diff options
author | Michael Kuperstein <michael.m.kuperstein@intel.com> | 2015-02-01 11:44:44 +0000 |
---|---|---|
committer | Michael Kuperstein <michael.m.kuperstein@intel.com> | 2015-02-01 11:44:44 +0000 |
commit | bd57186c763f9c47a6da570f56aceabd830e32a0 (patch) | |
tree | e50de967a38d0d8a6a12df08fd6a6628bd7f7d49 /llvm/lib | |
parent | af3c256ffa7110965cd05dcf49a9f4f70c7f225c (diff) | |
download | bcm5719-llvm-bd57186c763f9c47a6da570f56aceabd830e32a0.tar.gz bcm5719-llvm-bd57186c763f9c47a6da570f56aceabd830e32a0.zip |
[X86] Convert esp-relative movs of function arguments to pushes, step 2
This moves the transformation introduced in r223757 into a separate MI pass.
This allows it to cover many more cases (not only cases where there must be a
reserved call frame), and perform rudimentary call folding. It still doesn't
have a heuristic, so it is enabled only for optsize/minsize, with stack
alignment <= 8, where it ought to be a fairly clear win.
Differential Revision: http://reviews.llvm.org/D6789
llvm-svn: 227728
Diffstat (limited to 'llvm/lib')
-rw-r--r-- | llvm/lib/CodeGen/PrologEpilogInserter.cpp | 20 | ||||
-rw-r--r-- | llvm/lib/CodeGen/TargetFrameLoweringImpl.cpp | 5 | ||||
-rw-r--r-- | llvm/lib/Target/X86/CMakeLists.txt | 107 | ||||
-rw-r--r-- | llvm/lib/Target/X86/X86.h | 5 | ||||
-rw-r--r-- | llvm/lib/Target/X86/X86CallFrameOptimization.cpp | 400 | ||||
-rw-r--r-- | llvm/lib/Target/X86/X86FastISel.cpp | 6716 | ||||
-rw-r--r-- | llvm/lib/Target/X86/X86FrameLowering.cpp | 4123 | ||||
-rw-r--r-- | llvm/lib/Target/X86/X86FrameLowering.h | 192 | ||||
-rw-r--r-- | llvm/lib/Target/X86/X86InstrCompiler.td | 3700 | ||||
-rw-r--r-- | llvm/lib/Target/X86/X86InstrInfo.cpp | 52 | ||||
-rw-r--r-- | llvm/lib/Target/X86/X86InstrInfo.h | 5 | ||||
-rw-r--r-- | llvm/lib/Target/X86/X86MachineFunctionInfo.h | 12 | ||||
-rw-r--r-- | llvm/lib/Target/X86/X86RegisterInfo.cpp | 5 | ||||
-rw-r--r-- | llvm/lib/Target/X86/X86TargetMachine.cpp | 5 |
14 files changed, 7878 insertions, 7469 deletions
diff --git a/llvm/lib/CodeGen/PrologEpilogInserter.cpp b/llvm/lib/CodeGen/PrologEpilogInserter.cpp index 385e5a35afb..61407faaf32 100644 --- a/llvm/lib/CodeGen/PrologEpilogInserter.cpp +++ b/llvm/lib/CodeGen/PrologEpilogInserter.cpp @@ -703,7 +703,8 @@ void PEI::insertPrologEpilogCode(MachineFunction &Fn) { /// register references and actual offsets. /// void PEI::replaceFrameIndices(MachineFunction &Fn) { - if (!Fn.getFrameInfo()->hasStackObjects()) return; // Nothing to do? + const TargetFrameLowering &TFI = *Fn.getSubtarget().getFrameLowering(); + if (!TFI.needsFrameIndexResolution(Fn)) return; // Store SPAdj at exit of a basic block. SmallVector<int, 8> SPState; @@ -769,13 +770,6 @@ void PEI::replaceFrameIndices(MachineBasicBlock *BB, MachineFunction &Fn, continue; } - // If we are looking at a call sequence, we need to keep track of - // the SP adjustment made by each instruction in the sequence. - // This includes both the frame setup/destroy pseudos (handled above), - // as well as other instructions that have side effects w.r.t the SP. - if (InsideCallSequence) - SPAdj += TII.getSPAdjust(I); - MachineInstr *MI = I; bool DoIncr = true; for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { @@ -854,6 +848,16 @@ void PEI::replaceFrameIndices(MachineBasicBlock *BB, MachineFunction &Fn, break; } + // If we are looking at a call sequence, we need to keep track of + // the SP adjustment made by each instruction in the sequence. + // This includes both the frame setup/destroy pseudos (handled above), + // as well as other instructions that have side effects w.r.t the SP. + // Note that this must come after eliminateFrameIndex, because + // if I itself referred to a frame index, we shouldn't count its own + // adjustment. + if (MI && InsideCallSequence) + SPAdj += TII.getSPAdjust(MI); + if (DoIncr && I != BB->end()) ++I; // Update register states. diff --git a/llvm/lib/CodeGen/TargetFrameLoweringImpl.cpp b/llvm/lib/CodeGen/TargetFrameLoweringImpl.cpp index 1557d10238e..e3f01912b87 100644 --- a/llvm/lib/CodeGen/TargetFrameLoweringImpl.cpp +++ b/llvm/lib/CodeGen/TargetFrameLoweringImpl.cpp @@ -42,3 +42,8 @@ int TargetFrameLowering::getFrameIndexReference(const MachineFunction &MF, FrameReg = RI->getFrameRegister(MF); return getFrameIndexOffset(MF, FI); } + +bool TargetFrameLowering::needsFrameIndexResolution( + const MachineFunction &MF) const { + return MF.getFrameInfo()->hasStackObjects(); +} diff --git a/llvm/lib/Target/X86/CMakeLists.txt b/llvm/lib/Target/X86/CMakeLists.txt index 1083fad80e8..461915f3414 100644 --- a/llvm/lib/Target/X86/CMakeLists.txt +++ b/llvm/lib/Target/X86/CMakeLists.txt @@ -1,53 +1,54 @@ -set(LLVM_TARGET_DEFINITIONS X86.td) - -tablegen(LLVM X86GenRegisterInfo.inc -gen-register-info) -tablegen(LLVM X86GenDisassemblerTables.inc -gen-disassembler) -tablegen(LLVM X86GenInstrInfo.inc -gen-instr-info) -tablegen(LLVM X86GenAsmWriter.inc -gen-asm-writer) -tablegen(LLVM X86GenAsmWriter1.inc -gen-asm-writer -asmwriternum=1) -tablegen(LLVM X86GenAsmMatcher.inc -gen-asm-matcher) -tablegen(LLVM X86GenDAGISel.inc -gen-dag-isel) -tablegen(LLVM X86GenFastISel.inc -gen-fast-isel) -tablegen(LLVM X86GenCallingConv.inc -gen-callingconv) -tablegen(LLVM X86GenSubtargetInfo.inc -gen-subtarget) -add_public_tablegen_target(X86CommonTableGen) - -set(sources - X86AsmPrinter.cpp - X86FastISel.cpp - X86FloatingPoint.cpp - X86FrameLowering.cpp - X86ISelDAGToDAG.cpp - X86ISelLowering.cpp - X86InstrInfo.cpp - X86MCInstLower.cpp - X86MachineFunctionInfo.cpp - X86PadShortFunction.cpp - X86RegisterInfo.cpp - X86SelectionDAGInfo.cpp - X86Subtarget.cpp - X86TargetMachine.cpp - X86TargetObjectFile.cpp - X86TargetTransformInfo.cpp - X86VZeroUpper.cpp - X86FixupLEAs.cpp - ) - -if( CMAKE_CL_64 ) - enable_language(ASM_MASM) - ADD_CUSTOM_COMMAND( - OUTPUT ${CMAKE_CURRENT_BINARY_DIR}/X86CompilationCallback_Win64.obj - MAIN_DEPENDENCY X86CompilationCallback_Win64.asm - COMMAND ${CMAKE_ASM_MASM_COMPILER} /Fo ${CMAKE_CURRENT_BINARY_DIR}/X86CompilationCallback_Win64.obj /c ${CMAKE_CURRENT_SOURCE_DIR}/X86CompilationCallback_Win64.asm - ) - set(sources ${sources} ${CMAKE_CURRENT_BINARY_DIR}/X86CompilationCallback_Win64.obj) -endif() - -add_llvm_target(X86CodeGen ${sources}) - -add_subdirectory(AsmParser) -add_subdirectory(Disassembler) -add_subdirectory(InstPrinter) -add_subdirectory(MCTargetDesc) -add_subdirectory(TargetInfo) -add_subdirectory(Utils) +set(LLVM_TARGET_DEFINITIONS X86.td)
+
+tablegen(LLVM X86GenRegisterInfo.inc -gen-register-info)
+tablegen(LLVM X86GenDisassemblerTables.inc -gen-disassembler)
+tablegen(LLVM X86GenInstrInfo.inc -gen-instr-info)
+tablegen(LLVM X86GenAsmWriter.inc -gen-asm-writer)
+tablegen(LLVM X86GenAsmWriter1.inc -gen-asm-writer -asmwriternum=1)
+tablegen(LLVM X86GenAsmMatcher.inc -gen-asm-matcher)
+tablegen(LLVM X86GenDAGISel.inc -gen-dag-isel)
+tablegen(LLVM X86GenFastISel.inc -gen-fast-isel)
+tablegen(LLVM X86GenCallingConv.inc -gen-callingconv)
+tablegen(LLVM X86GenSubtargetInfo.inc -gen-subtarget)
+add_public_tablegen_target(X86CommonTableGen)
+
+set(sources
+ X86AsmPrinter.cpp
+ X86CallFrameOptimization.cpp
+ X86FastISel.cpp
+ X86FloatingPoint.cpp
+ X86FrameLowering.cpp
+ X86ISelDAGToDAG.cpp
+ X86ISelLowering.cpp
+ X86InstrInfo.cpp
+ X86MCInstLower.cpp
+ X86MachineFunctionInfo.cpp
+ X86PadShortFunction.cpp
+ X86RegisterInfo.cpp
+ X86SelectionDAGInfo.cpp
+ X86Subtarget.cpp
+ X86TargetMachine.cpp
+ X86TargetObjectFile.cpp
+ X86TargetTransformInfo.cpp
+ X86VZeroUpper.cpp
+ X86FixupLEAs.cpp
+ )
+
+if( CMAKE_CL_64 )
+ enable_language(ASM_MASM)
+ ADD_CUSTOM_COMMAND(
+ OUTPUT ${CMAKE_CURRENT_BINARY_DIR}/X86CompilationCallback_Win64.obj
+ MAIN_DEPENDENCY X86CompilationCallback_Win64.asm
+ COMMAND ${CMAKE_ASM_MASM_COMPILER} /Fo ${CMAKE_CURRENT_BINARY_DIR}/X86CompilationCallback_Win64.obj /c ${CMAKE_CURRENT_SOURCE_DIR}/X86CompilationCallback_Win64.asm
+ )
+ set(sources ${sources} ${CMAKE_CURRENT_BINARY_DIR}/X86CompilationCallback_Win64.obj)
+endif()
+
+add_llvm_target(X86CodeGen ${sources})
+
+add_subdirectory(AsmParser)
+add_subdirectory(Disassembler)
+add_subdirectory(InstPrinter)
+add_subdirectory(MCTargetDesc)
+add_subdirectory(TargetInfo)
+add_subdirectory(Utils)
diff --git a/llvm/lib/Target/X86/X86.h b/llvm/lib/Target/X86/X86.h index 71fc567cb55..8b0a4cf477f 100644 --- a/llvm/lib/Target/X86/X86.h +++ b/llvm/lib/Target/X86/X86.h @@ -64,6 +64,11 @@ FunctionPass *createX86PadShortFunctions(); /// to eliminate execution delays in some Atom processors. FunctionPass *createX86FixupLEAs(); +/// createX86CallFrameOptimization - Return a pass that optimizes +/// the code-size of x86 call sequences. This is done by replacing +/// esp-relative movs with pushes. +FunctionPass *createX86CallFrameOptimization(); + } // End llvm namespace #endif diff --git a/llvm/lib/Target/X86/X86CallFrameOptimization.cpp b/llvm/lib/Target/X86/X86CallFrameOptimization.cpp new file mode 100644 index 00000000000..f832b94fdc6 --- /dev/null +++ b/llvm/lib/Target/X86/X86CallFrameOptimization.cpp @@ -0,0 +1,400 @@ +//===----- X86CallFrameOptimization.cpp - Optimize x86 call sequences -----===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines a pass that optimizes call sequences on x86.
+// Currently, it converts movs of function parameters onto the stack into
+// pushes. This is beneficial for two main reasons:
+// 1) The push instruction encoding is much smaller than an esp-relative mov
+// 2) It is possible to push memory arguments directly. So, if the
+// the transformation is preformed pre-reg-alloc, it can help relieve
+// register pressure.
+//
+//===----------------------------------------------------------------------===//
+
+#include <algorithm>
+
+#include "X86.h"
+#include "X86InstrInfo.h"
+#include "X86Subtarget.h"
+#include "X86MachineFunctionInfo.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/CodeGen/MachineFunctionPass.h"
+#include "llvm/CodeGen/MachineInstrBuilder.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/CodeGen/Passes.h"
+#include "llvm/IR/Function.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/Target/TargetInstrInfo.h"
+
+using namespace llvm;
+
+#define DEBUG_TYPE "x86-cf-opt"
+
+cl::opt<bool> NoX86CFOpt("no-x86-call-frame-opt",
+ cl::desc("Avoid optimizing x86 call frames for size"),
+ cl::init(false), cl::Hidden);
+
+namespace {
+class X86CallFrameOptimization : public MachineFunctionPass {
+public:
+ X86CallFrameOptimization() : MachineFunctionPass(ID) {}
+
+ bool runOnMachineFunction(MachineFunction &MF) override;
+
+private:
+ bool shouldPerformTransformation(MachineFunction &MF);
+
+ bool adjustCallSequence(MachineFunction &MF, MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator I);
+
+ MachineInstr *canFoldIntoRegPush(MachineBasicBlock::iterator FrameSetup,
+ unsigned Reg);
+
+ const char *getPassName() const override {
+ return "X86 Optimize Call Frame";
+ }
+
+ const TargetInstrInfo *TII;
+ const TargetFrameLowering *TFL;
+ const MachineRegisterInfo *MRI;
+ static char ID;
+};
+
+char X86CallFrameOptimization::ID = 0;
+}
+
+FunctionPass *llvm::createX86CallFrameOptimization() {
+ return new X86CallFrameOptimization();
+}
+
+// This checks whether the transformation is legal and profitable
+bool X86CallFrameOptimization::shouldPerformTransformation(MachineFunction &MF) {
+ if (NoX86CFOpt.getValue())
+ return false;
+
+ // We currently only support call sequences where *all* parameters.
+ // are passed on the stack.
+ // No point in running this in 64-bit mode, since some arguments are
+ // passed in-register in all common calling conventions, so the pattern
+ // we're looking for will never match.
+ const X86Subtarget &STI = MF.getTarget().getSubtarget<X86Subtarget>();
+ if (STI.is64Bit())
+ return false;
+
+ // You would expect straight-line code between call-frame setup and
+ // call-frame destroy. You would be wrong. There are circumstances (e.g.
+ // CMOV_GR8 expansion of a select that feeds a function call!) where we can
+ // end up with the setup and the destroy in different basic blocks.
+ // This is bad, and breaks SP adjustment.
+ // So, check that all of the frames in the function are closed inside
+ // the same block, and, for good measure, that there are no nested frames.
+ int FrameSetupOpcode = TII->getCallFrameSetupOpcode();
+ int FrameDestroyOpcode = TII->getCallFrameDestroyOpcode();
+ for (MachineBasicBlock &BB : MF) {
+ bool InsideFrameSequence = false;
+ for (MachineInstr &MI : BB) {
+ if (MI.getOpcode() == FrameSetupOpcode) {
+ if (InsideFrameSequence)
+ return false;
+ InsideFrameSequence = true;
+ }
+ else if (MI.getOpcode() == FrameDestroyOpcode) {
+ if (!InsideFrameSequence)
+ return false;
+ InsideFrameSequence = false;
+ }
+ }
+
+ if (InsideFrameSequence)
+ return false;
+ }
+
+ // Now that we know the transformation is legal, check if it is
+ // profitable.
+ // TODO: Add a heuristic that actually looks at the function,
+ // and enable this for more cases.
+
+ // This transformation is always a win when we expected to have
+ // a reserved call frame. Under other circumstances, it may be either
+ // a win or a loss, and requires a heuristic.
+ // For now, enable it only for the relatively clear win cases.
+ bool CannotReserveFrame = MF.getFrameInfo()->hasVarSizedObjects();
+ if (CannotReserveFrame)
+ return true;
+
+ // For now, don't even try to evaluate the profitability when
+ // not optimizing for size.
+ AttributeSet FnAttrs = MF.getFunction()->getAttributes();
+ bool OptForSize =
+ FnAttrs.hasAttribute(AttributeSet::FunctionIndex,
+ Attribute::OptimizeForSize) ||
+ FnAttrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::MinSize);
+
+ if (!OptForSize)
+ return false;
+
+ // Stack re-alignment can make this unprofitable even in terms of size.
+ // As mentioned above, a better heuristic is needed. For now, don't do this
+ // when the required alignment is above 8. (4 would be the safe choice, but
+ // some experimentation showed 8 is generally good).
+ if (TFL->getStackAlignment() > 8)
+ return false;
+
+ return true;
+}
+
+bool X86CallFrameOptimization::runOnMachineFunction(MachineFunction &MF) {
+ TII = MF.getSubtarget().getInstrInfo();
+ TFL = MF.getSubtarget().getFrameLowering();
+ MRI = &MF.getRegInfo();
+
+ if (!shouldPerformTransformation(MF))
+ return false;
+
+ int FrameSetupOpcode = TII->getCallFrameSetupOpcode();
+
+ bool Changed = false;
+
+ for (MachineFunction::iterator BB = MF.begin(), E = MF.end(); BB != E; ++BB)
+ for (MachineBasicBlock::iterator I = BB->begin(); I != BB->end(); ++I)
+ if (I->getOpcode() == FrameSetupOpcode)
+ Changed |= adjustCallSequence(MF, *BB, I);
+
+ return Changed;
+}
+
+bool X86CallFrameOptimization::adjustCallSequence(MachineFunction &MF,
+ MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator I) {
+
+ // Check that this particular call sequence is amenable to the
+ // transformation.
+ const X86RegisterInfo &RegInfo = *static_cast<const X86RegisterInfo *>(
+ MF.getSubtarget().getRegisterInfo());
+ unsigned StackPtr = RegInfo.getStackRegister();
+ int FrameDestroyOpcode = TII->getCallFrameDestroyOpcode();
+
+ // We expect to enter this at the beginning of a call sequence
+ assert(I->getOpcode() == TII->getCallFrameSetupOpcode());
+ MachineBasicBlock::iterator FrameSetup = I++;
+
+
+ // For globals in PIC mode, we can have some LEAs here.
+ // Ignore them, they don't bother us.
+ // TODO: Extend this to something that covers more cases.
+ while (I->getOpcode() == X86::LEA32r)
+ ++I;
+
+ // We expect a copy instruction here.
+ // TODO: The copy instruction is a lowering artifact.
+ // We should also support a copy-less version, where the stack
+ // pointer is used directly.
+ if (!I->isCopy() || !I->getOperand(0).isReg())
+ return false;
+ MachineBasicBlock::iterator SPCopy = I++;
+ StackPtr = SPCopy->getOperand(0).getReg();
+
+ // Scan the call setup sequence for the pattern we're looking for.
+ // We only handle a simple case - a sequence of MOV32mi or MOV32mr
+ // instructions, that push a sequence of 32-bit values onto the stack, with
+ // no gaps between them.
+ SmallVector<MachineInstr*, 4> MovVector(4, nullptr);
+ unsigned int MaxAdjust = FrameSetup->getOperand(0).getImm() / 4;
+ if (MaxAdjust > 4)
+ MovVector.resize(MaxAdjust, nullptr);
+
+ do {
+ int Opcode = I->getOpcode();
+ if (Opcode != X86::MOV32mi && Opcode != X86::MOV32mr)
+ break;
+
+ // We only want movs of the form:
+ // movl imm/r32, k(%esp)
+ // If we run into something else, bail.
+ // Note that AddrBaseReg may, counter to its name, not be a register,
+ // but rather a frame index.
+ // TODO: Support the fi case. This should probably work now that we
+ // have the infrastructure to track the stack pointer within a call
+ // sequence.
+ if (!I->getOperand(X86::AddrBaseReg).isReg() ||
+ (I->getOperand(X86::AddrBaseReg).getReg() != StackPtr) ||
+ !I->getOperand(X86::AddrScaleAmt).isImm() ||
+ (I->getOperand(X86::AddrScaleAmt).getImm() != 1) ||
+ (I->getOperand(X86::AddrIndexReg).getReg() != X86::NoRegister) ||
+ (I->getOperand(X86::AddrSegmentReg).getReg() != X86::NoRegister) ||
+ !I->getOperand(X86::AddrDisp).isImm())
+ return false;
+
+ int64_t StackDisp = I->getOperand(X86::AddrDisp).getImm();
+ assert(StackDisp >= 0 && "Negative stack displacement when passing parameters");
+
+ // We really don't want to consider the unaligned case.
+ if (StackDisp % 4)
+ return false;
+ StackDisp /= 4;
+
+ assert((size_t)StackDisp < MovVector.size() &&
+ "Function call has more parameters than the stack is adjusted for.");
+
+ // If the same stack slot is being filled twice, something's fishy.
+ if (MovVector[StackDisp] != nullptr)
+ return false;
+ MovVector[StackDisp] = I;
+
+ ++I;
+ } while (I != MBB.end());
+
+ // We now expect the end of the sequence - a call and a stack adjust.
+ if (I == MBB.end())
+ return false;
+
+ // For PCrel calls, we expect an additional COPY of the basereg.
+ // If we find one, skip it.
+ if (I->isCopy()) {
+ if (I->getOperand(1).getReg() ==
+ MF.getInfo<X86MachineFunctionInfo>()->getGlobalBaseReg())
+ ++I;
+ else
+ return false;
+ }
+
+ if (!I->isCall())
+ return false;
+ MachineBasicBlock::iterator Call = I;
+ if ((++I)->getOpcode() != FrameDestroyOpcode)
+ return false;
+
+ // Now, go through the vector, and see that we don't have any gaps,
+ // but only a series of 32-bit MOVs.
+
+ int64_t ExpectedDist = 0;
+ auto MMI = MovVector.begin(), MME = MovVector.end();
+ for (; MMI != MME; ++MMI, ExpectedDist += 4)
+ if (*MMI == nullptr)
+ break;
+
+ // If the call had no parameters, do nothing
+ if (!ExpectedDist)
+ return false;
+
+ // We are either at the last parameter, or a gap.
+ // Make sure it's not a gap
+ for (; MMI != MME; ++MMI)
+ if (*MMI != nullptr)
+ return false;
+
+ // Ok, we can in fact do the transformation for this call.
+ // Do not remove the FrameSetup instruction, but adjust the parameters.
+ // PEI will end up finalizing the handling of this.
+ FrameSetup->getOperand(1).setImm(ExpectedDist);
+
+ DebugLoc DL = I->getDebugLoc();
+ // Now, iterate through the vector in reverse order, and replace the movs
+ // with pushes. MOVmi/MOVmr doesn't have any defs, so no need to
+ // replace uses.
+ for (int Idx = (ExpectedDist / 4) - 1; Idx >= 0; --Idx) {
+ MachineBasicBlock::iterator MOV = *MovVector[Idx];
+ MachineOperand PushOp = MOV->getOperand(X86::AddrNumOperands);
+ if (MOV->getOpcode() == X86::MOV32mi) {
+ unsigned PushOpcode = X86::PUSHi32;
+ // If the operand is a small (8-bit) immediate, we can use a
+ // PUSH instruction with a shorter encoding.
+ // Note that isImm() may fail even though this is a MOVmi, because
+ // the operand can also be a symbol.
+ if (PushOp.isImm()) {
+ int64_t Val = PushOp.getImm();
+ if (isInt<8>(Val))
+ PushOpcode = X86::PUSH32i8;
+ }
+ BuildMI(MBB, Call, DL, TII->get(PushOpcode)).addOperand(PushOp);
+ } else {
+ unsigned int Reg = PushOp.getReg();
+
+ // If PUSHrmm is not slow on this target, try to fold the source of the
+ // push into the instruction.
+ const X86Subtarget &ST = MF.getTarget().getSubtarget<X86Subtarget>();
+ bool SlowPUSHrmm = ST.isAtom() || ST.isSLM();
+
+ // Check that this is legal to fold. Right now, we're extremely
+ // conservative about that.
+ MachineInstr *DefMov = nullptr;
+ if (!SlowPUSHrmm && (DefMov = canFoldIntoRegPush(FrameSetup, Reg))) {
+ MachineInstr *Push = BuildMI(MBB, Call, DL, TII->get(X86::PUSH32rmm));
+
+ unsigned NumOps = DefMov->getDesc().getNumOperands();
+ for (unsigned i = NumOps - X86::AddrNumOperands; i != NumOps; ++i)
+ Push->addOperand(DefMov->getOperand(i));
+
+ DefMov->eraseFromParent();
+ } else {
+ BuildMI(MBB, Call, DL, TII->get(X86::PUSH32r)).addReg(Reg).getInstr();
+ }
+ }
+
+ MBB.erase(MOV);
+ }
+
+ // The stack-pointer copy is no longer used in the call sequences.
+ // There should not be any other users, but we can't commit to that, so:
+ if (MRI->use_empty(SPCopy->getOperand(0).getReg()))
+ SPCopy->eraseFromParent();
+
+ // Once we've done this, we need to make sure PEI doesn't assume a reserved
+ // frame.
+ X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
+ FuncInfo->setHasPushSequences(true);
+
+ return true;
+}
+
+MachineInstr *X86CallFrameOptimization::canFoldIntoRegPush(
+ MachineBasicBlock::iterator FrameSetup, unsigned Reg) {
+ // Do an extremely restricted form of load folding.
+ // ISel will often create patterns like:
+ // movl 4(%edi), %eax
+ // movl 8(%edi), %ecx
+ // movl 12(%edi), %edx
+ // movl %edx, 8(%esp)
+ // movl %ecx, 4(%esp)
+ // movl %eax, (%esp)
+ // call
+ // Get rid of those with prejudice.
+ if (!TargetRegisterInfo::isVirtualRegister(Reg))
+ return nullptr;
+
+ // Make sure this is the only use of Reg.
+ if (!MRI->hasOneNonDBGUse(Reg))
+ return nullptr;
+
+ MachineBasicBlock::iterator DefMI = MRI->getVRegDef(Reg);
+
+ // Make sure the def is a MOV from memory.
+ // If the def is an another block, give up.
+ if (DefMI->getOpcode() != X86::MOV32rm ||
+ DefMI->getParent() != FrameSetup->getParent())
+ return nullptr;
+
+ // Be careful with movs that load from a stack slot, since it may get
+ // resolved incorrectly.
+ // TODO: Again, we already have the infrastructure, so this should work.
+ if (!DefMI->getOperand(1).isReg())
+ return nullptr;
+
+ // Now, make sure everything else up until the ADJCALLSTACK is a sequence
+ // of MOVs. To be less conservative would require duplicating a lot of the
+ // logic from PeepholeOptimizer.
