summaryrefslogtreecommitdiffstats
path: root/llvm/lib
diff options
context:
space:
mode:
authorRoman Tereshin <rtereshin@apple.com>2018-07-25 18:01:41 +0000
committerRoman Tereshin <rtereshin@apple.com>2018-07-25 18:01:41 +0000
commited047b018430a3702ed320d2446c555c649082ef (patch)
tree31052cd06223a5ece3aca6d992a3c8bfeae240ab /llvm/lib
parentbb9fd461a975f0295090b0d8a0464f6188319177 (diff)
downloadbcm5719-llvm-ed047b018430a3702ed320d2446c555c649082ef.tar.gz
bcm5719-llvm-ed047b018430a3702ed320d2446c555c649082ef.zip
[SCEV] Add [zs]ext{C,+,x} -> (D + [zs]ext{C-D,+,x})<nuw><nsw> transform
as well as sext(C + x + ...) -> (D + sext(C-D + x + ...))<nuw><nsw> similar to the equivalent transformation for zext's if the top level addition in (D + (C-D + x * n)) could be proven to not wrap, where the choice of D also maximizes the number of trailing zeroes of (C-D + x * n), ensuring homogeneous behaviour of the transformation and better canonicalization of such AddRec's (indeed, there are 2^(2w) different expressions in `B1 + ext(B2 + Y)` form for the same Y, but only 2^(2w - k) different expressions in the resulting `B3 + ext((B4 * 2^k) + Y)` form, where w is the bit width of the integral type) This patch generalizes sext(C1 + C2*X) --> sext(C1) + sext(C2*X) and sext{C1,+,C2} --> sext(C1) + sext{0,+,C2} transformations added in r209568 relaxing the requirements the following way: 1. C2 doesn't have to be a power of 2, it's enough if it's divisible by 2 a sufficient number of times; 2. C1 doesn't have to be less than C2, instead of extracting the entire C1 we can split it into 2 terms: (00...0XXX + YY...Y000), keep the second one that may cause wrapping within the extension operator, and move the first one that doesn't affect wrapping out of the extension operator, enabling further simplifications; 3. C1 and C2 don't have to be positive, splitting C1 like shown above produces a sum that is guaranteed to not wrap, signed or unsigned; 4. in AddExpr case there could be more than 2 terms, and in case of AddExpr the 2nd and following terms and in case of AddRecExpr the Step component don't have to be in the C2*X form or constant (respectively), they just need to have enough trailing zeros, which in turn could be guaranteed by means other than arithmetics, e.g. by a pointer alignment; 5. the extension operator doesn't have to be a sext, the same transformation works and profitable for zext's as well. Apparently, optimizations like SLPVectorizer currently fail to vectorize even rather trivial cases like the following: double bar(double *a, unsigned n) { double x = 0.0; double y = 0.0; for (unsigned i = 0; i < n; i += 2) { x += a[i]; y += a[i + 1]; } return x * y; } If compiled with `clang -std=c11 -Wpedantic -Wall -O3 main.c -S -o - -emit-llvm` (!{!"clang version 7.0.0 (trunk 337339) (llvm/trunk 337344)"}) it produces scalar code with the loop not unrolled with the unsigned `n` and `i` (like shown above), but vectorized and unrolled loop with signed `n` and `i`. With the changes made in this commit the unsigned version will be vectorized (though not unrolled for unclear reasons). How it all works: Let say we have an AddExpr that looks like (C + x + y + ...), where C is a constant and x, y, ... are arbitrary SCEVs. Let's compute the minimum number of trailing zeroes guaranteed of that sum w/o the constant term: (x + y + ...). If, for example, those terms look like follows: i XXXX...X000 YYYY...YY00 ... ZZZZ...0000 then the rightmost non-guaranteed-zero bit (a potential one at i-th position above) can change the bits of the sum to the left (and at i-th position itself), but it can not possibly change the bits to the right. So we can compute the number of trailing zeroes by taking a minimum between the numbers of trailing zeroes of the terms. Now let's say that our original sum with the constant is effectively just C + X, where X = x + y + .... Let's also say that we've got 2 guaranteed trailing zeros for X: j CCCC...CCCC XXXX...XX00 // this is X = (x + y + ...) Any bit of C to the left