diff options
author | Mehdi Amini <aminim@google.com> | 2019-12-24 02:47:41 +0000 |
---|---|---|
committer | Mehdi Amini <aminim@google.com> | 2019-12-24 02:47:41 +0000 |
commit | 0f0d0ed1c78f1a80139a1f2133fad5284691a121 (patch) | |
tree | 31979a3137c364e3eb58e0169a7c4029c7ee7db3 /mlir/lib/Transforms/LoopFusion.cpp | |
parent | 6f635f90929da9545dd696071a829a1a42f84b30 (diff) | |
parent | 5b4a01d4a63cb66ab981e52548f940813393bf42 (diff) | |
download | bcm5719-llvm-0f0d0ed1c78f1a80139a1f2133fad5284691a121.tar.gz bcm5719-llvm-0f0d0ed1c78f1a80139a1f2133fad5284691a121.zip |
Import MLIR into the LLVM tree
Diffstat (limited to 'mlir/lib/Transforms/LoopFusion.cpp')
-rw-r--r-- | mlir/lib/Transforms/LoopFusion.cpp | 1979 |
1 files changed, 1979 insertions, 0 deletions
diff --git a/mlir/lib/Transforms/LoopFusion.cpp b/mlir/lib/Transforms/LoopFusion.cpp new file mode 100644 index 00000000000..fcfc1d7ae52 --- /dev/null +++ b/mlir/lib/Transforms/LoopFusion.cpp @@ -0,0 +1,1979 @@ +//===- LoopFusion.cpp - Code to perform loop fusion -----------------------===// +// +// Part of the MLIR Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// +// +// This file implements loop fusion. +// +//===----------------------------------------------------------------------===// + +#include "mlir/Analysis/AffineAnalysis.h" +#include "mlir/Analysis/AffineStructures.h" +#include "mlir/Analysis/LoopAnalysis.h" +#include "mlir/Analysis/Utils.h" +#include "mlir/Dialect/AffineOps/AffineOps.h" +#include "mlir/Dialect/StandardOps/Ops.h" +#include "mlir/IR/AffineExpr.h" +#include "mlir/IR/AffineMap.h" +#include "mlir/IR/Builders.h" +#include "mlir/Pass/Pass.h" +#include "mlir/Transforms/LoopFusionUtils.h" +#include "mlir/Transforms/LoopUtils.h" +#include "mlir/Transforms/Passes.h" +#include "mlir/Transforms/Utils.h" +#include "llvm/ADT/DenseMap.h" +#include "llvm/ADT/DenseSet.h" +#include "llvm/ADT/SetVector.h" +#include "llvm/Support/CommandLine.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/raw_ostream.h" +#include <iomanip> +#include <sstream> +#define DEBUG_TYPE "affine-loop-fusion" + +using llvm::SetVector; + +using namespace mlir; + +static llvm::cl::OptionCategory clOptionsCategory(DEBUG_TYPE " options"); + +/// Disables fusion profitability check and fuses if valid. Ignore any +/// additional (redundant) computation tolerance threshold +/// that would have prevented fusion. +static llvm::cl::opt<bool> + clMaximalLoopFusion("fusion-maximal", + llvm::cl::desc("Enables maximal loop fusion"), + llvm::cl::cat(clOptionsCategory)); + +/// A threshold in percent of additional computation allowed when fusing. +static llvm::cl::opt<double> clFusionAddlComputeTolerance( + "fusion-compute-tolerance", + llvm::cl::desc("Fractional increase in additional " + "computation tolerated while fusing"), + llvm::cl::cat(clOptionsCategory)); + +static llvm::cl::opt<unsigned> clFusionFastMemorySpace( + "fusion-fast-mem-space", + llvm::cl::desc("Faster memory space number to promote fusion buffers to"), + llvm::cl::cat(clOptionsCategory)); + +// A local buffer of size less than or equal to this size is automatically +// promoted to fast memory after producer-consumer fusion. +static llvm::cl::opt<unsigned long long> clFusionLocalBufThreshold( + "fusion-local-buf-threshold", + llvm::cl::desc("Threshold size (KiB) for promoting local buffers to fast " + "memory space"), + llvm::cl::cat(clOptionsCategory)); + +namespace { + +/// Loop fusion pass. This pass currently supports a greedy fusion policy, +/// which fuses loop nests with single-writer/single-reader memref dependences +/// with the goal of improving locality. + +// TODO(andydavis) Support fusion of source loop nests which write to multiple +// memrefs, where each memref can have multiple users (if profitable). +// TODO(andydavis) Extend this pass to check for fusion preventing dependences, +// and add support for more general loop fusion algorithms. + +struct LoopFusion : public FunctionPass<LoopFusion> { + LoopFusion(unsigned fastMemorySpace = 0, uint64_t localBufSizeThreshold = 0, + bool maximalFusion = false) + : localBufSizeThreshold(localBufSizeThreshold), + fastMemorySpace(fastMemorySpace), maximalFusion(maximalFusion) {} + + void runOnFunction() override; + + // Any local buffers smaller than this size (in bytes) will be created in + // `fastMemorySpace` if provided. + uint64_t localBufSizeThreshold; + Optional<unsigned> fastMemorySpace = None; + // If true, ignore any additional (redundant) computation tolerance threshold + // that would have prevented fusion. + bool maximalFusion; + + // The amount of additional computation that is tolerated while fusing + // pair-wise as a fraction of the total computation. + constexpr static double kComputeToleranceThreshold = 0.30f; +}; + +} // end anonymous namespace + +std::unique_ptr<OpPassBase<FuncOp>> +mlir::createLoopFusionPass(unsigned fastMemorySpace, + uint64_t localBufSizeThreshold, bool maximalFusion) { + return std::make_unique<LoopFusion>(fastMemorySpace, localBufSizeThreshold, + maximalFusion); +} + +// TODO(b/117228571) Replace when this is modeled through side-effects/op traits +static bool isMemRefDereferencingOp(Operation &op) { + if (isa<AffineLoadOp>(op) || isa<AffineStoreOp>(op) || + isa<AffineDmaStartOp>(op) || isa<AffineDmaWaitOp>(op)) + return true; + return false; +} + +namespace { + +// LoopNestStateCollector walks loop nests and collects load and store +// operations, and whether or not an IfInst was encountered in the loop nest. +struct LoopNestStateCollector { + SmallVector<AffineForOp, 4> forOps; + SmallVector<Operation *, 4> loadOpInsts; + SmallVector<Operation *, 4> storeOpInsts; + bool hasNonForRegion = false; + + void collect(Operation *opToWalk) { + opToWalk->walk([&](Operation *op) { + if (isa<AffineForOp>(op)) + forOps.push_back(cast<AffineForOp>(op)); + else if (op->getNumRegions() != 0) + hasNonForRegion = true; + else if (isa<AffineLoadOp>(op)) + loadOpInsts.push_back(op); + else if (isa<AffineStoreOp>(op)) + storeOpInsts.push_back(op); + }); + } +}; + +// MemRefDependenceGraph is a graph data structure where graph nodes are +// top-level operations in a FuncOp which contain load/store ops, and edges +// are memref dependences between the nodes. +// TODO(andydavis) Add a more flexible dependence graph representation. +// TODO(andydavis) Add a depth parameter to dependence graph construction. +struct MemRefDependenceGraph { +public: + // Node represents a node in the graph. A Node is either an entire loop nest + // rooted at the top level which contains loads/stores, or a top level + // load/store. + struct Node { + // The unique identifier of this node in the graph. + unsigned id; + // The top-level statement which is (or contains) a load/store. + Operation *op; + // List of load operations. + SmallVector<Operation *, 4> loads; + // List of store op insts. + SmallVector<Operation *, 4> stores; + Node(unsigned id, Operation *op) : id(id), op(op) {} + + // Returns the load op count for 'memref'. + unsigned getLoadOpCount(Value memref) { + unsigned loadOpCount = 0; + for (auto *loadOpInst : loads) { + if (memref == cast<AffineLoadOp>(loadOpInst).getMemRef()) + ++loadOpCount; + } + return loadOpCount; + } + + // Returns the store op count for 'memref'. + unsigned getStoreOpCount(Value memref) { + unsigned storeOpCount = 0; + for (auto *storeOpInst : stores) { + if (memref == cast<AffineStoreOp>(storeOpInst).getMemRef()) + ++storeOpCount; + } + return storeOpCount; + } + + // Returns all store ops in 'storeOps' which access 'memref'. + void getStoreOpsForMemref(Value memref, + SmallVectorImpl<Operation *> *storeOps) { + for (auto *storeOpInst : stores) { + if (memref == cast<AffineStoreOp>(storeOpInst).getMemRef()) + storeOps->push_back(storeOpInst); + } + } + + // Returns all load ops in 'loadOps' which access 'memref'. + void getLoadOpsForMemref(Value memref, + SmallVectorImpl<Operation *> *loadOps) { + for (auto *loadOpInst : loads) { + if (memref == cast<AffineLoadOp>(loadOpInst).getMemRef()) + loadOps->push_back(loadOpInst); + } + } + + // Returns all memrefs in 'loadAndStoreMemrefSet' for which this node + // has at least one load and store operation. + void getLoadAndStoreMemrefSet(DenseSet<Value> *loadAndStoreMemrefSet) { + llvm::SmallDenseSet<Value, 2> loadMemrefs; + for (auto *loadOpInst : loads) { + loadMemrefs.insert(cast<AffineLoadOp>(loadOpInst).getMemRef()); + } + for (auto *storeOpInst : stores) { + auto memref = cast<AffineStoreOp>(storeOpInst).getMemRef(); + if (loadMemrefs.count(memref) > 0) + loadAndStoreMemrefSet->insert(memref); + } + } + }; + + // Edge represents a data dependence between nodes in the graph. + struct Edge { + // The id of the node at the other end of the edge. + // If this edge is stored in Edge = Node.inEdges[i], then + // 'Node.inEdges[i].id' is the identifier of the source node of the edge. + // If this edge is stored in Edge = Node.outEdges[i], then + // 'Node.outEdges[i].id' is the identifier of the dest node of the edge. + unsigned id; + // The SSA value on which this edge represents a dependence. + // If the value is a memref, then the dependence is between graph nodes + // which contain accesses to the same memref 'value'. If the value is a + // non-memref value, then the dependence is between a graph node which + // defines an SSA value and another graph node which uses the SSA value + // (e.g. a constant operation defining a value which is used inside a loop + // nest). + Value