+ // FIXME: A possibly better approach would be to teach the PeepholeOptimizer
+ // to be smarter about folding into pushes.
+ for (auto I = DefMI; I != FrameSetup; ++I)
+ if (I->getOpcode() != X86::MOV32rm)
+ return nullptr;
+
+ return DefMI;
+}
diff --git a/llvm/lib/Target/X86/X86FastISel.cpp b/llvm/lib/Target/X86/X86FastISel.cpp index 227cacd24eb..220ba312197 100644 --- a/llvm/lib/Target/X86/X86FastISel.cpp +++ b/llvm/lib/Target/X86/X86FastISel.cpp @@ -1,3358 +1,3358 @@ -//===-- X86FastISel.cpp - X86 FastISel implementation ---------------------===// -// -// The LLVM Compiler Infrastructure -// -// This file is distributed under the University of Illinois Open Source -// License. See LICENSE.TXT for details. -// -//===----------------------------------------------------------------------===// -// -// This file defines the X86-specific support for the FastISel class. Much -// of the target-specific code is generated by tablegen in the file -// X86GenFastISel.inc, which is #included here. -// -//===----------------------------------------------------------------------===// - -#include "X86.h" -#include "X86CallingConv.h" -#include "X86InstrBuilder.h" -#include "X86InstrInfo.h" -#include "X86MachineFunctionInfo.h" -#include "X86RegisterInfo.h" -#include "X86Subtarget.h" -#include "X86TargetMachine.h" -#include "llvm/Analysis/BranchProbabilityInfo.h" -#include "llvm/CodeGen/Analysis.h" -#include "llvm/CodeGen/FastISel.h" -#include "llvm/CodeGen/FunctionLoweringInfo.h" -#include "llvm/CodeGen/MachineConstantPool.h" -#include "llvm/CodeGen/MachineFrameInfo.h" -#include "llvm/CodeGen/MachineRegisterInfo.h" -#include "llvm/IR/CallSite.h" -#include "llvm/IR/CallingConv.h" -#include "llvm/IR/DerivedTypes.h" -#include "llvm/IR/GetElementPtrTypeIterator.h" -#include "llvm/IR/GlobalAlias.h" -#include "llvm/IR/GlobalVariable.h" -#include "llvm/IR/Instructions.h" -#include "llvm/IR/IntrinsicInst.h" -#include "llvm/IR/Operator.h" -#include "llvm/Support/ErrorHandling.h" -#include "llvm/Target/TargetOptions.h" -using namespace llvm; - -namespace { - -class X86FastISel final : public FastISel { - /// Subtarget - Keep a pointer to the X86Subtarget around so that we can - /// make the right decision when generating code for different targets. - const X86Subtarget *Subtarget; - - /// X86ScalarSSEf32, X86ScalarSSEf64 - Select between SSE or x87 - /// floating point ops. - /// When SSE is available, use it for f32 operations. - /// When SSE2 is available, use it for f64 operations. - bool X86ScalarSSEf64; - bool X86ScalarSSEf32; - -public: - explicit X86FastISel(FunctionLoweringInfo &funcInfo, - const TargetLibraryInfo *libInfo) - : FastISel(funcInfo, libInfo) { - Subtarget = &TM.getSubtarget<X86Subtarget>(); - X86ScalarSSEf64 = Subtarget->hasSSE2(); - X86ScalarSSEf32 = Subtarget->hasSSE1(); - } - - bool fastSelectInstruction(const Instruction *I) override; - - /// \brief The specified machine instr operand is a vreg, and that - /// vreg is being provided by the specified load instruction. If possible, - /// try to fold the load as an operand to the instruction, returning true if - /// possible. - bool tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo, - const LoadInst *LI) override; - - bool fastLowerArguments() override; - bool fastLowerCall(CallLoweringInfo &CLI) override; - bool fastLowerIntrinsicCall(const IntrinsicInst *II) override; - -#include "X86GenFastISel.inc" - -private: - bool X86FastEmitCompare(const Value *LHS, const Value *RHS, EVT VT, DebugLoc DL); - - bool X86FastEmitLoad(EVT VT, const X86AddressMode &AM, MachineMemOperand *MMO, - unsigned &ResultReg); - - bool X86FastEmitStore(EVT VT, const Value *Val, const X86AddressMode &AM, - MachineMemOperand *MMO = nullptr, bool Aligned = false); - bool X86FastEmitStore(EVT VT, unsigned ValReg, bool ValIsKill, - const X86AddressMode &AM, - MachineMemOperand *MMO = nullptr, bool Aligned = false); - - bool X86FastEmitExtend(ISD::NodeType Opc, EVT DstVT, unsigned Src, EVT SrcVT, - unsigned &ResultReg); - - bool X86SelectAddress(const Value *V, X86AddressMode &AM); - bool X86SelectCallAddress(const Value *V, X86AddressMode &AM); - - bool X86SelectLoad(const Instruction *I); - - bool X86SelectStore(const Instruction *I); - - bool X86SelectRet(const Instruction *I); - - bool X86SelectCmp(const Instruction *I); - - bool X86SelectZExt(const Instruction *I); - - bool X86SelectBranch(const Instruction *I); - - bool X86SelectShift(const Instruction *I); - - bool X86SelectDivRem(const Instruction *I); - - bool X86FastEmitCMoveSelect(MVT RetVT, const Instruction *I); - - bool X86FastEmitSSESelect(MVT RetVT, const Instruction *I); - - bool X86FastEmitPseudoSelect(MVT RetVT, const Instruction *I); - - bool X86SelectSelect(const Instruction *I); - - bool X86SelectTrunc(const Instruction *I); - - bool X86SelectFPExt(const Instruction *I); - bool X86SelectFPTrunc(const Instruction *I); - - const X86InstrInfo *getInstrInfo() const { - return getTargetMachine()->getSubtargetImpl()->getInstrInfo(); - } - const X86TargetMachine *getTargetMachine() const { - return static_cast<const X86TargetMachine *>(&TM); - } - - bool handleConstantAddresses(const Value *V, X86AddressMode &AM); - - unsigned X86MaterializeInt(const ConstantInt *CI, MVT VT); - unsigned X86MaterializeFP(const ConstantFP *CFP, MVT VT); - unsigned X86MaterializeGV(const GlobalValue *GV, MVT VT); - unsigned fastMaterializeConstant(const Constant *C) override; - - unsigned fastMaterializeAlloca(const AllocaInst *C) override; - - unsigned fastMaterializeFloatZero(const ConstantFP *CF) override; - - /// isScalarFPTypeInSSEReg - Return true if the specified scalar FP type is - /// computed in an SSE register, not on the X87 floating point stack. - bool isScalarFPTypeInSSEReg(EVT VT) const { - return (VT == MVT::f64 && X86ScalarSSEf64) || // f64 is when SSE2 - (VT == MVT::f32 && X86ScalarSSEf32); // f32 is when SSE1 - } - - bool isTypeLegal(Type *Ty, MVT &VT, bool AllowI1 = false); - - bool IsMemcpySmall(uint64_t Len); - - bool TryEmitSmallMemcpy(X86AddressMode DestAM, - X86AddressMode SrcAM, uint64_t Len); - - bool foldX86XALUIntrinsic(X86::CondCode &CC, const Instruction *I, - const Value *Cond); -}; - -} // end anonymous namespace. - -static std::pair<X86::CondCode, bool> -getX86ConditionCode(CmpInst::Predicate Predicate) { - X86::CondCode CC = X86::COND_INVALID; - bool NeedSwap = false; - switch (Predicate) { - default: break; - // Floating-point Predicates - case CmpInst::FCMP_UEQ: CC = X86::COND_E; break; - case CmpInst::FCMP_OLT: NeedSwap = true; // fall-through - case CmpInst::FCMP_OGT: CC = X86::COND_A; break; - case CmpInst::FCMP_OLE: NeedSwap = true; // fall-through - case CmpInst::FCMP_OGE: CC = X86::COND_AE; break; - case CmpInst::FCMP_UGT: NeedSwap = true; // fall-through - case CmpInst::FCMP_ULT: CC = X86::COND_B; break; - case CmpInst::FCMP_UGE: NeedSwap = true; // fall-through - case CmpInst::FCMP_ULE: CC = X86::COND_BE; break; - case CmpInst::FCMP_ONE: CC = X86::COND_NE; break; - case CmpInst::FCMP_UNO: CC = X86::COND_P; break; - case CmpInst::FCMP_ORD: CC = X86::COND_NP; break; - case CmpInst::FCMP_OEQ: // fall-through - case CmpInst::FCMP_UNE: CC = X86::COND_INVALID; break; - - // Integer Predicates - case CmpInst::ICMP_EQ: CC = X86::COND_E; break; - case CmpInst::ICMP_NE: CC = X86::COND_NE; break; - case CmpInst::ICMP_UGT: CC = X86::COND_A; break; - case CmpInst::ICMP_UGE: CC = X86::COND_AE; break; - case CmpInst::ICMP_ULT: CC = X86::COND_B; break; - case CmpInst::ICMP_ULE: CC = X86::COND_BE; break; - case CmpInst::ICMP_SGT: CC = X86::COND_G; break; - case CmpInst::ICMP_SGE: CC = X86::COND_GE; break; - case CmpInst::ICMP_SLT: CC = X86::COND_L; break; - case CmpInst::ICMP_SLE: CC = X86::COND_LE; break; - } - - return std::make_pair(CC, NeedSwap); -} - -static std::pair<unsigned, bool> -getX86SSEConditionCode(CmpInst::Predicate Predicate) { - unsigned CC; - bool NeedSwap = false; - - // SSE Condition code mapping: - // 0 - EQ - // 1 - LT - // 2 - LE - // 3 - UNORD - // 4 - NEQ - // 5 - NLT - // 6 - NLE - // 7 - ORD - switch (Predicate) { - default: llvm_unreachable("Unexpected predicate"); - case CmpInst::FCMP_OEQ: CC = 0; break; - case CmpInst::FCMP_OGT: NeedSwap = true; // fall-through - case CmpInst::FCMP_OLT: CC = 1; break; - case CmpInst::FCMP_OGE: NeedSwap = true; // fall-through - case CmpInst::FCMP_OLE: CC = 2; break; - case CmpInst::FCMP_UNO: CC = 3; break; - case CmpInst::FCMP_UNE: CC = 4; break; - case CmpInst::FCMP_ULE: NeedSwap = true; // fall-through - case CmpInst::FCMP_UGE: CC = 5; break; - case CmpInst::FCMP_ULT: NeedSwap = true; // fall-through - case CmpInst::FCMP_UGT: CC = 6; break; - case CmpInst::FCMP_ORD: CC = 7; break; - case CmpInst::FCMP_UEQ: - case CmpInst::FCMP_ONE: CC = 8; break; - } - - return std::make_pair(CC, NeedSwap); -} - -/// \brief Check if it is possible to fold the condition from the XALU intrinsic -/// into the user. The condition code will only be updated on success. -bool X86FastISel::foldX86XALUIntrinsic(X86::CondCode &CC, const Instruction *I, - const Value *Cond) { - if (!isa<ExtractValueInst>(Cond)) - return false; - - const auto *EV = cast<ExtractValueInst>(Cond); - if (!isa<IntrinsicInst>(EV->getAggregateOperand())) - return false; - - const auto *II = cast<IntrinsicInst>(EV->getAggregateOperand()); - MVT RetVT; - const Function *Callee = II->getCalledFunction(); - Type *RetTy = - cast<StructType>(Callee->getReturnType())->getTypeAtIndex(0U); - if (!isTypeLegal(RetTy, RetVT)) - return false; - - if (RetVT != MVT::i32 && RetVT != MVT::i64) - return false; - - X86::CondCode TmpCC; - switch (II->getIntrinsicID()) { - default: return false; - case Intrinsic::sadd_with_overflow: - case Intrinsic::ssub_with_overflow: - case Intrinsic::smul_with_overflow: - case Intrinsic::umul_with_overflow: TmpCC = X86::COND_O; break; - case Intrinsic::uadd_with_overflow: - case Intrinsic::usub_with_overflow: TmpCC = X86::COND_B; break; - } - - // Check if both instructions are in the same basic block. - if (II->getParent() != I->getParent()) - return false; - - // Make sure nothing is in the way - BasicBlock::const_iterator Start = I; - BasicBlock::const_iterator End = II; - for (auto Itr = std::prev(Start); Itr != End; --Itr) { - // We only expect extractvalue instructions between the intrinsic and the - // instruction to be selected. - if (!isa<ExtractValueInst>(Itr)) - return false; - - // Check that the extractvalue operand comes from the intrinsic. - const auto *EVI = cast<ExtractValueInst>(Itr); - if (EVI->getAggregateOperand() != II) - return false; - } - - CC = TmpCC; - return true; -} - -bool X86FastISel::isTypeLegal(Type *Ty, MVT &VT, bool AllowI1) { - EVT evt = TLI.getValueType(Ty, /*HandleUnknown=*/true); - if (evt == MVT::Other || !evt.isSimple()) - // Unhandled type. Halt "fast" selection and bail. - return false; - - VT = evt.getSimpleVT(); - // For now, require SSE/SSE2 for performing floating-point operations, - // since x87 requires additional work. - if (VT == MVT::f64 && !X86ScalarSSEf64) - return false; - if (VT == MVT::f32 && !X86ScalarSSEf32) - return false; - // Similarly, no f80 support yet. - if (VT == MVT::f80) - return false; - // We only handle legal types. For example, on x86-32 the instruction - // selector contains all of the 64-bit instructions from x86-64, - // under the assumption that i64 won't be used if the target doesn't - // support it. - return (AllowI1 && VT == MVT::i1) || TLI.isTypeLegal(VT); -} - -#include "X86GenCallingConv.inc" - -/// X86FastEmitLoad - Emit a machine instruction to load a value of type VT. -/// The address is either pre-computed, i.e. Ptr, or a GlobalAddress, i.e. GV. -/// Return true and the result register by reference if it is possible. -bool X86FastISel::X86FastEmitLoad(EVT VT, const X86AddressMode &AM, - MachineMemOperand *MMO, unsigned &ResultReg) { - // Get opcode and regclass of the output for the given load instruction. - unsigned Opc = 0; - const TargetRegisterClass *RC = nullptr; - switch (VT.getSimpleVT().SimpleTy) { - default: return false; - case MVT::i1: - case MVT::i8: - Opc = X86::MOV8rm; - RC = &X86::GR8RegClass; - break; - case MVT::i16: - Opc = X86::MOV16rm; - RC = &X86::GR16RegClass; - break; - case MVT::i32: - Opc = X86::MOV32rm; - RC = &X86::GR32RegClass; - break; - case MVT::i64: - // Must be in x86-64 mode. - Opc = X86::MOV64rm; - RC = &X86::GR64RegClass; - break; - case MVT::f32: - if (X86ScalarSSEf32) { - Opc = Subtarget->hasAVX() ? X86::VMOVSSrm : X86::MOVSSrm; - RC = &X86::FR32RegClass; - } else { - Opc = X86::LD_Fp32m; - RC = &X86::RFP32RegClass; - } - break; - case MVT::f64: - if (X86ScalarSSEf64) { - Opc = Subtarget->hasAVX() ? X86::VMOVSDrm : X86::MOVSDrm; - RC = &X86::FR64RegClass; - } else { - Opc = X86::LD_Fp64m; - RC = &X86::RFP64RegClass; - } - break; - case MVT::f80: - // No f80 support yet. - return false; - } - - ResultReg = createResultReg(RC); - MachineInstrBuilder MIB = - BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg); - addFullAddress(MIB, AM); - if (MMO) - MIB->addMemOperand(*FuncInfo.MF, MMO); - return true; -} - -/// X86FastEmitStore - Emit a machine instruction to store a value Val of -/// type VT. The address is either pre-computed, consisted of a base ptr, Ptr -/// and a displacement offset, or a GlobalAddress, -/// i.e. V. Return true if it is possible. -bool X86FastISel::X86FastEmitStore(EVT VT, unsigned ValReg, bool ValIsKill, - const X86AddressMode &AM, - MachineMemOperand *MMO, bool Aligned) { - // Get opcode and regclass of the output for the given store instruction. - unsigned Opc = 0; - switch (VT.getSimpleVT().SimpleTy) { - case MVT::f80: // No f80 support yet. - default: return false; - case MVT::i1: { - // Mask out all but lowest bit. - unsigned AndResult = createResultReg(&X86::GR8RegClass); - BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, - TII.get(X86::AND8ri), AndResult) - .addReg(ValReg, getKillRegState(ValIsKill)).addImm(1); - ValReg = AndResult; - } - // FALLTHROUGH, handling i1 as i8. - case MVT::i8: Opc = X86::MOV8mr; break; - case MVT::i16: Opc = X86::MOV16mr; break; - case MVT::i32: Opc = X86::MOV32mr; break; - case MVT::i64: Opc = X86::MOV64mr; break; // Must be in x86-64 mode. - case MVT::f32: - Opc = X86ScalarSSEf32 ? - (Subtarget->hasAVX() ? X86::VMOVSSmr : X86::MOVSSmr) : X86::ST_Fp32m; - break; - case MVT::f64: - Opc = X86ScalarSSEf64 ? - (Subtarget->hasAVX() ? X86::VMOVSDmr : X86::MOVSDmr) : X86::ST_Fp64m; - break; - case MVT::v4f32: - if (Aligned) - Opc = Subtarget->hasAVX() ? X86::VMOVAPSmr : X86::MOVAPSmr; - else - Opc = Subtarget->hasAVX() ? X86::VMOVUPSmr : X86::MOVUPSmr; - break; - case MVT::v2f64: - if (Aligned) - Opc = Subtarget->hasAVX() ? X86::VMOVAPDmr : X86::MOVAPDmr; - else - Opc = Subtarget->hasAVX() ? X86::VMOVUPDmr : X86::MOVUPDmr; - break; - case MVT::v4i32: - case MVT::v2i64: - case MVT::v8i16: - case MVT::v16i8: - if (Aligned) - Opc = Subtarget->hasAVX() ? X86::VMOVDQAmr : X86::MOVDQAmr; - else - Opc = Subtarget->hasAVX() ? X86::VMOVDQUmr : X86::MOVDQUmr; - break; - } - - MachineInstrBuilder MIB = - BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc)); - addFullAddress(MIB, AM).addReg(ValReg, getKillRegState(ValIsKill)); - if (MMO) - MIB->addMemOperand(*FuncInfo.MF, MMO); - - return true; -} - -bool X86FastISel::X86FastEmitStore(EVT VT, const Value *Val, - const X86AddressMode &AM, - MachineMemOperand *MMO, bool Aligned) { - // Handle 'null' like i32/i64 0. - if (isa<ConstantPointerNull>(Val)) - Val = Constant::getNullValue(DL.getIntPtrType(Val->getContext())); - - // If this is a store of a simple constant, fold the constant into the store. - if (const ConstantInt *CI = dyn_cast<ConstantInt>(Val)) { - unsigned Opc = 0; - bool Signed = true; - switch (VT.getSimpleVT().SimpleTy) { - default: break; - case MVT::i1: Signed = false; // FALLTHROUGH to handle as i8. - case MVT::i8: Opc = X86::MOV8mi; break; - case MVT::i16: Opc = X86::MOV16mi; break; - case MVT::i32: Opc = X86::MOV32mi; break; - case MVT::i64: - // Must be a 32-bit sign extended value. - if (isInt<32>(CI->getSExtValue())) - Opc = X86::MOV64mi32; - break; - } - - if (Opc) { - MachineInstrBuilder MIB = - BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc)); - addFullAddress(MIB, AM).addImm(Signed ? (uint64_t) CI->getSExtValue() - : CI->getZExtValue()); - if (MMO) - MIB->addMemOperand(*FuncInfo.MF, MMO); - return true; - } - } - - unsigned ValReg = getRegForValue(Val); - if (ValReg == 0) - return false; - - bool ValKill = hasTrivialKill(Val); - return X86FastEmitStore(VT, ValReg, ValKill, AM, MMO, Aligned); -} - -/// X86FastEmitExtend - Emit a machine instruction to extend a value Src of -/// type SrcVT to type DstVT using the specified extension opcode Opc (e.g. -/// ISD::SIGN_EXTEND). -bool X86FastISel::X86FastEmitExtend(ISD::NodeType Opc, EVT DstVT, - unsigned Src, EVT SrcVT, - unsigned &ResultReg) { - unsigned RR = fastEmit_r(SrcVT.getSimpleVT(), DstVT.getSimpleVT(), Opc, - Src, /*TODO: Kill=*/false); - if (RR == 0) - return false; - - ResultReg = RR; - return true; -} - -bool X86FastISel::handleConstantAddresses(const Value *V, X86AddressMode &AM) { - // Handle constant address. - if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) { - // Can't handle alternate code models yet. - if (TM.getCodeModel() != CodeModel::Small) - return false; - - // Can't handle TLS yet. - if (GV->isThreadLocal()) - return false; - - // RIP-relative addresses can't have additional register operands, so if - // we've already folded stuff into the addressing mode, just force the - // global value into its own register, which we can use as the basereg. - if (!Subtarget->isPICStyleRIPRel() || - (AM.Base.Reg == 0 && AM.IndexReg == 0)) { - // Okay, we've committed to selecting this global. Set up the address. - AM.GV = GV; - - // Allow the subtarget to classify the global. - unsigned char GVFlags = Subtarget->ClassifyGlobalReference(GV, TM); - - // If this reference is relative to the pic base, set it now. - if (isGlobalRelativeToPICBase(GVFlags)) { - // FIXME: How do we know Base.Reg is free?? - AM.Base.Reg = getInstrInfo()->getGlobalBaseReg(FuncInfo.MF); - } - - // Unless the ABI requires an extra load, return a direct reference to - // the global. - if (!isGlobalStubReference(GVFlags)) { - if (Subtarget->isPICStyleRIPRel()) { - // Use rip-relative addressing if we can. Above we verified that the - // base and index registers are unused. - assert(AM.Base.Reg == 0 && AM.IndexReg == 0); - AM.Base.Reg = X86::RIP; - } - AM.GVOpFlags = GVFlags; - return true; - } - - // Ok, we need to do a load from a stub. If we've already loaded from - // this stub, reuse the loaded pointer, otherwise emit the load now. - DenseMap<const Value *, unsigned>::iterator I = LocalValueMap.find(V); - unsigned LoadReg; - if (I != LocalValueMap.end() && I->second != 0) { - LoadReg = I->second; - } else { - // Issue load from stub. - unsigned Opc = 0; - const TargetRegisterClass *RC = nullptr; - X86AddressMode StubAM; - StubAM.Base.Reg = AM.Base.Reg; - StubAM.GV = GV; - StubAM.GVOpFlags = GVFlags; - - // Prepare for inserting code in the local-value area. - SavePoint SaveInsertPt = enterLocalValueArea(); - - if (TLI.getPointerTy() == MVT::i64) { - Opc = X86::MOV64rm; - RC = &X86::GR64RegClass; - - if (Subtarget->isPICStyleRIPRel()) - StubAM.Base.Reg = X86::RIP; - } else { - Opc = X86::MOV32rm; - RC = &X86::GR32RegClass; - } - - LoadReg = createResultReg(RC); - MachineInstrBuilder LoadMI = - BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), LoadReg); - addFullAddress(LoadMI, StubAM); - - // Ok, back to normal mode. - leaveLocalValueArea(SaveInsertPt); - - // Prevent loading GV stub multiple times in same MBB. - LocalValueMap[V] = LoadReg; - } - - // Now construct the final address. Note that the Disp, Scale, - // and Index values may already be set here. - AM.Base.Reg = LoadReg; - AM.GV = nullptr; - return true; - } - } - - // If all else fails, try to materialize the value in a register. - if (!AM.GV || !Subtarget->isPICStyleRIPRel()) { - if (AM.Base.Reg == 0) { - AM.Base.Reg = getRegForValue(V); - return AM.Base.Reg != 0; - } - if (AM.IndexReg == 0) { - assert(AM.Scale == 1 && "Scale with no index!"); - AM.IndexReg = getRegForValue(V); - return AM.IndexReg != 0; - } - } - - return false; -} - -/// X86SelectAddress - Attempt to fill in an address from the given value. -/// -bool X86FastISel::X86SelectAddress(const Value *V, X86AddressMode &AM) { - SmallVector<const Value *, 32> GEPs; -redo_gep: - const User *U = nullptr; - unsigned Opcode = Instruction::UserOp1; - if (const Instruction *I = dyn_cast<Instruction>(V)) { - // Don't walk into other basic blocks; it's possible we haven't - // visited them yet, so the instructions may not yet be assigned - // virtual registers. - if (FuncInfo.StaticAllocaMap.count(static_cast<const AllocaInst *>(V)) || - FuncInfo.MBBMap[I->getParent()] == FuncInfo.MBB) { - Opcode = I->getOpcode(); - U = I; - } - } else if (const ConstantExpr *C = dyn_cast<ConstantExpr>(V)) { - Opcode = C->getOpcode(); - U = C; - } - - if (PointerType *Ty = dyn_cast<PointerType>(V->getType())) - if (Ty->getAddressSpace() > 255) - // Fast instruction selection doesn't support the special - // address spaces. - return false; - - switch (Opcode) { - default: break; - case Instruction::BitCast: - // Look past bitcasts. - return X86SelectAddress(U->getOperand(0), AM); - - case Instruction::IntToPtr: - // Look past no-op inttoptrs. - if (TLI.getValueType(U->getOperand(0)->getType()) == TLI.getPointerTy()) - return X86SelectAddress(U->getOperand(0), AM); - break; - - case Instruction::PtrToInt: - // Look past no-op ptrtoints. - if (TLI.getValueType(U->getType()) == TLI.getPointerTy()) - return X86SelectAddress(U->getOperand(0), AM); - break; - - case Instruction::Alloca: { - // Do static allocas. - const AllocaInst *A = cast<AllocaInst>(V); - DenseMap<const AllocaInst *, int>::iterator SI = - FuncInfo.StaticAllocaMap.find(A); - if (SI != FuncInfo.StaticAllocaMap.end()) { - AM.BaseType = X86AddressMode::FrameIndexBase; - AM.Base.FrameIndex = SI->second; - return true; - } - break; - } - - case Instruction::Add: { - // Adds of constants are common and easy enough. - if (const ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) { - uint64_t Disp = (int32_t)AM.Disp + (uint64_t)CI->getSExtValue(); - // They have to fit in the 32-bit signed displacement field though. - if (isInt<32>(Disp)) { - AM.Disp = (uint32_t)Disp; - return X86SelectAddress(U->getOperand(0), AM); - } - } - break; - } - - case Instruction::GetElementPtr: { - X86AddressMode SavedAM = AM; - - // Pattern-match simple GEPs. - uint64_t Disp = (int32_t)AM.Disp; - unsigned IndexReg = AM.IndexReg; - unsigned Scale = AM.Scale; - gep_type_iterator GTI = gep_type_begin(U); - // Iterate through the indices, folding what we can. Constants can be - // folded, and one dynamic index can be handled, if the scale is supported. - for (User::const_op_iterator i = U->op_begin() + 1, e = U->op_end(); - i != e; ++i, ++GTI) { - const Value *Op = *i; - if (StructType *STy = dyn_cast<StructType>(*GTI)) { - const StructLayout *SL = DL.getStructLayout(STy); - Disp += SL->getElementOffset(cast<ConstantInt>(Op)->getZExtValue()); - continue; - } - - // A array/variable index is always of the form i*S where S is the - // constant scale size. See if we can push the scale into immediates. - uint64_t S = DL.getTypeAllocSize(GTI.getIndexedType()); - for (;;) { - if (const ConstantInt *CI = dyn_cast<ConstantInt>(Op)) { - // Constant-offset addressing. - Disp += CI->getSExtValue() * S; - break; - } - if (canFoldAddIntoGEP(U, Op)) { - // A