of j may in the end cause the C + X sum to wrap, but the rightmost 2 bits of C (at positions j and j - 1) do not affect wrapping in any way. If the upper bits cause a wrap, it will be a wrap regardless of the values of the 2 least significant bits of C. If the upper bits do not cause a wrap, it won't be a wrap regardless of the values of the 2 bits on the right (again). So let's split C to 2 constants like follows: 0000...00CC = D CCCC...CC00 = (C - D) and represent the whole sum as D + (C - D + X). The second term of this new sum looks like this: CCCC...CC00 XXXX...XX00 ----------- // let's add them up YYYY...YY00 The sum above (let's call it Y)) may or may not wrap, we don't know, so we need to keep it under a sext/zext. Adding D to that sum though will never wrap, signed or unsigned, if performed on the original bit width or the extended one, because all that that final add does is setting the 2 least significant bits of Y to the bits of D: YYYY...YY00 = Y 0000...00CC = D ----------- <nuw><nsw> YYYY...YYCC Which means we can safely move that D out of the sext or zext and claim that the top-level sum neither sign wraps nor unsigned wraps. Let's run an example, let's say we're working in i8's and the original expression (zext's or sext's operand) is 21 + 12x + 8y. So it goes like this: 0001 0101 // 21 XXXX XX00 // 12x YYYY Y000 // 8y 0001 0101 // 21 ZZZZ ZZ00 // 12x + 8y 0000 0001 // D 0001 0100 // 21 - D = 20 ZZZZ ZZ00 // 12x + 8y 0000 0001 // D WWWW WW00 // 21 - D + 12x + 8y = 20 + 12x + 8y therefore zext(21 + 12x + 8y) = (1 + zext(20 + 12x + 8y))<nuw><nsw> This approach could be improved if we move away from using trailing zeroes and use KnownBits instead. For instance, with KnownBits we could have the following picture: i 10 1110...0011 // this is C XX X1XX...XX00 // this is X = (x + y + ...) Notice that some of the bits of X are known ones, also notice that known bits of X are interspersed with unknown bits and not grouped on the rigth or left. We can see at the position i that C(i) and X(i) are both known ones, therefore the (i + 1)th carry bit is guaranteed to be 1 regardless of the bits of C to the right of i. For instance, the C(i - 1) bit only affects the bits of the sum at positions i - 1 and i, and does not influence if the sum is going to wrap or not. Therefore we could split the constant C the following way: i 00 0010...0011 = D 10 1100...0000 = (C - D) Let's compute the KnownBits of (C - D) + X: XX1 1 = carry bit, blanks stand for known zeroes 10 1100...0000 = (C - D) XX X1XX...XX00 = X --- ----------- XX X0XX...XX00 Will this add wrap or not essentially depends on bits of X. Adding D to this sum, however, is guaranteed to not to wrap: 0 X 00 0010...0011 = D sX X0XX...XX00 = (C - D) + X --- ----------- sX XXXX XX11 As could be seen above, adding D preserves the sign bit of (C - D) + X, if any, and has a guaranteed 0 carry out, as expected. The more bits of (C - D) we constrain, the better the transformations introduced here canonicalize expressions as it leaves less freedom to what values the constant part of ((C - D) + x + y + ...) can take. Reviewed By: mzolotukhin, efriedma Differential Revision: https://reviews.llvm.org/D48853 llvm-svn: 337943
Diffstat (limited to 'llvm/lib')
-rw-r--r--llvm/lib/Analysis/ScalarEvolution.cpp167
1 files changed, 104 insertions, 63 deletions
diff --git a/llvm/lib/Analysis/ScalarEvolution.cpp b/llvm/lib/Analysis/ScalarEvolution.cpp
index b2f12a12d1d..aa95ace9301 100644
--- a/llvm/lib/Analysis/ScalarEvolution.cpp
+++ b/llvm/lib/Analysis/ScalarEvolution.cpp
@@ -1559,6 +1559,43 @@ bool ScalarEvolution::proveNoWrapByVaryingStart(const SCEV *Start,
return false;
}
+// Finds an integer D for an expression (C + x + y + ...) such that the top
+// level addition in (D + (C - D + x + y + ...)) would not wrap (signed or
+// unsigned) and the number of trailing zeros of (C - D + x + y + ...) is
+// maximized, where C is the \p ConstantTerm, x, y, ... are arbitrary SCEVs, and
+// the (C + x + y + ...) expression is \p WholeAddExpr.