value; + }; + + // Map from node id to Node. + DenseMap<unsigned, Node> nodes; + // Map from node id to list of input edges. + DenseMap<unsigned, SmallVector<Edge, 2>> inEdges; + // Map from node id to list of output edges. + DenseMap<unsigned, SmallVector<Edge, 2>> outEdges; + // Map from memref to a count on the dependence edges associated with that + // memref. + DenseMap<Value, unsigned> memrefEdgeCount; + // The next unique identifier to use for newly created graph nodes. + unsigned nextNodeId = 0; + + MemRefDependenceGraph() {} + + // Initializes the dependence graph based on operations in 'f'. + // Returns true on success, false otherwise. + bool init(FuncOp f); + + // Returns the graph node for 'id'. + Node *getNode(unsigned id) { + auto it = nodes.find(id); + assert(it != nodes.end()); + return &it->second; + } + + // Returns the graph node for 'forOp'. + Node *getForOpNode(AffineForOp forOp) { + for (auto &idAndNode : nodes) + if (idAndNode.second.op == forOp.getOperation()) + return &idAndNode.second; + return nullptr; + } + + // Adds a node with 'op' to the graph and returns its unique identifier. + unsigned addNode(Operation *op) { + Node node(nextNodeId++, op); + nodes.insert({node.id, node}); + return node.id; + } + + // Remove node 'id' (and its associated edges) from graph. + void removeNode(unsigned id) { + // Remove each edge in 'inEdges[id]'. + if (inEdges.count(id) > 0) { + SmallVector<Edge, 2> oldInEdges = inEdges[id]; + for (auto &inEdge : oldInEdges) { + removeEdge(inEdge.id, id, inEdge.value); + } + } + // Remove each edge in 'outEdges[id]'. + if (outEdges.count(id) > 0) { + SmallVector<Edge, 2> oldOutEdges = outEdges[id]; + for (auto &outEdge : oldOutEdges) { + removeEdge(id, outEdge.id, outEdge.value); + } + } + // Erase remaining node state. + inEdges.erase(id); + outEdges.erase(id); + nodes.erase(id); + } + + // Returns true if node 'id' writes to any memref which escapes (or is an + // argument to) the function/block. Returns false otherwise. + bool writesToLiveInOrEscapingMemrefs(unsigned id) { + Node *node = getNode(id); + for (auto *storeOpInst : node->stores) { + auto memref = cast<AffineStoreOp>(storeOpInst).getMemRef(); + auto *op = memref->getDefiningOp(); + // Return true if 'memref' is a block argument. + if (!op) + return true; + // Return true if any use of 'memref' escapes the function. + for (auto *user : memref->getUsers()) + if (!isMemRefDereferencingOp(*user)) + return true; + } + return false; + } + + // Returns the unique AffineStoreOp in `node` that meets all the following: + // *) store is the only one that writes to a function-local memref live out + // of `node`, + // *) store is not the source of a self-dependence on `node`. + // Otherwise, returns a null AffineStoreOp. + AffineStoreOp getUniqueOutgoingStore(Node *node) { + AffineStoreOp uniqueStore; + + // Return null if `node` doesn't have any outgoing edges. + auto outEdgeIt = outEdges.find(node->id); + if (outEdgeIt == outEdges.end()) + return nullptr; + + const auto &nodeOutEdges = outEdgeIt->second; + for (auto *op : node->stores) { + auto storeOp = cast<AffineStoreOp>(op); + auto memref = storeOp.getMemRef(); + // Skip this store if there are no dependences on its memref. This means + // that store either: + // *) writes to a memref that is only read within the same loop nest + // (self-dependence edges are not represented in graph at the moment), + // *) writes to a function live out memref (function parameter), or + // *) is dead. + if (llvm::all_of(nodeOutEdges, [=](const Edge &edge) { + return (edge.value != memref); + })) + continue; + + if (uniqueStore) + // Found multiple stores to function-local live-out memrefs. + return nullptr; + // Found first store to function-local live-out memref. + uniqueStore = storeOp; + } + + return uniqueStore; + } + + // Returns true if node 'id' can be removed from the graph. Returns false + // otherwise. A node can be removed from the graph iff the following + // conditions are met: + // *) The node does not write to any memref which escapes (or is a + // function/block argument). + // *) The node has no successors in the dependence graph. + bool canRemoveNode(unsigned id) { + if (writesToLiveInOrEscapingMemrefs(id)) + return false; + Node *node = getNode(id); + for (auto *storeOpInst : node->stores) { + // Return false if there exist out edges from 'id' on 'memref'. + if (getOutEdgeCount(id, cast<AffineStoreOp>(storeOpInst).getMemRef()) > 0) + return false; + } + return true; + } + + // Returns true iff there is an edge from node 'srcId' to node 'dstId' which + // is for 'value' if non-null, or for any value otherwise. Returns false + // otherwise. + bool hasEdge(unsigned srcId, unsigned dstId, Value value = nullptr) { + if (outEdges.count(srcId) == 0 || inEdges.count(dstId) == 0) { + return false; + } + bool hasOutEdge = llvm::any_of(outEdges[srcId], [=](Edge &edge) { + return edge.id == dstId && (!value || edge.value == value); + }); + bool hasInEdge = llvm::any_of(inEdges[dstId], [=](Edge &edge) { + return edge.id == srcId && (!value || edge.value == value); + }); + return hasOutEdge && hasInEdge; + } + + // Adds an edge from node 'srcId' to node 'dstId' for 'value'. + void addEdge(unsigned srcId, unsigned dstId, Value value) { + if (!hasEdge(srcId, dstId, value)) { + outEdges[srcId].push_back({dstId, value}); + inEdges[dstId].push_back({srcId, value}); + if (value->getType().isa<MemRefType>()) + memrefEdgeCount[value]++; + } + } + + // Removes an edge from node 'srcId' to node 'dstId' for 'value'. + void removeEdge(unsigned srcId, unsigned dstId, Value value) { + assert(inEdges.count(dstId) > 0); + assert(outEdges.count(srcId) > 0); + if (value->getType().isa<MemRefType>()) { + assert(memrefEdgeCount.count(value) > 0); + memrefEdgeCount[value]--; + } + // Remove 'srcId' from 'inEdges[dstId]'. + for (auto it = inEdges[dstId].begin(); it != inEdges[dstId].end(); ++it) { + if ((*it).id == srcId && (*it).value == value) { + inEdges[dstId].erase(it); + break; + } + } + // Remove 'dstId' from 'outEdges[srcId]'. + for (auto it = outEdges[srcId].begin(); it != outEdges[srcId].end(); ++it) { + if ((*it).id == dstId && (*it).value == value) { + outEdges[srcId].erase(it); + break; + } + } + } + + // Returns true if there is a path in the dependence graph from node 'srcId' + // to node 'dstId'. Returns false otherwise. + bool hasDependencePath(unsigned srcId, unsigned dstId) { + // Worklist state is: <node-id, next-output-edge-index-to-visit> + SmallVector<std::pair<unsigned, unsigned>, 4> worklist; + worklist.push_back({srcId, 0}); + // Run DFS traversal to see if 'dstId' is reachable from 'srcId'. + while (!worklist.empty()) { + auto &idAndIndex = worklist.back(); + // Return true if we have reached 'dstId'. + if (idAndIndex.first == dstId) + return true; + // Pop and continue if node has no out edges, or if all out edges have + // already been visited. + if (outEdges.count(idAndIndex.first) == 0 || + idAndIndex.second == outEdges[idAndIndex.first].size()) { + worklist.pop_back(); + continue; + } + // Get graph edge to traverse. + Edge edge = outEdges[idAndIndex.first][idAndIndex.second]; + // Increment next output edge index for 'idAndIndex'. + ++idAndIndex.second; + // Add node at 'edge.id' to worklist. + worklist.push_back({edge.id, 0}); + } + return false; + } + + // Returns the input edge count for node 'id' and 'memref' from src nodes + // which access 'memref' with a store operation. + unsigned getIncomingMemRefAccesses(unsigned id, Value memref) { + unsigned inEdgeCount = 0; + if (inEdges.count(id) > 0) + for (auto &inEdge : inEdges[id]) + if (inEdge.value == memref) { + Node *srcNode = getNode(inEdge.id); + // Only count in edges from 'srcNode' if 'srcNode' accesses 'memref' + if (srcNode->getStoreOpCount(memref) > 0) + ++inEdgeCount; + } + return inEdgeCount; + } + + // Returns the output edge count for node 'id' and 'memref' (if non-null), + // otherwise returns the total output edge count from node 'id'. + unsigned getOutEdgeCount(unsigned id, Value memref = nullptr) { + unsigned outEdgeCount = 0; + if (outEdges.count(id) > 0) + for (auto &outEdge : outEdges[id]) + if (!memref || outEdge.value == memref) + ++outEdgeCount; + return outEdgeCount; + } + + // Computes and returns an insertion point operation, before which the + // the fused <srcId, dstId> loop nest can be inserted while preserving + // dependences. Returns nullptr if no such insertion point is found. + Operation *getFusedLoopNestInsertionPoint(unsigned srcId, unsigned dstId) { + if (outEdges.count(srcId) == 0) + return getNode(dstId)->op; + + // Build set of insts in range (srcId, dstId) which depend on 'srcId'. + SmallPtrSet<Operation *, 2> srcDepInsts; + for (auto &outEdge : outEdges[srcId]) + if (outEdge.id != dstId) + srcDepInsts.insert(getNode(outEdge.id)->op); + + // Build set of insts in range (srcId, dstId) on which 'dstId' depends. + SmallPtrSet<Operation *, 2> dstDepInsts; + for (auto &inEdge : inEdges[dstId]) + if (inEdge.id != srcId) + dstDepInsts.insert(getNode(inEdge.id)->op); + + Operation *srcNodeInst = getNode(srcId)->op; + Operation *dstNodeInst = getNode(dstId)->op; + + // Computing insertion point: + // *) Walk all operation positions in Block operation list in the + // range (src, dst). For each operation 'op' visited in this search: + // *) Store in 'firstSrcDepPos' the first position where 'op' has a + // dependence edge from 'srcNode'. + // *) Store in 