compatible add with a constant operand. Fold the constant. - ConstantInt *CI = - cast<ConstantInt>(cast<AddOperator>(Op)->getOperand(1)); - Disp += CI->getSExtValue() * S; - // Iterate on the other operand. - Op = cast<AddOperator>(Op)->getOperand(0); - continue; - } - if (IndexReg == 0 && - (!AM.GV || !Subtarget->isPICStyleRIPRel()) && - (S == 1 || S == 2 || S == 4 || S == 8)) { - // Scaled-index addressing. - Scale = S; - IndexReg = getRegForGEPIndex(Op).first; - if (IndexReg == 0) - return false; - break; - } - // Unsupported. - goto unsupported_gep; - } - } - - // Check for displacement overflow. - if (!isInt<32>(Disp)) - break; - - AM.IndexReg = IndexReg; - AM.Scale = Scale; - AM.Disp = (uint32_t)Disp; - GEPs.push_back(V); - - if (const GetElementPtrInst *GEP = - dyn_cast<GetElementPtrInst>(U->getOperand(0))) { - // Ok, the GEP indices were covered by constant-offset and scaled-index - // addressing. Update the address state and move on to examining the base. - V = GEP; - goto redo_gep; - } else if (X86SelectAddress(U->getOperand(0), AM)) { - return true; - } - - // If we couldn't merge the gep value into this addr mode, revert back to - // our address and just match the value instead of completely failing. - AM = SavedAM; - - for (SmallVectorImpl<const Value *>::reverse_iterator - I = GEPs.rbegin(), E = GEPs.rend(); I != E; ++I) - if (handleConstantAddresses(*I, AM)) - return true; - - return false; - unsupported_gep: - // Ok, the GEP indices weren't all covered. - break; - } - } - - return handleConstantAddresses(V, AM); -} - -/// X86SelectCallAddress - Attempt to fill in an address from the given value. -/// -bool X86FastISel::X86SelectCallAddress(const Value *V, X86AddressMode &AM) { - const User *U = nullptr; - unsigned Opcode = Instruction::UserOp1; - const Instruction *I = dyn_cast<Instruction>(V); - // Record if the value is defined in the same basic block. - // - // This information is crucial to know whether or not folding an - // operand is valid. - // Indeed, FastISel generates or reuses a virtual register for all - // operands of all instructions it selects. Obviously, the definition and - // its uses must use the same virtual register otherwise the produced - // code is incorrect. - // Before instruction selection, FunctionLoweringInfo::set sets the virtual - // registers for values that are alive across basic blocks. This ensures - // that the values are consistently set between across basic block, even - // if different instruction selection mechanisms are used (e.g., a mix of - // SDISel and FastISel). - // For values local to a basic block, the instruction selection process - // generates these virtual registers with whatever method is appropriate - // for its needs. In particular, FastISel and SDISel do not share the way - // local virtual registers are set. - // Therefore, this is impossible (or at least unsafe) to share values - // between basic blocks unless they use the same instruction selection - // method, which is not guarantee for X86. - // Moreover, things like hasOneUse could not be used accurately, if we - // allow to reference values across basic blocks whereas they are not - // alive across basic blocks initially. - bool InMBB = true; - if (I) { - Opcode = I->getOpcode(); - U = I; - InMBB = I->getParent() == FuncInfo.MBB->getBasicBlock(); - } else if (const ConstantExpr *C = dyn_cast<ConstantExpr>(V)) { - Opcode = C->getOpcode(); - U = C; - } - - switch (Opcode) { - default: break; - case Instruction::BitCast: - // Look past bitcasts if its operand is in the same BB. - if (InMBB) - return X86SelectCallAddress(U->getOperand(0), AM); - break; - - case Instruction::IntToPtr: - // Look past no-op inttoptrs if its operand is in the same BB. - if (InMBB && - TLI.getValueType(U->getOperand(0)->getType()) == TLI.getPointerTy()) - return X86SelectCallAddress(U->getOperand(0), AM); - break; - - case Instruction::PtrToInt: - // Look past no-op ptrtoints if its operand is in the same BB. - if (InMBB && - TLI.getValueType(U->getType()) == TLI.getPointerTy()) - return X86SelectCallAddress(U->getOperand(0), AM); - break; - } - - // Handle constant address. - if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) { - // Can't handle alternate code models yet. - if (TM.getCodeModel() != CodeModel::Small) - return false; - - // RIP-relative addresses can't have additional register operands. - if (Subtarget->isPICStyleRIPRel() && - (AM.Base.Reg != 0 || AM.IndexReg != 0)) - return false; - - // Can't handle DLL Import. - if (GV->hasDLLImportStorageClass()) - return false; - - // Can't handle TLS. - if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV)) - if (GVar->isThreadLocal()) - return false; - - // Okay, we've committed to selecting this global. Set up the basic address. - AM.GV = GV; - - // No ABI requires an extra load for anything other than DLLImport, which - // we rejected above. Return a direct reference to the global. - if (Subtarget->isPICStyleRIPRel()) { - // Use rip-relative addressing if we can. Above we verified that the - // base and index registers are unused. - assert(AM.Base.Reg == 0 && AM.IndexReg == 0); - AM.Base.Reg = X86::RIP; - } else if (Subtarget->isPICStyleStubPIC()) { - AM.GVOpFlags = X86II::MO_PIC_BASE_OFFSET; - } else if (Subtarget->isPICStyleGOT()) { - AM.GVOpFlags = X86II::MO_GOTOFF; - } - - return true; - } - - // If all else fails, try to materialize the value in a register. - if (!AM.GV || !Subtarget->isPICStyleRIPRel()) { - if (AM.Base.Reg == 0) { - AM.Base.Reg = getRegForValue(V); - return AM.Base.Reg != 0; - } - if (AM.IndexReg == 0) { - assert(AM.Scale == 1 && "Scale with no index!"); - AM.IndexReg = getRegForValue(V); - return AM.IndexReg != 0; - } - } - - return false; -} - - -/// X86SelectStore - Select and emit code to implement store instructions. -bool X86FastISel::X86SelectStore(const Instruction *I) { - // Atomic stores need special handling. - const StoreInst *S = cast<StoreInst>(I); - - if (S->isAtomic()) - return false; - - const Value *Val = S->getValueOperand(); - const Value *Ptr = S->getPointerOperand(); - - MVT VT; - if (!isTypeLegal(Val->getType(), VT, /*AllowI1=*/true)) - return false; - - unsigned Alignment = S->getAlignment(); - unsigned ABIAlignment = DL.getABITypeAlignment(Val->getType()); - if (Alignment == 0) // Ensure that codegen never sees alignment 0 - Alignment = ABIAlignment; - bool Aligned = Alignment >= ABIAlignment; - - X86AddressMode AM; - if (!X86SelectAddress(Ptr, AM)) - return false; - - return X86FastEmitStore(VT, Val, AM, createMachineMemOperandFor(I), Aligned); -} - -/// X86SelectRet - Select and emit code to implement ret instructions. -bool X86FastISel::X86SelectRet(const Instruction *I) { - const ReturnInst *Ret = cast<ReturnInst>(I); - const Function &F = *I->getParent()->getParent(); - const X86MachineFunctionInfo *X86MFInfo = - FuncInfo.MF->getInfo<X86MachineFunctionInfo>(); - - if (!FuncInfo.CanLowerReturn) - return false; - - CallingConv::ID CC = F.getCallingConv(); - if (CC != CallingConv::C && - CC != CallingConv::Fast && - CC != CallingConv::X86_FastCall && - CC != CallingConv::X86_64_SysV) - return false; - - if (Subtarget->isCallingConvWin64(CC)) - return false; - - // Don't handle popping bytes on return for now. - if (X86MFInfo->getBytesToPopOnReturn() != 0) - return false; - - // fastcc with -tailcallopt is intended to provide a guaranteed - // tail call optimization. Fastisel doesn't know how to do that. - if (CC == CallingConv::Fast && TM.Options.GuaranteedTailCallOpt) - return false; - - // Let SDISel handle vararg functions. - if (F.isVarArg()) - return false; - - // Build a list of return value registers. - SmallVector<unsigned, 4> RetRegs; - - if (Ret->getNumOperands() > 0) { - SmallVector<ISD::OutputArg, 4> Outs; - GetReturnInfo(F.getReturnType(), F.getAttributes(), Outs, TLI); - - // Analyze operands of the call, assigning locations to each operand. - SmallVector<CCValAssign, 16> ValLocs; - CCState CCInfo(CC, F.isVarArg(), *FuncInfo.MF, ValLocs, I->getContext()); - CCInfo.AnalyzeReturn(Outs, RetCC_X86); - - const Value *RV = Ret->getOperand(0); - unsigned Reg = getRegForValue(RV); - if (Reg == 0) - return false; - - // Only handle a single return value for now. - if (ValLocs.size() != 1) - return false; - - CCValAssign &VA = ValLocs[0]; - - // Don't bother handling odd stuff for now. - if (VA.getLocInfo() != CCValAssign::Full) - return false; - // Only handle register returns for now. - if (!VA.isRegLoc()) - return false; - - // The calling-convention tables for x87 returns don't tell - // the whole story. - if (VA.getLocReg() == X86::FP0 || VA.getLocReg() == X86::FP1) - return false; - - unsigned SrcReg = Reg + VA.getValNo(); - EVT SrcVT = TLI.getValueType(RV->getType()); - EVT DstVT = VA.getValVT(); - // Special handling for extended integers. - if (SrcVT != DstVT) { - if (SrcVT != MVT::i1 && SrcVT != MVT::i8 && SrcVT != MVT::i16) - return false; - - if (!Outs[0].Flags.isZExt() && !Outs[0].Flags.isSExt()) - return false; - - assert(DstVT == MVT::i32 && "X86 should always ext to i32"); - - if (SrcVT == MVT::i1) { - if (Outs[0].Flags.isSExt()) - return false; - SrcReg = fastEmitZExtFromI1(MVT::i8, SrcReg, /*TODO: Kill=*/false); - SrcVT = MVT::i8; - } - unsigned Op = Outs[0].Flags.isZExt() ? ISD::ZERO_EXTEND : - ISD::SIGN_EXTEND; - SrcReg = fastEmit_r(SrcVT.getSimpleVT(), DstVT.getSimpleVT(), Op, - SrcReg, /*TODO: Kill=*/false); - } - - // Make the copy. - unsigned DstReg = VA.getLocReg(); - const TargetRegisterClass *SrcRC = MRI.getRegClass(SrcReg); - // Avoid a cross-class copy. This is very unlikely. - if (!SrcRC->contains(DstReg)) - return false; - BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, - TII.get(TargetOpcode::COPY), DstReg).addReg(SrcReg); - - // Add register to return instruction. - RetRegs.push_back(VA.getLocReg()); - } - - // The x86-64 ABI for returning structs by value requires that we copy - // the sret argument into %rax for the return. We saved the argument into - // a virtual register in the entry block, so now we copy the value out - // and into %rax. We also do the same with %eax for Win32. - if (F.hasStructRetAttr() && - (Subtarget->is64Bit() || Subtarget->isTargetKnownWindowsMSVC())) { - unsigned Reg = X86MFInfo->getSRetReturnReg(); - assert(Reg && - "SRetReturnReg should have been set in LowerFormalArguments()!"); - unsigned RetReg = Subtarget->is64Bit() ? X86::RAX : X86::EAX; - BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, - TII.get(TargetOpcode::COPY), RetReg).addReg(Reg); - RetRegs.push_back(RetReg); - } - - // Now emit the RET. - MachineInstrBuilder MIB = - BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, - TII.get(Subtarget->is64Bit() ? X86::RETQ : X86::RETL)); - for (unsigned i = 0, e = RetRegs.size(); i != e; ++i) - MIB.addReg(RetRegs[i], RegState::Implicit); - return true; -} - -/// X86SelectLoad - Select and emit code to implement load instructions. -/// -bool X86FastISel::X86SelectLoad(const Instruction *I) { - const LoadInst *LI = cast<LoadInst>(I); - - // Atomic loads need special handling. - if (LI->isAtomic()) - return false; - - MVT VT; - if (!isTypeLegal(LI->getType(), VT, /*AllowI1=*/true)) - return false; - - const Value *Ptr = LI->getPointerOperand(); - - X86AddressMode AM; - if (!X86SelectAddress(Ptr, AM)) - return false; - - unsigned ResultReg = 0; - if (!X86FastEmitLoad(VT, AM, createMachineMemOperandFor(LI), ResultReg)) - return false; - - updateValueMap(I, ResultReg); - return true; -} - -static unsigned X86ChooseCmpOpcode(EVT VT, const X86Subtarget *Subtarget) { - bool HasAVX = Subtarget->hasAVX(); - bool X86ScalarSSEf32 = Subtarget->hasSSE1(); - bool X86ScalarSSEf64 = Subtarget->hasSSE2(); - - switch (VT.getSimpleVT().SimpleTy) { - default: return 0; - case MVT::i8: return X86::CMP8rr; - case MVT::i16: return X86::CMP16rr; - case MVT::i32: return X86::CMP32rr; - case MVT::i64: return X86::CMP64rr; - case MVT::f32: - return X86ScalarSSEf32 ? (HasAVX ? X86::VUCOMISSrr : X86::UCOMISSrr) : 0; - case MVT::f64: - return X86ScalarSSEf64 ? (HasAVX ? X86::VUCOMISDrr : X86::UCOMISDrr) : 0; - } -} - -/// X86ChooseCmpImmediateOpcode - If we have a comparison with RHS as the RHS -/// of the comparison, return an opcode that works for the compare (e.g. -/// CMP32ri) otherwise return 0. -static unsigned X86ChooseCmpImmediateOpcode(EVT VT, const ConstantInt *RHSC) { - switch (VT.getSimpleVT().SimpleTy) { - // Otherwise, we can't fold the immediate into this comparison. - default: return 0; - case MVT::i8: return X86::CMP8ri; - case MVT::i16: return X86::CMP16ri; - case MVT::i32: return X86::CMP32ri; - case MVT::i64: - // 64-bit comparisons are only valid if the immediate fits in a 32-bit sext - // field. - if ((int)RHSC->getSExtValue() == RHSC->getSExtValue()) - return X86::CMP64ri32; - return 0; - } -} - -bool X86FastISel::X86FastEmitCompare(const Value *Op0, const Value *Op1, - EVT VT, DebugLoc CurDbgLoc) { - unsigned Op0Reg = getRegForValue(Op0); - if (Op0Reg == 0) return false; - - // Handle 'null' like i32/i64 0. - if (isa<ConstantPointerNull>(Op1)) - Op1 = Constant::getNullValue(DL.getIntPtrType(Op0->getContext())); - - // We have two options: compare with register or immediate. If the RHS of - // the compare is an immediate that we can fold into this compare, use - // CMPri, otherwise use CMPrr. - if (const ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) { - if (unsigned CompareImmOpc = X86ChooseCmpImmediateOpcode(VT, Op1C)) { - BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, CurDbgLoc, TII.get(CompareImmOpc)) - .addReg(Op0Reg) - .addImm(Op1C->getSExtValue()); - return true; - } - } - - unsigned CompareOpc = X86ChooseCmpOpcode(VT, Subtarget); - if (CompareOpc == 0) return false; - - unsigned Op1Reg = getRegForValue(Op1); - if (Op1Reg == 0) return false; - BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, CurDbgLoc, TII.get(CompareOpc)) - .addReg(Op0Reg) - .addReg(Op1Reg); - - return true; -} - -bool X86FastISel::X86SelectCmp(const Instruction *I) { - const CmpInst *CI = cast<CmpInst>(I); - - MVT VT; - if (!isTypeLegal(I->getOperand(0)->getType(), VT)) - return false; - - // Try to optimize or fold the cmp. - CmpInst::Predicate Predicate = optimizeCmpPredicate(CI); - unsigned ResultReg = 0; - switch (Predicate) { - default: break; - case CmpInst::FCMP_FALSE: { - ResultReg = createResultReg(&X86::GR32RegClass); - BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::MOV32r0), - ResultReg); - ResultReg = fastEmitInst_extractsubreg(MVT::i8, ResultReg, /*Kill=*/true, - X86::sub_8bit); - if (!ResultReg) - return false; - break; - } - case CmpInst::FCMP_TRUE: { - ResultReg = createResultReg(&X86::GR8RegClass); - BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::MOV8ri), - ResultReg).addImm(1); - break; - } - } - - if (ResultReg) { - updateValueMap(I, ResultReg); - return true; - } - - const Value *LHS = CI->getOperand(0); - const Value *RHS = CI->getOperand(1); - - // The optimizer might have replaced fcmp oeq %x, %x with fcmp ord %x, 0.0. - // We don't have to materialize a zero constant for this case and can just use - // %x again on the RHS. - if (Predicate == CmpInst::FCMP_ORD || Predicate == CmpInst::FCMP_UNO) { - const auto *RHSC = dyn_cast<ConstantFP>(RHS); - if (RHSC && RHSC->isNullValue()) - RHS = LHS; - } - - // FCMP_OEQ and FCMP_UNE cannot be checked with a single instruction. - static unsigned SETFOpcTable[2][3] = { - { X86::SETEr, X86::SETNPr, X86::AND8rr }, - { X86::SETNEr, X86::SETPr, X86::OR8rr } - }; - unsigned *SETFOpc = nullptr; - switch (Predicate) { - default: break; - case CmpInst::FCMP_OEQ: SETFOpc = &SETFOpcTable[0][0]; break; - case CmpInst::FCMP_UNE: SETFOpc = &SETFOpcTable[1][0]; break; - } - - ResultReg = createResultReg(&X86::GR8RegClass); - if (SETFOpc) { - if (!X86FastEmitCompare(LHS, RHS, VT, I->getDebugLoc())) - return false; - - unsigned FlagReg1 = createResultReg(&X86::GR8RegClass); - unsigned FlagReg2 = createResultReg(&X86::GR8RegClass); - BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(SETFOpc[0]), - FlagReg1); - BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(SETFOpc[1]), - FlagReg2); - BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(SETFOpc[2]), - ResultReg).addReg(FlagReg1).addReg(FlagReg2); - updateValueMap(I, ResultReg); - return true; - } - - X86::CondCode CC; - bool SwapArgs; - std::tie(CC, SwapArgs) = getX86ConditionCode(Predicate); - assert(CC <= X86::LAST_VALID_COND && "Unexpected condition code."); - unsigned Opc = X86::getSETFromCond(CC); - - if (SwapArgs) - std::swap(LHS, RHS); - - // Emit a compare of LHS/RHS. - if (!X86FastEmitCompare(LHS, RHS, VT, I->getDebugLoc())) - return false; - - BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg); - updateValueMap(I, ResultReg); - return true; -} - -bool X86FastISel::X86SelectZExt(const Instruction *I) { - EVT DstVT = TLI.getValueType(I->getType()); - if (!TLI.isTypeLegal(DstVT)) - return false; - - unsigned ResultReg = getRegForValue(I->getOperand(0)); - if (ResultReg == 0) - return false; - - // Handle zero-extension from i1 to i8, which is common. - MVT SrcVT = TLI.getSimpleValueType(I->getOperand(0)->getType()); - if (SrcVT.SimpleTy == MVT::i1) { - // Set the high bits to zero. - ResultReg = fastEmitZExtFromI1(MVT::i8, ResultReg, /*TODO: Kill=*/false); - SrcVT = MVT::i8; - - if (ResultReg == 0) - return false; - } - - if (DstVT == MVT::i64) { - // Handle extension to 64-bits via sub-register shenanigans. - unsigned MovInst; - - switch (SrcVT.SimpleTy) { - case MVT::i8: MovInst = X86::MOVZX32rr8; break; - case MVT::i16: MovInst = X86::MOVZX32rr16; break; - case MVT::i32: MovInst = X86::MOV32rr; break; - default: llvm_unreachable("Unexpected zext to i64 source type"); - } - - unsigned Result32 = createResultReg(&X86::GR32RegClass); - BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(MovInst), Result32) - .addReg(ResultReg); - - ResultReg = createResultReg(&X86::GR64RegClass); - BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(TargetOpcode::SUBREG_TO_REG), - ResultReg) - .addImm(0).addReg(Result32).addImm(X86::sub_32bit); - } else if (DstVT != MVT::i8) { - ResultReg = fastEmit_r(MVT::i8, DstVT.getSimpleVT(), ISD::ZERO_EXTEND, - ResultReg, /*Kill=*/true); - if (ResultReg == 0) - return false; - } - - updateValueMap(I, ResultReg); - return true; -} - -bool X86FastISel::X86SelectBranch(const Instruction *I) { - // Unconditional branches are selected by tablegen-generated code. - // Handle a conditional branch. - const BranchInst *BI = cast<BranchInst>(I); - MachineBasicBlock *TrueMBB = FuncInfo.MBBMap[BI->getSuccessor(0)]; - MachineBasicBlock *FalseMBB = FuncInfo.MBBMap[BI->getSuccessor(1)]; - - // Fold the common case of a conditional branch with a comparison - // in the same block (values defined on other blocks may not have - // initialized registers). - X86::CondCode CC; - if (const CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition())) { - if (CI->hasOneUse() && CI->getParent() == I->getParent()) { - EVT VT = TLI.getValueType(CI->getOperand(0)->getType()); - - // Try to optimize or fold the cmp. - CmpInst::Predicate Predicate = optimizeCmpPredicate(CI); - switch (Predicate) { - default: break; - case CmpInst::FCMP_FALSE: fastEmitBranch(FalseMBB, DbgLoc); return true; - case CmpInst::FCMP_TRUE: fastEmitBranch(TrueMBB, DbgLoc); return true; - } - - const Value *CmpLHS = CI->getOperand(0); - const Value *CmpRHS = CI->getOperand(1); - - // The optimizer might have replaced fcmp oeq %x, %x with fcmp ord %x, - // 0.0. - // We don't have to materialize a zero constant for this case and can just - // use %x again on the RHS. - if (Predicate == CmpInst::FCMP_ORD || Predicate == CmpInst::FCMP_UNO) { - const auto *CmpRHSC = dyn_cast<ConstantFP>(CmpRHS); - if (CmpRHSC && CmpRHSC->isNullValue()) - CmpRHS = CmpLHS; - } - - // Try to take advantage of fallthrough opportunities. - if (FuncInfo.MBB->isLayoutSuccessor(TrueMBB)) { - std::swap(TrueMBB, FalseMBB); - Predicate = CmpInst::getInversePredicate(Predicate); - } - - // FCMP_OEQ and FCMP_UNE cannot be expressed with a single flag/condition - // code check. Instead two branch instructions are required to check all - // the flags. First we change the predicate to a supported condition code, - // which will be the first branch. Later one we will emit the second - // branch. - bool NeedExtraBranch = false; - switch (Predicate) { - default: break; - case CmpInst::FCMP_OEQ: - std::swap(TrueMBB, FalseMBB); // fall-through - case CmpInst::FCMP_UNE: - NeedExtraBranch = true; - Predicate = CmpInst::FCMP_ONE; - break; - } - - bool SwapArgs; - unsigned BranchOpc; - std::tie(CC, SwapArgs) = getX86ConditionCode(Predicate); - assert(CC <= X86::LAST_VALID_COND && "Unexpected condition code."); - - BranchOpc = X86::GetCondBranchFromCond(CC); - if (SwapArgs) - std::swap(CmpLHS, CmpRHS); - - // Emit a compare of the LHS and RHS, setting the flags. - if (!X86FastEmitCompare(CmpLHS, CmpRHS, VT, CI->getDebugLoc())) - return false; - - BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(BranchOpc)) - .addMBB(TrueMBB); - - // X86 requires a second branch to handle UNE (and OEQ, which is mapped - // to UNE above). - if (NeedExtraBranch) { - BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::JP_1)) - .addMBB(TrueMBB); - } - - // Obtain the branch weight and add the TrueBB to the successor list. - uint32_t BranchWeight = 0; - if (FuncInfo.BPI) - BranchWeight = FuncInfo.BPI->getEdgeWeight(BI->getParent(), - TrueMBB->getBasicBlock()); - FuncInfo.MBB->addSuccessor(TrueMBB, BranchWeight); - - // Emits an unconditional branch to the FalseBB, obtains the branch - // weight, and adds it to the successor list. - fastEmitBranch(FalseMBB, DbgLoc); - - return true; - } - } else if (TruncInst *TI = dyn_cast<TruncInst>(BI->getCondition())) { - // Handle things like "%cond = trunc i32 %X to i1 / br i1 %cond", which - // typically happen for _Bool and C++ bools. - MVT SourceVT; - if (TI->hasOneUse() && TI->getParent() == I->getParent() && - isTypeLegal(TI->getOperand(0)->getType(), SourceVT)) { - unsigned TestOpc = 0; - switch (SourceVT.SimpleTy) { - default: break; - case MVT::i8: TestOpc = X86::TEST8ri; break; - case MVT::i16: TestOpc = X86::TEST16ri; break; - case MVT::i32: TestOpc = X86::TEST32ri; break; - case MVT::i64: TestOpc = X86::TEST64ri32; break; - } - if (TestOpc) { - unsigned OpReg = getRegForValue(TI->getOperand(0)); - if (OpReg == 0) return false; - BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(TestOpc)) - .addReg(OpReg).addImm(1); - - unsigned JmpOpc = X86::JNE_1; - if (FuncInfo.MBB->isLayoutSuccessor(TrueMBB)) { - std::swap(TrueMBB, FalseMBB); - JmpOpc = X86::JE_1; - } - - BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(JmpOpc)) - .addMBB(TrueMBB); - fastEmitBranch(FalseMBB, DbgLoc); - uint32_t BranchWeight = 0; - if (FuncInfo.BPI) - BranchWeight = FuncInfo.BPI->getEdgeWeight(BI->getParent(), - TrueMBB->getBasicBlock()); - FuncInfo.MBB->addSuccessor(TrueMBB, BranchWeight); - return true; - } - } - } else if (foldX86XALUIntrinsic(CC, BI, BI->getCondition())) { - // Fake request the condition, otherwise the intrinsic might be completely - // optimized away. - unsigned TmpReg = getRegForValue(BI->getCondition()); - if (TmpReg == 0) - return false; - - unsigned BranchOpc = X86::GetCondBranchFromCond(CC); - - BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(BranchOpc)) - .addMBB(TrueMBB); - fastEmitBranch(FalseMBB, DbgLoc); - uint32_t BranchWeight = 0; - if (FuncInfo.BPI) - BranchWeight = FuncInfo.BPI->getEdgeWeight(BI->getParent(), - TrueMBB->getBasicBlock()); - FuncInfo.MBB->addSuccessor(TrueMBB, BranchWeight); - return