation());
+}
+
+/// Creates an instantiated version of `write` for the instance of
+/// `hwVectorInstance` when lowering from a super-vector type to
+/// `hwVectorType`. `hwVectorInstance` represents one particular instance of
+/// `hwVectorType` int the covering of th3e super-vector type. For a more
+/// detailed description of the problem, see the description of
+/// reindexAffineIndices.
+static OperationStmt *
+instantiate(MLFuncBuilder *b, VectorTransferWriteOp *write,
+ VectorType hwVectorType, ArrayRef<unsigned> hwVectorInstance,
+ DenseMap<const MLValue *, MLValue *> *substitutionsMap) {
+ SmallVector<SSAValue *, 8> indices =
+ map(makePtrDynCaster<SSAValue>(), write->getIndices());
+ auto affineIndices =
+ reindexAffineIndices(b, hwVectorType, hwVectorInstance, indices);
+ auto cloned = b->create<VectorTransferWriteOp>(
+ write->getLoc(), substitute(write->getVector(), *substitutionsMap),
+ write->getMemRef(), affineIndices,
+ makePermutationMap(write->getMemRefType(), hwVectorType));
+ return cast<OperationStmt>(cloned->getOperation());
+}
+
/// Returns `true` if stmt instance is properly cloned and inserted, false
/// otherwise.
/// The multi-dimensional `hwVectorInstance` belongs to the shapeRatio of
@@ -386,45 +394,52 @@ materializeAttributes(OperationStmt *opStmt, VectorType superVectorType,
/// type, all operands are substituted according to `substitutions`. Thanks
/// to the topological order of a slice, the substitution is always
/// possible.
-static bool cloneAndInsertHardwareVectorInstance(Statement *stmt,
- MaterializationState *state) {
- LLVM_DEBUG(dbgs() << "\nclone" << *stmt);
- if (auto *opStmt = dyn_cast<OperationStmt>(stmt)) {
- // TODO(ntv): Is it worth considering an OperationStmt.clone operation
- // which changes the type so we can promote an OperationStmt with less
- // boilerplate?
- assert(opStmt->getNumResults() <= 1 && "NYI: opStmt has > 1 results");
- auto operands = cloneAndUnrollOperands(opStmt, state->hwVectorType,
- state->hwVectorInstance,
- state->substitutionsMap);
- MLFuncBuilder b(stmt);
- if (opStmt->getNumResults() == 0) {
- // vector_transfer_write
- b.createOperation(stmt->getLoc(), opStmt->getName(), operands, {},
- materializeAttributes(opStmt, state->superVectorType,
- state->hwVectorType));
- } else {
- // vector_transfer_read
- auto *cloned = b.createOperation(
- stmt->getLoc(), opStmt->getName(), operands, {state->hwVectorType},
- materializeAttributes(opStmt, state->superVectorType,
- state->hwVectorType));
- state->substitutionsMap->insert(std::make_pair(
- cast<MLValue>(opStmt->getResult(0)),
- cast<MLValue>(cast<OperationStmt>(cloned)->getResult(0))));
- }
- return false;
- }
+static bool instantiateMaterialization(Statement *stmt,
+ MaterializationState *state) {
+ LLVM_DEBUG(dbgs() << "\ninstantiate: " << *stmt);
+ // Fail hard and wake up when needed.
if (isa<ForStmt>(stmt)) {
- // Fail hard and wake up when needed.
stmt->emitError("NYI path ForStmt");
return true;
}
// Fail hard and wake up when needed.
- stmt->emitError("NYI path IfStmt");
- return true;
+ if (isa<IfStmt>(stmt)) {
+ stmt->emitError("NYI path IfStmt");
+ return true;
+ }
+
+ // Create a builder here for unroll-and-jam effects.
+ MLFuncBuilder b(stmt);
+ auto *opStmt = cast<OperationStmt>(stmt);
+ if (auto write = opStmt->dyn_cast<VectorTransferWriteOp>()) {
+ instantiate(&b, &*write, state->hwVectorType, state->hwVectorInstance,
+ state->substitutionsMap);
+ return false;
+ } else if (auto read = opStmt->dyn_cast<VectorTransferReadOp>()) {
+ auto *clone = instantiate(&b, &*read, state->hwVectorType,
+ state->hwVectorInstance, state->substitutionsMap);
+ state->substitutionsMap->insert(std::make_pair(
+ cast<MLValue>(read->getResult()), cast<MLValue>(clone->getResult(0))));
+ return false;
+ }
+ // The only op with 0 results reaching this point must, by construction, be
+ // VectorTransferWriteOps and have been caught above. Ops with >= 2 results
+ // are not yet supported. So just support 1 result.
