diff options
| author | Zachary Turner <zturner@google.com> | 2017-04-10 17:17:11 +0000 |
|---|---|---|
| committer | Zachary Turner <zturner@google.com> | 2017-04-10 17:17:11 +0000 |
| commit | 4235b65ae75c30426fbc92560a913f536f3896da (patch) | |
| tree | 443856c4bcc1b001e272c224768e2eedc0ae8b5e /llvm | |
| parent | 52d95bcade906738e4c85886a27fb4a9d9cf34e6 (diff) | |
| download | bcm5719-llvm-4235b65ae75c30426fbc92560a913f536f3896da.tar.gz bcm5719-llvm-4235b65ae75c30426fbc92560a913f536f3896da.zip | |
Fix line endings.
llvm-svn: 299856
Diffstat (limited to 'llvm')
| -rw-r--r-- | llvm/include/llvm/ADT/BitVector.h | 1184 |
1 files changed, 592 insertions, 592 deletions
diff --git a/llvm/include/llvm/ADT/BitVector.h b/llvm/include/llvm/ADT/BitVector.h index 3f299d9fc0f..cb318199ec7 100644 --- a/llvm/include/llvm/ADT/BitVector.h +++ b/llvm/include/llvm/ADT/BitVector.h @@ -1,592 +1,592 @@ -//===- llvm/ADT/BitVector.h - Bit vectors -----------------------*- C++ -*-===//
-//
-// The LLVM Compiler Infrastructure
-//
-// This file is distributed under the University of Illinois Open Source
-// License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-//
-// This file implements the BitVector class.
-//
-//===----------------------------------------------------------------------===//
-
-#ifndef LLVM_ADT_BITVECTOR_H
-#define LLVM_ADT_BITVECTOR_H
-
-#include "llvm/Support/MathExtras.h"
-#include <algorithm>
-#include <cassert>
-#include <climits>
-#include <cstdint>
-#include <cstdlib>
-#include <cstring>
-#include <utility>
-
-namespace llvm {
-
-class BitVector {
- typedef unsigned long BitWord;
-
- enum { BITWORD_SIZE = (unsigned)sizeof(BitWord) * CHAR_BIT };
-
- static_assert(BITWORD_SIZE == 64 || BITWORD_SIZE == 32,
- "Unsupported word size");
-
- BitWord *Bits; // Actual bits.
- unsigned Size; // Size of bitvector in bits.
- unsigned Capacity; // Number of BitWords allocated in the Bits array.
-
-public:
- typedef unsigned size_type;
- // Encapsulation of a single bit.
- class reference {
- friend class BitVector;
-
- BitWord *WordRef;
- unsigned BitPos;
-
- public:
- reference(BitVector &b, unsigned Idx) {
- WordRef = &b.Bits[Idx / BITWORD_SIZE];
- BitPos = Idx % BITWORD_SIZE;
- }
-
- reference() = delete;
- reference(const reference&) = default;
-
- reference &operator=(reference t) {
- *this = bool(t);
- return *this;
- }
-
- reference& operator=(bool t) {
- if (t)
- *WordRef |= BitWord(1) << BitPos;
- else
- *WordRef &= ~(BitWord(1) << BitPos);
- return *this;
- }
-
- operator bool() const {
- return ((*WordRef) & (BitWord(1) << BitPos)) != 0;
- }
- };
-
-
- /// BitVector default ctor - Creates an empty bitvector.
- BitVector() : Size(0), Capacity(0) {
- Bits = nullptr;
- }
-
- /// BitVector ctor - Creates a bitvector of specified number of bits. All
- /// bits are initialized to the specified value.
- explicit BitVector(unsigned s, bool t = false) : Size(s) {
- Capacity = NumBitWords(s);
- Bits = (BitWord *)std::malloc(Capacity * sizeof(BitWord));
- init_words(Bits, Capacity, t);
- if (t)
- clear_unused_bits();
- }
-
- /// BitVector copy ctor.
- BitVector(const BitVector &RHS) : Size(RHS.size()) {
- if (Size == 0) {
- Bits = nullptr;
- Capacity = 0;
- return;
- }
-
- Capacity = NumBitWords(RHS.size());
- Bits = (BitWord *)std::malloc(Capacity * sizeof(BitWord));
- std::memcpy(Bits, RHS.Bits, Capacity * sizeof(BitWord));
- }
-
- BitVector(BitVector &&RHS)
- : Bits(RHS.Bits), Size(RHS.Size), Capacity(RHS.Capacity) {
- RHS.Bits = nullptr;
- RHS.Size = RHS.Capacity = 0;
- }
-
- ~BitVector() {
- std::free(Bits);
- }
-
- /// empty - Tests whether there are no bits in this bitvector.
- bool empty() const { return Size == 0; }
-
- /// size - Returns the number of bits in this bitvector.
- size_type size() const { return Size; }
-
- /// count - Returns the number of bits which are set.
- size_type count() const {
- unsigned NumBits = 0;
- for (unsigned i = 0; i < NumBitWords(size()); ++i)
- NumBits += countPopulation(Bits[i]);
- return NumBits;
- }
-
- /// any - Returns true if any bit is set.