'lastDstDepPost' the last position where 'op' has a + // dependence edge to 'dstNode'. + // *) Compare 'firstSrcDepPos' and 'lastDstDepPost' to determine the + // operation insertion point (or return null pointer if no such + // insertion point exists: 'firstSrcDepPos' <= 'lastDstDepPos'). + SmallVector<Operation *, 2> depInsts; + Optional<unsigned> firstSrcDepPos; + Optional<unsigned> lastDstDepPos; + unsigned pos = 0; + for (Block::iterator it = std::next(Block::iterator(srcNodeInst)); + it != Block::iterator(dstNodeInst); ++it) { + Operation *op = &(*it); + if (srcDepInsts.count(op) > 0 && firstSrcDepPos == None) + firstSrcDepPos = pos; + if (dstDepInsts.count(op) > 0) + lastDstDepPos = pos; + depInsts.push_back(op); + ++pos; + } + + if (firstSrcDepPos.hasValue()) { + if (lastDstDepPos.hasValue()) { + if (firstSrcDepPos.getValue() <= lastDstDepPos.getValue()) { + // No valid insertion point exists which preserves dependences. + return nullptr; + } + } + // Return the insertion point at 'firstSrcDepPos'. + return depInsts[firstSrcDepPos.getValue()]; + } + // No dependence targets in range (or only dst deps in range), return + // 'dstNodInst' insertion point. + return dstNodeInst; + } + + // Updates edge mappings from node 'srcId' to node 'dstId' after 'oldMemRef' + // has been replaced in node at 'dstId' by a private memref depending + // on the value of 'createPrivateMemRef'. + void updateEdges(unsigned srcId, unsigned dstId, Value oldMemRef, + bool createPrivateMemRef) { + // For each edge in 'inEdges[srcId]': add new edge remaping to 'dstId'. + if (inEdges.count(srcId) > 0) { + SmallVector<Edge, 2> oldInEdges = inEdges[srcId]; + for (auto &inEdge : oldInEdges) { + // Add edge from 'inEdge.id' to 'dstId' if not for 'oldMemRef'. + if (inEdge.value != oldMemRef) + addEdge(inEdge.id, dstId, inEdge.value); + } + } + // For each edge in 'outEdges[srcId]': remove edge from 'srcId' to 'dstId'. + if (outEdges.count(srcId) > 0) { + SmallVector<Edge, 2> oldOutEdges = outEdges[srcId]; + for (auto &outEdge : oldOutEdges) { + // Remove any out edges from 'srcId' to 'dstId' across memrefs. + if (outEdge.id == dstId) + removeEdge(srcId, outEdge.id, outEdge.value); + } + } + // Remove any edges in 'inEdges[dstId]' on 'oldMemRef' (which is being + // replaced by a private memref). These edges could come from nodes + // other than 'srcId' which were removed in the previous step. + if (inEdges.count(dstId) > 0 && createPrivateMemRef) { + SmallVector<Edge, 2> oldInEdges = inEdges[dstId]; + for (auto &inEdge : oldInEdges) + if (inEdge.value == oldMemRef) + removeEdge(inEdge.id, dstId, inEdge.value); + } + } + + // Update edge mappings for nodes 'sibId' and 'dstId' to reflect fusion + // of sibling node 'sidId' into node 'dstId'. + void updateEdges(unsigned sibId, unsigned dstId) { + // For each edge in 'inEdges[sibId]': + // *) Add new edge from source node 'inEdge.id' to 'dstNode'. + // *) Remove edge from source node 'inEdge.id' to 'sibNode'. + if (inEdges.count(sibId) > 0) { + SmallVector<Edge, 2> oldInEdges = inEdges[sibId]; + for (auto &inEdge : oldInEdges) { + addEdge(inEdge.id, dstId, inEdge.value); + removeEdge(inEdge.id, sibId, inEdge.value); + } + } + + // For each edge in 'outEdges[sibId]' to node 'id' + // *) Add new edge from 'dstId' to 'outEdge.id'. + // *) Remove edge from 'sibId' to 'outEdge.id'. + if (outEdges.count(sibId) > 0) { + SmallVector<Edge, 2> oldOutEdges = outEdges[sibId]; + for (auto &outEdge : oldOutEdges) { + addEdge(dstId, outEdge.id, outEdge.value); + removeEdge(sibId, outEdge.id, outEdge.value); + } + } + } + + // Adds ops in 'loads' and 'stores' to node at 'id'. + void addToNode(unsigned id, const SmallVectorImpl<Operation *> &loads, + const SmallVectorImpl<Operation *> &stores) { + Node *node = getNode(id); + for (auto *loadOpInst : loads) + node->loads.push_back(loadOpInst); + for (auto *storeOpInst : stores) + node->stores.push_back(storeOpInst); + } + + void clearNodeLoadAndStores(unsigned id) { + Node *node = getNode(id); + node->loads.clear(); + node->stores.clear(); + } + + // Calls 'callback' for each input edge incident to node 'id' which carries a + // memref dependence. + void forEachMemRefInputEdge(unsigned id, + const std::function<void(Edge)> &callback) { + if (inEdges.count(id) > 0) + forEachMemRefEdge(inEdges[id], callback); + } + + // Calls 'callback' for each output edge from node 'id' which carries a + // memref dependence. + void forEachMemRefOutputEdge(unsigned id, + const std::function<void(Edge)> &callback) { + if (outEdges.count(id) > 0) + forEachMemRefEdge(outEdges[id], callback); + } + + // Calls 'callback' for each edge in 'edges' which carries a memref + // dependence. + void forEachMemRefEdge(ArrayRef<Edge> edges, + const std::function<void(Edge)> &callback) { + for (auto &edge : edges) { + // Skip if 'edge' is not a memref dependence edge. + if (!edge.value->getType().isa<MemRefType>()) + continue; + assert(nodes.count(edge.id) > 0); + // Skip if 'edge.id' is not a loop nest. + if (!isa<AffineForOp>(getNode(edge.id)->op)) + continue; + // Visit current input edge 'edge'. + callback(edge); + } + } + + void print(raw_ostream &os) const { + os << "\nMemRefDependenceGraph\n"; + os << "\nNodes:\n"; + for (auto &idAndNode : nodes) { + os << "Node: " << idAndNode.first << "\n"; + auto it = inEdges.find(idAndNode.first); + if (it != inEdges.end()) { + for (const auto &e : it->second) + os << " InEdge: " << e.id << " " << e.value << "\n"; + } + it = outEdges.find(idAndNode.first); + if (it != outEdges.end()) { + for (const auto &e : it->second) + os << " OutEdge: " << e.id << " " << e.value << "\n"; + } + } + } + void dump() const { print(llvm::errs()); } +}; + +} // end anonymous namespace + +// Initializes the data dependence graph by walking operations in 'f'. +// Assigns each node in the graph a node id based on program order in 'f'. +// TODO(andydavis) Add support for taking a Block arg to construct the +// dependence graph at a different depth. +bool MemRefDependenceGraph::init(FuncOp f) { + DenseMap<Value, SetVector<unsigned>> memrefAccesses; + + // TODO: support multi-block functions. + if (f.getBlocks().size() != 1) + return false; + + DenseMap<Operation *, unsigned> forToNodeMap; + for (auto &op : f.front()) { + if (auto forOp = dyn_cast<AffineForOp>(op)) { + // Create graph node 'id' to represent top-level 'forOp' and record + // all loads and store accesses it contains. + LoopNestStateCollector collector; + collector.collect(&op); + // Return false if a non 'affine.for' region was found (not currently + // supported). + if (collector.hasNonForRegion) + return false; + Node node(nextNodeId++, &op); + for (auto *opInst : collector.loadOpInsts) { + node.loads.push_back(opInst); + auto memref = cast<AffineLoadOp>(opInst).getMemRef(); + memrefAccesses[memref].insert(node.id); + } + for (auto *opInst : collector.storeOpInsts) { + node.stores.push_back(opInst); + auto memref = cast<AffineStoreOp>(opInst).getMemRef(); + memrefAccesses[memref].insert(node.id); + } + forToNodeMap[&op] = node.id; + nodes.insert({node.id, node}); + } else if (auto loadOp = dyn_cast<AffineLoadOp>(op)) { + // Create graph node for top-level load op. + Node node(nextNodeId++, &op); + node.loads.push_back(&op); + auto memref = cast<AffineLoadOp>(op).getMemRef(); + memrefAccesses[memref].insert(node.id); + nodes.insert({node.id, node}); + } else if (auto storeOp = dyn_cast<AffineStoreOp>(op)) { + // Create graph node for top-level store op. + Node node(nextNodeId++, &op); + node.stores.push_back(&op); + auto memref = cast<AffineStoreOp>(op).getMemRef(); + memrefAccesses[memref].insert(node.id); + nodes.insert({node.id, node}); + } else if (op.getNumRegions() != 0) { + // Return false if another region is found (not currently supported). + return false; + } else if (op.getNumResults() > 0 && !op.use_empty()) { + // Create graph node for top-level producer of SSA values, which + // could be used by loop nest nodes. + Node node(nextNodeId++, &op); + nodes.insert({node.id, node}); + } + } + + // Add dependence edges between nodes which produce SSA values and their + // users. + for (auto &idAndNode : nodes) { + const Node &node = idAndNode.second; + if (!node.loads.empty() || !node.stores.empty()) + continue; + auto *opInst = node.op; + for (auto value : opInst->getResults()) { + for (auto *user : value->getUsers()) { + SmallVector<AffineForOp, 4> loops; + getLoopIVs(*user, &loops); + if (loops.empty()) + continue; + assert(forToNodeMap.count(loops[0].getOperation()) > 0); + unsigned userLoopNestId = forToNodeMap[loops[0].getOperation()]; + addEdge(node.id, userLoopNestId, value); + } + } + } + + // Walk memref access lists and add graph edges between dependent nodes. + for (auto &memrefAndList : memrefAccesses) { + unsigned n = memrefAndList.second.size(); + for (unsigned i = 0; i < n; ++i) { + unsigned srcId = memrefAndList.second[i]; + bool srcHasStore = + getNode(srcId)->getStoreOpCount(memrefAndList.first) > 0; + for (unsigned j = i + 1; j < n; ++j) { + unsigned dstId = memrefAndList.second[j]; + bool dstHasStore = + getNode(dstId)->getStoreOpCount(memrefAndList.first) > 0; + if (srcHasStore || dstHasStore) + addEdge(srcId, dstId, memrefAndList.first); + } + } + } + return true; +} + +// Removes load operations from 'srcLoads' which operate on 'memref', and +// adds them to 'dstLoads'. +static void moveLoadsAccessingMemrefTo(Value memref, + SmallVectorImpl<Operation *> *srcLoads, + SmallVectorImpl<Operation *> *dstLoads) { + dstLoads->clear(); + SmallVector<Operation *, 4> srcLoadsToKeep; + for (auto *load : *srcLoads) { + if (cast<AffineLoadOp>(load).getMemRef() == memref) + dstLoads->push_back(load); + else + srcLoadsToKeep.push_back(load); + } + srcLoads->swap(srcLoadsToKeep); +} + +// Returns the innermost common loop depth for the set of operations in 'ops'. +static unsigned getInnermostCommonLoopDepth(ArrayRef<Operation *> ops) { + unsigned numOps = ops.size(); + assert(numOps > 0); + + std::vector<SmallVector<AffineForOp, 4>> loops(numOps); + unsigned loopDepthLimit = std::numeric_limits<unsigned>::max(); + for (unsigned i = 0; i < numOps; ++i) { + getLoopIVs(*ops[i], &loops[i]); + loopDepthLimit = + std::min(loopDepthLimit, static_cast<unsigned>(loops[i].size())); + } + + unsigned loopDepth = 0; + for (unsigned d = 0; d < loopDepthLimit; ++d) { + unsigned i; + for (i = 1; i < numOps; ++i) { + if (loops[i - 1][d] != loops[i][d]) + break; + } + if (i != numOps) + break; + ++loopDepth; + } + return loopDepth; +} + +// Returns the maximum loop depth at which no dependences between 'loadOpInsts' +// and 'storeOpInsts' are satisfied. +static unsigned getMaxLoopDepth(ArrayRef<Operation *> loadOpInsts, + ArrayRef<Operation *> storeOpInsts) { + // Merge loads and stores into the same array. + SmallVector<Operation *, 2> ops(loadOpInsts.begin(), loadOpInsts.end()); + ops.append(storeOpInsts.begin(), storeOpInsts.end()); + + // Compute the innermost common loop depth for loads and stores. + unsigned loopDepth = getInnermostCommonLoopDepth(ops); + + // Return common loop depth for loads if there are no store ops. + if (storeOpInsts.empty()) + return loopDepth; + + // Check dependences on all pairs of ops in 'ops' and store the minimum + // loop depth at which a dependence is satisfied. + for (unsigned i = 0, e = ops.size(); i < e; ++i) { + auto *srcOpInst = ops[i]; + MemRefAccess srcAccess(srcOpInst); + for (unsigned j = 0; j < e; ++j) { + auto *dstOpInst = ops[j]; + MemRefAccess dstAccess(dstOpInst); + + unsigned numCommonLoops = + getNumCommonSurroundingLoops(*srcOpInst, *dstOpInst); + for (unsigned d = 1; d <= numCommonLoops + 1; ++d) { + FlatAffineConstraints dependenceConstraints; + // TODO(andydavis) Cache dependence analysis results, check cache here. + DependenceResult result = checkMemrefAccessDependence( + srcAccess, dstAccess, d, &dependenceConstraints, + /*dependenceComponents=*/nullptr); + if (hasDependence(result)) { + // Store minimum loop depth and break because we want the min 'd' at + // which there is a dependence. + loopDepth = std::min(loopDepth, d - 1); + break; + } + } + } + } + return loopDepth; +} + +// Sinks all sequential loops to the innermost levels (while preserving +// relative order among them) and moves all parallel loops to the +// outermost (while again preserving relative order among them). +// This can increase the loop depth at which we can fuse a slice, since we are +// pushing loop carried dependence to a greater depth in the loop nest. +static void sinkSequentialLoops(MemRefDependenceGraph::Node *node) { + assert(isa<AffineForOp>(node->op)); + AffineForOp newRootForOp = sinkSequentialLoops(cast<AffineForOp>(node->op)); + node->op = newRootForOp.getOperation(); +} + +// TODO(mlir-team): improve/complete this when we have target data. +static unsigned getMemRefEltSizeInBytes(MemRefType memRefType) { + auto elementType = memRefType.getElementType(); + + unsigned sizeInBits; + if (elementType.isIntOrFloat()) { + sizeInBits = elementType.getIntOrFloatBitWidth(); + } else { + auto vectorType = elementType.cast<VectorType>(); + sizeInBits = + vectorType.getElementTypeBitWidth() * vectorType.getNumElements(); + } + return llvm::divideCeil(sizeInBits, 8); +} + +// Creates and returns a private (single-user) memref for fused loop rooted +// at 'forOp', with (potentially reduced) memref size based on the +// MemRefRegion written to by 'srcStoreOpInst' at depth 'dstLoopDepth'. +// TODO(bondhugula): consider refactoring the common code from generateDma and +// this one. +static Value createPrivateMemRef(AffineForOp forOp, Operation *srcStoreOpInst, + unsigned dstLoopDepth, + Optional<unsigned> fastMemorySpace, + uint64_t localBufSizeThreshold) { + auto *forInst = forOp.getOperation(); + + // Create builder to insert alloc op just before 'forOp'. + OpBuilder b(forInst); + // Builder to create constants at the top level. + OpBuilder top(forInst->getParentOfType<FuncOp>().getBody()); + // Create new memref type based on slice bounds. + auto oldMemRef = cast<AffineStoreOp>(srcStoreOpInst).getMemRef(); + auto oldMemRefType = oldMemRef->getType().cast<MemRefType>(); + unsigned rank = oldMemRefType.getRank(); + + // Compute MemRefRegion for 'srcStoreOpInst' at depth 'dstLoopDepth'. + MemRefRegion region(srcStoreOpInst->getLoc()); + bool validRegion = succeeded(region.compute(srcStoreOpInst, dstLoopDepth)); + (void)validRegion; + assert(validRegion && "unexpected memref region failure"); + SmallVector<int64_t, 4> newShape; + std::vector<SmallVector<int64_t, 4>> lbs; + SmallVector<int64_t, 8> lbDivisors; + lbs.reserve(rank); + // Query 'region' for 'newShape' and lower bounds of MemRefRegion accessed + // by 'srcStoreOpInst' at depth 'dstLoopDepth'. + Optional<int64_t> numElements = + region.getConstantBoundingSizeAndShape(&newShape, &lbs, &lbDivisors); + assert(numElements.hasValue() && + "non-constant number of elts in local buffer"); + + const FlatAffineConstraints *cst = region.getConstraints(); + // 'outerIVs' holds the values that this memory region is symbolic/parametric + // on; this would correspond to loop IVs surrounding the level at which the + // slice is being materialized. + SmallVector<Value, 8> outerIVs; + cst->getIdValues(rank, cst->getNumIds(), &outerIVs); + + // Build 'rank' AffineExprs from MemRefRegion 'lbs' + SmallVector<AffineExpr, 4> offsets; + offsets.reserve(rank); + for (unsigned d = 0; d < rank; ++d) { + assert(lbs[d].size() == cst->getNumCols() - rank && "incorrect bound size"); + + AffineExpr offset = top.getAffineConstantExpr(0); + for (unsigned j = 0, e = cst->getNumCols() - rank - 1; j < e; j++) { + offset = offset + lbs[d][j] * top.getAffineDimExpr(j); + } + assert(lbDivisors[d] > 0); + offset = + (offset + lbs[d][cst->getNumCols() - 1 - rank]).floorDiv(lbDivisors[d]); + offsets.push_back(offset); + } + + // Create 'newMemRefType' using 'newShape' from MemRefRegion accessed + // by 'srcStoreOpInst'. + uint64_t bufSize = + getMemRefEltSizeInBytes(oldMemRefType) * numElements.getValue(); + unsigned newMemSpace; + if (bufSize <= localBufSizeThreshold && fastMemorySpace.hasValue()) { + newMemSpace = fastMemorySpace.getValue(); + } else { + newMemSpace = oldMemRefType.getMemorySpace(); + } + auto newMemRefType = MemRefType::get(newShape, oldMemRefType.getElementType(), + {}, newMemSpace); + // Gather alloc operands for the dynamic dimensions of the memref. + SmallVector<Value, 4> allocOperands; + unsigned dynamicDimCount = 0; + for (auto dimSize : oldMemRefType.getShape()) { + if (dimSize == -1) + allocOperands.push_back( + top.create<DimOp>(forOp.getLoc(), oldMemRef, dynamicDimCount++)); + } + + // Create new private memref for fused loop 'forOp'. + // TODO(andydavis) Create/move alloc ops for private memrefs closer to their + // consumer loop nests to reduce their live range. Currently they are added + // at the beginning of the function, because loop nests can be reordered + // during the fusion pass. + Value newMemRef = + top.create<AllocOp>(forOp.getLoc(), newMemRefType, allocOperands); + + // Build an AffineMap to remap access functions based on lower bound offsets. + SmallVector<AffineExpr, 4> remapExprs; + remapExprs.reserve(rank); + unsigned zeroOffsetCount = 0; + for (unsigned i = 0; i < rank; i++) { + if (auto constExpr = offsets[i].dyn_cast<AffineConstantExpr>()) + if (constExpr.getValue() == 0) + ++zeroOffsetCount; + auto dimExpr = b.getAffineDimExpr(outerIVs.size() + i); + + auto remapExpr = + simplifyAffineExpr(dimExpr - offsets[i], outerIVs.size() + rank, 0); + remapExprs.push_back(remapExpr); + } + auto indexRemap = zeroOffsetCount == rank + ? AffineMap() + : AffineMap::get(outerIVs.size() + rank, 0, remapExprs); + // Replace all users of 'oldMemRef' with 'newMemRef'. + LogicalResult res = + replaceAllMemRefUsesWith(oldMemRef, newMemRef, {}, indexRemap, + /*extraOperands=*/outerIVs, + /*symbolOperands=*/{}, + /*domInstFilter=*/&*forOp.getBody()->begin()); + assert(succeeded(res) && + "replaceAllMemrefUsesWith should always succeed here"); + (void)res; + return newMemRef; +} + +// Checks if node 'srcId' can be safely fused into node 'dstId'. Node 'srcId' +// may write to multiple memrefs but it is required that only one of them, +// 'srcLiveOutStoreOp', has output edges. +// Returns true if 'dstNode's read/write region to 'memref' is a super set of +// 'srcNode's write region to 'memref' and 'srcId' has only one output edge. +// TODO(andydavis) Generalize this to handle more live in/out cases. +static bool canFuseSrcWhichWritesToLiveOut(unsigned srcId, unsigned dstId, + AffineStoreOp srcLiveOutStoreOp, + MemRefDependenceGraph *mdg) { + assert(srcLiveOutStoreOp && "Expected a valid store op"); + auto *dstNode = mdg->getNode(dstId); + Value memref = srcLiveOutStoreOp.getMemRef(); + // Return false if 'srcNode' has more than one output edge on 'memref'. + if (mdg->getOutEdgeCount(srcId, memref) > 1) + return false; + + // Compute