+ if (opStmt->getNumResults() != 1) {
+ stmt->emitError("NYI: ops with != 1 results");
+ return true;
+ }
+ if (opStmt->getResult(0)->getType() != state->superVectorType) {
+ stmt->emitError("Op does not return a supervector.");
+ return true;
+ }
+ auto *clone = instantiate(&b, opStmt, state->superVectorType,
+ state->hwVectorType, state->substitutionsMap);
+ state->substitutionsMap->insert(std::make_pair(
+ cast<MLValue>(opStmt->getResult(0)), cast<MLValue>(clone->getResult(0))));
+ return false;
}
/// Takes a slice and rewrites the operations in it so that occurrences
@@ -463,15 +478,22 @@ static void emitSlice(MaterializationState *state,
scopedState.substitutionsMap = &substitutionMap;
// slice are topologically sorted, we can just clone them in order.
for (auto *stmt : *slice) {
- auto fail = cloneAndInsertHardwareVectorInstance(stmt, &scopedState);
+ auto fail = instantiateMaterialization(stmt, &scopedState);
(void)fail;
assert(!fail && "Unhandled super-vector materialization failure");
}
}
+
+ LLVM_DEBUG(dbgs() << "\nMLFunction is now\n");
+ LLVM_DEBUG(
+ cast<OperationStmt>((*slice)[0])->getOperationFunction()->print(dbgs()));
+
// slice are topologically sorted, we can just erase them in reverse
// order. Reverse iterator does not just work simply with an operator*
// dereference.
for (int idx = slice->size() - 1; idx >= 0; --idx) {
+ LLVM_DEBUG(dbgs() << "\nErase: ");
+ LLVM_DEBUG((*slice)[idx]->print(dbgs()));
(*slice)[idx]->erase();
}
}
@@ -497,25 +519,21 @@ static void materialize(MLFunction *f,
const SetVector<OperationStmt *> &terminators,
MaterializationState *state) {
DenseSet<Statement *> seen;
- for (auto terminator : terminators) {
- LLVM_DEBUG(dbgs() << "\nFrom terminator:" << *terminator);
-
+ for (auto *term : terminators) {
// Short-circuit test, a given terminator may have been reached by some
// other previous transitive use-def chains.
- if (seen.count(terminator) > 0) {
+ if (seen.count(term) > 0) {
continue;
}
- // Terminators are vector_transfer_write with 0 results by construction atm.
- assert(isaVectorTransferWrite(*terminator) && "");
- assert(terminator->getNumResults() == 0 &&
- "NYI: terminators must have 0 results");
+ auto terminator = term->cast<VectorTransferWriteOp>();
+ LLVM_DEBUG(dbgs() << "\nFrom terminator:" << *term);
// Get the transitive use-defs starting from terminator, limited to the
// current enclosing scope of the terminator. See the top of the function
// Note for the justification of this restriction.
// TODO(ntv): relax scoping constraints.
- auto *enclosingScope = terminator->getParentStmt();
+ auto *enclosingScope = term->getParentStmt();
auto keepIfInSameScope = [enclosingScope](Statement *stmt) {
assert(stmt && "NULL stmt");
if (!enclosingScope) {
@@ -525,7 +543,7 @@ static void materialize(MLFunction *f,
return properlyDominates(*enclosingScope, *stmt);
};
SetVector<Statement *> slice =
- getSlice(terminator, keepIfInSameScope, keepIfInSameScope);
+ getSlice(term, keepIfInSameScope, keepIfInSameScope);
assert(!slice.empty());
// Sanity checks: transitive slice must be completely disjoint from
@@ -540,10 +558,9 @@ static void materialize(MLFunction *f,
// Emit the current slice.
// Set scoped super-vector and corresponding hw vector types.
- state->superVectorType =
- terminator->getOperand(0)->getType().cast<VectorType>();
+ state->superVectorType = terminator->getVectorType();
assert((state->superVectorType.getElementType() ==
- Type::getF32(terminator->getContext())) &&
+ Type::getF32(term->getContext())) &&
"Only f32 supported for now");
state->hwVectorType = VectorType::get(
state->hwVectorSize, state->superVectorType.getElementType());
@@ -568,7 +585,7 @@ PassResult MaterializeVectors::runOnMLFunction(MLFunction *f) {
// super-vector of subVectorType.
auto filter = [subVectorType](const Statement &stmt) {
const auto &opStmt = cast<OperationStmt>(stmt);
- if (!isaVectorTransferWrite(opStmt)) {
+ if (!opStmt.isa<VectorTransferWriteOp>()) {
return false;
}
return matcher::operatesOnStrictSuperVectors(opStmt, subVectorType);
OpenPOWER on IntegriCloud