+static APInt extractConstantWithoutWrapping(ScalarEvolution &SE,
+ const SCEVConstant *ConstantTerm,
+ const SCEVAddExpr *WholeAddExpr) {
+ const APInt C = ConstantTerm->getAPInt();
+ const unsigned BitWidth = C.getBitWidth();
+ // Find number of trailing zeros of (x + y + ...) w/o the C first:
+ uint32_t TZ = BitWidth;
+ for (unsigned I = 1, E = WholeAddExpr->getNumOperands(); I < E && TZ; ++I)
+ TZ = std::min(TZ, SE.GetMinTrailingZeros(WholeAddExpr->getOperand(I)));
+ if (TZ) {
+ // Set D to be as many least significant bits of C as possible while still
+ // guaranteeing that adding D to (C - D + x + y + ...) won't cause a wrap:
+ return TZ < BitWidth ? C.trunc(TZ).zext(BitWidth) : C;
+ }
+ return APInt(BitWidth, 0);
+}
+
+// Finds an integer D for an affine AddRec expression {C,+,x} such that the top
+// level addition in (D + {C-D,+,x}) would not wrap (signed or unsigned) and the
+// number of trailing zeros of (C - D + x * n) is maximized, where C is the \p
+// ConstantStart, x is an arbitrary \p Step, and n is the loop trip count.
+static APInt extractConstantWithoutWrapping(ScalarEvolution &SE,
+ const APInt &ConstantStart,
+ const SCEV *Step) {
+ const unsigned BitWidth = ConstantStart.getBitWidth();
+ const uint32_t TZ = SE.GetMinTrailingZeros(Step);
+ if (TZ)
+ return TZ < BitWidth ? ConstantStart.trunc(TZ).zext(BitWidth)
+ : ConstantStart;
+ return APInt(BitWidth, 0);
+}
+
const SCEV *
ScalarEvolution::getZeroExtendExpr(const SCEV *Op, Type *Ty, unsigned Depth) {
assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
@@ -1745,6 +1782,23 @@ ScalarEvolution::getZeroExtendExpr(const SCEV *Op, Type *Ty, unsigned Depth) {
}
}
+ // zext({C,+,Step}) --> (zext(D) + zext({C-D,+,Step}))<nuw><nsw>
+ // if D + (C - D + Step * n) could be proven to not unsigned wrap
+ // where D maximizes the number of trailing zeros of (C - D + Step * n)
+ if (const auto *SC = dyn_cast<SCEVConstant>(Start)) {
+ const APInt &C = SC->getAPInt();
+ const APInt &D = extractConstantWithoutWrapping(*this, C, Step);
+ if (D != 0) {
+ const SCEV *SZExtD = getZeroExtendExpr(getConstant(D), Ty, Depth);
+ const SCEV *SResidual =
+ getAddRecExpr(getConstant(C - D), Step, L, AR->getNoWrapFlags());
+ const SCEV *SZExtR = getZeroExtendExpr(SResidual, Ty, Depth + 1);
+ return getAddExpr(SZExtD, SZExtR,
+ (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW),
+ Depth + 1);
+ }
+ }
+
if (proveNoWrapByVaryingStart<SCEVZeroExtendExpr>(Start, Step, L)) {
const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
return getAddRecExpr(
@@ -1778,41 +1832,24 @@ ScalarEvolution::getZeroExtendExpr(const SCEV *Op, Type *Ty, unsigned Depth) {
return getAddExpr(Ops, SCEV::FlagNUW, Depth + 1);
}
- // zext(C + x + y + ...) --> (zext(D) + zext((C - D) + x + y + ...))<nuw>
+ // zext(C + x + y + ...) --> (zext(D) + zext((C - D) + x + y + ...))