true; - } - - // Otherwise do a clumsy setcc and re-test it. - // Note that i1 essentially gets ANY_EXTEND'ed to i8 where it isn't used - // in an explicit cast, so make sure to handle that correctly. - unsigned OpReg = getRegForValue(BI->getCondition()); - if (OpReg == 0) return false; - - BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::TEST8ri)) - .addReg(OpReg).addImm(1); - BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::JNE_1)) - .addMBB(TrueMBB); - fastEmitBranch(FalseMBB, DbgLoc); - uint32_t BranchWeight = 0; - if (FuncInfo.BPI) - BranchWeight = FuncInfo.BPI->getEdgeWeight(BI->getParent(), - TrueMBB->getBasicBlock()); - FuncInfo.MBB->addSuccessor(TrueMBB, BranchWeight); - return true; -} - -bool X86FastISel::X86SelectShift(const Instruction *I) { - unsigned CReg = 0, OpReg = 0; - const TargetRegisterClass *RC = nullptr; - if (I->getType()->isIntegerTy(8)) { - CReg = X86::CL; - RC = &X86::GR8RegClass; - switch (I->getOpcode()) { - case Instruction::LShr: OpReg = X86::SHR8rCL; break; - case Instruction::AShr: OpReg = X86::SAR8rCL; break; - case Instruction::Shl: OpReg = X86::SHL8rCL; break; - default: return false; - } - } else if (I->getType()->isIntegerTy(16)) { - CReg = X86::CX; - RC = &X86::GR16RegClass; - switch (I->getOpcode()) { - case Instruction::LShr: OpReg = X86::SHR16rCL; break; - case Instruction::AShr: OpReg = X86::SAR16rCL; break; - case Instruction::Shl: OpReg = X86::SHL16rCL; break; - default: return false; - } - } else if (I->getType()->isIntegerTy(32)) { - CReg = X86::ECX; - RC = &X86::GR32RegClass; - switch (I->getOpcode()) { - case Instruction::LShr: OpReg = X86::SHR32rCL; break; - case Instruction::AShr: OpReg = X86::SAR32rCL; break; - case Instruction::Shl: OpReg = X86::SHL32rCL; break; - default: return false; - } - } else if (I->getType()->isIntegerTy(64)) { - CReg = X86::RCX; - RC = &X86::GR64RegClass; - switch (I->getOpcode()) { - case Instruction::LShr: OpReg = X86::SHR64rCL; break; - case Instruction::AShr: OpReg = X86::SAR64rCL; break; - case Instruction::Shl: OpReg = X86::SHL64rCL; break; - default: return false; - } - } else { - return false; - } - - MVT VT; - if (!isTypeLegal(I->getType(), VT)) - return false; - - unsigned Op0Reg = getRegForValue(I->getOperand(0)); - if (Op0Reg == 0) return false; - - unsigned Op1Reg = getRegForValue(I->getOperand(1)); - if (Op1Reg == 0) return false; - BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(TargetOpcode::COPY), - CReg).addReg(Op1Reg); - - // The shift instruction uses X86::CL. If we defined a super-register - // of X86::CL, emit a subreg KILL to precisely describe what we're doing here. - if (CReg != X86::CL) - BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, - TII.get(TargetOpcode::KILL), X86::CL) - .addReg(CReg, RegState::Kill); - - unsigned ResultReg = createResultReg(RC); - BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(OpReg), ResultReg) - .addReg(Op0Reg); - updateValueMap(I, ResultReg); - return true; -} - -bool X86FastISel::X86SelectDivRem(const Instruction *I) { - const static unsigned NumTypes = 4; // i8, i16, i32, i64 - const static unsigned NumOps = 4; // SDiv, SRem, UDiv, URem - const static bool S = true; // IsSigned - const static bool U = false; // !IsSigned - const static unsigned Copy = TargetOpcode::COPY; - // For the X86 DIV/IDIV instruction, in most cases the dividend - // (numerator) must be in a specific register pair highreg:lowreg, - // producing the quotient in lowreg and the remainder in highreg. - // For most data types, to set up the instruction, the dividend is - // copied into lowreg, and lowreg is sign-extended or zero-extended - // into highreg. The exception is i8, where the dividend is defined - // as a single register rather than a register pair, and we - // therefore directly sign-extend or zero-extend the dividend into - // lowreg, instead of copying, and ignore the highreg. - const static struct DivRemEntry { - // The following portion depends only on the data type. - const TargetRegisterClass *RC; - unsigned LowInReg; // low part of the register pair - unsigned HighInReg; // high part of the register pair - // The following portion depends on both the data type and the operation. - struct DivRemResult { - unsigned OpDivRem; // The specific DIV/IDIV opcode to use. - unsigned OpSignExtend; // Opcode for sign-extending lowreg into - // highreg, or copying a zero into highreg. - unsigned OpCopy; // Opcode for copying dividend into lowreg, or - // zero/sign-extending into lowreg for i8. - unsigned DivRemResultReg; // Register containing the desired result. - bool IsOpSigned; // Whether to use signed or unsigned form. - } ResultTable[NumOps]; - } OpTable[NumTypes] = { - { &X86::GR8RegClass, X86::AX, 0, { - { X86::IDIV8r, 0, X86::MOVSX16rr8, X86::AL, S }, // SDiv - { X86::IDIV8r, 0, X86::MOVSX16rr8, X86::AH, S }, // SRem - { X86::DIV8r, 0, X86::MOVZX16rr8, X86::AL, U }, // UDiv - { X86::DIV8r, 0, X86::MOVZX16rr8, X86::AH, U }, // URem - } - }, // i8 - { &X86::GR16RegClass, X86::AX, X86::DX, { - { X86::IDIV16r, X86::CWD, Copy, X86::AX, S }, // SDiv - { X86::IDIV16r, X86::CWD, Copy, X86::DX, S }, // SRem - { X86::DIV16r, X86::MOV32r0, Copy, X86::AX, U }, // UDiv - { X86::DIV16r, X86::MOV32r0, Copy, X86::DX, U }, // URem - } - }, // i16 - { &X86::GR32RegClass, X86::EAX, X86::EDX, { - { X86::IDIV32r, X86::CDQ, Copy, X86::EAX, S }, // SDiv - { X86::IDIV32r, X86::CDQ, Copy, X86::EDX, S }, // SRem - { X86::DIV32r, X86::MOV32r0, Copy, X86::EAX, U }, // UDiv - { X86::DIV32r, X86::MOV32r0, Copy, X86::EDX, U }, // URem - } - }, // i32 - { &X86::GR64RegClass, X86::RAX, X86::RDX, { - { X86::IDIV64r, X86::CQO, Copy, X86::RAX, S }, // SDiv - { X86::IDIV64r, X86::CQO, Copy, X86::RDX, S }, // SRem - { X86::DIV64r, X86::MOV32r0, Copy, X86::RAX, U }, // UDiv - { X86::DIV64r, X86::MOV32r0, Copy, X86::RDX, U }, // URem - } - }, // i64 - }; - - MVT VT; - if (!isTypeLegal(I->getType(), VT)) - return false; - - unsigned TypeIndex, OpIndex; - switch (VT.SimpleTy) { - default: return false; - case MVT::i8: TypeIndex = 0; break; - case MVT::i16: TypeIndex = 1; break; - case MVT::i32: TypeIndex = 2; break; - case MVT::i64: TypeIndex = 3; - if (!Subtarget->is64Bit()) - return false; - break; - } - - switch (I->getOpcode()) { - default: llvm_unreachable("Unexpected div/rem opcode"); - case Instruction::SDiv: OpIndex = 0; break; - case Instruction::SRem: OpIndex = 1; break; - case Instruction::UDiv: OpIndex = 2; break; - case Instruction::URem: OpIndex = 3; break; - } - - const DivRemEntry &TypeEntry = OpTable[TypeIndex]; - const DivRemEntry::DivRemResult &OpEntry = TypeEntry.ResultTable[OpIndex]; - unsigned Op0Reg = getRegForValue(I->getOperand(0)); - if (Op0Reg == 0) - return false; - unsigned Op1Reg = getRegForValue(I->getOperand(1)); - if (Op1Reg == 0) - return false; - - // Move op0 into low-order input register. - BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, - TII.get(OpEntry.OpCopy), TypeEntry.LowInReg).addReg(Op0Reg); - // Zero-extend or sign-extend into high-order input register. - if (OpEntry.OpSignExtend) { - if (OpEntry.IsOpSigned) - BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, - TII.get(OpEntry.OpSignExtend)); - else { - unsigned Zero32 = createResultReg(&X86::GR32RegClass); - BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, - TII.get(X86::MOV32r0), Zero32); - - // Copy the zero into the appropriate sub/super/identical physical - // register. Unfortunately the operations needed are not uniform enough - // to fit neatly into the table above. - if (VT.SimpleTy == MVT::i16) { - BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, - TII.get(Copy), TypeEntry.HighInReg) - .addReg(Zero32, 0, X86::sub_16bit); - } else if (VT.SimpleTy == MVT::i32) { - BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, - TII.get(Copy), TypeEntry.HighInReg) - .addReg(Zero32); - } else if (VT.SimpleTy == MVT::i64) { - BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, - TII.get(TargetOpcode::SUBREG_TO_REG), TypeEntry.HighInReg) - .addImm(0).addReg(Zero32).addImm(X86::sub_32bit); - } - } - } - // Generate the DIV/IDIV instruction. - BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, - TII.get(OpEntry.OpDivRem)).addReg(Op1Reg); - // For i8 remainder, we can't reference AH directly, as we'll end - // up with bogus copies like %R9B = COPY %AH. Reference AX - // instead to prevent AH references in a REX instruction. - // - // The current assumption of the fast register allocator is that isel - // won't generate explicit references to the GPR8_NOREX registers. If - // the allocator and/or the backend get enhanced to be more robust in - // that regard, this can be, and should be, removed. - unsigned ResultReg = 0; - if ((I->getOpcode() == Instruction::SRem || - I->getOpcode() == Instruction::URem) && - OpEntry.DivRemResultReg == X86::AH && Subtarget->is64Bit()) { - unsigned SourceSuperReg = createResultReg(&X86::GR16RegClass); - unsigned ResultSuperReg = createResultReg(&X86::GR16RegClass); - BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, - TII.get(Copy), SourceSuperReg).addReg(X86::AX); - - // Shift AX right by 8 bits instead of using AH. - BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::SHR16ri), - ResultSuperReg).addReg(SourceSuperReg).addImm(8); - - // Now reference the 8-bit subreg of the result. - ResultReg = fastEmitInst_extractsubreg(MVT::i8, ResultSuperReg, - /*Kill=*/true, X86::sub_8bit); - } - // Copy the result out of the physreg if we haven't already. - if (!ResultReg) { - ResultReg = createResultReg(TypeEntry.RC); - BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Copy), ResultReg) - .addReg(OpEntry.DivRemResultReg); - } - updateValueMap(I, ResultReg); - - return true; -} - -/// \brief Emit a conditional move instruction (if the are supported) to lower -/// the select. -bool X86FastISel::X86FastEmitCMoveSelect(MVT RetVT, const Instruction *I) { - // Check if the subtarget supports these instructions. - if (!Subtarget->hasCMov()) - return false; - - // FIXME: Add support for i8. - if (RetVT < MVT::i16 || RetVT > MVT::i64) - return false; - - const Value *Cond = I->getOperand(0); - const TargetRegisterClass *RC = TLI.getRegClassFor(RetVT); - bool NeedTest = true; - X86::CondCode CC = X86::COND_NE; - - // Optimize conditions coming from a compare if both instructions are in the - // same basic block (values defined in other basic blocks may not have - // initialized registers). - const auto *CI = dyn_cast<CmpInst>(Cond); - if (CI && (CI->getParent() == I->getParent())) { - CmpInst::Predicate Predicate = optimizeCmpPredicate(CI); - - // FCMP_OEQ and FCMP_UNE cannot be checked with a single instruction. - static unsigned SETFOpcTable[2][3] = { - { X86::SETNPr, X86::SETEr , X86::TEST8rr }, - { X86::SETPr, X86::SETNEr, X86::OR8rr } - }; - unsigned *SETFOpc = nullptr; - switch (Predicate) { - default: break; - case CmpInst::FCMP_OEQ: - SETFOpc = &SETFOpcTable[0][0]; - Predicate = CmpInst::ICMP_NE; - break; - case CmpInst::FCMP_UNE: - SETFOpc = &SETFOpcTable[1][0]; - Predicate = CmpInst::ICMP_NE; - break; - } - - bool NeedSwap; - std::tie(CC, NeedSwap) = getX86ConditionCode(Predicate); - assert(CC <= X86::LAST_VALID_COND && "Unexpected condition code."); - - const Value *CmpLHS = CI->getOperand(0); - const Value *CmpRHS = CI->getOperand(1); - if (NeedSwap) - std::swap(CmpLHS, CmpRHS); - - EVT CmpVT = TLI.getValueType(CmpLHS->getType()); - // Emit a compare of the LHS and RHS, setting the flags. - if (!X86FastEmitCompare(CmpLHS, CmpRHS, CmpVT, CI->getDebugLoc())) - return false; - - if (SETFOpc) { - unsigned FlagReg1 = createResultReg(&X86::GR8RegClass); - unsigned FlagReg2 = createResultReg(&X86::GR8RegClass); - BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(SETFOpc[0]), - FlagReg1); - BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(SETFOpc[1]), - FlagReg2); - auto const &II = TII.get(SETFOpc[2]); - if (II.getNumDefs()) { - unsigned TmpReg = createResultReg(&X86::GR8RegClass); - BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, TmpReg) - .addReg(FlagReg2).addReg(FlagReg1); - } else { - BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) - .addReg(FlagReg2).addReg(FlagReg1); - } - } - NeedTest = false; - } else if (foldX86XALUIntrinsic(CC, I, Cond)) { - // Fake request the condition, otherwise the intrinsic might be completely - // optimized away. - unsigned TmpReg = getRegForValue(Cond); - if (TmpReg == 0) - return false; - - NeedTest = false; - } - - if (NeedTest) { - // Selects operate on i1, however, CondReg is 8 bits width and may contain - // garbage. Indeed, only the less significant bit is supposed to be - // accurate. If we read more than the lsb, we may see non-zero values - // whereas lsb is zero. Therefore, we have to truncate Op0Reg to i1 for - // the select. This is achieved by performing TEST against 1. - unsigned CondReg = getRegForValue(Cond); - if (CondReg == 0) - return false; - bool CondIsKill = hasTrivialKill(Cond); - - BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::TEST8ri)) - .addReg(CondReg, getKillRegState(CondIsKill)).addImm(1); - } - - const Value *LHS = I->getOperand(1); - const Value *RHS = I->getOperand(2); - - unsigned RHSReg = getRegForValue(RHS); - bool RHSIsKill = hasTrivialKill(RHS); - - unsigned LHSReg = getRegForValue(LHS); - bool LHSIsKill = hasTrivialKill(LHS); - - if (!LHSReg || !RHSReg) - return false; - - unsigned Opc = X86::getCMovFromCond(CC, RC->getSize()); - unsigned ResultReg = fastEmitInst_rr(Opc, RC, RHSReg, RHSIsKill, - LHSReg, LHSIsKill); - updateValueMap(I, ResultReg); - return true; -} - -/// \brief Emit SSE instructions to lower the select. -/// -/// Try to use SSE1/SSE2 instructions to simulate a select without branches. -/// This lowers fp selects into a CMP/AND/ANDN/OR sequence when the necessary -/// SSE instructions are available. -bool X86FastISel::X86FastEmitSSESelect(MVT RetVT, const Instruction *I) { - // Optimize conditions coming from a compare if both instructions are in the - // same basic block (values defined in other basic blocks may not have - // initialized registers). - const auto *CI = dyn_cast<FCmpInst>(I->getOperand(0)); - if (!CI || (CI->getParent() != I->getParent())) - return false; - - if (I->getType() != CI->getOperand(0)->getType() || - !((Subtarget->hasSSE1() && RetVT == MVT::f32) || - (Subtarget->hasSSE2() && RetVT == MVT::f64))) - return false; - - const Value *CmpLHS = CI->getOperand(0); - const Value *CmpRHS = CI->getOperand(1); - CmpInst::Predicate Predicate = optimizeCmpPredicate(CI); - - // The optimizer might have replaced fcmp oeq %x, %x with fcmp ord %x, 0.0. - // We don't have to materialize a zero constant for this case and can just use - // %x again on the RHS. - if (Predicate == CmpInst::FCMP_ORD || Predicate == CmpInst::FCMP_UNO) { - const auto *CmpRHSC = dyn_cast<ConstantFP>(CmpRHS); - if (CmpRHSC && CmpRHSC->isNullValue()) - CmpRHS = CmpLHS; - } - - unsigned CC; - bool NeedSwap; - std::tie(CC, NeedSwap) = getX86SSEConditionCode(Predicate); - if (CC > 7) - return false; - - if (NeedSwap) - std::swap(CmpLHS, CmpRHS); - - static unsigned OpcTable[2][2][4] = { - { { X86::CMPSSrr, X86::FsANDPSrr, X86::FsANDNPSrr, X86::FsORPSrr }, - { X86::VCMPSSrr, X86::VFsANDPSrr, X86::VFsANDNPSrr, X86::VFsORPSrr } }, - { { X86::CMPSDrr, X86::FsANDPDrr, X86::FsANDNPDrr, X86::FsORPDrr }, - { X86::VCMPSDrr, X86::VFsANDPDrr, X86::VFsANDNPDrr, X86::VFsORPDrr } } - }; - - bool HasAVX = Subtarget->hasAVX(); - unsigned *Opc = nullptr; - switch (RetVT.SimpleTy) { - default: return false; - case MVT::f32: Opc = &OpcTable[0][HasAVX][0]; break; - case MVT::f64: Opc = &OpcTable[1][HasAVX][0]; break; - } - - const Value *LHS = I->getOperand(1); - const Value *RHS = I->getOperand(2); - - unsigned LHSReg = getRegForValue(LHS); - bool LHSIsKill = hasTrivialKill(LHS); - - unsigned RHSReg = getRegForValue(RHS); - bool RHSIsKill = hasTrivialKill(RHS); - - unsigned CmpLHSReg = getRegForValue(CmpLHS); - bool CmpLHSIsKill = hasTrivialKill(CmpLHS); - - unsigned CmpRHSReg = getRegForValue(CmpRHS); - bool CmpRHSIsKill = hasTrivialKill(CmpRHS); - - if (!LHSReg || !RHSReg || !CmpLHS || !CmpRHS) - return false; - - const TargetRegisterClass *RC = TLI.getRegClassFor(RetVT); - unsigned CmpReg = fastEmitInst_rri(Opc[0], RC, CmpLHSReg, CmpLHSIsKill, - CmpRHSReg, CmpRHSIsKill, CC); - unsigned AndReg = fastEmitInst_rr(Opc[1], RC, CmpReg, /*IsKill=*/false, - LHSReg, LHSIsKill); - unsigned AndNReg = fastEmitInst_rr(Opc[2], RC, CmpReg, /*IsKill=*/true, - RHSReg, RHSIsKill); - unsigned ResultReg = fastEmitInst_rr(Opc[3], RC, AndNReg, /*IsKill=*/true, - AndReg, /*IsKill=*/true); - updateValueMap(I, ResultReg); - return true; -} - -bool X86FastISel::X86FastEmitPseudoSelect(MVT RetVT, const Instruction *I) { - // These are pseudo CMOV instructions and will be later expanded into control- - // flow. - unsigned Opc; - switch (RetVT.SimpleTy) { - default: return false; - case MVT::i8: Opc = X86::CMOV_GR8; break; - case MVT::i16: Opc = X86::CMOV_GR16; break; - case MVT::i32: Opc = X86::CMOV_GR32; break; - case MVT::f32: Opc = X86::CMOV_FR32; break; - case MVT::f64: Opc = X86::CMOV_FR64; break; - } - - const Value *Cond = I->getOperand(0); - X86::CondCode CC = X86::COND_NE; - - // Optimize conditions coming from a compare if both instructions are in the - // same basic block (values defined in other basic blocks may not have - // initialized registers). - const auto *CI = dyn_cast<CmpInst>(Cond); - if (CI && (CI->getParent() == I->getParent())) { - bool NeedSwap; - std::tie(CC, NeedSwap) = getX86ConditionCode(CI->getPredicate()); - if (CC > X86::LAST_VALID_COND) - return false; - - const Value *CmpLHS = CI->getOperand(0); - const Value *CmpRHS = CI->getOperand(1); - - if (NeedSwap) - std::swap(CmpLHS, CmpRHS); - - EVT CmpVT = TLI.getValueType(CmpLHS->getType()); - if (!X86FastEmitCompare(CmpLHS, CmpRHS, CmpVT, CI->getDebugLoc())) - return false; - } else { - unsigned CondReg = getRegForValue(Cond); - if (CondReg == 0) - return false; - bool CondIsKill = hasTrivialKill(Cond); - BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::TEST8ri)) - .addReg(CondReg, getKillRegState(CondIsKill)).addImm(1); - } - - const Value *LHS = I->getOperand(1); - const Value *RHS = I->getOperand(2); - - unsigned LHSReg = getRegForValue(LHS); - bool LHSIsKill = hasTrivialKill(LHS); - - unsigned RHSReg = getRegForValue(RHS); - bool RHSIsKill = hasTrivialKill(RHS); - - if (!LHSReg || !RHSReg) - return false; - - const TargetRegisterClass *RC = TLI.getRegClassFor(RetVT); - - unsigned ResultReg = - fastEmitInst_rri(Opc, RC, RHSReg, RHSIsKill, LHSReg, LHSIsKill, CC); - updateValueMap(I, ResultReg); - return true; -} - -bool X86FastISel::X86SelectSelect(const Instruction *I) { - MVT RetVT; - if (!isTypeLegal(I->getType(), RetVT)) - return false; - - // Check if we can fold the select. - if (const auto *CI = dyn_cast<CmpInst>(I->getOperand(0))) { - CmpInst::Predicate Predicate = optimizeCmpPredicate(CI); - const Value *Opnd = nullptr; - switch (Predicate) { - default: break; - case CmpInst::FCMP_FALSE: Opnd = I->getOperand(2); break; - case CmpInst::FCMP_TRUE: Opnd = I->getOperand(1); break; - } - // No need for a select anymore - this is an unconditional move. - if (Opnd) { - unsigned OpReg = getRegForValue(Opnd); - if (OpReg == 0) - return false; - bool OpIsKill = hasTrivialKill(Opnd); - const TargetRegisterClass *RC = TLI.getRegClassFor(RetVT); - unsigned ResultReg = createResultReg(RC); - BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, - TII.get(TargetOpcode::COPY), ResultReg) - .addReg(OpReg, getKillRegState(OpIsKill)); - updateValueMap(I, ResultReg); - return true; - } - } - - // First try to use real conditional move instructions. - if (X86FastEmitCMoveSelect(RetVT, I)) - return true; - - // Try to use a sequence of SSE instructions to simulate a conditional move. - if (X86FastEmitSSESelect(RetVT, I)) - return true; - - // Fall-back to pseudo conditional move instructions, which will be later - // converted to control-flow. - if (X86FastEmitPseudoSelect(RetVT, I)) - return true; - - return false; -} - -bool X86FastISel::X86SelectFPExt(const Instruction *I) { - // fpext from float to double. - if (X86ScalarSSEf64 && - I->getType()->isDoubleTy()) { - const Value *V = I->getOperand(0); - if (V->getType()->isFloatTy()) { - unsigned OpReg = getRegForValue(V); - if (OpReg == 0) return false; - unsigned ResultReg = createResultReg(&X86::FR64RegClass); - BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, - TII.get(X86::CVTSS2SDrr), ResultReg) - .addReg(OpReg); - updateValueMap(I, ResultReg); - return true; - } - } - - return false; -} - -bool X86FastISel::X86SelectFPTrunc(const Instruction *I) { - if (X86ScalarSSEf64) { - if (I->getType()->isFloatTy()) { - const Value *V = I->getOperand(0); - if (V->getType()->isDoubleTy()) { - unsigned OpReg = getRegForValue(V); - if (OpReg == 0) return false; - unsigned ResultReg = createResultReg(&X86::FR32RegClass); - BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, - TII.get(X86::CVTSD2SSrr), ResultReg) - .addReg(OpReg); - updateValueMap(I, ResultReg); - return true; - } - } - } - - return false; -} - -bool X86FastISel::X86SelectTrunc(const Instruction *I) { - EVT SrcVT = TLI.getValueType(I->getOperand(0)->getType()); - EVT DstVT = TLI.getValueType(I->getType()); - - // This code only handles truncation to byte. - if (DstVT != MVT::i8 && DstVT != MVT::i1) - return false; - if (!TLI.isTypeLegal(SrcVT)) - return false; - - unsigned InputReg = getRegForValue(I->getOperand(0)); - if (!InputReg) - // Unhandled operand. Halt "fast" selection and bail. - return false; - - if (SrcVT == MVT::i8) { - // Truncate from i8 to i1; no code needed. - updateValueMap(I, InputReg); - return true; - } - - if (!Subtarget->is64Bit()) { - // If we're on x86-32; we can't extract an i8 from a general register. - // First issue a copy to GR16_ABCD or GR32_ABCD. - const TargetRegisterClass *CopyRC = - (SrcVT == MVT::i16) ? &X86::GR16_ABCDRegClass : &X86::GR32_ABCDRegClass; - unsigned CopyReg = createResultReg(CopyRC); - BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, - TII.get(TargetOpcode::COPY), CopyReg).addReg(InputReg); - InputReg = CopyReg; - } - - // Issue an extract_subreg. - unsigned ResultReg = fastEmitInst_extractsubreg(MVT::i8, - InputReg, /*Kill=*/true, - X86::sub_8bit); - if (!ResultReg) - return false; - - updateValueMap(I, ResultReg); - return true; -} - -bool X86FastISel::IsMemcpySmall(uint64_t Len) { - return Len <= (Subtarget->is64Bit() ? 