- bool any() const {
- for (unsigned i = 0; i < NumBitWords(size()); ++i)
- if (Bits[i] != 0)
- return true;
- return false;
- }
-
- /// all - Returns true if all bits are set.
- bool all() const {
- for (unsigned i = 0; i < Size / BITWORD_SIZE; ++i)
- if (Bits[i] != ~0UL)
- return false;
-
- // If bits remain check that they are ones. The unused bits are always zero.
- if (unsigned Remainder = Size % BITWORD_SIZE)
- return Bits[Size / BITWORD_SIZE] == (1UL << Remainder) - 1;
-
- return true;
- }
-
- /// none - Returns true if none of the bits are set.
- bool none() const {
- return !any();
- }
-
- /// find_first - Returns the index of the first set bit, -1 if none
- /// of the bits are set.
- int find_first() const {
- for (unsigned i = 0; i < NumBitWords(size()); ++i)
- if (Bits[i] != 0)
- return i * BITWORD_SIZE + countTrailingZeros(Bits[i]);
- return -1;
- }
-
- /// find_next - Returns the index of the next set bit following the
- /// "Prev" bit. Returns -1 if the next set bit is not found.
- int find_next(unsigned Prev) const {
- ++Prev;
- if (Prev >= Size)
- return -1;
-
- unsigned WordPos = Prev / BITWORD_SIZE;
- unsigned BitPos = Prev % BITWORD_SIZE;
- BitWord Copy = Bits[WordPos];
- // Mask off previous bits.
- Copy &= ~0UL << BitPos;
-
- if (Copy != 0)
- return WordPos * BITWORD_SIZE + countTrailingZeros(Copy);
-
- // Check subsequent words.
- for (unsigned i = WordPos+1; i < NumBitWords(size()); ++i)
- if (Bits[i] != 0)
- return i * BITWORD_SIZE + countTrailingZeros(Bits[i]);
- return -1;
- }
-
- /// clear - Clear all bits.
- void clear() {
- Size = 0;
- }
-
- /// resize - Grow or shrink the bitvector.
- void resize(unsigned N, bool t = false) {
- if (N > Capacity * BITWORD_SIZE) {
- unsigned OldCapacity = Capacity;
- grow(N);
- init_words(&Bits[OldCapacity], (Capacity-OldCapacity), t);
- }
-
- // Set any old unused bits that are now included in the BitVector. This
- // may set bits that are not included in the new vector, but we will clear
- // them back out below.
- if (N > Size)
- set_unused_bits(t);
-
- // Update the size, and clear out any bits that are now unused
- unsigned OldSize = Size;
- Size = N;
- if (t || N < OldSize)
- clear_unused_bits();
- }
-
- void reserve(unsigned N) {
- if (N > Capacity * BITWORD_SIZE)
- grow(N);
- }
-
- // Set, reset, flip
- BitVector &set() {
- init_words(Bits, Capacity, true);
- clear_unused_bits();
- return *this;
- }
-
- BitVector &set(unsigned Idx) {
- assert(Bits && "Bits never allocated");
- Bits[Idx / BITWORD_SIZE] |= BitWord(1) << (Idx % BITWORD_SIZE);
- return *this;
- }
-
- /// set - Efficiently set a range of bits in [I, E)
- BitVector &set(unsigned I, unsigned E) {
- assert(I <= E && "Attempted to set backwards range!");
- assert(E <= size() && "Attempted to set out-of-bounds range!");
-
- if (I == E) return *this;
-
- if (I / BITWORD_SIZE == E / BITWORD_SIZE) {
- BitWord EMask = 1UL << (E % BITWORD_SIZE);
- BitWord IMask = 1UL << (I % BITWORD_SIZE);
- BitWord Mask = EMask - IMask;
- Bits[I / BITWORD_SIZE] |= Mask;
- return *this;
- }
-
- BitWord PrefixMask = ~0UL << (I % BITWORD_SIZE);
- Bits[I / BITWORD_SIZE] |= PrefixMask;
- I = alignTo(I, BITWORD_SIZE);
-
- for (; I + BITWORD_SIZE <= E; I += BITWORD_SIZE)
- Bits[I / BITWORD_SIZE] = ~0UL;
-
- BitWord PostfixMask = (1UL << (E % BITWORD_SIZE)) - 1;
- if (I < E)
- Bits[I / BITWORD_SIZE] |= PostfixMask;
-
- return *this;
- }
-
- BitVector &reset() {
- init_words(Bits, Capacity, false);
- return *this;
- }
-
- BitVector &reset(unsigned Idx) {
- Bits[Idx / BITWORD_SIZE] &= ~(BitWord(1) << (Idx % BITWORD_SIZE));
- return *this;
- }
-
- /// reset - Efficiently reset a range of bits in [I, E)
- BitVector &reset(unsigned I, unsigned E) {
- assert(I <= E && "Attempted to reset backwards range!");
- assert(E <= size() && "Attempted to reset out-of-bounds range!");
-
- if (I == E) return *this;
-
- if (I / BITWORD_SIZE == E / BITWORD_SIZE) {
- BitWord EMask = 1UL << (E % BITWORD_SIZE);
- BitWord IMask = 1UL << (I % BITWORD_SIZE);
- BitWord Mask = EMask - IMask;
- Bits[I / BITWORD_SIZE] &= ~Mask;
- return *this;
- }
-
- BitWord PrefixMask = ~0UL << (I % BITWORD_SIZE);
- Bits[I / BITWORD_SIZE] &= ~PrefixMask;
- I = alignTo(I, BITWORD_SIZE);
-
- for (; I + BITWORD_SIZE <= E; I += BITWORD_SIZE)
- Bits[I / BITWORD_SIZE] = 0UL;
-
- BitWord PostfixMask = (1UL << (E % BITWORD_SIZE)) - 1;
- if (I < E)
- Bits[I / BITWORD_SIZE] &= ~PostfixMask;
-
- return *this;
- }
-
- BitVector &flip() {
- for (unsigned i = 0; i < NumBitWords(size()); ++i)
- Bits[i] = ~Bits[i];
- clear_unused_bits();
- return *this;
- }
-
- BitVector &flip(unsigned Idx) {
- Bits[Idx / BITWORD_SIZE] ^= BitWord(1) << (Idx % BITWORD_SIZE);
- return *this;
- }
-
- // Indexing.