MemRefRegion 'srcWriteRegion' for 'srcStoreOp' on 'memref'. + MemRefRegion srcWriteRegion(srcLiveOutStoreOp.getLoc()); + if (failed(srcWriteRegion.compute(srcLiveOutStoreOp, /*loopDepth=*/0))) { + LLVM_DEBUG(llvm::dbgs() + << "Unable to compute MemRefRegion for source operation\n."); + return false; + } + SmallVector<int64_t, 4> srcShape; + // Query 'srcWriteRegion' for 'srcShape' and 'srcNumElements'. + // by 'srcStoreOp' at depth 'dstLoopDepth'. + Optional<int64_t> srcNumElements = + srcWriteRegion.getConstantBoundingSizeAndShape(&srcShape); + if (!srcNumElements.hasValue()) + return false; + + // Compute MemRefRegion 'dstRegion' for 'dstStore/LoadOpInst' on 'memref'. + // TODO(andydavis) Compute 'unionboundingbox' of all write regions (one for + // each store op in 'dstStoreOps'). + SmallVector<Operation *, 2> dstStoreOps; + dstNode->getStoreOpsForMemref(memref, &dstStoreOps); + SmallVector<Operation *, 2> dstLoadOps; + dstNode->getLoadOpsForMemref(memref, &dstLoadOps); + + auto *dstOpInst = dstStoreOps.empty() ? dstLoadOps[0] : dstStoreOps[0]; + MemRefRegion dstRegion(dstOpInst->getLoc()); + if (failed(dstRegion.compute(dstOpInst, /*loopDepth=*/0))) { + LLVM_DEBUG(llvm::dbgs() + << "Unable to compute MemRefRegion for dest operation\n."); + return false; + } + SmallVector<int64_t, 4> dstShape; + // Query 'dstRegion' for 'dstShape' and 'dstNumElements'. + // by 'dstOpInst' at depth 'dstLoopDepth'. + Optional<int64_t> dstNumElements = + dstRegion.getConstantBoundingSizeAndShape(&dstShape); + if (!dstNumElements.hasValue()) + return false; + + // Return false if write region is not a superset of 'srcNodes' write + // region to 'memref'. + // TODO(andydavis) Check the shape and lower bounds here too. + if (srcNumElements != dstNumElements) + return false; + return true; +} + +// Checks the profitability of fusing a backwards slice of the loop nest +// surrounding 'srcOpInst' into the loop nest surrounding 'dstLoadOpInsts'. +// The argument 'srcStoreOpInst' is used to calculate the storage reduction on +// the memref being produced and consumed, which is an input to the cost model. +// For producer-consumer fusion, 'srcStoreOpInst' will be the same as +// 'srcOpInst', as we are slicing w.r.t to that producer. +// For input-reuse fusion, 'srcOpInst' will be the src loop nest LoadOp which +// reads from the same memref as dst loop nest load ops, and 'srcStoreOpInst' +// will be the unique store op in the src node, which will be used to check +// that the write region is the same after input-reuse fusion. +// Returns true if it is profitable to fuse the candidate loop nests. Returns +// false otherwise. `dstLoopDepth` is set to the most profitable depth at which +// to materialize the source loop nest slice. +// The profitability model executes the following steps: +// *) Computes the backward computation slice at 'srcOpInst'. This +// computation slice of the loop nest surrounding 'srcOpInst' is +// represented by modified src loop bounds in 'sliceState', which are +// functions of loop IVs in the loop nest surrounding 'srcOpInst'. +// *) Computes the cost of unfused src/dst loop nests (currently the cost of a +// loop nest is the total number of dynamic operation instances in the loop +// nest). +// *) Computes the cost of fusing a slice of the src loop nest into the dst +// loop nest at various values of dst loop depth, attempting to fuse +// the largest computation slice at the maximal dst loop depth (closest to +// the load) to minimize reuse distance and potentially enable subsequent +// load/store forwarding. +// NOTE: If the dst loop nest includes multiple loads in 'dstLoadOpInsts' for +// the same memref as is written by 'srcOpInst', then the union of slice +// loop bounds is used to compute the slice and associated slice cost. +// NOTE: 'dstLoopDepth' refers to the loop depth within the destination loop +// nest, at which the src computation slice is inserted/fused. +// NOTE: We attempt to maximize the dst loop depth, but there are cases +// where a particular setting for 'dstLoopNest' might fuse an unsliced +// loop (within the src computation slice) at a depth which results in +// excessive recomputation (see unit tests for examples). +// *) Compares the total cost of the unfused loop nests to the min cost fused +// loop nest computed in the previous step, and returns true if the latter +// is lower. +static bool isFusionProfitable(Operation *srcOpInst, Operation *srcStoreOpInst, + ArrayRef<Operation *> dstLoadOpInsts, + ArrayRef<Operation *> dstStoreOpInsts, + ComputationSliceState *sliceState, + unsigned *dstLoopDepth, bool maximalFusion) { + LLVM_DEBUG({ + llvm::dbgs() << "Checking whether fusion is profitable between:\n"; + llvm::dbgs() << " " << *srcOpInst << " and \n"; + for (auto dstOpInst : dstLoadOpInsts) { + llvm::dbgs() << " " << *dstOpInst << "\n"; + }; + }); + + // Compute cost of sliced and unsliced src loop nest. + SmallVector<AffineForOp, 4> srcLoopIVs; + getLoopIVs(*srcOpInst, &srcLoopIVs); + unsigned numSrcLoopIVs = srcLoopIVs.size(); + + // Walk src loop nest and collect stats. + LoopNestStats srcLoopNestStats; + if (!getLoopNestStats(srcLoopIVs[0], &srcLoopNestStats)) + return false; + + // Compute cost of dst loop nest. + SmallVector<AffineForOp, 4> dstLoopIVs; + getLoopIVs(*dstLoadOpInsts[0], &dstLoopIVs); + + LoopNestStats dstLoopNestStats; + if (!getLoopNestStats(dstLoopIVs[0], &dstLoopNestStats)) + return false; + + // Compute the maximum loop depth at which we can can insert the src slice + // and still satisfy dest loop nest dependences, for producer-consumer fusion. + unsigned maxDstLoopDepth = + (srcOpInst == srcStoreOpInst) + ? getMaxLoopDepth(dstLoadOpInsts, dstStoreOpInsts) + : dstLoopIVs.size(); + if (maxDstLoopDepth == 0) { + LLVM_DEBUG(llvm::dbgs() << "Can't fuse: maxDstLoopDepth == 0 .\n"); + return false; + } + + // Search for min cost value for 'dstLoopDepth'. At each value of + // 'dstLoopDepth' from 'maxDstLoopDepth' to '1', compute computation slice + // bounds between 'srcOpInst' and each op in 'dstOpinsts' (taking the union + // of these bounds). Next the union slice bounds are used to calculate + // the cost of the slice and the cost of the slice inserted into the dst + // loop nest at 'dstLoopDepth'. + uint64_t minFusedLoopNestComputeCost = std::numeric_limits<uint64_t>::max(); + double maxStorageReduction = 0.0; + Optional<uint64_t> sliceMemEstimate = None; + + SmallVector<ComputationSliceState, 4> sliceStates; + sliceStates.resize(maxDstLoopDepth); + // The best loop depth at which to materialize the slice. + Optional<unsigned> bestDstLoopDepth = None; + + // Compute op instance count for the src loop nest without iteration slicing. + uint64_t srcLoopNestCost = getComputeCost(srcLoopIVs[0], srcLoopNestStats); + + // Compute src loop nest write region size. + MemRefRegion srcWriteRegion(srcStoreOpInst->getLoc()); + if (failed(srcWriteRegion.compute(srcStoreOpInst, /*loopDepth=*/0))) { + LLVM_DEBUG(llvm::dbgs() + << "Unable to compute MemRefRegion for source operation\n."); + return false; + } + + Optional<int64_t> maybeSrcWriteRegionSizeBytes = + srcWriteRegion.getRegionSize(); + if (!maybeSrcWriteRegionSizeBytes.hasValue()) + return false; + int64_t srcWriteRegionSizeBytes = maybeSrcWriteRegionSizeBytes.getValue(); + + // Compute op instance count for the src loop nest. + uint64_t dstLoopNestCost = getComputeCost(dstLoopIVs[0], dstLoopNestStats); + + // Evaluate all depth choices for materializing the slice in the destination + // loop nest. + for (unsigned i = maxDstLoopDepth; i >= 1; --i) { + // Compute the union of slice bounds of all ops in 'dstLoadOpInsts'. + if (failed(mlir::computeSliceUnion({srcOpInst}, dstLoadOpInsts, + /*loopDepth=*/i, + /*numCommonLoops=*/0, + /*isBackwardSlice=*/true, + &sliceStates[i - 1]))) { + LLVM_DEBUG(llvm::dbgs() + << "computeSliceUnion failed for loopDepth: " << i << "\n"); + continue; + } + + int64_t fusedLoopNestComputeCost; + if (!getFusionComputeCost(srcLoopIVs[0], srcLoopNestStats, dstLoopIVs[0], + dstLoopNestStats, &sliceStates[i - 1], + &fusedLoopNestComputeCost)) { + LLVM_DEBUG(llvm::dbgs() << "Unable to compute fusion compute cost.