32 : 16); -} - -bool X86FastISel::TryEmitSmallMemcpy(X86AddressMode DestAM, - X86AddressMode SrcAM, uint64_t Len) { - - // Make sure we don't bloat code by inlining very large memcpy's. - if (!IsMemcpySmall(Len)) - return false; - - bool i64Legal = Subtarget->is64Bit(); - - // We don't care about alignment here since we just emit integer accesses. - while (Len) { - MVT VT; - if (Len >= 8 && i64Legal) - VT = MVT::i64; - else if (Len >= 4) - VT = MVT::i32; - else if (Len >= 2) - VT = MVT::i16; - else - VT = MVT::i8; - - unsigned Reg; - bool RV = X86FastEmitLoad(VT, SrcAM, nullptr, Reg); - RV &= X86FastEmitStore(VT, Reg, /*Kill=*/true, DestAM); - assert(RV && "Failed to emit load or store??"); - - unsigned Size = VT.getSizeInBits()/8; - Len -= Size; - DestAM.Disp += Size; - SrcAM.Disp += Size; - } - - return true; -} - -bool X86FastISel::fastLowerIntrinsicCall(const IntrinsicInst *II) { - // FIXME: Handle more intrinsics. - switch (II->getIntrinsicID()) { - default: return false; - case Intrinsic::frameaddress: { - Type *RetTy = II->getCalledFunction()->getReturnType(); - - MVT VT; - if (!isTypeLegal(RetTy, VT)) - return false; - - unsigned Opc; - const TargetRegisterClass *RC = nullptr; - - switch (VT.SimpleTy) { - default: llvm_unreachable("Invalid result type for frameaddress."); - case MVT::i32: Opc = X86::MOV32rm; RC = &X86::GR32RegClass; break; - case MVT::i64: Opc = X86::MOV64rm; RC = &X86::GR64RegClass; break; - } - - // This needs to be set before we call getPtrSizedFrameRegister, otherwise - // we get the wrong frame register. - MachineFrameInfo *MFI = FuncInfo.MF->getFrameInfo(); - MFI->setFrameAddressIsTaken(true); - - const X86RegisterInfo *RegInfo = static_cast<const X86RegisterInfo *>( - TM.getSubtargetImpl()->getRegisterInfo()); - unsigned FrameReg = RegInfo->getPtrSizedFrameRegister(*(FuncInfo.MF)); - assert(((FrameReg == X86::RBP && VT == MVT::i64) || - (FrameReg == X86::EBP && VT == MVT::i32)) && - "Invalid Frame Register!"); - - // Always make a copy of the frame register to to a vreg first, so that we - // never directly reference the frame register (the TwoAddressInstruction- - // Pass doesn't like that). - unsigned SrcReg = createResultReg(RC); - BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, - TII.get(TargetOpcode::COPY), SrcReg).addReg(FrameReg); - - // Now recursively load from the frame address. - // movq (%rbp), %rax - // movq (%rax), %rax - // movq (%rax), %rax - // ... - unsigned DestReg; - unsigned Depth = cast<ConstantInt>(II->getOperand(0))->getZExtValue(); - while (Depth--) { - DestReg = createResultReg(RC); - addDirectMem(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, - TII.get(Opc), DestReg), SrcReg); - SrcReg = DestReg; - } - - updateValueMap(II, SrcReg); - return true; - } - case Intrinsic::memcpy: { - const MemCpyInst *MCI = cast<MemCpyInst>(II); - // Don't handle volatile or variable length memcpys. - if (MCI->isVolatile()) - return false; - - if (isa<ConstantInt>(MCI->getLength())) { - // Small memcpy's are common enough that we want to do them - // without a call if possible. - uint64_t Len = cast<ConstantInt>(MCI->getLength())->getZExtValue(); - if (IsMemcpySmall(Len)) { - X86AddressMode DestAM, SrcAM; - if (!X86SelectAddress(MCI->getRawDest(), DestAM) || - !X86SelectAddress(MCI->getRawSource(), SrcAM)) - return false; - TryEmitSmallMemcpy(DestAM, SrcAM, Len); - return true; - } - } - - unsigned SizeWidth = Subtarget->is64Bit() ? 64 : 32; - if (!MCI->getLength()->getType()->isIntegerTy(SizeWidth)) - return false; - - if (MCI->getSourceAddressSpace() > 255 || MCI->getDestAddressSpace() > 255) - return false; - - return lowerCallTo(II, "memcpy", II->getNumArgOperands() - 2); - } - case Intrinsic::memset: { - const MemSetInst *MSI = cast<MemSetInst>(II); - - if (MSI->isVolatile()) - return false; - - unsigned SizeWidth = Subtarget->is64Bit() ? 64 : 32; - if (!MSI->getLength()->getType()->isIntegerTy(SizeWidth)) - return false; - - if (MSI->getDestAddressSpace() > 255) - return false; - - return lowerCallTo(II, "memset", II->getNumArgOperands() - 2); - } - case Intrinsic::stackprotector: { - // Emit code to store the stack guard onto the stack. - EVT PtrTy = TLI.getPointerTy(); - - const Value *Op1 = II->getArgOperand(0); // The guard's value. - const AllocaInst *Slot = cast<AllocaInst>(II->getArgOperand(1)); - - MFI.setStackProtectorIndex(FuncInfo.StaticAllocaMap[Slot]); - - // Grab the frame index. - X86AddressMode AM; - if (!X86SelectAddress(Slot, AM)) return false; - if (!X86FastEmitStore(PtrTy, Op1, AM)) return false; - return true; - } - case Intrinsic::dbg_declare: { - const DbgDeclareInst *DI = cast<DbgDeclareInst>(II); - X86AddressMode AM; - assert(DI->getAddress() && "Null address should be checked earlier!"); - if (!X86SelectAddress(DI->getAddress(), AM)) - return false; - const MCInstrDesc &II = TII.get(TargetOpcode::DBG_VALUE); - // FIXME may need to add RegState::Debug to any registers produced, - // although ESP/EBP should be the only ones at the moment. - addFullAddress(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II), AM) - .addImm(0) - .addMetadata(DI->getVariable()) - .addMetadata(DI->getExpression()); - return true; - } - case Intrinsic::trap: { - BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::TRAP)); - return true; - } - case Intrinsic::sqrt: { - if (!Subtarget->hasSSE1()) - return false; - - Type *RetTy = II->getCalledFunction()->getReturnType(); - - MVT VT; - if (!isTypeLegal(RetTy, VT)) - return false; - - // Unfortunately we can't use fastEmit_r, because the AVX version of FSQRT - // is not generated by FastISel yet. - // FIXME: Update this code once tablegen can handle it. - static const unsigned SqrtOpc[2][2] = { - {X86::SQRTSSr, X86::VSQRTSSr}, - {X86::SQRTSDr, X86::VSQRTSDr} - }; - bool HasAVX = Subtarget->hasAVX(); - unsigned Opc; - const TargetRegisterClass *RC; - switch (VT.SimpleTy) { - default: return false; - case MVT::f32: Opc = SqrtOpc[0][HasAVX]; RC = &X86::FR32RegClass; break; - case MVT::f64: Opc = SqrtOpc[1][HasAVX]; RC = &X86::FR64RegClass; break; - } - - const Value *SrcVal = II->getArgOperand(0); - unsigned SrcReg = getRegForValue(SrcVal); - - if (SrcReg == 0) - return false; - - unsigned ImplicitDefReg = 0; - if (HasAVX) { - ImplicitDefReg = createResultReg(RC); - BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, - TII.get(TargetOpcode::IMPLICIT_DEF), ImplicitDefReg); - } - - unsigned ResultReg = createResultReg(RC); - MachineInstrBuilder MIB; - MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), - ResultReg); - - if (ImplicitDefReg) - MIB.addReg(ImplicitDefReg); - - MIB.addReg(SrcReg); - - updateValueMap(II, ResultReg); - return true; - } - case Intrinsic::sadd_with_overflow: - case Intrinsic::uadd_with_overflow: - case Intrinsic::ssub_with_overflow: - case Intrinsic::usub_with_overflow: - case Intrinsic::smul_with_overflow: - case Intrinsic::umul_with_overflow: { - // This implements the basic lowering of the xalu with overflow intrinsics - // into add/sub/mul followed by either seto or setb. - const Function *Callee = II->getCalledFunction(); - auto *Ty = cast<StructType>(Callee->getReturnType()); - Type *RetTy = Ty->getTypeAtIndex(0U); - Type *CondTy = Ty->getTypeAtIndex(1); - - MVT VT; - if (!isTypeLegal(RetTy, VT)) - return false; - - if (VT < MVT::i8 || VT > MVT::i64) - return false; - - const Value *LHS = II->getArgOperand(0); - const Value *RHS = II->getArgOperand(1); - - // Canonicalize immediate to the RHS. - if (isa<ConstantInt>(LHS) && !isa<ConstantInt>(RHS) && - isCommutativeIntrinsic(II)) - std::swap(LHS, RHS); - - bool UseIncDec = false; - if (isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isOne()) - UseIncDec = true; - - unsigned BaseOpc, CondOpc; - switch (II->getIntrinsicID()) { - default: llvm_unreachable("Unexpected intrinsic!"); - case Intrinsic::sadd_with_overflow: - BaseOpc = UseIncDec ? unsigned(X86ISD::INC) : unsigned(ISD::ADD); - CondOpc = X86::SETOr; - break; - case Intrinsic::uadd_with_overflow: - BaseOpc = ISD::ADD; CondOpc = X86::SETBr; break; - case Intrinsic::ssub_with_overflow: - BaseOpc = UseIncDec ? unsigned(X86ISD::DEC) : unsigned(ISD::SUB); - CondOpc = X86::SETOr; - break; - case Intrinsic::usub_with_overflow: - BaseOpc = ISD::SUB; CondOpc = X86::SETBr; break; - case Intrinsic::smul_with_overflow: - BaseOpc = X86ISD::SMUL; CondOpc = X86::SETOr; break; - case Intrinsic::umul_with_overflow: - BaseOpc = X86ISD::UMUL; CondOpc = X86::SETOr; break; - } - - unsigned LHSReg = getRegForValue(LHS); - if (LHSReg == 0) - return false; - bool LHSIsKill = hasTrivialKill(LHS); - - unsigned ResultReg = 0; - // Check if we have an immediate version. - if (const auto *CI = dyn_cast<ConstantInt>(RHS)) { - static const unsigned Opc[2][4] = { - { X86::INC8r, X86::INC16r, X86::INC32r, X86::INC64r }, - { X86::DEC8r, X86::DEC16r, X86::DEC32r, X86::DEC64r } - }; - - if (BaseOpc == X86ISD::INC || BaseOpc == X86ISD::DEC) { - ResultReg = createResultReg(TLI.getRegClassFor(VT)); - bool IsDec = BaseOpc == X86ISD::DEC; - BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, - TII.get(Opc[IsDec][VT.SimpleTy-MVT::i8]), ResultReg) - .addReg(LHSReg, getKillRegState(LHSIsKill)); - } else - ResultReg = fastEmit_ri(VT, VT, BaseOpc, LHSReg, LHSIsKill, - CI->getZExtValue()); - } - - unsigned RHSReg; - bool RHSIsKill; - if (!ResultReg) { - RHSReg = getRegForValue(RHS); - if (RHSReg == 0) - return false; - RHSIsKill = hasTrivialKill(RHS); - ResultReg = fastEmit_rr(VT, VT, BaseOpc, LHSReg, LHSIsKill, RHSReg, - RHSIsKill); - } - - // FastISel doesn't have a pattern for all X86::MUL*r and X86::IMUL*r. Emit - // it manually. - if (BaseOpc == X86ISD::UMUL && !ResultReg) { - static const unsigned MULOpc[] = - { X86::MUL8r, X86::MUL16r, X86::MUL32r, X86::MUL64r }; - static const unsigned Reg[] = { X86::AL, X86::AX, X86::EAX, X86::RAX }; - // First copy the first operand into RAX, which is an implicit input to - // the X86::MUL*r instruction. - BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, - TII.get(TargetOpcode::COPY), Reg[VT.SimpleTy-MVT::i8]) - .addReg(LHSReg, getKillRegState(LHSIsKill)); - ResultReg = fastEmitInst_r(MULOpc[VT.SimpleTy-MVT::i8], - TLI.getRegClassFor(VT), RHSReg, RHSIsKill); - } else if (BaseOpc == X86ISD::SMUL && !ResultReg) { - static const unsigned MULOpc[] = - { X86::IMUL8r, X86::IMUL16rr, X86::IMUL32rr, X86::IMUL64rr }; - if (VT == MVT::i8) { - // Copy the first operand into AL, which is an implicit input to the - // X86::IMUL8r instruction. - BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, - TII.get(TargetOpcode::COPY), X86::AL) - .addReg(LHSReg, getKillRegState(LHSIsKill)); - ResultReg = fastEmitInst_r(MULOpc[0], TLI.getRegClassFor(VT), RHSReg, - RHSIsKill); - } else - ResultReg = fastEmitInst_rr(MULOpc[VT.SimpleTy-MVT::i8], - TLI.getRegClassFor(VT), LHSReg, LHSIsKill, - RHSReg, RHSIsKill); - } - - if (!ResultReg) - return false; - - unsigned ResultReg2 = FuncInfo.CreateRegs(CondTy); - assert((ResultReg+1) == ResultReg2 && "Nonconsecutive result registers."); - BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(CondOpc), - ResultReg2); - - updateValueMap(II, ResultReg, 2); - return true; - } - case Intrinsic::x86_sse_cvttss2si: - case Intrinsic::x86_sse_cvttss2si64: - case Intrinsic::x86_sse2_cvttsd2si: - case Intrinsic::x86_sse2_cvttsd2si64: { - bool IsInputDouble; - switch (II->getIntrinsicID()) { - default: llvm_unreachable("Unexpected intrinsic."); - case Intrinsic::x86_sse_cvttss2si: - case Intrinsic::x86_sse_cvttss2si64: - if (!Subtarget->hasSSE1()) - return false; - IsInputDouble = false; - break; - case Intrinsic::x86_sse2_cvttsd2si: - case Intrinsic::x86_sse2_cvttsd2si64: - if (!Subtarget->hasSSE2()) - return false; - IsInputDouble = true; - break; - } - - Type *RetTy = II->getCalledFunction()->getReturnType(); - MVT VT; - if (!isTypeLegal(RetTy, VT)) - return false; - - static const unsigned CvtOpc[2][2][2] = { - { { X86::CVTTSS2SIrr, X86::VCVTTSS2SIrr }, - { X86::CVTTSS2SI64rr, X86::VCVTTSS2SI64rr } }, - { { X86::CVTTSD2SIrr, X86::VCVTTSD2SIrr }, - { X86::CVTTSD2SI64rr, X86::VCVTTSD2SI64rr } } - }; - bool HasAVX = Subtarget->hasAVX(); - unsigned Opc; - switch (VT.SimpleTy) { - default: llvm_unreachable("Unexpected result type."); - case MVT::i32: Opc = CvtOpc[IsInputDouble][0][HasAVX]; break; - case MVT::i64: Opc = CvtOpc[IsInputDouble][1][HasAVX]; break; - } - - // Check if we can fold insertelement instructions into the convert. - const Value *Op = II->getArgOperand(0); - while (auto *IE = dyn_cast<InsertElementInst>(Op)) { - const Value *Index = IE->getOperand(2); - if (!isa<ConstantInt>(Index)) - break; - unsigned Idx = cast<ConstantInt>(Index)->getZExtValue(); - - if (Idx == 0) { - Op = IE->getOperand(1); - break; - } - Op = IE->getOperand(0); - } - - unsigned Reg = getRegForValue(Op); - if (Reg == 0) - return false; - - unsigned ResultReg = createResultReg(TLI.getRegClassFor(VT)); - BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg) - .addReg(Reg); - - updateValueMap(II, ResultReg); - return true; - } - } -} - -bool X86FastISel::fastLowerArguments() { - if (!FuncInfo.CanLowerReturn) - return false; - - const Function *F = FuncInfo.Fn; - if (F->isVarArg()) - return false; - - CallingConv::ID CC = F->getCallingConv(); - if (CC != CallingConv::C) - return false; - - if (Subtarget->isCallingConvWin64(CC)) - return false; - - if (!Subtarget->is64Bit()) - return false; - - // Only handle simple cases. i.e. Up to 6 i32/i64 scalar arguments. - unsigned GPRCnt = 0; - unsigned FPRCnt = 0; - unsigned Idx = 0; - for (auto const &Arg : F->args()) { - // The first argument is at index 1. - ++Idx; - if (F->getAttributes().hasAttribute(Idx, Attribute::ByVal) || - F->getAttributes().hasAttribute(Idx, Attribute::InReg) || - F->getAttributes().hasAttribute(Idx, Attribute::StructRet) || - F->getAttributes().hasAttribute(Idx, Attribute::Nest)) - return false; - - Type *ArgTy = Arg.getType(); - if (ArgTy->isStructTy() || ArgTy->isArrayTy() || ArgTy->isVectorTy()) - return false; - - EVT ArgVT = TLI.getValueType(ArgTy); - if (!ArgVT.isSimple()) return false; - switch (ArgVT.getSimpleVT().SimpleTy) { - default: return false; - case MVT::i32: - case MVT::i64: - ++GPRCnt; - break; - case MVT::f32: - case MVT::f64: - if (!Subtarget->hasSSE1()) - return false; - ++FPRCnt; - break; - } - - if (GPRCnt > 6) - return false; - - if (FPRCnt > 8) - return false; - } - - static const MCPhysReg GPR32ArgRegs[] = { - X86::EDI, X86::ESI, X86::EDX, X86::ECX, X86::R8D, X86::R9D - }; - static const MCPhysReg GPR64ArgRegs[] = { - X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8 , X86::R9 - }; - static const MCPhysReg XMMArgRegs[] = { - X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3, - X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7 - }; - - unsigned GPRIdx = 0; - unsigned FPRIdx = 0; - for (auto const &Arg : F->args()) { - MVT VT = TLI.getSimpleValueType(Arg.getType()); - const TargetRegisterClass *RC = TLI.getRegClassFor(VT); - unsigned SrcReg; - switch (VT.SimpleTy) { - default: llvm_unreachable("Unexpected value type."); - case MVT::i32: SrcReg = GPR32ArgRegs[GPRIdx++]; break; - case MVT::i64: SrcReg = GPR64ArgRegs[GPRIdx++]; break; - case MVT::f32: // fall-through - case MVT::f64: SrcReg = XMMArgRegs[FPRIdx++]; break; - } - unsigned DstReg = FuncInfo.MF->addLiveIn(SrcReg, RC); - // FIXME: Unfortunately it's necessary to emit a copy from the livein copy. - // Without this, EmitLiveInCopies may eliminate the livein if its only - // use is a bitcast (which isn't turned into an instruction). - unsigned ResultReg = createResultReg(RC); - BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, - TII.get(TargetOpcode::COPY), ResultReg) - .addReg(DstReg, getKillRegState(true)); - updateValueMap(&Arg, ResultReg); - } - return true; -} - -static unsigned computeBytesPoppedByCallee(const X86Subtarget *Subtarget, - CallingConv::ID CC, - ImmutableCallSite *CS) { - if (Subtarget->is64Bit()) - return 0; - if (Subtarget->getTargetTriple().isOSMSVCRT()) - return 0; - if (CC == CallingConv::Fast || CC == CallingConv::GHC || - CC == CallingConv::HiPE) - return 0; - if (CS && !CS->paramHasAttr(1, Attribute::StructRet)) - return 0; - if (CS && CS->paramHasAttr(1, Attribute::InReg)) - return 0; - return 4; -} - -bool X86FastISel::fastLowerCall(CallLoweringInfo &CLI) { - auto &OutVals = CLI.OutVals; - auto &OutFlags = CLI.OutFlags; - auto &OutRegs = CLI.OutRegs; - auto &Ins = CLI.Ins; - auto &InRegs = CLI.InRegs; - CallingConv::ID CC = CLI.CallConv; - bool &IsTailCall = CLI.IsTailCall; - bool IsVarArg = CLI.IsVarArg; - const Value *Callee = CLI.Callee; - const char *SymName = CLI.SymName; - - bool Is64Bit = Subtarget->is64Bit(); - bool IsWin64 = Subtarget->isCallingConvWin64(CC); - - // Handle only C, fastcc, and webkit_js calling conventions for now. - switch (CC) { - default: return false; - case CallingConv::C: - case CallingConv::Fast: - case CallingConv::WebKit_JS: - case CallingConv::X86_FastCall: - case CallingConv::X86_64_Win64: - case CallingConv::X86_64_SysV: - break; - } - - // Allow SelectionDAG isel to handle tail calls. - if (IsTailCall) - return false; - - // fastcc with -tailcallopt is intended to provide a guaranteed - // tail call optimization. Fastisel doesn't know how to do that. - if (CC == CallingConv::Fast && TM.Options.GuaranteedTailCallOpt) - return false; - - // Don't know how to handle Win64 varargs yet. Nothing special needed for - // x86-32. Special handling for x86-64 is implemented. - if (IsVarArg && IsWin64) - return false; - - // Don't know about inalloca yet. - if (CLI.CS && CLI.CS->hasInAllocaArgument()) - return false; - - // Fast-isel doesn't know about callee-pop yet. - if (X86::isCalleePop(CC, Subtarget->is64Bit(), IsVarArg, - TM.Options.GuaranteedTailCallOpt)) - return false; - - SmallVector<MVT, 16> OutVTs; - SmallVector<unsigned, 16> ArgRegs; - - // If this is a constant i1/i8/i16 argument, promote to i32 to avoid an extra - // instruction. This is safe because it is common to all FastISel supported - // calling conventions on x86. - for (int i = 0, e = OutVals.size(); i != e; ++i) { - Value *&Val = OutVals[i]; - ISD::ArgFlagsTy Flags = OutFlags[i]; - if (auto *CI = dyn_cast<ConstantInt>(Val)) { - if (CI->getBitWidth() < 32) { - if (Flags.isSExt()) - Val = ConstantExpr::getSExt(CI, Type::getInt32Ty(CI->getContext())); - else - Val = ConstantExpr::getZExt(CI, Type::getInt32Ty(CI->getContext())); - } - } - - // Passing bools around ends up doing a trunc to i1 and passing it. - // Codegen this as an argument + "and 1". - MVT VT; - auto *TI = dyn_cast<TruncInst>(Val); - unsigned ResultReg; - if (TI && TI->getType()->isIntegerTy(1) && CLI.CS && - (TI->getParent() == CLI.CS->getInstruction()->getParent()) && - TI->hasOneUse()) { - Value *PrevVal = TI->getOperand(0); - ResultReg = getRegForValue(PrevVal); - - if (!ResultReg) - return false; - - if (!isTypeLegal(PrevVal->getType(), VT)) - return false; - - ResultReg = - fastEmit_ri(VT, VT, ISD::AND, ResultReg, hasTrivialKill(PrevVal), 1); - } else { - if (!isTypeLegal(Val->getType(), VT)) - return false; - ResultReg = getRegForValue(Val); - } - - if (!ResultReg) - return false; - - ArgRegs.push_back(ResultReg); - OutVTs.push_back(VT); - } - - // Analyze operands of the call, assigning locations to each operand. - SmallVector<CCValAssign, 16> ArgLocs; - CCState CCInfo(CC, IsVarArg, *FuncInfo.MF, ArgLocs, CLI.RetTy->getContext()); - - // Allocate shadow area for Win64 - if (IsWin64) - CCInfo.AllocateStack(32, 8); - - CCInfo.AnalyzeCallOperands(OutVTs, OutFlags, CC_X86); - - // Get a count of how many bytes are to be pushed on the stack. - unsigned NumBytes = CCInfo.getNextStackOffset(); - - // Issue CALLSEQ_START - unsigned AdjStackDown = TII.getCallFrameSetupOpcode(); - BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AdjStackDown)) - .addImm(NumBytes); - - // Walk the register/memloc assignments, inserting copies/loads. - const X86RegisterInfo *RegInfo = static_cast<const X86RegisterInfo *>( - TM.getSubtargetImpl()->getRegisterInfo()); - for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { - CCValAssign const &VA = ArgLocs[i]; - const Value *ArgVal = OutVals[VA.getValNo()]; - MVT ArgVT = OutVTs[VA.getValNo()]; - - if (ArgVT == MVT::x86mmx) - return false; - - unsigned ArgReg = ArgRegs[VA.getValNo()]; - - // Promote the value if needed. - switch (VA.getLocInfo()) { - case CCValAssign::Full: break; - case CCValAssign::SExt: { - assert(VA.getLocVT().isInteger() && !VA.getLocVT().isVector() && - "Unexpected extend"); - bool Emitted = X86FastEmitExtend(ISD::SIGN_EXTEND, VA.getLocVT(), ArgReg, - ArgVT, ArgReg); - assert(Emitted && "Failed to emit a sext!"); (void)Emitted; - ArgVT = VA.getLocVT(); - break; - } - case CCValAssign::ZExt: { - assert(VA.getLocVT().isInteger() && !VA.getLocVT().isVector() && - "Unexpected extend"); - bool Emitted = X86FastEmitExtend(ISD::ZERO_EXTEND, VA.getLocVT(), ArgReg, - ArgVT, ArgReg); - assert(Emitted && "Failed to emit a zext!"); (void)Emitted; - ArgVT = VA.getLocVT(); - break; - } - case CCValAssign::AExt: { - assert(VA.getLocVT().isInteger() && !VA.getLocVT().isVector() && - "Unexpected extend"); - bool Emitted = X86FastEmitExtend(ISD::ANY_EXTEND, VA.getLocVT(), ArgReg, - ArgVT, ArgReg); - if (!Emitted) - Emitted = X86FastEmitExtend(ISD::ZERO_EXTEND, VA.getLocVT(), ArgReg, - ArgVT, ArgReg); - if (!Emitted) - Emitted = X86FastEmitExtend(ISD::SIGN_EXTEND, VA.getLocVT(), ArgReg, - ArgVT, ArgReg); - - assert(Emitted && "Failed to emit a aext!"); (void)Emitted; - ArgVT = VA.getLocVT(); - break; - } - case CCValAssign::BCvt: { - ArgReg = fastEmit_r(ArgVT, VA.getLocVT(), ISD::BITCAST, ArgReg, - /*TODO: Kill=*/false); - assert(ArgReg && "Failed to emit a bitcast!"); - ArgVT = VA.getLocVT(); - break; - } - case CCValAssign::VExt: - // VExt has not been implemented, so this should be impossible to reach - // for now. However, fallback to Selection DAG isel once implemented. - return false; - case CCValAssign::AExtUpper: - case CCValAssign::SExtUpper: - case CCValAssign::ZExtUpper: - case CCValAssign::FPExt: - llvm_unreachable("Unexpected loc info!"); - case CCValAssign::Indirect: - // FIXME: Indirect doesn't need extending, but fast-isel doesn't fully - // support this. - return false; - } - - if (VA.isRegLoc()) { - BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, - TII.get(TargetOpcode::COPY), VA.getLocReg()).addReg(ArgReg); - OutRegs.push_back(VA.getLocReg()); - } else { - assert(VA.isMemLoc()); - - // Don't emit stores for undef values. - if (isa<UndefValue>(ArgVal)) - continue; - - unsigned LocMemOffset = VA.getLocMemOffset(); - X86AddressMode AM; - AM.Base.Reg = RegInfo->getStackRegister(); - AM.Disp = LocMemOffset; - ISD::ArgFlagsTy Flags = OutFlags[VA.getValNo()]; - unsigned Alignment = DL.getABITypeAlignment(ArgVal->getType()); - MachineMemOperand *MMO = FuncInfo.MF->getMachineMemOperand( - MachinePointerInfo::getStack(LocMemOffset), MachineMemOperand::MOStore, - ArgVT.getStoreSize(), Alignment); - if (Flags.isByVal()) { - X86AddressMode SrcAM; - SrcAM.Base.Reg = ArgReg; - if (!TryEmitSmallMemcpy(AM, SrcAM, Flags.getByValSize())) - return false; - } else if (isa<ConstantInt>(ArgVal) || isa<ConstantPointerNull>(ArgVal)) { - // If this is a really simple value, emit this with the Value* version - // of X86FastEmitStore. If it isn't simple, we don't want to do this, - // as it can cause us to reevaluate the argument. - if (!X86FastEmitStore(ArgVT, ArgVal, AM, MMO)) - return false; - } else { - bool ValIsKill = hasTrivialKill(ArgVal); - if (!X86FastEmitStore(ArgVT, ArgReg, ValIsKill, AM, MMO)) - return false; - } - } - } - - // ELF / PIC requires GOT in the EBX register before function calls via PLT - // GOT pointer. - if (Subtarget->isPICStyleGOT()) { - unsigned Base = getInstrInfo()->getGlobalBaseReg(FuncInfo.MF); - BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, - TII.get(TargetOpcode::COPY), X86::EBX).addReg(Base); - } - - if (Is64Bit && IsVarArg && !IsWin64) { - // From AMD64 ABI document: - // For calls that may call functions that use varargs or stdargs - // (prototype-less calls or calls to functions containing ellipsis (...) in - // the declaration) %al is used as hidden argument to specify the number - // of SSE registers used. The contents of %al do not need to match exactly - // the number of registers, but must be an ubound on the number of SSE - // registers used and is in the range 0 - 8 inclusive. - - // Count the number of XMM registers allocated. - static const MCPhysReg XMMArgRegs[] = { - X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3, - X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7 - }; - unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs, 