- reference operator[](unsigned Idx) {
- assert (Idx < Size && "Out-of-bounds Bit access.");
- return reference(*this, Idx);
- }
-
- bool operator[](unsigned Idx) const {
- assert (Idx < Size && "Out-of-bounds Bit access.");
- BitWord Mask = BitWord(1) << (Idx % BITWORD_SIZE);
- return (Bits[Idx / BITWORD_SIZE] & Mask) != 0;
- }
-
- bool test(unsigned Idx) const {
- return (*this)[Idx];
- }
-
- /// Test if any common bits are set.
- bool anyCommon(const BitVector &RHS) const {
- unsigned ThisWords = NumBitWords(size());
- unsigned RHSWords = NumBitWords(RHS.size());
- for (unsigned i = 0, e = std::min(ThisWords, RHSWords); i != e; ++i)
- if (Bits[i] & RHS.Bits[i])
- return true;
- return false;
- }
-
- // Comparison operators.
- bool operator==(const BitVector &RHS) const {
- unsigned ThisWords = NumBitWords(size());
- unsigned RHSWords = NumBitWords(RHS.size());
- unsigned i;
- for (i = 0; i != std::min(ThisWords, RHSWords); ++i)
- if (Bits[i] != RHS.Bits[i])
- return false;
-
- // Verify that any extra words are all zeros.
- if (i != ThisWords) {
- for (; i != ThisWords; ++i)
- if (Bits[i])
- return false;
- } else if (i != RHSWords) {
- for (; i != RHSWords; ++i)
- if (RHS.Bits[i])
- return false;
- }
- return true;
- }
-
- bool operator!=(const BitVector &RHS) const {
- return !(*this == RHS);
- }
-
- /// Intersection, union, disjoint union.
- BitVector &operator&=(const BitVector &RHS) {
- unsigned ThisWords = NumBitWords(size());
- unsigned RHSWords = NumBitWords(RHS.size());
- unsigned i;
- for (i = 0; i != std::min(ThisWords, RHSWords); ++i)
- Bits[i] &= RHS.Bits[i];
-
- // Any bits that are just in this bitvector become zero, because they aren't
- // in the RHS bit vector. Any words only in RHS are ignored because they
- // are already zero in the LHS.
- for (; i != ThisWords; ++i)
- Bits[i] = 0;
-
- return *this;
- }
-
- /// reset - Reset bits that are set in RHS. Same as *this &= ~RHS.
- BitVector &reset(const BitVector &RHS) {
- unsigned ThisWords = NumBitWords(size());
- unsigned RHSWords = NumBitWords(RHS.size());
- unsigned i;
- for (i = 0; i != std::min(ThisWords, RHSWords); ++i)
- Bits[i] &= ~RHS.Bits[i];
- return *this;
- }
-
- /// test - Check if (This - RHS) is zero.
- /// This is the same as reset(RHS) and any().
- bool test(const BitVector &RHS) const {
- unsigned ThisWords = NumBitWords(size());
- unsigned RHSWords = NumBitWords(RHS.size());
- unsigned i;
- for (i = 0; i != std::min(ThisWords, RHSWords); ++i)
- if ((Bits[i] & ~RHS.Bits[i]) != 0)
- return true;
-
- for (; i != ThisWords ; ++i)
- if (Bits[i] != 0)
- return true;
-
- return false;
- }
-
- BitVector &operator|=(const BitVector &RHS) {
- if (size() < RHS.size())
- resize(RHS.size());
- for (size_t i = 0, e = NumBitWords(RHS.size()); i != e; ++i)
- Bits[i] |= RHS.Bits[i];
- return *this;
- }
-
- BitVector &operator^=(const BitVector &RHS) {
- if (size() < RHS.size())
- resize(RHS.size());
- for (size_t i = 0, e = NumBitWords(RHS.size()); i != e; ++i)
- Bits[i] ^= RHS.Bits[i];
- return *this;
- }
-
- // Assignment operator.