// if D + (C - D + x + y + ...) could be proven to not unsigned wrap
// where D maximizes the number of trailing zeros of (C - D + x + y + ...)
//
- // Useful while proving that address arithmetic expressions are equal or
- // differ by a small constant amount, see LoadStoreVectorizer pass.
+ // Often address arithmetics contain expressions like
+ // (zext (add (shl X, C1), C2)), for instance, (zext (5 + (4 * X))).
+ // This transformation is useful while proving that such expressions are
+ // equal or differ by a small constant amount, see LoadStoreVectorizer pass.
if (const auto *SC = dyn_cast<SCEVConstant>(SA->getOperand(0))) {
- // Often address arithmetics contain expressions like
- // (zext (add (shl X, C1), C2)), for instance, (zext (5 + (4 * X))).
- // ConstantRange is unable to prove that it's possible to transform
- // (5 + (4 * X)) to (1 + (4 + (4 * X))) w/o underflowing:
- //
- // | Expression | ConstantRange | KnownBits |
- // |---------------|------------------------|-----------------------|
- // | i8 4 * X | [L: 0, U: 253) | XXXX XX00 |
- // | | => Min: 0, Max: 252 | => Min: 0, Max: 252 |
- // | | | |
- // | i8 4 * X + 5 | [L: 5, U: 2) (wrapped) | YYYY YY01 |
- // | (101) | => Min: 0, Max: 255 | => Min: 1, Max: 253 |
- //
- // As KnownBits are not available for SCEV expressions, use number of
- // trailing zeroes instead:
- APInt C = SC->getAPInt();
- uint32_t TZ = C.getBitWidth();
- for (unsigned I = 1, E = SA->getNumOperands(); I < E && TZ; ++I)
- TZ = std::min(TZ, GetMinTrailingZeros(SA->getOperand(I)));
- if (TZ) {
- APInt D = TZ < C.getBitWidth() ? C.trunc(TZ).zext(C.getBitWidth()) : C;
- if (D != 0) {
- const SCEV *SZExtD = getZeroExtendExpr(getConstant(D), Ty, Depth);
- const SCEV *SResidual =
- getAddExpr(getConstant(-D), SA, SCEV::FlagAnyWrap, Depth);
- const SCEV *SZExtR = getZeroExtendExpr(SResidual, Ty, Depth + 1);
- return getAddExpr(SZExtD, SZExtR, SCEV::FlagNUW, Depth + 1);
- }
+ const APInt &D = extractConstantWithoutWrapping(*this, SC, SA);
+ if (D != 0) {
+ const SCEV *SZExtD = getZeroExtendExpr(getConstant(D), Ty, Depth);
+ const SCEV *SResidual =
+ getAddExpr(getConstant(-D), SA, SCEV::FlagAnyWrap, Depth);
+ const SCEV *SZExtR = getZeroExtendExpr(SResidual, Ty, Depth + 1);
+ return getAddExpr(SZExtD, SZExtR,
+ (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW),
+ Depth + 1);
}
}
}
@@ -1916,24 +1953,7 @@ ScalarEvolution::getSignExtendExpr(const SCEV *Op, Type *Ty, unsigned Depth) {
return getTruncateOrSignExtend(X, Ty);
}
- // sext(C1 + (C2 * x)) --> C1 + sext(C2 * x) if C1 < C2
if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) {
- if (SA->getNumOperands() == 2) {
- auto *SC1 = dyn_cast<SCEVConstant>(SA->getOperand(0));
- auto *SMul = dyn_cast<SCEVMulExpr>(SA->getOperand(1));
- if (SMul && SC1) {
- if (auto *SC2 = dyn_cast<SCEVConstant>(SMul->getOperand(0))) {
- const APInt &C1 = SC1->getAPInt();
- const APInt &C2 = SC2->getAPInt();
- if (C1.isStrictlyPositive() && C2.isStrictlyPositive() &&
- C2.ugt(C1) && C2.isPowerOf2())
- return getAddExpr(getSignExtendExpr(SC1, Ty, Depth + 1),
- getSignExtendExpr(SMul, Ty, Depth + 1),
- SCEV::FlagAnyWrap, Depth + 1);
- }
- }
- }
-
// sext((A + B + ...)<nsw>) --> (sext(A) + sext(B) + ...)<nsw>
if (SA->hasNoSignedWrap()) {
// If the addition does not sign overflow then we can, by definition,
@@ -1943,6 +1963,28 @@ ScalarEvolution::getSignExtendExpr(const SCEV *Op, Type *Ty, unsigned Depth) {
Ops.push_back(getSignExtendExpr(Op, Ty, Depth + 1));
return getAddExpr(Ops, SCEV::FlagNSW, Depth + 1);
}
+
+ // sext(C + x + y + ...) --> (sext(D) + sext((C - D) + x + y + ...))