8); - assert((Subtarget->hasSSE1() || !NumXMMRegs) - && "SSE registers cannot be used when SSE is disabled"); - BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::MOV8ri), - X86::AL).addImm(NumXMMRegs); - } - - // Materialize callee address in a register. FIXME: GV address can be - // handled with a CALLpcrel32 instead. - X86AddressMode CalleeAM; - if (!X86SelectCallAddress(Callee, CalleeAM)) - return false; - - unsigned CalleeOp = 0; - const GlobalValue *GV = nullptr; - if (CalleeAM.GV != nullptr) { - GV = CalleeAM.GV; - } else if (CalleeAM.Base.Reg != 0) { - CalleeOp = CalleeAM.Base.Reg; - } else - return false; - - // Issue the call. - MachineInstrBuilder MIB; - if (CalleeOp) { - // Register-indirect call. - unsigned CallOpc = Is64Bit ? X86::CALL64r : X86::CALL32r; - MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(CallOpc)) - .addReg(CalleeOp); - } else { - // Direct call. - assert(GV && "Not a direct call"); - unsigned CallOpc = Is64Bit ? X86::CALL64pcrel32 : X86::CALLpcrel32; - - // See if we need any target-specific flags on the GV operand. - unsigned char OpFlags = 0; - - // On ELF targets, in both X86-64 and X86-32 mode, direct calls to - // external symbols most go through the PLT in PIC mode. If the symbol - // has hidden or protected visibility, or if it is static or local, then - // we don't need to use the PLT - we can directly call it. - if (Subtarget->isTargetELF() && - TM.getRelocationModel() == Reloc::PIC_ && - GV->hasDefaultVisibility() && !GV->hasLocalLinkage()) { - OpFlags = X86II::MO_PLT; - } else if (Subtarget->isPICStyleStubAny() && - (GV->isDeclaration() || GV->isWeakForLinker()) && - (!Subtarget->getTargetTriple().isMacOSX() || - Subtarget->getTargetTriple().isMacOSXVersionLT(10, 5))) { - // PC-relative references to external symbols should go through $stub, - // unless we're building with the leopard linker or later, which - // automatically synthesizes these stubs. - OpFlags = X86II::MO_DARWIN_STUB; - } - - MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(CallOpc)); - if (SymName) - MIB.addExternalSymbol(SymName, OpFlags); - else - MIB.addGlobalAddress(GV, 0, OpFlags); - } - - // Add a register mask operand representing the call-preserved registers. - // Proper defs for return values will be added by setPhysRegsDeadExcept(). - MIB.addRegMask(TRI.getCallPreservedMask(CC)); - - // Add an implicit use GOT pointer in EBX. - if (Subtarget->isPICStyleGOT()) - MIB.addReg(X86::EBX, RegState::Implicit); - - if (Is64Bit && IsVarArg && !IsWin64) - MIB.addReg(X86::AL, RegState::Implicit); - - // Add implicit physical register uses to the call. - for (auto Reg : OutRegs) - MIB.addReg(Reg, RegState::Implicit); - - // Issue CALLSEQ_END - unsigned NumBytesForCalleeToPop = - computeBytesPoppedByCallee(Subtarget, CC, CLI.CS); - unsigned AdjStackUp = TII.getCallFrameDestroyOpcode(); - BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AdjStackUp)) - .addImm(NumBytes).addImm(NumBytesForCalleeToPop); - - // Now handle call return values. - SmallVector<CCValAssign, 16> RVLocs; - CCState CCRetInfo(CC, IsVarArg, *FuncInfo.MF, RVLocs, - CLI.RetTy->getContext()); - CCRetInfo.AnalyzeCallResult(Ins, RetCC_X86); - - // Copy all of the result registers out of their specified physreg. - unsigned ResultReg = FuncInfo.CreateRegs(CLI.RetTy); - for (unsigned i = 0; i != RVLocs.size(); ++i) { - CCValAssign &VA = RVLocs[i]; - EVT CopyVT = VA.getValVT(); - unsigned CopyReg = ResultReg + i; - - // If this is x86-64, and we disabled SSE, we can't return FP values - if ((CopyVT == MVT::f32 || CopyVT == MVT::f64) && - ((Is64Bit || Ins[i].Flags.isInReg()) && !Subtarget->hasSSE1())) { - report_fatal_error("SSE register return with SSE disabled"); - } - - // If we prefer to use the value in xmm registers, copy it out as f80 and - // use a truncate to move it from fp stack reg to xmm reg. - if ((VA.getLocReg() == X86::FP0 || VA.getLocReg() == X86::FP1) && - isScalarFPTypeInSSEReg(VA.getValVT())) { - CopyVT = MVT::f80; - CopyReg = createResultReg(&X86::RFP80RegClass); - } - - // Copy out the result. - BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, - TII.get(TargetOpcode::COPY), CopyReg).addReg(VA.getLocReg()); - InRegs.push_back(VA.getLocReg()); - - // Round the f80 to the right size, which also moves it to the appropriate - // xmm register. This is accomplished by storing the f80 value in memory - // and then loading it back. - if (CopyVT != VA.getValVT()) { - EVT ResVT = VA.getValVT(); - unsigned Opc = ResVT == MVT::f32 ? X86::ST_Fp80m32 : X86::ST_Fp80m64; - unsigned MemSize = ResVT.getSizeInBits()/8; - int FI = MFI.CreateStackObject(MemSize, MemSize, false); - addFrameReference(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, - TII.get(Opc)), FI) - .addReg(CopyReg); - Opc = ResVT == MVT::f32 ? X86::MOVSSrm : X86::MOVSDrm; - addFrameReference(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, - TII.get(Opc), ResultReg + i), FI); - } - } - - CLI.ResultReg = ResultReg; - CLI.NumResultRegs = RVLocs.size(); - CLI.Call = MIB; - - return true; -} - -bool -X86FastISel::fastSelectInstruction(const Instruction *I) { - switch (I->getOpcode()) { - default: break; - case Instruction::Load: - return X86SelectLoad(I); - case Instruction::Store: - return X86SelectStore(I); - case Instruction::Ret: - return X86SelectRet(I); - case Instruction::ICmp: - case Instruction::FCmp: - return X86SelectCmp(I); - case Instruction::ZExt: - return X86SelectZExt(I); - case Instruction::Br: - return X86SelectBranch(I); - case Instruction::LShr: - case Instruction::AShr: - case Instruction::Shl: - return X86SelectShift(I); - case Instruction::SDiv: - case Instruction::UDiv: - case Instruction::SRem: - case Instruction::URem: - return X86SelectDivRem(I); - case Instruction::Select: - return X86SelectSelect(I); - case Instruction::Trunc: - return X86SelectTrunc(I); - case Instruction::FPExt: - return X86SelectFPExt(I); - case Instruction::FPTrunc: - return X86SelectFPTrunc(I); - case Instruction::IntToPtr: // Deliberate fall-through. - case Instruction::PtrToInt: { - EVT SrcVT = TLI.getValueType(I->getOperand(0)->getType()); - EVT DstVT = TLI.getValueType(I->getType()); - if (DstVT.bitsGT(SrcVT)) - return X86SelectZExt(I); - if (DstVT.bitsLT(SrcVT)) - return X86SelectTrunc(I); - unsigned Reg = getRegForValue(I->getOperand(0)); - if (Reg == 0) return false; - updateValueMap(I, Reg); - return true; - } - } - - return false; -} - -unsigned X86FastISel::X86MaterializeInt(const ConstantInt *CI, MVT VT) { - if (VT > MVT::i64) - return 0; - - uint64_t Imm = CI->getZExtValue(); - if (Imm == 0) { - unsigned SrcReg = fastEmitInst_(X86::MOV32r0, &X86::GR32RegClass); - switch (VT.SimpleTy) { - default: llvm_unreachable("Unexpected value type"); - case MVT::i1: - case MVT::i8: - return fastEmitInst_extractsubreg(MVT::i8, SrcReg, /*Kill=*/true, - X86::sub_8bit); - case MVT::i16: - return fastEmitInst_extractsubreg(MVT::i16, SrcReg, /*Kill=*/true, - X86::sub_16bit); - case MVT::i32: - return SrcReg; - case MVT::i64: { - unsigned ResultReg = createResultReg(&X86::GR64RegClass); - BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, - TII.get(TargetOpcode::SUBREG_TO_REG), ResultReg) - .addImm(0).addReg(SrcReg).addImm(X86::sub_32bit); - return ResultReg; - } - } - } - - unsigned Opc = 0; - switch (VT.SimpleTy) { - default: llvm_unreachable("Unexpected value type"); - case MVT::i1: VT = MVT::i8; // fall-through - case MVT::i8: Opc = X86::MOV8ri; break; - case MVT::i16: Opc = X86::MOV16ri; break; - case MVT::i32: Opc = X86::MOV32ri; break; - case MVT::i64: { - if (isUInt<32>(Imm)) - Opc = X86::MOV32ri; - else if (isInt<32>(Imm)) - Opc = X86::MOV64ri32; - else - Opc = X86::MOV64ri; - break; - } - } - if (VT == MVT::i64 && Opc == X86::MOV32ri) { - unsigned SrcReg = fastEmitInst_i(Opc, &X86::GR32RegClass, Imm); - unsigned ResultReg = createResultReg(&X86::GR64RegClass); - BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, - TII.get(TargetOpcode::SUBREG_TO_REG), ResultReg) - .addImm(0).addReg(SrcReg).addImm(X86::sub_32bit); - return ResultReg; - } - return fastEmitInst_i(Opc, TLI.getRegClassFor(VT), Imm); -} - -unsigned X86FastISel::X86MaterializeFP(const ConstantFP *CFP, MVT VT) { - if (CFP->isNullValue()) - return fastMaterializeFloatZero(CFP); - - // Can't handle alternate code models yet. - CodeModel::Model CM = TM.getCodeModel(); - if (CM != CodeModel::Small && CM != CodeModel::Large) - return 0; - - // Get opcode and regclass of the output for the given load instruction. - unsigned Opc = 0; - const TargetRegisterClass *RC = nullptr; - switch (VT.SimpleTy) { - default: return 0; - case MVT::f32: - if (X86ScalarSSEf32) { - Opc = Subtarget->hasAVX() ? X86::VMOVSSrm : X86::MOVSSrm; - RC = &X86::FR32RegClass; - } else { - Opc = X86::LD_Fp32m; - RC = &X86::RFP32RegClass; - } - break; - case MVT::f64: - if (X86ScalarSSEf64) { - Opc = Subtarget->hasAVX() ? X86::VMOVSDrm : X86::MOVSDrm; - RC = &X86::FR64RegClass; - } else { - Opc = X86::LD_Fp64m; - RC = &X86::RFP64RegClass; - } - break; - case MVT::f80: - // No f80 support yet. - return 0; - } - - // MachineConstantPool wants an explicit alignment. - unsigned Align = DL.getPrefTypeAlignment(CFP->getType()); - if (Align == 0) { - // Alignment of vector types. FIXME! - Align = DL.getTypeAllocSize(CFP->getType()); - } - - // x86-32 PIC requires a PIC base register for constant pools. - unsigned PICBase = 0; - unsigned char OpFlag = 0; - if (Subtarget->isPICStyleStubPIC()) { // Not dynamic-no-pic - OpFlag = X86II::MO_PIC_BASE_OFFSET; - PICBase = getInstrInfo()->getGlobalBaseReg(FuncInfo.MF); - } else if (Subtarget->isPICStyleGOT()) { - OpFlag = X86II::MO_GOTOFF; - PICBase = getInstrInfo()->getGlobalBaseReg(FuncInfo.MF); - } else if (Subtarget->isPICStyleRIPRel() && - TM.getCodeModel() == CodeModel::Small) { - PICBase = X86::RIP; - } - - // Create the load from the constant pool. - unsigned CPI = MCP.getConstantPoolIndex(CFP, Align); - unsigned ResultReg = createResultReg(RC); - - if (CM == CodeModel::Large) { - unsigned AddrReg = createResultReg(&X86::GR64RegClass); - BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::MOV64ri), - AddrReg) - .addConstantPoolIndex(CPI, 0, OpFlag); - MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, - TII.get(Opc), ResultReg); - addDirectMem(MIB, AddrReg); - MachineMemOperand *MMO = FuncInfo.MF->getMachineMemOperand( - MachinePointerInfo::getConstantPool(), MachineMemOperand::MOLoad, - TM.getDataLayout()->getPointerSize(), Align); - MIB->addMemOperand(*FuncInfo.MF, MMO); - return ResultReg; - } - - addConstantPoolReference(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, - TII.get(Opc), ResultReg), - CPI, PICBase, OpFlag); - return ResultReg; -} - -unsigned X86FastISel::X86MaterializeGV(const GlobalValue *GV, MVT VT) { - // Can't handle alternate code models yet. - if (TM.getCodeModel() != CodeModel::Small) - return 0; - - // Materialize addresses with LEA/MOV instructions. - X86AddressMode AM; - if (X86SelectAddress(GV, AM)) { - // If the expression is just a basereg, then we're done, otherwise we need - // to emit an LEA. - if (AM.BaseType == X86AddressMode::RegBase && - AM.IndexReg == 0 && AM.Disp == 0 && AM.GV == nullptr) - return AM.Base.Reg; - - unsigned ResultReg = createResultReg(TLI.getRegClassFor(VT)); - if (TM.getRelocationModel() == Reloc::Static && - TLI.getPointerTy() == MVT::i64) { - // The displacement code could be more than 32 bits away so we need to use - // an instruction with a 64 bit immediate - BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::MOV64ri), - ResultReg) - .addGlobalAddress(GV); - } else { - unsigned Opc = TLI.getPointerTy() == MVT::i32 - ? (Subtarget->isTarget64BitILP32() - ? X86::LEA64_32r : X86::LEA32r) - : X86::LEA64r; - addFullAddress(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, - TII.get(Opc), ResultReg), AM); - } - return ResultReg; - } - return 0; -} - -unsigned X86FastISel::fastMaterializeConstant(const Constant *C) { - EVT CEVT = TLI.getValueType(C->getType(), true); - - // Only handle simple types. - if (!CEVT.isSimple()) - return 0; - MVT VT = CEVT.getSimpleVT(); - - if (const auto *CI = dyn_cast<ConstantInt>(C)) - return X86MaterializeInt(CI, VT); - else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) - return X86MaterializeFP(CFP, VT); - else if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) - return X86MaterializeGV(GV, VT); - - return 0; -} - -unsigned X86FastISel::fastMaterializeAlloca(const AllocaInst *C) { - // Fail on dynamic allocas. At this point, getRegForValue has already - // checked its CSE maps, so if we're here trying to handle a dynamic - // alloca, we're not going to succeed. X86SelectAddress has a - // check for dynamic allocas, because it's called directly from - // various places, but targetMaterializeAlloca also needs a check - // in order to avoid recursion between getRegForValue, - // X86SelectAddrss, and targetMaterializeAlloca. - if (!FuncInfo.StaticAllocaMap.count(C)) - return 0; - assert(C->isStaticAlloca() && "dynamic alloca in the static alloca map?"); - - X86AddressMode AM; - if (!X86SelectAddress(C, AM)) - return 0; - unsigned Opc = TLI.getPointerTy() == MVT::i32 - ? (Subtarget->isTarget64BitILP32() - ? X86::LEA64_32r : X86::LEA32r) - : X86::LEA64r; - const TargetRegisterClass* RC = TLI.getRegClassFor(TLI.getPointerTy()); - unsigned ResultReg = createResultReg(RC); - addFullAddress(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, - TII.get(Opc), ResultReg), AM); - return ResultReg; -} - -unsigned X86FastISel::fastMaterializeFloatZero(const ConstantFP *CF) { - MVT VT; - if (!isTypeLegal(CF->getType(), VT)) - return 0; - - // Get opcode and regclass for the given zero. - unsigned Opc = 0; - const TargetRegisterClass *RC = nullptr; - switch (VT.SimpleTy) { - default: return 0; - case MVT::f32: - if (X86ScalarSSEf32) { - Opc = X86::FsFLD0SS; - RC = &X86::FR32RegClass; - } else { - Opc = X86::LD_Fp032; - RC = &X86::RFP32RegClass; - } - break; - case MVT::f64: - if (X86ScalarSSEf64) { - Opc = X86::FsFLD0SD; - RC = &X86::FR64RegClass; - } else { - Opc = X86::LD_Fp064; - RC = &X86::RFP64RegClass; - } - break; - case MVT::f80: - // No f80 support yet. - return 0; - } - - unsigned ResultReg = createResultReg(RC); - BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg); - return ResultReg; -} - - -bool X86FastISel::tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo, - const LoadInst *LI) { - const Value *Ptr = LI->getPointerOperand(); - X86AddressMode AM; - if (!X86SelectAddress(Ptr, AM)) - return false; - - const X86InstrInfo &XII = (const X86InstrInfo &)TII; - - unsigned Size = DL.getTypeAllocSize(LI->getType()); - unsigned Alignment = LI->getAlignment(); - - if (Alignment == 0) // Ensure that codegen never sees alignment 0 - Alignment = DL.getABITypeAlignment(LI->getType()); - - SmallVector<MachineOperand, 8> AddrOps; - AM.getFullAddress(AddrOps); - - MachineInstr *Result = - XII.foldMemoryOperandImpl(*FuncInfo.MF, MI, OpNo, AddrOps, - Size, Alignment, /*AllowCommute=*/true); - if (!Result) - return false; - - Result->addMemOperand(*FuncInfo.MF, createMachineMemOperandFor(LI)); - FuncInfo.MBB->insert(FuncInfo.InsertPt, Result); - MI->eraseFromParent(); - return true; -} - - -namespace llvm { - FastISel *X86::createFastISel(FunctionLoweringInfo &funcInfo, - const TargetLibraryInfo *libInfo) { - return new X86FastISel(funcInfo, libInfo); - } -} +//===-- X86FastISel.cpp - X86 FastISel implementation ---------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines the X86-specific support for the FastISel class. Much
+// of the target-specific code is generated by tablegen in the file
+// X86GenFastISel.inc, which is #included here.
+//
+//===----------------------------------------------------------------------===//
+
+#include "X86.h"
+#include "X86CallingConv.h"
+#include "X86InstrBuilder.h"
+#include "X86InstrInfo.h"
+#include "X86MachineFunctionInfo.h"
+#include "X86RegisterInfo.h"
+#include "X86Subtarget.h"
+#include "X86TargetMachine.h"
+#include "llvm/Analysis/BranchProbabilityInfo.h"
+#include "llvm/CodeGen/Analysis.h"
+#include "llvm/CodeGen/FastISel.h"
+#include "llvm/CodeGen/FunctionLoweringInfo.h"
+#include "llvm/CodeGen/MachineConstantPool.h"
+#include "llvm/CodeGen/MachineFrameInfo.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/IR/CallSite.h"
+#include "llvm/IR/CallingConv.h"
+#include "llvm/IR/DerivedTypes.h"
+#include "llvm/IR/GetElementPtrTypeIterator.h"
+#include "llvm/IR/GlobalAlias.h"
+#include "llvm/IR/GlobalVariable.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/IntrinsicInst.h"
+#include "llvm/IR/Operator.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Target/TargetOptions.h"
+using namespace llvm;
+
+namespace {
+
+class X86FastISel final : public FastISel {
+ /// Subtarget - Keep a pointer to the X86Subtarget around so that we can
+ /// make the right decision when generating code for different targets.
+ const X86Subtarget *Subtarget;
+
+ /// X86ScalarSSEf32, X86ScalarSSEf64 - Select between SSE or x87
+ /// floating point ops.
+ /// When SSE is available, use it for f32 operations.
+ /// When SSE2 is available, use it for f64 operations.
+ bool X86ScalarSSEf64;
+ bool X86ScalarSSEf32;
+
+public:
+ explicit X86FastISel(FunctionLoweringInfo &funcInfo,
+ const TargetLibraryInfo *libInfo)
+ : FastISel(funcInfo, libInfo) {
+ Subtarget = &TM.getSubtarget<X86Subtarget>();
+ X86ScalarSSEf64 = Subtarget->hasSSE2();
+ X86ScalarSSEf32 = Subtarget->hasSSE1();
+ }
+
+ bool fastSelectInstruction(const Instruction *I) override;
+
+ /// \brief The specified machine instr operand is a vreg, and that
+ /// vreg is being provided by the specified load instruction. If possible,
+ /// try to fold the load as an operand to the instruction, returning true if
+ /// possible.
+ bool tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo,
+ const LoadInst *LI) override;
+
+ bool fastLowerArguments() override;
+ bool fastLowerCall(CallLoweringInfo &CLI) override;
+ bool fastLowerIntrinsicCall(const IntrinsicInst *II) override;
+
+#include "X86GenFastISel.inc"
+
+private:
+ bool X86FastEmitCompare(const Value *LHS, const Value *RHS, EVT VT, DebugLoc DL);
+
+ bool X86FastEmitLoad(EVT VT, const X86AddressMode &AM, MachineMemOperand *MMO,
+ unsigned &ResultReg);
+
+ bool X86FastEmitStore(EVT VT, const Value *Val, const X86AddressMode &AM,
+ MachineMemOperand *MMO = nullptr, bool Aligned = false);
+ bool X86FastEmitStore(EVT VT, unsigned ValReg, bool ValIsKill,
+ const X86AddressMode &AM,
+ MachineMemOperand *MMO = nullptr, bool Aligned = false);
+
+ bool X86FastEmitExtend(ISD::NodeType Opc, EVT DstVT, unsigned Src, EVT SrcVT,
+ unsigned &ResultReg);
+
+ bool X86SelectAddress(const Value *V, X86AddressMode &AM);
+ bool X86SelectCallAddress(const Value *V, X86AddressMode &AM);
+
+ bool X86SelectLoad(const Instruction *I);
+
+ bool X86SelectStore(const Instruction *I);
+
+ bool X86SelectRet(const Instruction *I);
+
+ bool X86SelectCmp(const Instruction *I);
+
+ bool X86SelectZExt(const Instruction *I);
+
+ bool X86SelectBranch(const Instruction *I);
+
+ bool X86SelectShift(const Instruction *I);
+
+ bool X86SelectDivRem(const Instruction *I);
+
+ bool X86FastEmitCMoveSelect(MVT RetVT, const Instruction *I);
+
+ bool X86FastEmitSSESelect(MVT RetVT, const Instruction *I);
+
+ bool X86FastEmitPseudoSelect(MVT RetVT, const Instruction *I);
+
+ bool X86SelectSelect(const Instruction *I);
+
+ bool X86SelectTrunc(const Instruction *I);
+
+ bool X86SelectFPExt(const Instruction *I);
+ bool X86SelectFPTrunc(const Instruction *I);
+
+ const X86InstrInfo *getInstrInfo() const {
+ return getTargetMachine()->getSubtargetImpl()->getInstrInfo();
+ }
+ const X86TargetMachine *getTargetMachine() const {
+ return static_cast<const X86TargetMachine *>(&TM);
+ }
+
+ bool handleConstantAddresses(const Value *V, X86AddressMode &AM);
+
+ unsigned X86MaterializeInt(const ConstantInt *CI, MVT VT);
+ unsigned X86MaterializeFP(const ConstantFP *CFP, MVT VT);
+ unsigned X86MaterializeGV(const GlobalValue *GV, MVT VT);
+ unsigned fastMaterializeConstant(const Constant *C) override;
+
+ unsigned fastMaterializeAlloca(const AllocaInst *C) override;
+
+ unsigned fastMaterializeFloatZero(const ConstantFP *CF) override;
+
+ /// isScalarFPTypeInSSEReg - Return true if the specified scalar FP type is
+ /// computed in an SSE register, not on the X87 floating point stack.
+ bool isScalarFPTypeInSSEReg(EVT VT) const {
+ return (VT == MVT::f64 && X86ScalarSSEf64) || // f64 is when SSE2
+ (VT == MVT::f32 && X86ScalarSSEf32); // f32 is when SSE1
+ }
+
+ bool isTypeLegal(Type *Ty, MVT &VT, bool AllowI1 = false);
+
+ bool IsMemcpySmall(uint64_t Len);
+
+ bool TryEmitSmallMemcpy(X86AddressMode DestAM,
+ X86AddressMode SrcAM, uint64_t Len);
+
+ bool foldX86XALUIntrinsic(X86::CondCode &CC, const Instruction *I,
+ const Value *Cond);
+};
+
+} // end anonymous namespace.
+
+static std::pair<X86::CondCode, bool>
+getX86ConditionCode(CmpInst::Predicate Predicate) {
+ X86::CondCode CC = X86::COND_INVALID;
+ bool NeedSwap = false;
+ switch (Predicate) {
+ default: break;
+ // Floating-point Predicates
+ case CmpInst::FCMP_UEQ: CC = X86::COND_E; break;
+ case CmpInst::FCMP_OLT: NeedSwap = true; // fall-through
+ case CmpInst::FCMP_OGT: CC = X86::COND_A; break;
+ case CmpInst::FCMP_OLE: NeedSwap = true; // fall-through
+ case CmpInst::FCMP_OGE: CC = X86::COND_AE; break;
+ case CmpInst::FCMP_UGT: NeedSwap = true; // fall-through
+ case CmpInst::FCMP_ULT: CC = X86::COND_B; break;
+ case CmpInst::FCMP_UGE: NeedSwap = true; // fall-through
+ case CmpInst::FCMP_ULE: CC = X86::COND_BE; break;
+ case CmpInst::FCMP_ONE: CC = X86::COND_NE; break;
+ case CmpInst::FCMP_UNO: CC = X86::COND_P; break;
+ case CmpInst::FCMP_ORD: CC = X86::COND_NP; break;
+ case CmpInst::FCMP_OEQ: // fall-through
+ case CmpInst::FCMP_UNE: CC = X86::COND_INVALID; break;
+
+ // Integer Predicates
+ case CmpInst::ICMP_EQ: CC = X86::COND_E; break;
+ case CmpInst::ICMP_NE: CC = X86::COND_NE; break;
+ case CmpInst::ICMP_UGT: CC = X86::COND_A; break;
+ case CmpInst::ICMP_UGE: CC = X86::COND_AE; break;
+ case CmpInst::ICMP_ULT: CC = X86::COND_B; break;
+ case CmpInst::ICMP_ULE: CC = X86::COND_BE; break;
+ case CmpInst::ICMP_SGT: CC = X86::COND_G; break;
+ case CmpInst::ICMP_SGE: CC = X86::COND_GE; break;
+ case CmpInst::ICMP_SLT: CC = X86::COND_L; break;
+ case CmpInst::ICMP_SLE: CC = X86::COND_LE; break;
+ }
+
+ return std::make_pair(CC, NeedSwap);
+}
+
+static std::pair<unsigned, bool>
+getX86SSEConditionCode(CmpInst::Predicate Predicate) {
+ unsigned CC;
+ bool NeedSwap = false;
+
+ // SSE Condition code mapping:
+ // 0 - EQ
+ // 1 - LT
+ // 2 - LE
+ // 3 - UNORD
+ // 4 - NEQ
+ // 5 - NLT
+ // 6 - NLE
+ // 7 - ORD
+ switch (Predicate) {
+ default: llvm_unreachable("Unexpected predicate");
+ case CmpInst::FCMP_OEQ: CC = 0; break;
+ case CmpInst::FCMP_OGT: NeedSwap = true; // fall-through
+ case CmpInst::FCMP_OLT: CC = 1; break;
+ case CmpInst::FCMP_OGE: NeedSwap = true; // fall-through
+ case CmpInst::FCMP_OLE: CC = 2; break;
+ case CmpInst::FCMP_UNO: CC = 3; break;
+ case CmpInst::FCMP_UNE: CC = 4; break;
+ case CmpInst::FCMP_ULE: NeedSwap = true; // fall-through
+ case CmpInst::FCMP_UGE: CC = 5; break;
+ case CmpInst::FCMP_ULT: NeedSwap = true; // fall-through
+ case CmpInst::FCMP_UGT: CC = 6; break;
+ case CmpInst::FCMP_ORD: CC = 7; break;
+ case CmpInst::FCMP_UEQ:
+ case CmpInst::FCMP_ONE: CC = 8; break;
+ }
+
+ return std::make_pair(CC, NeedSwap);
+}
+
+/// \brief Check if it is possible to fold the condition from the XALU intrinsic
+/// into the user. The condition code will only be updated on success.