- const BitVector &operator=(const BitVector &RHS) {
- if (this == &RHS) return *this;
-
- Size = RHS.size();
- unsigned RHSWords = NumBitWords(Size);
- if (Size <= Capacity * BITWORD_SIZE) {
- if (Size)
- std::memcpy(Bits, RHS.Bits, RHSWords * sizeof(BitWord));
- clear_unused_bits();
- return *this;
- }
-
- // Grow the bitvector to have enough elements.
- Capacity = RHSWords;
- assert(Capacity > 0 && "negative capacity?");
- BitWord *NewBits = (BitWord *)std::malloc(Capacity * sizeof(BitWord));
- std::memcpy(NewBits, RHS.Bits, Capacity * sizeof(BitWord));
-
- // Destroy the old bits.
- std::free(Bits);
- Bits = NewBits;
-
- return *this;
- }
-
- const BitVector &operator=(BitVector &&RHS) {
- if (this == &RHS) return *this;
-
- std::free(Bits);
- Bits = RHS.Bits;
- Size = RHS.Size;
- Capacity = RHS.Capacity;
-
- RHS.Bits = nullptr;
- RHS.Size = RHS.Capacity = 0;
-
- return *this;
- }
-
- void swap(BitVector &RHS) {
- std::swap(Bits, RHS.Bits);
- std::swap(Size, RHS.Size);
- std::swap(Capacity, RHS.Capacity);
- }
-
- //===--------------------------------------------------------------------===//
- // Portable bit mask operations.
- //===--------------------------------------------------------------------===//
- //
- // These methods all operate on arrays of uint32_t, each holding 32 bits. The
- // fixed word size makes it easier to work with literal bit vector constants
- // in portable code.
- //
- // The LSB in each word is the lowest numbered bit. The size of a portable
- // bit mask is always a whole multiple of 32 bits. If no bit mask size is
- // given, the bit mask is assumed to cover the entire BitVector.
-
- /// setBitsInMask - Add '1' bits from Mask to this vector. Don't resize.
- /// This computes "*this |= Mask".
- void setBitsInMask(const uint32_t *Mask, unsigned MaskWords = ~0u) {
- applyMask<true, false>(Mask, MaskWords);
- }
-
- /// clearBitsInMask - Clear any bits in this vector that are set in Mask.
- /// Don't resize. This computes "*this &= ~Mask".
- void clearBitsInMask(const uint32_t *Mask, unsigned MaskWords = ~0u) {
- applyMask<false, false>(Mask, MaskWords);
- }
-
- /// setBitsNotInMask - Add a bit to this vector for every '0' bit in Mask.
- /// Don't resize. This computes "*this |= ~Mask".
- void setBitsNotInMask(const uint32_t *Mask, unsigned MaskWords = ~0u) {
- applyMask<true, true>(Mask, MaskWords);
- }
-
- /// clearBitsNotInMask - Clear a bit in this vector for every '0' bit in Mask.
- /// Don't resize. This computes "*this &= Mask".
- void clearBitsNotInMask(const uint32_t *Mask, unsigned MaskWords = ~0u) {
- applyMask<false, true>(Mask, MaskWords);
- }
-
-private:
- unsigned NumBitWords(unsigned S) const {
- return (S + BITWORD_SIZE-1) / BITWORD_SIZE;
- }
-
- // Set the unused bits in the high words.
- void set_unused_bits(bool t = true) {
- // Set high words first.
- unsigned UsedWords = NumBitWords(Size);
- if (Capacity > UsedWords)
- init_words(&Bits[UsedWords], (Capacity-UsedWords), t);
-
- // Then set any stray high bits of the last used word.
- unsigned ExtraBits = Size % BITWORD_SIZE;
- if (ExtraBits) {
- BitWord ExtraBitMask = ~0UL << ExtraBits;
- if (t)
- Bits[UsedWords-1] |= ExtraBitMask;
- else
- Bits[UsedWords-1] &= ~ExtraBitMask;
- }
- }
-
- // Clear the unused bits in the high words.
- void clear_unused_bits() {
- set_unused_bits(false);
- }
-
- void grow(unsigned NewSize) {
- Capacity = std::max(NumBitWords(NewSize), Capacity * 2);
- assert(Capacity > 0 && "realloc-ing zero space");
- Bits = (BitWord *)std::realloc(Bits, Capacity * sizeof(BitWord));
-
- clear_unused_bits();
- }
-
- void init_words(BitWord *B, unsigned NumWords, bool t) {
- if (NumWords > 0)
- memset(B, 0 - (int)t, NumWords*sizeof(BitWord));
- }
-
- template<bool AddBits, bool InvertMask>
- void applyMask(const uint32_t *Mask, unsigned MaskWords) {
- static_assert(BITWORD_SIZE % 32 == 0, "Unsupported BitWord size.");
- MaskWords = std::min(MaskWords, (size() + 31) / 32);
- const unsigned Scale = BITWORD_SIZE / 32;
- unsigned i;
- for (i = 0; MaskWords >= Scale; ++i, MaskWords -= Scale) {
- BitWord BW = Bits[i];
- // This inner loop should unroll completely when BITWORD_SIZE > 32.