\n."); + continue; + } + + double additionalComputeFraction = + fusedLoopNestComputeCost / + (static_cast<double>(srcLoopNestCost) + dstLoopNestCost) - + 1; + + // Determine what the slice write MemRefRegion would be, if the src loop + // nest slice 'sliceStates[i - 1]' were to be inserted into the dst loop + // nest at loop depth 'i' + MemRefRegion sliceWriteRegion(srcStoreOpInst->getLoc()); + if (failed(sliceWriteRegion.compute(srcStoreOpInst, /*loopDepth=*/0, + &sliceStates[i - 1]))) { + LLVM_DEBUG(llvm::dbgs() + << "Failed to compute slice write region at loopDepth: " << i + << "\n"); + continue; + } + + Optional<int64_t> maybeSliceWriteRegionSizeBytes = + sliceWriteRegion.getRegionSize(); + if (!maybeSliceWriteRegionSizeBytes.hasValue() || + maybeSliceWriteRegionSizeBytes.getValue() == 0) { + LLVM_DEBUG(llvm::dbgs() + << "Failed to get slice write region size at loopDepth: " << i + << "\n"); + continue; + } + int64_t sliceWriteRegionSizeBytes = + maybeSliceWriteRegionSizeBytes.getValue(); + + // If we are fusing for reuse, check that write regions remain the same. + // TODO(andydavis) Write region check should check sizes and offsets in + // each dimension, so that we are sure they are covering the same memref + // region. Also, move this out to a isMemRefRegionSuperSet helper function. + if (srcOpInst != srcStoreOpInst && + sliceWriteRegionSizeBytes != srcWriteRegionSizeBytes) + continue; + + double storageReduction = static_cast<double>(srcWriteRegionSizeBytes) / + static_cast<double>(sliceWriteRegionSizeBytes); + + LLVM_DEBUG({ + std::stringstream msg; + msg << " evaluating fusion profitability at depth : " << i << "\n" + << std::fixed << std::setprecision(2) + << " additional compute fraction: " + << 100.0 * additionalComputeFraction << "%\n" + << " storage reduction factor: " << storageReduction << "x\n" + << " fused nest cost: " << fusedLoopNestComputeCost << "\n" + << " src write region size: " << srcWriteRegionSizeBytes << "\n" + << " slice write region size: " << sliceWriteRegionSizeBytes + << "\n"; + llvm::dbgs() << msg.str(); + }); + + double computeToleranceThreshold = + clFusionAddlComputeTolerance.getNumOccurrences() > 0 + ? clFusionAddlComputeTolerance + : LoopFusion::kComputeToleranceThreshold; + + // TODO(b/123247369): This is a placeholder cost model. + // Among all choices that add an acceptable amount of redundant computation + // (as per computeToleranceThreshold), we will simply pick the one that + // reduces the intermediary size the most. + if ((storageReduction > maxStorageReduction) && + (maximalFusion || + (additionalComputeFraction < computeToleranceThreshold))) { + maxStorageReduction = storageReduction; + bestDstLoopDepth = i; + minFusedLoopNestComputeCost = fusedLoopNestComputeCost; + sliceMemEstimate = sliceWriteRegionSizeBytes; + } + } + + // A simple cost model: fuse if it reduces the memory footprint. If + // -maximal-fusion is set, fuse nevertheless. + + if (!maximalFusion && !bestDstLoopDepth.hasValue()) { + LLVM_DEBUG( + llvm::dbgs() + << "All fusion choices involve more than the threshold amount of " + "redundant computation; NOT fusing.\n"); + return false; + } + + if (!bestDstLoopDepth.hasValue()) { + LLVM_DEBUG(llvm::dbgs() << "no fusion depth could be evaluated.\n"); + return false; + } + + // Set dstLoopDepth based on best values from search. + *dstLoopDepth = bestDstLoopDepth.getValue(); + + LLVM_DEBUG( + llvm::dbgs() << " LoopFusion fusion stats:" + << "\n best loop depth: " << bestDstLoopDepth + << "\n src loop nest compute cost: " << srcLoopNestCost + << "\n dst loop nest compute cost: " << dstLoopNestCost + << "\n fused loop nest compute cost: " + << minFusedLoopNestComputeCost << "\n"); + + auto dstMemSize = getMemoryFootprintBytes(dstLoopIVs[0]); + auto srcMemSize = getMemoryFootprintBytes(srcLoopIVs[0]); + + Optional<double> storageReduction = None; + + if (!maximalFusion) { + if (!dstMemSize.hasValue() || !srcMemSize.hasValue()) { + LLVM_DEBUG( + llvm::dbgs() + << " fusion memory benefit cannot be evaluated; NOT fusing.\n"); + return false; + } + + auto srcMemSizeVal = srcMemSize.getValue(); + auto dstMemSizeVal = dstMemSize.getValue(); + + assert(sliceMemEstimate.hasValue() && "expected value"); + auto fusedMem = dstMemSizeVal + sliceMemEstimate.getValue(); + + LLVM_DEBUG(llvm::dbgs() << " src mem: " << srcMemSizeVal << "\n" + << " dst mem: " << dstMemSizeVal << "\n" + << " fused mem: " << fusedMem << "\n" + << " slice mem: " << sliceMemEstimate << "\n"); + + if (static_cast<long>(fusedMem) > srcMemSizeVal + dstMemSizeVal) { + LLVM_DEBUG(llvm::dbgs() << "Fusion is not profitable; NOT fusing.\n"); + return false; + } + storageReduction = + 100.0 * + (1.0 - fusedMem / (static_cast<double>(srcMemSizeVal) + dstMemSizeVal)); + } + + double additionalComputeFraction = + 100.0 * (minFusedLoopNestComputeCost / + (static_cast<double>(srcLoopNestCost) + dstLoopNestCost) - + 1); + (void)additionalComputeFraction; + LLVM_DEBUG({ + std::stringstream msg; + msg << " fusion is most profitable at depth " << *dstLoopDepth << " with " + << std::setprecision(2) << additionalComputeFraction + << "% redundant computation and a "; + msg << (storageReduction.hasValue() + ? std::to_string(storageReduction.getValue()) + : "<unknown>"); + msg << "% storage reduction.\n"; + llvm::dbgs() << msg.str(); + }); + + // Update return parameter 'sliceState' with 'bestSliceState'. + ComputationSliceState *bestSliceState = &sliceStates[*dstLoopDepth - 1]; + sliceState->lbs = bestSliceState->lbs; + sliceState->ubs = bestSliceState->ubs; + sliceState->lbOperands = bestSliceState->lbOperands; + sliceState->ubOperands = bestSliceState->ubOperands; + + // Canonicalize slice bound affine maps. + for (unsigned i = 0; i < numSrcLoopIVs; ++i) { + if (sliceState->lbs[i] != AffineMap()) { + canonicalizeMapAndOperands(&sliceState->lbs[i], + &sliceState->lbOperands[i]); + } + if (sliceState->ubs[i] != AffineMap()) { + canonicalizeMapAndOperands(&sliceState->ubs[i], + &sliceState->ubOperands[i]); + } + } + return true; +} + +namespace { + +// GreedyFusion greedily fuses loop nests which have a producer/consumer or +// input-reuse relationship on a memref, with the goal of improving locality. +// +// The steps of the producer-consumer fusion algorithm are as follows: +// +// *) A worklist is initialized with node ids from the dependence graph. +// *) For each node id in the worklist: +// *) Pop an AffineForOp of the worklist. This 'dstAffineForOp' will be a +// candidate destination AffineForOp into which fusion will be attempted. +// *) Add each LoadOp currently in 'dstAffineForOp' into list 'dstLoadOps'. +// *) For each LoadOp in 'dstLoadOps' do: +// *) Look up dependent loop nests which have a single store op to the same +// memref. +// *) Check if dependences would be violated by the fusion. +// *) Get a computation slice of 'srcLoopNest', which adjusts its loop +// bounds to be functions of 'dstLoopNest' IVs and symbols. +// *) Fuse the 'srcLoopNest' computation slice into the 'dstLoopNest', +// at a loop depth determined by the cost model in 'isFusionProfitable'. +// *) Add the newly fused load/store operations to the state, +// and also add newly fused load ops to 'dstLoopOps' to be considered +// as fusion dst load ops in another iteration. +// *) Remove old src loop nest and its associated state. +// +// The steps of the input-reuse fusion algorithm are as follows: +// +// *) Initialize 'worklist' with node ids from the dependence graph. +// *) For each 'dstNode' in the worklist: +// *) Find a candidate sibling node 'sibNode' to fuse with 'dstNode' which +// loads from the same memref, but which has no dependence paths to/from. +// *) Get a computation slice of 'sibLoopNest', which adjusts its loop +// bounds to be functions of 'dstLoopNest' IVs and symbols. +// *) Fuse the 'sibLoopNest' computation slice into the 'dstLoopNest', +// at a loop depth determined by the cost model in 'isFusionProfitable'. +// This function also checks that the memref write region of 'sibLoopNest', +// is preserved in the fused loop nest. +// *) Update graph state to reflect the fusion of 'sibNode' into 'dstNode'. +// +// Given a graph where top-level operations are vertices in the set 'V' and +// edges in the set 'E' are dependences between vertices, this algorithm +// takes O(V) time for initialization, and has runtime O(V + E). +// +// This greedy algorithm is not 'maximal' due to the current restriction of +// fusing along single producer consumer edges, but there is a TODO to fix this. +// +// TODO(andydavis) Experiment with other fusion policies. +struct GreedyFusion { +public: + // The data dependence graph to traverse during fusion. + MemRefDependenceGraph *mdg; + // Worklist of graph nodes visited during the fusion pass. + SmallVector<unsigned, 8> worklist; + // Set of graph nodes which are present on the worklist. + llvm::SmallDenseSet<unsigned, 16> worklistSet; + // Parameter for local buffer size threshold. + unsigned localBufSizeThreshold; + // Parameter for fast memory space. + Optional<unsigned> fastMemorySpace; + // If true, ignore any additional (redundant) computation tolerance threshold + // that would have prevented fusion. + bool maximalFusion; + + using Node = MemRefDependenceGraph::Node; + + GreedyFusion(MemRefDependenceGraph *mdg, unsigned localBufSizeThreshold, + Optional<unsigned> fastMemorySpace, bool maximalFusion) + : mdg(mdg), localBufSizeThreshold(localBufSizeThreshold), + fastMemorySpace(fastMemorySpace), maximalFusion(maximalFusion) {} + + // Initializes 'worklist' with nodes from 'mdg' + void init() { + // TODO(andydavis) Add a priority queue for prioritizing nodes by different + // metrics (e.g. arithmetic intensity/flops-to-bytes ratio). + worklist.clear(); + worklistSet.clear(); + for (auto &idAndNode : mdg->nodes) { + const Node &node = idAndNode.second; + worklist.push_back(node.id); + worklistSet.insert(node.id); + } + } + + // Run the GreedyFusion pass. + // *) First pass through the nodes fuses single-use producer nodes into their + // unique consumer. + // *) Second pass fuses sibling nodes which share no dependence edges. + // *) Third pass fuses any remaining producer nodes into their users. + void run() { + // TODO(andydavis) Run this repeatedly until a fixed-point is reached. + fuseProducerConsumerNodes(/*maxSrcUserCount=*/1); + fuseSiblingNodes(); + fuseProducerConsumerNodes( + /*maxSrcUserCount=*/std::numeric_limits<unsigned>::max()); + eraseUnusedMemRefAllocations(); + } + + void fuseProducerConsumerNodes(unsigned maxSrcUserCount) { + init(); + while (!worklist.empty()) { + unsigned dstId = worklist.back(); + worklist.pop_back(); + worklistSet.erase(dstId); + + // Skip if this node was removed (fused into another node). + if (mdg->nodes.count(dstId) == 0) + continue; + // Get 'dstNode' into which to attempt fusion. + auto *dstNode = mdg->getNode(dstId); + // Skip if 'dstNode' is not a loop nest. + if (!isa<AffineForOp>(dstNode->op)) + continue; + // Sink sequential loops in 'dstNode' (and thus raise parallel loops) + // while preserving relative order. This can increase the maximum loop + // depth at which we can fuse a slice of a producer loop nest into a + // consumer loop nest. + sinkSequentialLoops(dstNode); + + SmallVector<Operation *, 4> loads = dstNode->loads; + SmallVector<Operation *, 4> dstLoadOpInsts; + DenseSet<Value> visitedMemrefs; + while (!loads.empty()) { + // Get memref of load on top of the stack. + auto memref = cast<AffineLoadOp>(loads.back()).getMemRef(); + if (visitedMemrefs.count(memref) > 0) + continue; + visitedMemrefs.insert(memref); + // Move all loads in 'loads' accessing 'memref' to 'dstLoadOpInsts'. + moveLoadsAccessingMemrefTo(memref, &loads, &dstLoadOpInsts); + // Skip if no input edges along which to fuse. + if (mdg->inEdges.count(dstId) == 0) + continue; + // Iterate through in-edges for 'dstId' and src node id for any + // edges on 'memref'. + SmallVector<unsigned, 2> srcNodeIds; + for (auto &srcEdge : mdg->inEdges[dstId]) { + // Skip 'srcEdge' if not for 'memref'. + if (srcEdge.value != memref) + continue; + srcNodeIds.push_back(srcEdge.id); + } + for (unsigned srcId : srcNodeIds) { + // Skip if this node was removed (fused into another node). + if (mdg->nodes.count(srcId) == 0) + continue; + // Get 'srcNode' from which to attempt fusion into 'dstNode'. + auto *srcNode = mdg->getNode(srcId); + // Skip if 'srcNode' is not a loop nest. + if (!isa<AffineForOp>(srcNode->op)) + continue; + // Skip if 'srcNode' has more than one live-out store to a + // function-local memref. + // TODO(andydavis) Support more generic multi-output src loop nests + // fusion. + auto srcStoreOp = mdg->getUniqueOutgoingStore(srcNode); + if (!srcStoreOp) { + // Get the src store op at the deepest loop depth. + // We will use 'LoopFusionUtils::canFuseLoops' to check fusion + // feasibility for loops with multiple stores. + unsigned maxLoopDepth = 0; + for (auto *op : srcNode->stores) { + auto storeOp = cast<AffineStoreOp>(op); + if (storeOp.getMemRef() != memref) { + srcStoreOp = nullptr; + break; + } + unsigned loopDepth = getNestingDepth(*storeOp); + if (loopDepth > maxLoopDepth) { + maxLoopDepth = loopDepth; + srcStoreOp = storeOp; + } + } + if (!srcStoreOp) + continue; + } + + // Unique outgoing store found must write to 'memref' since 'memref' + // is the one that established the producer-consumer relationship + // between 'srcNode' and 'dstNode'. + assert(srcStoreOp.getMemRef() == memref && + "Found store to unexpected memref"); + + // Skip if 'srcNode' writes to any live in or escaping memrefs, + // and cannot be fused. + bool writesToLiveInOrOut = + mdg->writesToLiveInOrEscapingMemrefs(srcNode->id); + if (writesToLiveInOrOut && + !canFuseSrcWhichWritesToLiveOut(srcId, dstId, srcStoreOp, mdg)) + continue; + + // Don't create a private memref if 'writesToLiveInOrOut'. + bool createPrivateMemref = !writesToLiveInOrOut; + // Don't create a private memref if 'srcNode' has in edges on + // 'memref', or if 'dstNode' has out edges on 'memref'. + if (mdg->getIncomingMemRefAccesses(srcNode->id, memref) > 0 || + mdg->getOutEdgeCount(dstNode->id, memref) > 0) { + createPrivateMemref = false; + } + + // Skip if 'srcNode' out edge count on 'memref' > 'maxSrcUserCount'. + if (mdg->getOutEdgeCount(srcNode->id, memref) > maxSrcUserCount) + continue; + + // Compute an operation list insertion point for the fused loop + // nest which preserves dependences. + Operation *insertPointInst = + mdg->getFusedLoopNestInsertionPoint(srcNode->id, dstNode->id); + if (insertPointInst == nullptr) + continue; + + // Compute the innermost common loop depth for dstNode loads/stores. + SmallVector<Operation *, 2> dstOps(dstNode->loads.begin(), + dstNode->loads.end()); + dstOps.append(dstNode->stores.begin(), dstNode->stores.end()); + unsigned dstLoopDepthTest = getInnermostCommonLoopDepth(dstOps); + // Check the feasibility of fusing src loop nest into dst loop nest + // at loop depths in range [1, dstLoopDepthTest]. + // TODO(andydavis) Use slice union computation and union of memref + // read/write regions to cost model and fusion. + bool canFuse = false; + for (unsigned i = 1; i <= dstLoopDepthTest; ++i) { + ComputationSliceState sliceUnion; + FusionResult result = mlir::canFuseLoops( + cast<AffineForOp>(srcNode->op), cast<AffineForOp>(dstNode->op), + /*dstLoopDepth=*/i, &sliceUnion); + if (result.value == FusionResult::Success) + canFuse = true; + } + + // Skip if fusion is not feasible at all loop depths. + if (!canFuse) + continue; + + // Gather 'dstNode' store ops to 'memref'. + SmallVector<Operation *, 2> dstStoreOpInsts; + for (auto *storeOpInst : dstNode->stores) + if (cast<AffineStoreOp>(storeOpInst).getMemRef() == memref) + dstStoreOpInsts.push_back(storeOpInst); + + unsigned bestDstLoopDepth; + mlir::ComputationSliceState sliceState; + // Check if fusion would be profitable. + if (!isFusionProfitable(srcStoreOp, srcStoreOp, dstLoadOpInsts, + dstStoreOpInsts, &sliceState, + &bestDstLoopDepth, maximalFusion)) + continue; + + // Fuse computation slice of 'srcLoopNest' into 'dstLoopNest'. + auto sliceLoopNest = mlir::insertBackwardComputationSlice( + srcStoreOp, dstLoadOpInsts[0], bestDstLoopDepth, &sliceState); + if (sliceLoopNest) { + LLVM_DEBUG(llvm::dbgs() << "\tslice loop nest:\n" + << *sliceLoopNest.getOperation() << "\n"); + // Move 'dstAffineForOp' before 'insertPointInst' if needed. + auto dstAffineForOp = cast<AffineForOp>(dstNode->op); + if (insertPointInst != dstAffineForOp.getOperation()) { + dstAffineForOp.getOperation()->moveBefore(insertPointInst); + } + // Update edges between 'srcNode' and 'dstNode'. + mdg->updateEdges(srcNode->id, dstNode->id, memref, + createPrivateMemref); + + // Collect slice loop stats. + LoopNestStateCollector sliceCollector; + sliceCollector.collect(sliceLoopNest.getOperation()); + // Promote single iteration slice loops to single IV value. + for (auto forOp : sliceCollector.forOps) { + promoteIfSingleIteration(forOp); + } + if (createPrivateMemref) { + // Create private memref for 'memref' in 'dstAffineForOp'. + SmallVector<Operation *, 4> storesForMemref; + for (auto *storeOpInst : sliceCollector.storeOpInsts) { + if (cast<AffineStoreOp>(storeOpInst).getMemRef() == memref) + storesForMemref.push_back(storeOpInst); + } + // TODO(andydavis) Use union of memref write regions to compute + // private memref footprint. + auto newMemRef = createPrivateMemRef( + dstAffineForOp, storesForMemref[0], bestDstLoopDepth, + fastMemorySpace, localBufSizeThreshold); + visitedMemrefs.insert(newMemRef); + // Create new node in dependence graph for 'newMemRef' alloc op. + unsigned newMemRefNodeId = + mdg->addNode(newMemRef->getDefiningOp()); + // Add edge from 'newMemRef' node to dstNode. + mdg->addEdge(newMemRefNodeId, dstId, newMemRef); + } + + // Collect dst loop stats after memref privatization transformation. + LoopNestStateCollector dstLoopCollector; + dstLoopCollector.collect(dstAffineForOp.getOperation()); + + // Add new load ops to current Node load op list 'loads' to + // continue fusing based on new operands. + for (auto *loadOpInst : dstLoopCollector.loadOpInsts) { + auto loadMemRef = cast<AffineLoadOp>(loadOpInst).getMemRef(); + if (visitedMemrefs.count(loadMemRef) == 0) + loads.push_back(loadOpInst); + } + + // Clear and add back loads and stores. + mdg->clearNodeLoadAndStores(dstNode->id); + mdg->addToNode(dstId, dstLoopCollector.loadOpInsts, + dstLoopCollector.storeOpInsts); + // Remove old src loop nest if it no longer has outgoing dependence + // edges, and if it does not write to a memref which escapes the + // function. If 'writesToLiveInOrOut' is true, then 'srcNode' has + // been fused into 'dstNode' and write region of 'dstNode' covers + // the write region of 'srcNode', and 'srcNode' has no other users + // so it is safe to remove. + if (writesToLiveInOrOut || mdg->canRemoveNode(srcNode->id)) { + mdg->removeNode(srcNode->id); + srcNode->op->erase(); + } else { + // Add remaining users of 'oldMemRef' back on the worklist (if not + // already there), as its replacement with a local/private memref + // has reduced dependences on 'oldMemRef' which may have created + // new fusion opportunities. + if (mdg->outEdges.count(srcNode->id) > 0) { + SmallVector<MemRefDependenceGraph::Edge, 2> oldOutEdges = + mdg->outEdges[srcNode->id]; + for (auto &outEdge : oldOutEdges) { + if (outEdge.value == memref && + worklistSet.count(outEdge.id) == 0) { + worklist.push_back(outEdge.id); + worklistSet.insert(outEdge.id); + } + } + } + } + } + } + } + } + } + + // Visits each node in the graph, and for each node, attempts to fuse it with + // its sibling nodes (nodes which share a parent, but no dependence edges). + void fuseSiblingNodes() { + init(); + while (!worklist.empty()) { + unsigned dstId = worklist.back(); + worklist.pop_back(); + worklistSet.erase(dstId); + + // Skip if this node was removed (fused into another node). + if (mdg->nodes.count(dstId) == 0) + continue; + // Get 'dstNode' into which to attempt fusion. + auto *dstNode = mdg->getNode(dstId); + // Skip if 'dstNode' is not a loop nest. + if (!isa<AffineForOp>(dstNode->op)) + continue; + // Attempt to fuse 'dstNode' with its sibling nodes in the