+bool X86FastISel::foldX86XALUIntrinsic(X86::CondCode &CC, const Instruction *I,
+ const Value *Cond) {
+ if (!isa<ExtractValueInst>(Cond))
+ return false;
+
+ const auto *EV = cast<ExtractValueInst>(Cond);
+ if (!isa<IntrinsicInst>(EV->getAggregateOperand()))
+ return false;
+
+ const auto *II = cast<IntrinsicInst>(EV->getAggregateOperand());
+ MVT RetVT;
+ const Function *Callee = II->getCalledFunction();
+ Type *RetTy =
+ cast<StructType>(Callee->getReturnType())->getTypeAtIndex(0U);
+ if (!isTypeLegal(RetTy, RetVT))
+ return false;
+
+ if (RetVT != MVT::i32 && RetVT != MVT::i64)
+ return false;
+
+ X86::CondCode TmpCC;
+ switch (II->getIntrinsicID()) {
+ default: return false;
+ case Intrinsic::sadd_with_overflow:
+ case Intrinsic::ssub_with_overflow:
+ case Intrinsic::smul_with_overflow:
+ case Intrinsic::umul_with_overflow: TmpCC = X86::COND_O; break;
+ case Intrinsic::uadd_with_overflow:
+ case Intrinsic::usub_with_overflow: TmpCC = X86::COND_B; break;
+ }
+
+ // Check if both instructions are in the same basic block.
+ if (II->getParent() != I->getParent())
+ return false;
+
+ // Make sure nothing is in the way
+ BasicBlock::const_iterator Start = I;
+ BasicBlock::const_iterator End = II;
+ for (auto Itr = std::prev(Start); Itr != End; --Itr) {
+ // We only expect extractvalue instructions between the intrinsic and the
+ // instruction to be selected.
+ if (!isa<ExtractValueInst>(Itr))
+ return false;
+
+ // Check that the extractvalue operand comes from the intrinsic.
+ const auto *EVI = cast<ExtractValueInst>(Itr);
+ if (EVI->getAggregateOperand() != II)
+ return false;
+ }
+
+ CC = TmpCC;
+ return true;
+}
+
+bool X86FastISel::isTypeLegal(Type *Ty, MVT &VT, bool AllowI1) {
+ EVT evt = TLI.getValueType(Ty, /*HandleUnknown=*/true);
+ if (evt == MVT::Other || !evt.isSimple())
+ // Unhandled type. Halt "fast" selection and bail.
+ return false;
+
+ VT = evt.getSimpleVT();
+ // For now, require SSE/SSE2 for performing floating-point operations,
+ // since x87 requires additional work.
+ if (VT == MVT::f64 && !X86ScalarSSEf64)
+ return false;
+ if (VT == MVT::f32 && !X86ScalarSSEf32)
+ return false;
+ // Similarly, no f80 support yet.
+ if (VT == MVT::f80)
+ return false;
+ // We only handle legal types. For example, on x86-32 the instruction
+ // selector contains all of the 64-bit instructions from x86-64,
+ // under the assumption that i64 won't be used if the target doesn't
+ // support it.
+ return (AllowI1 && VT == MVT::i1) || TLI.isTypeLegal(VT);
+}
+
+#include "X86GenCallingConv.inc"
+
+/// X86FastEmitLoad - Emit a machine instruction to load a value of type VT.
+/// The address is either pre-computed, i.e. Ptr, or a GlobalAddress, i.e. GV.
+/// Return true and the result register by reference if it is possible.
+bool X86FastISel::X86FastEmitLoad(EVT VT, const X86AddressMode &AM,
+ MachineMemOperand *MMO, unsigned &ResultReg) {
+ // Get opcode and regclass of the output for the given load instruction.
+ unsigned Opc = 0;
+ const TargetRegisterClass *RC = nullptr;
+ switch (VT.getSimpleVT().SimpleTy) {
+ default: return false;
+ case MVT::i1:
+ case MVT::i8:
+ Opc = X86::MOV8rm;
+ RC = &X86::GR8RegClass;
+ break;
+ case MVT::i16:
+ Opc = X86::MOV16rm;
+ RC = &X86::GR16RegClass;
+ break;
+ case MVT::i32:
+ Opc = X86::MOV32rm;
+ RC = &X86::GR32RegClass;
+ break;
+ case MVT::i64:
+ // Must be in x86-64 mode.
+ Opc = X86::MOV64rm;
+ RC = &X86::GR64RegClass;
+ break;
+ case MVT::f32:
+ if (X86ScalarSSEf32) {
+ Opc = Subtarget->hasAVX() ? X86::VMOVSSrm : X86::MOVSSrm;
+ RC = &X86::FR32RegClass;
+ } else {
+ Opc = X86::LD_Fp32m;
+ RC = &X86::RFP32RegClass;
+ }
+ break;
+ case MVT::f64:
+ if (X86ScalarSSEf64) {
+ Opc = Subtarget->hasAVX() ? X86::VMOVSDrm : X86::MOVSDrm;
+ RC = &X86::FR64RegClass;
+ } else {
+ Opc = X86::LD_Fp64m;
+ RC = &X86::RFP64RegClass;
+ }
+ break;
+ case MVT::f80:
+ // No f80 support yet.
+ return false;
+ }
+
+ ResultReg = createResultReg(RC);
+ MachineInstrBuilder MIB =
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg);
+ addFullAddress(MIB, AM);
+ if (MMO)
+ MIB->addMemOperand(*FuncInfo.MF, MMO);
+ return true;
+}
+
+/// X86FastEmitStore - Emit a machine instruction to store a value Val of
+/// type VT. The address is either pre-computed, consisted of a base ptr, Ptr
+/// and a displacement offset, or a GlobalAddress,
+/// i.e. V. Return true if it is possible.
+bool X86FastISel::X86FastEmitStore(EVT VT, unsigned ValReg, bool ValIsKill,
+ const X86AddressMode &AM,
+ MachineMemOperand *MMO, bool Aligned) {
+ // Get opcode and regclass of the output for the given store instruction.
+ unsigned Opc = 0;
+ switch (VT.getSimpleVT().SimpleTy) {
+ case MVT::f80: // No f80 support yet.
+ default: return false;
+ case MVT::i1: {
+ // Mask out all but lowest bit.
+ unsigned AndResult = createResultReg(&X86::GR8RegClass);
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
+ TII.get(X86::AND8ri), AndResult)
+ .addReg(ValReg, getKillRegState(ValIsKill)).addImm(1);
+ ValReg = AndResult;
+ }
+ // FALLTHROUGH, handling i1 as i8.
+ case MVT::i8: Opc = X86::MOV8mr; break;
+ case MVT::i16: Opc = X86::MOV16mr; break;
+ case MVT::i32: Opc = X86::MOV32mr; break;
+ case MVT::i64: Opc = X86::MOV64mr; break; // Must be in x86-64 mode.
+ case MVT::f32:
+ Opc = X86ScalarSSEf32 ?
+ (Subtarget->hasAVX() ? X86::VMOVSSmr : X86::MOVSSmr) : X86::ST_Fp32m;
+ break;
+ case MVT::f64:
+ Opc = X86ScalarSSEf64 ?
+ (Subtarget->hasAVX() ? X86::VMOVSDmr : X86::MOVSDmr) : X86::ST_Fp64m;
+ break;
+ case MVT::v4f32:
+ if (Aligned)
+ Opc = Subtarget->hasAVX() ? X86::VMOVAPSmr : X86::MOVAPSmr;
+ else
+ Opc = Subtarget->hasAVX() ? X86::VMOVUPSmr : X86::MOVUPSmr;
+ break;
+ case MVT::v2f64:
+ if (Aligned)
+ Opc = Subtarget->hasAVX() ? X86::VMOVAPDmr : X86::MOVAPDmr;
+ else
+ Opc = Subtarget->hasAVX() ? X86::VMOVUPDmr : X86::MOVUPDmr;
+ break;
+ case MVT::v4i32:
+ case MVT::v2i64:
+ case MVT::v8i16:
+ case MVT::v16i8:
+ if (Aligned)
+ Opc = Subtarget->hasAVX() ? X86::VMOVDQAmr : X86::MOVDQAmr;
+ else
+ Opc = Subtarget->hasAVX() ? X86::VMOVDQUmr : X86::MOVDQUmr;
+ break;
+ }
+
+ MachineInstrBuilder MIB =
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc));
+ addFullAddress(MIB, AM).addReg(ValReg, getKillRegState(ValIsKill));
+ if (MMO)
+ MIB->addMemOperand(*FuncInfo.MF, MMO);
+
+ return true;
+}
+
+bool X86FastISel::X86FastEmitStore(EVT VT, const Value *Val,
+ const X86AddressMode &AM,
+ MachineMemOperand *MMO, bool Aligned) {
+ // Handle 'null' like i32/i64 0.
+ if (isa<ConstantPointerNull>(Val))
+ Val = Constant::getNullValue(DL.getIntPtrType(Val->getContext()));
+
+ // If this is a store of a simple constant, fold the constant into the store.
+ if (const ConstantInt *CI = dyn_cast<ConstantInt>(Val)) {
+ unsigned Opc = 0;
+ bool Signed = true;
+ switch (VT.getSimpleVT().SimpleTy) {
+ default: break;
+ case MVT::i1: Signed = false; // FALLTHROUGH to handle as i8.
+ case MVT::i8: Opc = X86::MOV8mi; break;
+ case MVT::i16: Opc = X86::MOV16mi; break;
+ case MVT::i32: Opc = X86::MOV32mi; break;
+ case MVT::i64:
+ // Must be a 32-bit sign extended value.
+ if (isInt<32>(CI->getSExtValue()))
+ Opc = X86::MOV64mi32;
+ break;
+ }
+
+ if (Opc) {
+ MachineInstrBuilder MIB =
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc));
+ addFullAddress(MIB, AM).addImm(Signed ? (uint64_t) CI->getSExtValue()
+ : CI->getZExtValue());
+ if (MMO)
+ MIB->addMemOperand(*FuncInfo.MF, MMO);
+ return true;
+ }
+ }
+
+ unsigned ValReg = getRegForValue(Val);
+ if (ValReg == 0)
+ return false;
+
+ bool ValKill = hasTrivialKill(Val);
+ return X86FastEmitStore(VT, ValReg, ValKill, AM, MMO, Aligned);
+}
+
+/// X86FastEmitExtend - Emit a machine instruction to extend a value Src of
+/// type SrcVT to type DstVT using the specified extension opcode Opc (e.g.
+/// ISD::SIGN_EXTEND).
+bool X86FastISel::X86FastEmitExtend(ISD::NodeType Opc, EVT DstVT,
+ unsigned Src, EVT SrcVT,
+ unsigned &ResultReg) {
+ unsigned RR = fastEmit_r(SrcVT.getSimpleVT(), DstVT.getSimpleVT(), Opc,
+ Src, /*TODO: Kill=*/false);
+ if (RR == 0)
+ return false;
+
+ ResultReg = RR;
+ return true;
+}
+
+bool X86FastISel::handleConstantAddresses(const Value *V, X86AddressMode &AM) {
+ // Handle constant address.
+ if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
+ // Can't handle alternate code models yet.
+ if (TM.getCodeModel() != CodeModel::Small)
+ return false;
+
+ // Can't handle TLS yet.
+ if (GV->isThreadLocal())
+ return false;
+
+ // RIP-relative addresses can't have additional register operands, so if
+ // we've already folded stuff into the addressing mode, just force the
+ // global value into its own register, which we can use as the basereg.
+ if (!Subtarget->isPICStyleRIPRel() ||
+ (AM.Base.Reg == 0 && AM.IndexReg == 0)) {
+ // Okay, we've committed to selecting this global. Set up the address.
+ AM.GV = GV;
+
+ // Allow the subtarget to classify the global.
+ unsigned char GVFlags = Subtarget->ClassifyGlobalReference(GV, TM);
+
+ // If this reference is relative to the pic base, set it now.
+ if (isGlobalRelativeToPICBase(GVFlags)) {
+ // FIXME: How do we know Base.Reg is free??
+ AM.Base.Reg = getInstrInfo()->getGlobalBaseReg(FuncInfo.MF);
+ }
+
+ // Unless the ABI requires an extra load, return a direct reference to
+ // the global.
+ if (!isGlobalStubReference(GVFlags)) {
+ if (Subtarget->isPICStyleRIPRel()) {
+ // Use rip-relative addressing if we can. Above we verified that the
+ // base and index registers are unused.
+ assert(AM.Base.Reg == 0 && AM.IndexReg == 0);
+ AM.Base.Reg = X86::RIP;
+ }
+ AM.GVOpFlags = GVFlags;
+ return true;
+ }
+
+ // Ok, we need to do a load from a stub. If we've already loaded from
+ // this stub, reuse the loaded pointer, otherwise emit the load now.
+ DenseMap<const Value *, unsigned>::iterator I = LocalValueMap.find(V);
+ unsigned LoadReg;
+ if (I != LocalValueMap.end() && I->second != 0) {
+ LoadReg = I->second;
+ } else {
+ // Issue load from stub.
+ unsigned Opc = 0;
+ const TargetRegisterClass *RC = nullptr;
+ X86AddressMode StubAM;
+ StubAM.Base.Reg = AM.Base.Reg;
+ StubAM.GV = GV;
+ StubAM.GVOpFlags = GVFlags;
+
+ // Prepare for inserting code in the local-value area.
+ SavePoint SaveInsertPt = enterLocalValueArea();
+
+ if (TLI.getPointerTy() == MVT::i64) {
+ Opc = X86::MOV64rm;
+ RC = &X86::GR64RegClass;
+
+ if (Subtarget->isPICStyleRIPRel())
+ StubAM.Base.Reg = X86::RIP;
+ } else {
+ Opc = X86::MOV32rm;
+ RC = &X86::GR32RegClass;
+ }
+
+ LoadReg = createResultReg(RC);
+ MachineInstrBuilder LoadMI =
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), LoadReg);
+ addFullAddress(LoadMI, StubAM);
+
+ // Ok, back to normal mode.
+ leaveLocalValueArea(SaveInsertPt);
+
+ // Prevent loading GV stub multiple times in same MBB.
+ LocalValueMap[V] = LoadReg;
+ }
+
+ // Now construct the final address. Note that the Disp, Scale,
+ // and Index values may already be set here.
+ AM.Base.Reg = LoadReg;
+ AM.GV = nullptr;
+ return true;
+ }
+ }
+
+ // If all else fails, try to materialize the value in a register.
+ if (!AM.GV || !Subtarget->isPICStyleRIPRel()) {
+ if (AM.Base.Reg == 0) {
+ AM.Base.Reg = getRegForValue(V);
+ return AM.Base.Reg != 0;
+ }
+ if (AM.IndexReg == 0) {
+ assert(AM.Scale == 1 && "Scale with no index!");
+ AM.IndexReg = getRegForValue(V);
+ return AM.IndexReg != 0;
+ }
+ }
+
+ return false;
+}
+
+/// X86SelectAddress - Attempt to fill in an address from the given value.
+///
+bool X86FastISel::X86SelectAddress(const Value *V, X86AddressMode &AM) {
+ SmallVector<const Value *, 32> GEPs;
+redo_gep:
+ const User *U = nullptr;
+ unsigned Opcode = Instruction::UserOp1;
+ if (const Instruction *I = dyn_cast<Instruction>(V)) {
+ // Don't walk into other basic blocks; it's possible we haven't
+ // visited them yet, so the instructions may not yet be assigned
+ // virtual registers.
+ if (FuncInfo.StaticAllocaMap.count(static_cast<const AllocaInst *>(V)) ||
+ FuncInfo.MBBMap[I->getParent()] == FuncInfo.MBB) {
+ Opcode = I->getOpcode();
+ U = I;
+ }
+ } else if (const ConstantExpr *C = dyn_cast<ConstantExpr>(V)) {
+ Opcode = C->getOpcode();
+ U = C;
+ }
+
+ if (PointerType *Ty = dyn_cast<PointerType>(V->getType()))
+ if (Ty->getAddressSpace() > 255)
+ // Fast instruction selection doesn't support the special
+ // address spaces.
+ return false;
+
+ switch (Opcode) {
+ default: break;
+ case Instruction::BitCast:
+ // Look past bitcasts.
+ return X86SelectAddress(U->getOperand(0), AM);
+
+ case Instruction::IntToPtr:
+ // Look past no-op inttoptrs.
+ if (TLI.getValueType(U->getOperand(0)->getType()) == TLI.getPointerTy())
+ return X86SelectAddress(U->getOperand(0), AM);
+ break;
+
+ case Instruction::PtrToInt:
+ // Look past no-op ptrtoints.
+ if (TLI.getValueType(U->getType()) == TLI.getPointerTy())
+ return X86SelectAddress(U->getOperand(0), AM);
+ break;
+
+ case Instruction::Alloca: {
+ // Do static allocas.
+ const AllocaInst *A = cast<AllocaInst>(V);
+ DenseMap<const AllocaInst *, int>::iterator SI =
+ FuncInfo.StaticAllocaMap.find(A);
+ if (SI != FuncInfo.StaticAllocaMap.end()) {
+ AM.BaseType = X86AddressMode::FrameIndexBase;
+ AM.Base.FrameIndex = SI->second;
+ return true;
+ }
+ break;
+ }
+
+ case Instruction::Add: {
+ // Adds of constants are common and easy enough.
+ if (const ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
+ uint64_t Disp = (int32_t)AM.Disp + (uint64_t)CI->getSExtValue();
+ // They have to fit in the 32-bit signed displacement field though.
+ if (isInt<32>(Disp)) {
+ AM.Disp = (uint32_t)Disp;
+ return X86SelectAddress(U->getOperand(0), AM);
+ }
+ }
+ break;
+ }
+
+ case Instruction::GetElementPtr: {
+ X86AddressMode SavedAM = AM;
+
+ // Pattern-match simple GEPs.
+ uint64_t Disp = (int32_t)AM.Disp;
+ unsigned IndexReg = AM.IndexReg;
+ unsigned Scale = AM.Scale;
+ gep_type_iterator GTI = gep_type_begin(U);
+ // Iterate through the indices, folding what we can. Constants can be
+ // folded, and one dynamic index can be handled, if the scale is supported.
+ for (User::const_op_iterator i = U->op_begin() + 1, e = U->op_end();
+ i != e; ++i, ++GTI) {
+ const Value *Op = *i;
+ if (StructType *STy = dyn_cast<StructType>(*GTI)) {
+ const StructLayout *SL = DL.getStructLayout(STy);
+ Disp += SL->getElementOffset(cast<ConstantInt>(Op)->getZExtValue());
+ continue;
+ }
+
+ // A array/variable index is always of the form i*S where S is the
+ // constant scale size. See if we can push the scale into immediates.
+ uint64_t S = DL.getTypeAllocSize(GTI.getIndexedType());
+ for (;;) {
+ if (const ConstantInt *CI = dyn_cast<ConstantInt>(Op)) {
+ // Constant-offset addressing.
+ Disp += CI->getSExtValue() * S;
+ break;
+ }
+ if (canFoldAddIntoGEP(U, Op)) {
+ // A compatible add with a constant operand. Fold the constant.
+ ConstantInt *CI =
+ cast<ConstantInt>(cast<AddOperator>(Op)->getOperand(1));
+ Disp += CI->getSExtValue() * S;
+ // Iterate on the other operand.
+ Op = cast<AddOperator>(Op)->getOperand(0);
+ continue;
+ }
+ if (IndexReg == 0 &&
+ (!AM.GV || !Subtarget->isPICStyleRIPRel()) &&
+ (S == 1 || S == 2 || S == 4 || S == 8)) {
+ // Scaled-index addressing.
+ Scale = S;
+ IndexReg = getRegForGEPIndex(Op).first;
+ if (IndexReg == 0)
+ return false;
+ break;
+ }
+ // Unsupported.
+ goto unsupported_gep;
+ }
+ }
+
+ // Check for displacement overflow.
+ if (!isInt<32>(Disp))
+ break;
+
+ AM.IndexReg = IndexReg;
+ AM.Scale = Scale;
+ AM.Disp = (uint32_t)Disp;
+ GEPs.push_back(V);
+
+ if (const GetElementPtrInst *GEP =
+ dyn_cast<GetElementPtrInst>(U->getOperand(0))) {
+ // Ok, the GEP indices were covered by constant-offset and scaled-index
+ // addressing. Update the address state and move on to examining the base.
+ V = GEP;
+ goto redo_gep;
+ } else if (X86SelectAddress(U->getOperand(0), AM)) {
+ return true;
+ }
+
+ // If we couldn't merge the gep value into this addr mode, revert back to
+ // our address and just match the value instead of completely failing.
+ AM = SavedAM;
+
+ for (SmallVectorImpl<const Value *>::reverse_iterator
+ I = GEPs.rbegin(), E = GEPs.rend(); I != E; ++I)
+ if (handleConstantAddresses(*I, AM))
+ return true;
+
+ return false;
+ unsupported_gep:
+ // Ok, the GEP indices weren't all covered.
+ break;
+ }
+ }
+
+ return handleConstantAddresses(V, AM);
+}
+
+/// X86SelectCallAddress - Attempt to fill in an address from the given value.
+///
+bool X86FastISel::X86SelectCallAddress(const Value *V, X86AddressMode &AM) {
+ const User *U = nullptr;
+ unsigned Opcode = Instruction::UserOp1;
+ const Instruction *I = dyn_cast<Instruction>(V);
+ // Record if the value is defined in the same basic block.
+ //
+ // This information is crucial to know whether or not folding an
+ // operand is valid.
+ // Indeed, FastISel generates or reuses a virtual register for all
+ // operands of all instructions it selects. Obviously, the definition and
+ // its uses must use the same virtual register otherwise the produced
+ // code is incorrect.
+ // Before instruction selection, FunctionLoweringInfo::set sets the virtual
+ // registers for values that are alive across basic blocks. This ensures
+ // that the values are consistently set between across basic block, even
+ // if different instruction selection mechanisms are used (e.g., a mix of
+ // SDISel and FastISel).
+ // For values local to a basic block, the instruction selection process
+ // generates these virtual registers with whatever method is appropriate
+ // for its needs. In particular, FastISel and SDISel do not share the way
+ // local virtual registers are set.
+ // Therefore, this is impossible (or at least unsafe) to share values
+ // between basic blocks unless they use the same instruction selection
+ // method, which is not guarantee for X86.
+ // Moreover, things like hasOneUse could not be used accurately, if we
+ // allow to reference values across basic blocks whereas they are not
+ // alive across basic blocks initially.
+ bool InMBB = true;
+ if (I) {
+ Opcode = I->getOpcode();
+ U = I;
+ InMBB = I->getParent() == FuncInfo.MBB->getBasicBlock();
+ } else if (const ConstantExpr *C = dyn_cast<ConstantExpr>(V)) {
+ Opcode = C->getOpcode();
+ U = C;
+ }
+
+ switch (Opcode) {
+ default: break;
+ case Instruction::BitCast:
+ // Look past bitcasts if its operand is in the same BB.
+ if (InMBB)
+ return X86SelectCallAddress(U->getOperand(0), AM);
+ break;
+
+ case Instruction::IntToPtr:
+ // Look past no-op inttoptrs if its operand is in the same BB.
+ if (InMBB &&
+ TLI.getValueType(U->getOperand(0)->getType()) == TLI.getPointerTy())
+ return X86SelectCallAddress(U->getOperand(0), AM);
+ break;
+
+ case Instruction::PtrToInt:
+ // Look past no-op ptrtoints if its operand is in the same BB.
+ if (InMBB &&
+ TLI.getValueType(U->getType()) == TLI.getPointerTy())
+ return X86SelectCallAddress(U->getOperand(0), AM);
+ break;
+ }
+
+ // Handle constant address.
+ if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
+ // Can't handle alternate code models yet.
+ if (TM.getCodeModel() != CodeModel::Small)
+ return false;
+
+ // RIP-relative addresses can't have additional register operands.
+ if (Subtarget->isPICStyleRIPRel() &&
+ (AM.Base.Reg != 0 || AM.IndexReg != 0))
+ return false;
+
+ // Can't handle DLL Import.
+ if (GV->hasDLLImportStorageClass())
+ return false;
+
+ // Can't handle TLS.
+ if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV))
+ if (GVar->isThreadLocal())
+ return false;
+
+ // Okay, we've committed to selecting this global. Set up the basic address.
+ AM.GV = GV;
+
+ // No ABI requires an extra load for anything other than DLLImport, which
+ // we rejected above. Return a direct reference to the global.
+ if (Subtarget->isPICStyleRIPRel()) {
+ // Use rip-relative addressing if we can. Above we verified that the
+ // base and index registers are unused.
+ assert(AM.Base.Reg == 0 && AM.IndexReg == 0);
+ AM.Base.Reg = X86::RIP;
+ } else if (Subtarget->isPICStyleStubPIC()) {
+ AM.GVOpFlags = X86II::MO_PIC_BASE_OFFSET;
+ } else if (Subtarget->isPICStyleGOT()) {
+ AM.GVOpFlags = X86II::MO_GOTOFF;
+ }
+
+ return true;
+ }
+
+ // If all else fails, try to materialize the value in a register.
+ if (!AM.GV || !Subtarget->isPICStyleRIPRel()) {
+ if (AM.Base.Reg == 0) {
+ AM.Base.Reg = getRegForValue(V);
+ return AM.Base.Reg != 0;
+ }
+ if (AM.IndexReg == 0) {
+ assert(AM.Scale == 1 && "Scale with no index!");
+ AM.IndexReg = getRegForValue(V);
+ return AM.IndexReg != 0;
+ }
+ }
+
+ return false;
+}
+
+
+/// X86SelectStore - Select and emit code to implement store instructions.
+bool X86FastISel::X86SelectStore(const Instruction *I) {
+ // Atomic stores need special handling.
+ const StoreInst *S = cast<StoreInst>(I);
+
+ if (S->isAtomic())
+ return false;
+
+ const Value *Val = S->getValueOperand();
+ const Value *Ptr = S->getPointerOperand();
+
+ MVT VT;
+ if (!isTypeLegal(Val->getType(), VT, /*AllowI1=*/true))
+ return false;
+
+ unsigned Alignment = S->getAlignment();
+ unsigned ABIAlignment = DL.getABITypeAlignment(Val->getType());
+ if (Alignment == 0) // Ensure that codegen never sees alignment 0
+ Alignment = ABIAlignment;
+ bool Aligned = Alignment >= ABIAlignment;
+
+ X86AddressMode AM;
+ if (!X86SelectAddress(Ptr, AM))
+ return false;
+
+ return X86FastEmitStore(VT, Val, AM, createMachineMemOperandFor(I), Aligned);
+}
+
+/// X86SelectRet - Select and emit code to implement ret instructions.