- for (unsigned b = 0; b != BITWORD_SIZE; b += 32) {
- uint32_t M = *Mask++;
- if (InvertMask) M = ~M;
- if (AddBits) BW |= BitWord(M) << b;
- else BW &= ~(BitWord(M) << b);
- }
- Bits[i] = BW;
- }
- for (unsigned b = 0; MaskWords; b += 32, --MaskWords) {
- uint32_t M = *Mask++;
- if (InvertMask) M = ~M;
- if (AddBits) Bits[i] |= BitWord(M) << b;
- else Bits[i] &= ~(BitWord(M) << b);
- }
- if (AddBits)
- clear_unused_bits();
- }
-
-public:
- /// Return the size (in bytes) of the bit vector.
- size_t getMemorySize() const { return Capacity * sizeof(BitWord); }
-};
-
-static inline size_t capacity_in_bytes(const BitVector &X) {
- return X.getMemorySize();
-}
-
-} // end namespace llvm
-
-namespace std {
- /// Implement std::swap in terms of BitVector swap.
- inline void
- swap(llvm::BitVector &LHS, llvm::BitVector &RHS) {
- LHS.swap(RHS);
- }
-} // end namespace std
-
-#endif // LLVM_ADT_BITVECTOR_H
+//===- llvm/ADT/BitVector.h - Bit vectors -----------------------*- C++ -*-===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This file implements the BitVector class. +// +//===----------------------------------------------------------------------===// + +#ifndef LLVM_ADT_BITVECTOR_H +#define LLVM_ADT_BITVECTOR_H + +#include "llvm/Support/MathExtras.h" +#include <algorithm> +#include <cassert> +#include <climits> +#include <cstdint> +#include <cstdlib> +#include <cstring> +#include <utility> + +namespace llvm { + +class BitVector { + typedef unsigned long BitWord; + + enum { BITWORD_SIZE = (unsigned)sizeof(BitWord) * CHAR_BIT }; + + static_assert(BITWORD_SIZE == 64 || BITWORD_SIZE == 32, + "Unsupported word size"); + + BitWord *Bits; // Actual bits. + unsigned Size; // Size of bitvector in bits. + unsigned Capacity; // Number of BitWords allocated in the Bits array. + +public: + typedef unsigned size_type; + // Encapsulation of a single bit. + class reference { + friend class BitVector; + + BitWord *WordRef; + unsigned BitPos; + + public: + reference(BitVector &b, unsigned Idx) { + WordRef = &b.Bits[Idx / BITWORD_SIZE]; + BitPos = Idx % BITWORD_SIZE; + } + + reference() = delete; + reference(const reference&) = default; + + reference &operator=(reference t) { + *this = bool(t); + return *this; + } + + reference& operator=(bool t) { + if (t) + *WordRef |= BitWord(1) << BitPos; + else + *WordRef &= ~(BitWord(1) << BitPos); + return *this; + } + + operator bool() const { + return ((*WordRef) & (BitWord(1) << BitPos)) != 0; + } + }; + + + /// BitVector default ctor - Creates an empty bitvector. + BitVector() : Size(0), Capacity(0) { + Bits = nullptr; + } + + /// BitVector ctor - Creates a bitvector of specified number of bits. All + /// bits are initialized to the specified value. + explicit BitVector(unsigned s, bool t = false) : Size(s) { + Capacity = NumBitWords(s); + Bits = (BitWord *)std::malloc(Capacity * sizeof(BitWord)); + init_words(Bits, Capacity, t); + if (t) + clear_unused_bits(); + } + + /// BitVector copy ctor. + BitVector(const BitVector &RHS) : Size(RHS.size()) { + if (Size == 0) { + Bits = nullptr; + Capacity = 0; + return; + } + + Capacity = NumBitWords(RHS.size()); + Bits = (BitWord *)std::malloc(Capacity * sizeof(BitWord)); + std::memcpy(Bits, RHS.Bits, Capacity * sizeof(BitWord)); + } + + BitVector(BitVector &&RHS) + : Bits(RHS.Bits), Size(RHS.Size), Capacity(RHS.Capacity) { + RHS.Bits = nullptr; + RHS.Size = RHS.Capacity = 0; + } + + ~BitVector() { + std::free(Bits); + } + + /// empty - Tests whether there are no bits in this bitvector. + bool empty() const { return Size == 0; } + + /// size - Returns the number of bits in this bitvector. + size_type size() const { return Size; } + + /// count - Returns the number of bits which are set. + size_type count() const { + unsigned NumBits = 0; + for (unsigned i = 0; i < NumBitWords(size()); ++i) + NumBits += countPopulation(Bits[i]); + return NumBits; + } + + /// any - Returns true if any bit is set. + bool any() const { + for (unsigned i = 0; i < NumBitWords(size()); ++i) + if (Bits[i] != 0) + return true; + return false; + } + + /// all - Returns true if all bits are set. + bool all() const { + for (unsigned i = 0; i < Size / BITWORD_SIZE; ++i) + if (Bits[i] != ~0UL) + return false; + + // If bits remain check that they are ones. The unused bits are always zero. + if (unsigned Remainder = Size % BITWORD_SIZE) + return Bits[Size / BITWORD_SIZE] == (1UL << Remainder) - 1; + + return true; + } + + /// none - Returns true if none of the bits are set. + bool none() const { + return !any(); + } + + /// find_first - Returns the index of the first set bit, -1 if none + /// of the bits are set. + int find_first() const { + for (unsigned i = 0; i < NumBitWords(size()); ++i) + if (Bits[i] != 0) + return i * BITWORD_SIZE + countTrailingZeros(Bits[i]); + return -1; + } + + /// find_next - Returns the index of the next set bit following the + /// "Prev" bit. Returns -1 if the next set bit is not found. + int find_next(unsigned Prev) const { + ++Prev; + if (Prev >= Size) + return -1; + + unsigned WordPos = Prev / BITWORD_SIZE; + unsigned BitPos = Prev % BITWORD_SIZE; + BitWord Copy = Bits[WordPos]; + // Mask off previous bits. + Copy &= ~0UL << BitPos; + + if (Copy != 0) + return WordPos * BITWORD_SIZE + countTrailingZeros(Copy); + + // Check subsequent words. + for (unsigned i = WordPos+1; i < NumBitWords(size()); ++i) + if (Bits[i] != 0) + return i * BITWORD_SIZE + countTrailingZeros(Bits[i]); + return -1; + } + + /// clear - Clear all bits. + void clear() { + Size = 0; + } + + /// resize - Grow or shrink the bitvector. + void resize(unsigned N, bool t = false) { + if (N > Capacity * BITWORD_SIZE) { + unsigned OldCapacity = Capacity; + grow(N); + init_words(&Bits[OldCapacity], (Capacity-OldCapacity), t); + } + + // Set any old unused bits that are now included in the BitVector. This + // may set bits that are not included in the new vector, but we will clear + // them back out below. + if (N > Size) + set_unused_bits(t); + + // Update the size, and clear out any bits that are now unused + unsigned OldSize = Size; + Size = N; + if (t || N < OldSize) + clear_unused_bits(); + } + + void reserve(unsigned N) { + if (N > Capacity * BITWORD_SIZE) + grow(N); + } + + // Set, reset, flip + BitVector &set() { + init_words(Bits, Capacity, true); + clear_unused_bits(); + return *this; + } + + BitVector &set(unsigned Idx) { + assert(Bits && "Bits never allocated"); + Bits[Idx / BITWORD_SIZE] |= BitWord(1) << (Idx % BITWORD_SIZE); + return *this; + } + + /// set - Efficiently set a range of bits in [I, E) + BitVector &set(unsigned I, unsigned E) { + assert(I <= E && "Attempted to set backwards range!"); + assert(E <= size() && "Attempted to set out-of-bounds range!"); + + if (I == E) return *this; + + if (I / BITWORD_SIZE == E / BITWORD_SIZE) { + BitWord EMask = 1UL << (E % BITWORD_SIZE); + BitWord IMask = 1UL << (I % BITWORD_SIZE); + BitWord Mask = EMask - IMask; + Bits[I / BITWORD_SIZE] |= Mask; + return *this; + } + + BitWord PrefixMask = ~0UL << (I % BITWORD_SIZE); + Bits[I / BITWORD_SIZE] |= PrefixMask; + I = alignTo(I, BITWORD_SIZE); + + for (; I + BITWORD_SIZE <= E; I += BITWORD_SIZE) + Bits[I / BITWORD_SIZE] = ~0UL; + + BitWord PostfixMask = (1UL << (E % BITWORD_SIZE)) - 1; + if (I < E) + Bits[I / BITWORD_SIZE] |= PostfixMask; + + return *this; + } + + BitVector &reset() { + init_words(Bits, Capacity, false); + return *this; + } + + BitVector &reset(unsigned Idx) { + Bits[Idx / BITWORD_SIZE] &= ~(BitWord(1) << (Idx % BITWORD_SIZE)); + return *this; + } + + /// reset - Efficiently reset a range of bits in [I, E) + BitVector &reset(unsigned I, unsigned E) { + assert(I <= E && "Attempted to reset backwards range!"); + assert(E <= size() && "Attempted to reset out-of-bounds range!"); + + if (I == E) return *this; + + if (I / BITWORD_SIZE == E / BITWORD_SIZE) { + BitWord EMask = 1UL << (E % BITWORD_SIZE); + BitWord IMask = 1UL << (I % BITWORD_SIZE); + BitWord Mask = EMask - IMask; + Bits[I / BITWORD_SIZE] &= ~Mask; + return *this; + } + + BitWord PrefixMask = ~0UL << (I % BITWORD_SIZE); + Bits[I / BITWORD_SIZE] &= ~PrefixMask; + I = alignTo(I, BITWORD_SIZE); + + for (; I + BITWORD_SIZE <= E; I += BITWORD_SIZE) + Bits[I / BITWORD_SIZE] = 0UL; + + BitWord PostfixMask = (1UL << (E % BITWORD_SIZE)) - 1; + if (I < E) + Bits[I / BITWORD_SIZE] &= ~PostfixMask; + + return *this; + } + + BitVector &flip() { + for (unsigned i = 0; i < NumBitWords(size()); ++i) + Bits[i] = ~Bits[i]; + clear_unused_bits(); + return *this; + } + + BitVector &flip(unsigned Idx) { + Bits[Idx / BITWORD_SIZE] ^= BitWord(1) << (Idx % BITWORD_SIZE); + return *this; + } + + // Indexing. + reference operator[](unsigned Idx) { + assert (Idx < Size && "Out-of-bounds Bit access."); + return reference(*this, Idx); + } + + bool operator[](unsigned Idx) const { + assert (Idx < Size && "Out-of-bounds Bit access."); + BitWord Mask = BitWord(1) << (Idx % BITWORD_SIZE); + return (Bits[Idx / BITWORD_SIZE] & Mask) != 0; + } + + bool test(unsigned Idx) const { + return (*this)[Idx]; + } + + /// Test if any common bits are set. + bool anyCommon(const BitVector &RHS) const { + unsigned ThisWords = NumBitWords(size()); + unsigned RHSWords = NumBitWords(RHS.size()); + for (unsigned i = 0, e = std::min(ThisWords, RHSWords); i != e; ++i) + if (Bits[i] & RHS.Bits[i]) + return true; + return false; + } + + // Comparison operators. + bool operator==(const BitVector &RHS) const { + unsigned ThisWords = NumBitWords(size()); + unsigned RHSWords = NumBitWords(RHS.size()); + unsigned i; + for (i = 0; i != std::min(ThisWords, RHSWords); ++i) + if (Bits[i] != RHS.Bits[i]) + return false; + + // Verify that any extra words are all zeros. + if (i != ThisWords) { + for (; i != ThisWords; ++i) + if (Bits[i]) + return false; + } else if (i != RHSWords) { + for (; i != RHSWords; ++i) + if (RHS.Bits[i]) + return false; + } + return true; + } + + bool operator!=(const BitVector &RHS) const { + return !(*this == RHS); + } + + /// Intersection, union, disjoint union. + BitVector &operator&=(const BitVector &RHS) { + unsigned ThisWords = NumBitWords(size()); + unsigned RHSWords = NumBitWords(RHS.size()); + unsigned i; + for (i = 0; i != std::min(ThisWords, RHSWords); ++i) + Bits[i] &= RHS.Bits[i]; + + // Any bits that are just in this bitvector become zero, because they aren't + // in the RHS bit vector. Any words only in RHS are ignored because they + // are already zero in the LHS. + for (; i != ThisWords; ++i) + Bits[i] = 0; + + return *this; + } + + /// reset - Reset bits that are set in RHS. Same as *this &= ~RHS. + BitVector &reset(const BitVector &RHS) { + unsigned ThisWords = NumBitWords(size()); + unsigned RHSWords = NumBitWords(RHS.size()); + unsigned i; + for (i = 0; i != std::min(ThisWords, RHSWords); ++i) + Bits[i] &= ~RHS.Bits[i]; + return *this; + } + + /// test - Check if (This - RHS) is zero. + /// This is the same as reset(RHS) and any(). + bool test(const BitVector &RHS) const { + unsigned ThisWords = NumBitWords(size()); + unsigned RHSWords = NumBitWords(RHS.size()); + unsigned i; + for (i = 0; i != std::min(ThisWords, RHSWords); ++i) + if ((Bits[i] & ~RHS.Bits[i]) != 0) + return true; + + for (; i != ThisWords ; ++i) + if (Bits[i] != 0) + return true; + + return false; + } + + BitVector &operator|=(const BitVector &RHS) { + if (size() < RHS.size()) + resize(RHS.size()); + for (size_t i = 0, e = NumBitWords(RHS.size()); i != e; ++i) + Bits[i] |= RHS.Bits[i]; + return *this; + } + + BitVector &operator^=(const BitVector &RHS) { + if (size() < RHS.size()) + resize(RHS.size()); + for (size_t i = 0, e = NumBitWords(RHS.size()); i != e; ++i) + Bits[i] ^= RHS.Bits[i]; + return *this; + } + + // Assignment operator. + const BitVector &operator=(const BitVector &RHS) { + if (this == &RHS) return *this; + + Size = RHS.size(); + unsigned RHSWords = NumBitWords(Size); + if (Size <= Capacity * BITWORD_SIZE) { + if (Size) + std::memcpy(Bits, RHS.Bits, RHSWords * sizeof(BitWord)); + clear_unused_bits(); + return *this; + } + + // Grow the bitvector to have enough elements. + Capacity = RHSWords; + assert(Capacity > 0 && "negative capacity?"); + BitWord *NewBits = (BitWord *)std::malloc(Capacity * sizeof(BitWord)); + std::memcpy(NewBits, RHS.Bits, Capacity * sizeof(BitWord)); + + // Destroy the old bits. + std::free(Bits); + Bits = NewBits; + + return *this; + } + + const BitVector &operator=(BitVector &&RHS) { + if (this == &RHS) return *this; + + std::free(Bits); + Bits = RHS.Bits; + Size = RHS.Size; + Capacity = RHS.Capacity; + + RHS.Bits = nullptr; + RHS.Size = RHS.Capacity = 0; + + return *this; + } + + void swap(BitVector &RHS) { + std::swap(Bits, RHS.Bits); + std::swap(Size, RHS.Size); + std::swap(Capacity, RHS.Capacity); + } + + //===--------------------------------------------------------------------===// + // Portable bit mask operations. + //===--------------------------------------------------------------------===// + // + // These methods all operate on arrays of uint32_t, each holding 32 bits. The + // fixed word size makes it easier to work with literal bit vector constants + // in portable code. + // + // The LSB in each word is the lowest numbered bit. The size of a portable + // bit mask is always a whole multiple of 32 bits. If no bit mask size is + // given, the bit mask is assumed to cover the entire BitVector. + + /// setBitsInMask - Add '1' bits from Mask to this vector. Don't resize. + /// This computes "*this |= Mask". + void setBitsInMask(const uint32_t *Mask, unsigned MaskWords = ~0u) { + applyMask<true, false>(Mask, MaskWords); + } + + /// clearBitsInMask - Clear any bits in this vector that are set in Mask. + /// Don't resize. This computes "*this &= ~Mask". + void clearBitsInMask(const uint32_t *Mask, unsigned MaskWords = ~0u) { + applyMask<false, false>(Mask, MaskWords); + } + + /// setBitsNotInMask - Add a bit to this vector for every '0' bit in Mask. + /// Don't resize. This computes "*this |= ~Mask". + void setBitsNotInMask(const uint32_t *Mask, unsigned MaskWords = ~0u) { + applyMask<true, true>(Mask, MaskWords); + } + + /// clearBitsNotInMask - Clear a bit in this vector for every '0' bit in Mask. + /// Don't resize. This computes "*this &= Mask". + void clearBitsNotInMask(const uint32_t *Mask, unsigned MaskWords = ~0u) { + applyMask<false, true>(Mask, MaskWords); + } + +private: + unsigned NumBitWords(unsigned S) const { + return (S + BITWORD_SIZE-1) / BITWORD_SIZE; + } + + // Set the unused bits in the high words. + void set_unused_bits(bool t = true) { + // Set high words first. + unsigned UsedWords = NumBitWords(Size); + if (Capacity > UsedWords) + init_words(&Bits[UsedWords], (Capacity-UsedWords), t); + + // Then set any stray high bits of the last used word. + unsigned ExtraBits = Size % BITWORD_SIZE; + if (ExtraBits) { + BitWord ExtraBitMask = ~0UL << ExtraBits; + if (t) + Bits[UsedWords-1] |= ExtraBitMask; + else + Bits[UsedWords-1] &= ~ExtraBitMask; + } + } + + // Clear the unused bits in the high words. + void clear_unused_bits() { + set_unused_bits(false); + } + + void grow(unsigned NewSize) { + Capacity = std::max(NumBitWords(NewSize), Capacity * 2); + assert(Capacity > 0 && "realloc-ing zero space"); + Bits = (BitWord *)std::realloc(Bits, Capacity * sizeof(BitWord)); + + clear_unused_bits(); + } + + void init_words(BitWord *B, unsigned NumWords, bool t) { + if (NumWords > 0) + memset(B, 0 - (int)t, NumWords*sizeof(BitWord)); + } + + template<bool AddBits, bool InvertMask> + void applyMask(const uint32_t *Mask, unsigned MaskWords) { + static_assert(BITWORD_SIZE % 32 == 0, "Unsupported BitWord size."); + MaskWords = std::min(MaskWords, (size() + 31) / 32); + const unsigned Scale = BITWORD_SIZE / 32; + unsigned i; + for (i = 0; MaskWords >= Scale; ++i, MaskWords -= Scale) { + BitWord BW = Bits[i]; + // This inner loop should unroll completely when BITWORD_SIZE > 32. + for (unsigned b = 0; b != BITWORD_SIZE; b += 32) { + uint32_t M = *Mask++; + if (InvertMask) M = ~M; + if (AddBits) BW |= BitWord(M) << b; + else BW &= ~(BitWord(M) << b); + } + Bits[i] = BW; + } + for (unsigned b = 0; MaskWords; b += 32, --MaskWords) { + uint32_t M = *Mask++; + if (InvertMask) M = ~M; + if (AddBits) Bits[i] |= BitWord(M) << b; + else Bits[i] &= ~(BitWord(M) << b); + } + if (AddBits) + clear_unused_bits(); + } + +public: + /// Return the size (in bytes) of the bit vector. + size_t getMemorySize() const { return Capacity * sizeof(BitWord); } +}; + +static inline size_t capacity_in_bytes(const BitVector &X) { + return X.getMemorySize(); +} + +} // end namespace llvm + +namespace std { + /// Implement std::swap in terms of BitVector swap. + inline void + swap(llvm::BitVector &LHS, llvm::BitVector &RHS) { + LHS.swap(RHS); + } +} // end namespace std + +#endif // LLVM_ADT_BITVECTOR_H |