graph. + fuseWithSiblingNodes(dstNode); + } + } + + // Attempt to fuse 'dstNode' with sibling nodes in the graph. + void fuseWithSiblingNodes(Node *dstNode) { + DenseSet<unsigned> visitedSibNodeIds; + std::pair<unsigned, Value> idAndMemref; + while (findSiblingNodeToFuse(dstNode, &visitedSibNodeIds, &idAndMemref)) { + unsigned sibId = idAndMemref.first; + Value memref = idAndMemref.second; + // TODO(andydavis) Check that 'sibStoreOpInst' post-dominates all other + // stores to the same memref in 'sibNode' loop nest. + auto *sibNode = mdg->getNode(sibId); + // Compute an operation list insertion point for the fused loop + // nest which preserves dependences. + assert(sibNode->op->getBlock() == dstNode->op->getBlock()); + Operation *insertPointInst = + sibNode->op->isBeforeInBlock(dstNode->op) + ? mdg->getFusedLoopNestInsertionPoint(sibNode->id, dstNode->id) + : mdg->getFusedLoopNestInsertionPoint(dstNode->id, sibNode->id); + if (insertPointInst == nullptr) + continue; + + // Check if fusion would be profitable and at what depth. + + // Get unique 'sibNode' load op to 'memref'. + SmallVector<Operation *, 2> sibLoadOpInsts; + sibNode->getLoadOpsForMemref(memref, &sibLoadOpInsts); + // Currently findSiblingNodeToFuse searches for siblings with one load. + assert(sibLoadOpInsts.size() == 1); + Operation *sibLoadOpInst = sibLoadOpInsts[0]; + assert(!sibNode->stores.empty()); + // TODO(andydavis) Choose the store which postdominates all other stores. + auto *sibStoreOpInst = sibNode->stores.back(); + + // Gather 'dstNode' load ops to 'memref'. + SmallVector<Operation *, 2> dstLoadOpInsts; + dstNode->getLoadOpsForMemref(memref, &dstLoadOpInsts); + + // Gather 'dstNode' store ops to 'memref'. + SmallVector<Operation *, 2> dstStoreOpInsts; + dstNode->getStoreOpsForMemref(memref, &dstStoreOpInsts); + + unsigned bestDstLoopDepth; + mlir::ComputationSliceState sliceState; + + // Check if fusion would be profitable. + if (!isFusionProfitable(sibLoadOpInst, sibStoreOpInst, dstLoadOpInsts, + dstStoreOpInsts, &sliceState, &bestDstLoopDepth, + maximalFusion)) + continue; + + // Fuse computation slice of 'sibLoopNest' into 'dstLoopNest'. + auto sliceLoopNest = mlir::insertBackwardComputationSlice( + sibLoadOpInst, dstLoadOpInsts[0], bestDstLoopDepth, &sliceState); + if (sliceLoopNest != nullptr) { + auto dstForInst = cast<AffineForOp>(dstNode->op); + // Update operation position of fused loop nest (if needed). + if (insertPointInst != dstForInst.getOperation()) { + dstForInst.getOperation()->moveBefore(insertPointInst); + } + // Update data dependence graph state post fusion. + updateStateAfterSiblingFusion(sliceLoopNest, sibNode, dstNode); + } + } + } + + // Searches function argument uses and the graph from 'dstNode' looking for a + // fusion candidate sibling node which shares no dependences with 'dstNode' + // but which loads from the same memref. Returns true and sets + // 'idAndMemrefToFuse' on success. Returns false otherwise. + bool findSiblingNodeToFuse(Node *dstNode, + DenseSet<unsigned> *visitedSibNodeIds, + std::pair<unsigned, Value> *idAndMemrefToFuse) { + // Returns true if 'sibNode' can be fused with 'dstNode' for input reuse + // on 'memref'. + auto canFuseWithSibNode = [&](Node *sibNode, Value memref) { + // Skip if 'outEdge' is not a read-after-write dependence. + // TODO(andydavis) Remove restrict to single load op restriction. + if (sibNode->getLoadOpCount(memref) != 1) + return false; + // Skip if there exists a path of dependent edges between + // 'sibNode' and 'dstNode'. + if (mdg->hasDependencePath(sibNode->id, dstNode->id) || + mdg->hasDependencePath(dstNode->id, sibNode->id)) + return false; + // Skip sib node if it loads to (and stores from) the same memref on + // which it also has an input dependence edge. + DenseSet<Value> loadAndStoreMemrefSet; + sibNode->getLoadAndStoreMemrefSet(&loadAndStoreMemrefSet); + if (llvm::any_of(loadAndStoreMemrefSet, [=](Value memref) { + return mdg->getIncomingMemRefAccesses(sibNode->id, memref) > 0; + })) + return false; + + // Check that all stores are to the same memref. + DenseSet<Value> storeMemrefs; + for (auto *storeOpInst : sibNode->stores) { + storeMemrefs.insert(cast<AffineStoreOp>(storeOpInst).getMemRef()); + } + if (storeMemrefs.size() != 1) + return false; + return true; + }; + + // Search for siblings which load the same memref function argument. + auto fn = dstNode->op->getParentOfType<FuncOp>(); + for (unsigned i = 0, e = fn.getNumArguments(); i != e; ++i) { + for (auto *user : fn.getArgument(i)->getUsers()) { + if (auto loadOp = dyn_cast<AffineLoadOp>(user)) { + // Gather loops surrounding 'use'. + SmallVector<AffineForOp, 4> loops; + getLoopIVs(*user, &loops); + // Skip 'use' if it is not within a loop nest. + if (loops.empty()) + continue; + Node *sibNode = mdg->getForOpNode(loops[0]); + assert(sibNode != nullptr); + // Skip 'use' if it not a sibling to 'dstNode'. + if (sibNode->id == dstNode->id) + continue; + // Skip 'use' if it has been visited. + if (visitedSibNodeIds->count(sibNode->id) > 0) + continue; + // Skip 'use' if it does not load from the same memref as 'dstNode'. + auto memref = loadOp.getMemRef(); + if (dstNode->getLoadOpCount(memref) == 0) + continue; + // Check if 'sibNode/dstNode' can be input-reuse fused on 'memref'. + if (canFuseWithSibNode(sibNode, memref)) { + visitedSibNodeIds->insert(sibNode->id); + idAndMemrefToFuse->first = sibNode->id; + idAndMemrefToFuse->second = memref; + return true; + } + } + } + } + + // Search for siblings by following edges through an intermediate src node. + // Collect candidate 'dstNode' input edges in 'inEdges'. + SmallVector<MemRefDependenceGraph::Edge, 2> inEdges; + mdg->forEachMemRefInputEdge( + dstNode->id, [&](MemRefDependenceGraph::Edge inEdge) { + // Add 'inEdge' if it is a read-after-write dependence. + if (dstNode->getLoadOpCount(inEdge.value) > 0 && + mdg->getNode(inEdge.id)->getStoreOpCount(inEdge.value) > 0) + inEdges.push_back(inEdge); + }); + + // Search for sibling nodes to fuse by visiting output edges from each input + // edge in 'inEdges'. + for (auto &inEdge : inEdges) { + // Collect candidate output edges from each node 'inEdge.id' in 'inEdges'. + SmallVector<MemRefDependenceGraph::Edge, 2> outEdges; + mdg->forEachMemRefOutputEdge( + inEdge.id, [&](MemRefDependenceGraph::Edge outEdge) { + unsigned sibNodeId = outEdge.id; + if (visitedSibNodeIds->count(sibNodeId) > 0) + return; + // Skip output edge if not a sibling using the same memref. + if (outEdge.id == dstNode->id || outEdge.value != inEdge.value) + return; + auto *sibNode = mdg->getNode(sibNodeId); + if (!isa<AffineForOp>(sibNode->op)) + return; + // Check if 'sibNode/dstNode' can be input-reuse fused on 'memref'. + if (canFuseWithSibNode(sibNode, outEdge.value)) { + // Add candidate 'outEdge' to sibling node. + outEdges.push_back(outEdge); + } + }); + + // Add first candidate if any were returned. + if (!outEdges.empty()) { + visitedSibNodeIds->insert(outEdges[0].id); + idAndMemrefToFuse->first = outEdges[0].id; + idAndMemrefToFuse->second = outEdges[0].value; + return true; + } + } + return false; + } + + void updateStateAfterSiblingFusion(AffineForOp sliceLoopNest, Node *sibNode, + Node *dstNode) { + // Update 'sibNode' and 'dstNode' input/output edges to reflect fusion. + mdg->updateEdges(sibNode->id, dstNode->id); + + // Collect slice loop stats. + LoopNestStateCollector sliceCollector; + sliceCollector.collect(sliceLoopNest.getOperation()); + // Promote single iteration slice loops to single IV value. + for (auto forOp : sliceCollector.forOps) { + promoteIfSingleIteration(forOp); + } + + // Collect dst loop stats after memref privatization transformation. + auto dstForInst = cast<AffineForOp>(dstNode->op); + LoopNestStateCollector dstLoopCollector; + dstLoopCollector.collect(dstForInst.getOperation()); + // Clear and add back loads and stores + mdg->clearNodeLoadAndStores(dstNode->id); + mdg->addToNode(dstNode->id, dstLoopCollector.loadOpInsts, + dstLoopCollector.storeOpInsts); + // Remove old sibling loop nest if it no longer has outgoing dependence + // edges, and it does not write to a memref which escapes the + // function. + if (mdg->getOutEdgeCount(sibNode->id) == 0) { + mdg->removeNode(sibNode->id); + sibNode->op->erase(); + } + } + + // Clean up any allocs with no users. + void eraseUnusedMemRefAllocations() { + for (auto &pair : mdg->memrefEdgeCount) { + if (pair.second > 0) + continue; + auto memref = pair.first; + // Skip if there exist other uses (return operation or function calls). + if (!memref->use_empty()) + continue; + // Use list expected to match the dep graph info. + auto *op = memref->getDefiningOp(); + if (isa_and_nonnull<AllocOp>(op)) + op->erase(); + } + } +}; + +} // end anonymous namespace + +void LoopFusion::runOnFunction() { + // Override if a command line argument was provided. + if (clFusionFastMemorySpace.getNumOccurrences() > 0) { + fastMemorySpace = clFusionFastMemorySpace.getValue(); + } + + // Override if a command line argument was provided. + if (clFusionLocalBufThreshold.getNumOccurrences() > 0) { + localBufSizeThreshold = clFusionLocalBufThreshold * 1024; + } + + if (clMaximalLoopFusion.getNumOccurrences() > 0) + maximalFusion = clMaximalLoopFusion; + + MemRefDependenceGraph g; + if (g.init(getFunction())) + GreedyFusion(&g, localBufSizeThreshold, fastMemorySpace, maximalFusion) + .run(); +} + +static PassRegistration<LoopFusion> pass("affine-loop-fusion", + "Fuse loop nests"); |