+ // if D + (C - D + x + y + ...) could be proven to not signed wrap
+ // where D maximizes the number of trailing zeros of (C - D + x + y + ...)
+ //
+ // For instance, this will bring two seemingly different expressions:
+ // 1 + sext(5 + 20 * %x + 24 * %y) and
+ // sext(6 + 20 * %x + 24 * %y)
+ // to the same form:
+ // 2 + sext(4 + 20 * %x + 24 * %y)
+ if (const auto *SC = dyn_cast<SCEVConstant>(SA->getOperand(0))) {
+ const APInt &D = extractConstantWithoutWrapping(*this, SC, SA);
+ if (D != 0) {
+ const SCEV *SSExtD = getSignExtendExpr(getConstant(D), Ty, Depth);
+ const SCEV *SResidual =
+ getAddExpr(getConstant(-D), SA, SCEV::FlagAnyWrap, Depth);
+ const SCEV *SSExtR = getSignExtendExpr(SResidual, Ty, Depth + 1);
+ return getAddExpr(SSExtD, SSExtR,
+ (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW),
+ Depth + 1);
+ }
+ }
}
// If the input value is a chrec scev, and we can prove that the value
// did not overflow the old, smaller, value, we can sign extend all of the
@@ -2072,21 +2114,20 @@ ScalarEvolution::getSignExtendExpr(const SCEV *Op, Type *Ty, unsigned Depth) {
}
}
- // If Start and Step are constants, check if we can apply this
- // transformation:
- // sext{C1,+,C2} --> C1 + sext{0,+,C2} if C1 < C2
- auto *SC1 = dyn_cast<SCEVConstant>(Start);
- auto *SC2 = dyn_cast<SCEVConstant>(Step);
- if (SC1 && SC2) {
- const APInt &C1 = SC1->getAPInt();
- const APInt &C2 = SC2->getAPInt();
- if (C1.isStrictlyPositive() && C2.isStrictlyPositive() && C2.ugt(C1) &&
- C2.isPowerOf2()) {
- Start = getSignExtendExpr(Start, Ty, Depth + 1);
- const SCEV *NewAR = getAddRecExpr(getZero(AR->getType()), Step, L,
- AR->getNoWrapFlags());
- return getAddExpr(Start, getSignExtendExpr(NewAR, Ty, Depth + 1),
- SCEV::FlagAnyWrap, Depth + 1);
+ // sext({C,+,Step}) --> (sext(D) + sext({C-D,+,Step}))<nuw><nsw>
+ // if D + (C - D + Step * n) could be proven to not signed wrap
+ // where D maximizes the number of trailing zeros of (C - D + Step * n)
+ if (const auto *SC = dyn_cast<SCEVConstant>(Start)) {
+ const APInt &C = SC->getAPInt();
+ const APInt &D = extractConstantWithoutWrapping(*this, C, Step);
+ if (D != 0) {
+ const SCEV *SSExtD = getSignExtendExpr(getConstant(D), Ty, Depth);
+ const SCEV *SResidual =
+ getAddRecExpr(getConstant(C - D), Step, L, AR->getNoWrapFlags());
+ const SCEV *SSExtR = getSignExtendExpr(SResidual, Ty, Depth + 1);
+ return getAddExpr(SSExtD, SSExtR,
+ (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW),
+ Depth + 1);
}
}
OpenPOWER on IntegriCloud