+bool X86FastISel::X86SelectRet(const Instruction *I) {
+ const ReturnInst *Ret = cast<ReturnInst>(I);
+ const Function &F = *I->getParent()->getParent();
+ const X86MachineFunctionInfo *X86MFInfo =
+ FuncInfo.MF->getInfo<X86MachineFunctionInfo>();
+
+ if (!FuncInfo.CanLowerReturn)
+ return false;
+
+ CallingConv::ID CC = F.getCallingConv();
+ if (CC != CallingConv::C &&
+ CC != CallingConv::Fast &&
+ CC != CallingConv::X86_FastCall &&
+ CC != CallingConv::X86_64_SysV)
+ return false;
+
+ if (Subtarget->isCallingConvWin64(CC))
+ return false;
+
+ // Don't handle popping bytes on return for now.
+ if (X86MFInfo->getBytesToPopOnReturn() != 0)
+ return false;
+
+ // fastcc with -tailcallopt is intended to provide a guaranteed
+ // tail call optimization. Fastisel doesn't know how to do that.
+ if (CC == CallingConv::Fast && TM.Options.GuaranteedTailCallOpt)
+ return false;
+
+ // Let SDISel handle vararg functions.
+ if (F.isVarArg())
+ return false;
+
+ // Build a list of return value registers.
+ SmallVector<unsigned, 4> RetRegs;
+
+ if (Ret->getNumOperands() > 0) {
+ SmallVector<ISD::OutputArg, 4> Outs;
+ GetReturnInfo(F.getReturnType(), F.getAttributes(), Outs, TLI);
+
+ // Analyze operands of the call, assigning locations to each operand.
+ SmallVector<CCValAssign, 16> ValLocs;
+ CCState CCInfo(CC, F.isVarArg(), *FuncInfo.MF, ValLocs, I->getContext());
+ CCInfo.AnalyzeReturn(Outs, RetCC_X86);
+
+ const Value *RV = Ret->getOperand(0);
+ unsigned Reg = getRegForValue(RV);
+ if (Reg == 0)
+ return false;
+
+ // Only handle a single return value for now.
+ if (ValLocs.size() != 1)
+ return false;
+
+ CCValAssign &VA = ValLocs[0];
+
+ // Don't bother handling odd stuff for now.
+ if (VA.getLocInfo() != CCValAssign::Full)
+ return false;
+ // Only handle register returns for now.
+ if (!VA.isRegLoc())
+ return false;
+
+ // The calling-convention tables for x87 returns don't tell
+ // the whole story.
+ if (VA.getLocReg() == X86::FP0 || VA.getLocReg() == X86::FP1)
+ return false;
+
+ unsigned SrcReg = Reg + VA.getValNo();
+ EVT SrcVT = TLI.getValueType(RV->getType());
+ EVT DstVT = VA.getValVT();
+ // Special handling for extended integers.
+ if (SrcVT != DstVT) {
+ if (SrcVT != MVT::i1 && SrcVT != MVT::i8 && SrcVT != MVT::i16)
+ return false;
+
+ if (!Outs[0].Flags.isZExt() && !Outs[0].Flags.isSExt())
+ return false;
+
+ assert(DstVT == MVT::i32 && "X86 should always ext to i32");
+
+ if (SrcVT == MVT::i1) {
+ if (Outs[0].Flags.isSExt())
+ return false;
+ SrcReg = fastEmitZExtFromI1(MVT::i8, SrcReg, /*TODO: Kill=*/false);
+ SrcVT = MVT::i8;
+ }
+ unsigned Op = Outs[0].Flags.isZExt() ? ISD::ZERO_EXTEND :
+ ISD::SIGN_EXTEND;
+ SrcReg = fastEmit_r(SrcVT.getSimpleVT(), DstVT.getSimpleVT(), Op,
+ SrcReg, /*TODO: Kill=*/false);
+ }
+
+ // Make the copy.
+ unsigned DstReg = VA.getLocReg();
+ const TargetRegisterClass *SrcRC = MRI.getRegClass(SrcReg);
+ // Avoid a cross-class copy. This is very unlikely.
+ if (!SrcRC->contains(DstReg))
+ return false;
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
+ TII.get(TargetOpcode::COPY), DstReg).addReg(SrcReg);
+
+ // Add register to return instruction.
+ RetRegs.push_back(VA.getLocReg());
+ }
+
+ // The x86-64 ABI for returning structs by value requires that we copy
+ // the sret argument into %rax for the return. We saved the argument into
+ // a virtual register in the entry block, so now we copy the value out
+ // and into %rax. We also do the same with %eax for Win32.
+ if (F.hasStructRetAttr() &&
+ (Subtarget->is64Bit() || Subtarget->isTargetKnownWindowsMSVC())) {
+ unsigned Reg = X86MFInfo->getSRetReturnReg();
+ assert(Reg &&
+ "SRetReturnReg should have been set in LowerFormalArguments()!");
+ unsigned RetReg = Subtarget->is64Bit() ? X86::RAX : X86::EAX;
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
+ TII.get(TargetOpcode::COPY), RetReg).addReg(Reg);
+ RetRegs.push_back(RetReg);
+ }
+
+ // Now emit the RET.
+ MachineInstrBuilder MIB =
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
+ TII.get(Subtarget->is64Bit() ? X86::RETQ : X86::RETL));
+ for (unsigned i = 0, e = RetRegs.size(); i != e; ++i)
+ MIB.addReg(RetRegs[i], RegState::Implicit);
+ return true;
+}
+
+/// X86SelectLoad - Select and emit code to implement load instructions.
+///
+bool X86FastISel::X86SelectLoad(const Instruction *I) {
+ const LoadInst *LI = cast<LoadInst>(I);
+
+ // Atomic loads need special handling.
+ if (LI->isAtomic())
+ return false;
+
+ MVT VT;
+ if (!isTypeLegal(LI->getType(), VT, /*AllowI1=*/true))
+ return false;
+
+ const Value *Ptr = LI->getPointerOperand();
+
+ X86AddressMode AM;
+ if (!X86SelectAddress(Ptr, AM))
+ return false;
+
+ unsigned ResultReg = 0;
+ if (!X86FastEmitLoad(VT, AM, createMachineMemOperandFor(LI), ResultReg))
+ return false;
+
+ updateValueMap(I, ResultReg);
+ return true;
+}
+
+static unsigned X86ChooseCmpOpcode(EVT VT, const X86Subtarget *Subtarget) {
+ bool HasAVX = Subtarget->hasAVX();
+ bool X86ScalarSSEf32 = Subtarget->hasSSE1();
+ bool X86ScalarSSEf64 = Subtarget->hasSSE2();
+
+ switch (VT.getSimpleVT().SimpleTy) {
+ default: return 0;
+ case MVT::i8: return X86::CMP8rr;
+ case MVT::i16: return X86::CMP16rr;
+ case MVT::i32: return X86::CMP32rr;
+ case MVT::i64: return X86::CMP64rr;
+ case MVT::f32:
+ return X86ScalarSSEf32 ? (HasAVX ? X86::VUCOMISSrr : X86::UCOMISSrr) : 0;
+ case MVT::f64:
+ return X86ScalarSSEf64 ? (HasAVX ? X86::VUCOMISDrr : X86::UCOMISDrr) : 0;
+ }
+}
+
+/// X86ChooseCmpImmediateOpcode - If we have a comparison with RHS as the RHS
+/// of the comparison, return an opcode that works for the compare (e.g.
+/// CMP32ri) otherwise return 0.
+static unsigned X86ChooseCmpImmediateOpcode(EVT VT, const ConstantInt *RHSC) {
+ switch (VT.getSimpleVT().SimpleTy) {
+ // Otherwise, we can't fold the immediate into this comparison.
+ default: return 0;
+ case MVT::i8: return X86::CMP8ri;
+ case MVT::i16: return X86::CMP16ri;
+ case MVT::i32: return X86::CMP32ri;
+ case MVT::i64:
+ // 64-bit comparisons are only valid if the immediate fits in a 32-bit sext
+ // field.
+ if ((int)RHSC->getSExtValue() == RHSC->getSExtValue())
+ return X86::CMP64ri32;
+ return 0;
+ }
+}
+
+bool X86FastISel::X86FastEmitCompare(const Value *Op0, const Value *Op1,
+ EVT VT, DebugLoc CurDbgLoc) {
+ unsigned Op0Reg = getRegForValue(Op0);
+ if (Op0Reg == 0) return false;
+
+ // Handle 'null' like i32/i64 0.
+ if (isa<ConstantPointerNull>(Op1))
+ Op1 = Constant::getNullValue(DL.getIntPtrType(Op0->getContext()));
+
+ // We have two options: compare with register or immediate. If the RHS of
+ // the compare is an immediate that we can fold into this compare, use
+ // CMPri, otherwise use CMPrr.
+ if (const ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) {
+ if (unsigned CompareImmOpc = X86ChooseCmpImmediateOpcode(VT, Op1C)) {
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, CurDbgLoc, TII.get(CompareImmOpc))
+ .addReg(Op0Reg)
+ .addImm(Op1C->getSExtValue());
+ return true;
+ }
+ }
+
+ unsigned CompareOpc = X86ChooseCmpOpcode(VT, Subtarget);
+ if (CompareOpc == 0) return false;
+
+ unsigned Op1Reg = getRegForValue(Op1);
+ if (Op1Reg == 0) return false;
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, CurDbgLoc, TII.get(CompareOpc))
+ .addReg(Op0Reg)
+ .addReg(Op1Reg);
+
+ return true;
+}
+
+bool X86FastISel::X86SelectCmp(const Instruction *I) {
+ const CmpInst *CI = cast<CmpInst>(I);
+
+ MVT VT;
+ if (!isTypeLegal(I->getOperand(0)->getType(), VT))
+ return false;
+
+ // Try to optimize or fold the cmp.
+ CmpInst::Predicate Predicate = optimizeCmpPredicate(CI);
+ unsigned ResultReg = 0;
+ switch (Predicate) {
+ default: break;
+ case CmpInst::FCMP_FALSE: {
+ ResultReg = createResultReg(&X86::GR32RegClass);
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::MOV32r0),
+ ResultReg);
+ ResultReg = fastEmitInst_extractsubreg(MVT::i8, ResultReg, /*Kill=*/true,
+ X86::sub_8bit);
+ if (!ResultReg)
+ return false;
+ break;
+ }
+ case CmpInst::FCMP_TRUE: {
+ ResultReg = createResultReg(&X86::GR8RegClass);
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::MOV8ri),
+ ResultReg).addImm(1);
+ break;
+ }
+ }
+
+ if (ResultReg) {
+ updateValueMap(I, ResultReg);
+ return true;
+ }
+
+ const Value *LHS = CI->getOperand(0);
+ const Value *RHS = CI->getOperand(1);
+
+ // The optimizer might have replaced fcmp oeq %x, %x with fcmp ord %x, 0.0.
+ // We don't have to materialize a zero constant for this case and can just use
+ // %x again on the RHS.
+ if (Predicate == CmpInst::FCMP_ORD || Predicate == CmpInst::FCMP_UNO) {
+ const auto *RHSC = dyn_cast<ConstantFP>(RHS);
+ if (RHSC && RHSC->isNullValue())
+ RHS = LHS;
+ }
+
+ // FCMP_OEQ and FCMP_UNE cannot be checked with a single instruction.
+ static unsigned SETFOpcTable[2][3] = {
+ { X86::SETEr, X86::SETNPr, X86::AND8rr },
+ { X86::SETNEr, X86::SETPr, X86::OR8rr }
+ };
+ unsigned *SETFOpc = nullptr;
+ switch (Predicate) {
+ default: break;
+ case CmpInst::FCMP_OEQ: SETFOpc = &SETFOpcTable[0][0]; break;
+ case CmpInst::FCMP_UNE: SETFOpc = &SETFOpcTable[1][0]; break;
+ }
+
+ ResultReg = createResultReg(&X86::GR8RegClass);
+ if (SETFOpc) {
+ if (!X86FastEmitCompare(LHS, RHS, VT, I->getDebugLoc()))
+ return false;
+
+ unsigned FlagReg1 = createResultReg(&X86::GR8RegClass);
+ unsigned FlagReg2 = createResultReg(&X86::GR8RegClass);
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(SETFOpc[0]),
+ FlagReg1);
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(SETFOpc[1]),
+ FlagReg2);
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(SETFOpc[2]),
+ ResultReg).addReg(FlagReg1).addReg(FlagReg2);
+ updateValueMap(I, ResultReg);
+ return true;
+ }
+
+ X86::CondCode CC;
+ bool SwapArgs;
+ std::tie(CC, SwapArgs) = getX86ConditionCode(Predicate);
+ assert(CC <= X86::LAST_VALID_COND && "Unexpected condition code.");
+ unsigned Opc = X86::getSETFromCond(CC);
+
+ if (SwapArgs)
+ std::swap(LHS, RHS);
+
+ // Emit a compare of LHS/RHS.
+ if (!X86FastEmitCompare(LHS, RHS, VT, I->getDebugLoc()))
+ return false;
+
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg);
+ updateValueMap(I, ResultReg);
+ return true;
+}
+
+bool X86FastISel::X86SelectZExt(const Instruction *I) {
+ EVT DstVT = TLI.getValueType(I->getType());
+ if (!TLI.isTypeLegal(DstVT))
+ return false;
+
+ unsigned ResultReg = getRegForValue(I->getOperand(0));
+ if (ResultReg == 0)
+ return false;
+
+ // Handle zero-extension from i1 to i8, which is common.
+ MVT SrcVT = TLI.getSimpleValueType(I->getOperand(0)->getType());
+ if (SrcVT.SimpleTy == MVT::i1) {
+ // Set the high bits to zero.
+ ResultReg = fastEmitZExtFromI1(MVT::i8, ResultReg, /*TODO: Kill=*/false);
+ SrcVT = MVT::i8;
+
+ if (ResultReg == 0)
+ return false;
+ }
+
+ if (DstVT == MVT::i64) {
+ // Handle extension to 64-bits via sub-register shenanigans.
+ unsigned MovInst;
+
+ switch (SrcVT.SimpleTy) {
+ case MVT::i8: MovInst = X86::MOVZX32rr8; break;
+ case MVT::i16: MovInst = X86::MOVZX32rr16; break;
+ case MVT::i32: MovInst = X86::MOV32rr; break;
+ default: llvm_unreachable("Unexpected zext to i64 source type");
+ }
+
+ unsigned Result32 = createResultReg(&X86::GR32RegClass);
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(MovInst), Result32)
+ .addReg(ResultReg);
+
+ ResultReg = createResultReg(&X86::GR64RegClass);
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(TargetOpcode::SUBREG_TO_REG),
+ ResultReg)
+ .addImm(0).addReg(Result32).addImm(X86::sub_32bit);
+ } else if (DstVT != MVT::i8) {
+ ResultReg = fastEmit_r(MVT::i8, DstVT.getSimpleVT(), ISD::ZERO_EXTEND,
+ ResultReg, /*Kill=*/true);
+ if (ResultReg == 0)
+ return false;
+ }
+
+ updateValueMap(I, ResultReg);
+ return true;
+}
+
+bool X86FastISel::X86SelectBranch(const Instruction *I) {
+ // Unconditional branches are selected by tablegen-generated code.
+ // Handle a conditional branch.
+ const BranchInst *BI = cast<BranchInst>(I);
+ MachineBasicBlock *TrueMBB = FuncInfo.MBBMap[BI->getSuccessor(0)];
+ MachineBasicBlock *FalseMBB = FuncInfo.MBBMap[BI->getSuccessor(1)];
+
+ // Fold the common case of a conditional branch with a comparison
+ // in the same block (values defined on other blocks may not have
+ // initialized registers).
+ X86::CondCode CC;
+ if (const CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition())) {
+ if (CI->hasOneUse() && CI->getParent() == I->getParent()) {
+ EVT VT = TLI.getValueType(CI->getOperand(0)->getType());
+
+ // Try to optimize or fold the cmp.
+ CmpInst::Predicate Predicate = optimizeCmpPredicate(CI);
+ switch (Predicate) {
+ default: break;
+ case CmpInst::FCMP_FALSE: fastEmitBranch(FalseMBB, DbgLoc); return true;
+ case CmpInst::FCMP_TRUE: fastEmitBranch(TrueMBB, DbgLoc); return true;
+ }
+
+ const Value *CmpLHS = CI->getOperand(0);
+ const Value *CmpRHS = CI->getOperand(1);
+
+ // The optimizer might have replaced fcmp oeq %x, %x with fcmp ord %x,
+ // 0.0.
+ // We don't have to materialize a zero constant for this case and can just
+ // use %x again on the RHS.
+ if (Predicate == CmpInst::FCMP_ORD || Predicate == CmpInst::FCMP_UNO) {
+ const auto *CmpRHSC = dyn_cast<ConstantFP>(CmpRHS);
+ if (CmpRHSC && CmpRHSC->isNullValue())
+ CmpRHS = CmpLHS;
+ }
+
+ // Try to take advantage of fallthrough opportunities.
+ if (FuncInfo.MBB->isLayoutSuccessor(TrueMBB)) {
+ std::swap(TrueMBB, FalseMBB);
+ Predicate = CmpInst::getInversePredicate(Predicate);
+ }
+
+ // FCMP_OEQ and FCMP_UNE cannot be expressed with a single flag/condition
+ // code check. Instead two branch instructions are required to check all
+ // the flags. First we change the predicate to a supported condition code,
+ // which will be the first branch. Later one we will emit the second
+ // branch.
+ bool NeedExtraBranch = false;
+ switch (Predicate) {
+ default: break;
+ case CmpInst::FCMP_OEQ:
+ std::swap(TrueMBB, FalseMBB); // fall-through
+ case CmpInst::FCMP_UNE:
+ NeedExtraBranch = true;
+ Predicate = CmpInst::FCMP_ONE;
+ break;
+ }
+
+ bool SwapArgs;
+ unsigned BranchOpc;
+ std::tie(CC, SwapArgs) = getX86ConditionCode(Predicate);
+ assert(CC <= X86::LAST_VALID_COND && "Unexpected condition code.");
+
+ BranchOpc = X86::GetCondBranchFromCond(CC);
+ if (SwapArgs)
+ std::swap(CmpLHS, CmpRHS);
+
+ // Emit a compare of the LHS and RHS, setting the flags.
+ if (!X86FastEmitCompare(CmpLHS, CmpRHS, VT, CI->getDebugLoc()))
+ return false;
+
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(BranchOpc))
+ .addMBB(TrueMBB);
+
+ // X86 requires a second branch to handle UNE (and OEQ, which is mapped
+ // to UNE above).
+ if (NeedExtraBranch) {
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::JP_1))
+ .addMBB(TrueMBB);
+ }
+
+ // Obtain the branch weight and add the TrueBB to the successor list.
+ uint32_t BranchWeight = 0;
+ if (FuncInfo.BPI)
+ BranchWeight = FuncInfo.BPI->getEdgeWeight(BI->getParent(),
+ TrueMBB->getBasicBlock());
+ FuncInfo.MBB->addSuccessor(TrueMBB, BranchWeight);
+
+ // Emits an unconditional branch to the FalseBB, obtains the branch
+ // weight, and adds it to the successor list.
+ fastEmitBranch(FalseMBB, DbgLoc);
+
+ return true;
+ }
+ } else if (TruncInst *TI = dyn_cast<TruncInst>(BI->getCondition())) {
+ // Handle things like "%cond = trunc i32 %X to i1 / br i1 %cond", which
+ // typically happen for _Bool and C++ bools.
+ MVT SourceVT;
+ if (TI->hasOneUse() && TI->getParent() == I->getParent() &&
+ isTypeLegal(TI->getOperand(0)->getType(), SourceVT)) {
+ unsigned TestOpc = 0;
+ switch (SourceVT.SimpleTy) {
+ default: break;
+ case MVT::i8: TestOpc = X86::TEST8ri; break;
+ case MVT::i16: TestOpc = X86::TEST16ri; break;
+ case MVT::i32: TestOpc = X86::TEST32ri; break;
+ case MVT::i64: TestOpc = X86::TEST64ri32; break;
+ }
+ if (TestOpc) {
+ unsigned OpReg = getRegForValue(TI->getOperand(0));
+ if (OpReg == 0) return false;
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(TestOpc))
+ .addReg(OpReg).addImm(1);
+
+ unsigned JmpOpc = X86::JNE_1;
+ if (FuncInfo.MBB->isLayoutSuccessor(TrueMBB)) {
+ std::swap(TrueMBB, FalseMBB);
+ JmpOpc = X86::JE_1;
+ }
+
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(JmpOpc))
+ .addMBB(TrueMBB);
+ fastEmitBranch(FalseMBB, DbgLoc);
+ uint32_t BranchWeight = 0;
+ if (FuncInfo.BPI)
+ BranchWeight = FuncInfo.BPI->getEdgeWeight(BI->getParent(),
+ TrueMBB->getBasicBlock());
+ FuncInfo.MBB->addSuccessor(TrueMBB, BranchWeight);
+ return true;
+ }
+ }
+ } else if (foldX86XALUIntrinsic(CC, BI, BI->getCondition())) {
+ // Fake request the condition, otherwise the intrinsic might be completely
+ // optimized away.
+ unsigned TmpReg = getRegForValue(BI->getCondition());
+ if (TmpReg == 0)
+ return false;
+
+ unsigned BranchOpc = X86::GetCondBranchFromCond(CC);
+
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(BranchOpc))
+ .addMBB(TrueMBB);
+ fastEmitBranch(FalseMBB, DbgLoc);
+ uint32_t BranchWeight = 0;
+ if (FuncInfo.BPI)
+ BranchWeight = FuncInfo.BPI->getEdgeWeight(BI->getParent(),
+ TrueMBB->getBasicBlock());
+ FuncInfo.MBB->addSuccessor(TrueMBB, BranchWeight);
+ return true;
+ }
+
+ // Otherwise do a clumsy setcc and re-test it.
+ // Note that i1 essentially gets ANY_EXTEND'ed to i8 where it isn't used
+ // in an explicit cast, so make sure to handle that correctly.
+ unsigned OpReg = getRegForValue(BI->getCondition());
+ if (OpReg == 0) return false;
+
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::TEST8ri))
+ .addReg(OpReg).addImm(1);
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::JNE_1))
+ .addMBB(TrueMBB);
+ fastEmitBranch(FalseMBB, DbgLoc);
+ uint32_t BranchWeight = 0;
+ if (FuncInfo.BPI)
+ BranchWeight = FuncInfo.BPI->getEdgeWeight(BI->getParent(),
+ TrueMBB->getBasicBlock());
+ FuncInfo.MBB->addSuccessor(TrueMBB, BranchWeight);
+ return true;
+}
+
+bool X86FastISel::X86SelectShift(const Instruction *I) {
+ unsigned CReg = 0, OpReg = 0;
+ const TargetRegisterClass *RC = nullptr;
+ if (I->getType()->isIntegerTy(8)) {
+ CReg = X86::CL;
+ RC = &X86::GR8RegClass;
+ switch (I->getOpcode()) {
+ case Instruction::LShr: OpReg = X86::SHR8rCL; break;
+ case Instruction::AShr: OpReg = X86::SAR8rCL; break;
+ case Instruction::Shl: OpReg = X86::SHL8rCL; break;
+ default: return false;
+ }
+ } else if (I->getType()->isIntegerTy(16)) {
+ CReg = X86::CX;
+ RC = &X86::GR16RegClass;
+ switch (I->getOpcode()) {
+ case Instruction::LShr: OpReg = X86::SHR16rCL; break;
+ case Instruction::AShr: OpReg = X86::SAR16rCL; break;
+ case Instruction::Shl: OpReg = X86::SHL16rCL; break;
+ default: return false;
+ }
+ } else if (I->getType()->isIntegerTy(32)) {
+ CReg = X86::ECX;
+ RC = &X86::GR32RegClass;
+ switch (I->getOpcode()) {
+ case Instruction::LShr: OpReg = X86::SHR32rCL; break;
+ case Instruction::AShr: OpReg = X86::SAR32rCL; break;
+ case Instruction::Shl: OpReg = X86::SHL32rCL; break;
+ default: return false;
+ }
+ } else if (I->getType()->isIntegerTy(64)) {
+ CReg = X86::RCX;
+ RC = &X86::GR64RegClass;
+ switch (I->getOpcode()) {
+ case Instruction::LShr: OpReg = X86::SHR64rCL; break;
+ case Instruction::AShr: OpReg = X86::SAR64rCL; break;
+ case Instruction::Shl: OpReg = X86::SHL64rCL; break;
+ default: return false;
+ }
+ } else {
+ return false;
+ }
+
+ MVT VT;
+ if (!isTypeLegal(I->getType(), VT))
+ return false;
+
+ unsigned Op0Reg = getRegForValue(I->getOperand(0));
+ if (Op0Reg == 0) return false;
+
+ unsigned Op1Reg = getRegForValue(I->getOperand(1));
+ if (Op1Reg == 0) return false;
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(TargetOpcode::COPY),
+ CReg).addReg(Op1Reg);
+
+ // The shift instruction uses X86::CL. If we defined a super-register
+ // of X86::CL, emit a subreg KILL to precisely describe what we're doing here.
+ if (CReg != X86::CL)
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
+ TII.get(TargetOpcode::KILL), X86::CL)
+ .addReg(CReg, RegState::Kill);
+
+ unsigned ResultReg = createResultReg(RC);
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(OpReg), ResultReg)
+ .addReg(Op0Reg);
+ updateValueMap(I, ResultReg);
+ return true;
+}
+
+bool X86FastISel::X86SelectDivRem(const Instruction *I) {
+ const static unsigned NumTypes = 4; // i8, i16, i32, i64
+ const static unsigned NumOps = 4; // SDiv, SRem, UDiv, URem
+ const static bool S = true; // IsSigned
+ const static bool U = false; // !IsSigned
+ const static unsigned Copy = TargetOpcode::COPY;
+ // For the X86 DIV/IDIV instruction, in most cases the dividend
+ // (numerator) must be in a specific register pair highreg:lowreg,
+ // producing the quotient in lowreg and the remainder in highreg.
+ // For most data types, to set up the instruction, the dividend is
+ // copied into lowreg, and lowreg is sign-extended or zero-extended
+ // into highreg. The exception is i8, where the dividend is defined
+ // as a single register rather than a register pair, and we
+ // therefore directly sign-extend or zero-extend the dividend into
+ // lowreg, instead of copying, and ignore the highreg.
+ const static struct DivRemEntry {
+ // The following portion depends only on the data type.
+ const TargetRegisterClass *RC;
+ unsigned LowInReg; // low part of the register pair
+ unsigned HighInReg; // high part of the register pair
+ // The following portion depends on both the data type and the operation.
+ struct DivRemResult {
+ unsigned OpDivRem; // The specific DIV/IDIV opcode to use.
+ unsigned OpSignExtend; // Opcode for sign-extending lowreg into
+ // highreg, or copying a zero into highreg.
+ unsigned OpCopy; // Opcode for copying dividend into lowreg, or
+ // zero/sign-extending into lowreg for i8.
+ unsigned DivRemResultReg; // Register containing the desired result.
+ bool IsOpSigned; // Whether to use signed or unsigned form.
+ } ResultTable[NumOps];
+ } OpTable[NumTypes] = {
+ { &X86::GR8RegClass, X86::AX, 0, {
+ { X86::IDIV8r, 0, X86::MOVSX16rr8, X86::AL, S }, // SDiv
+ { X86::IDIV8r, 0, X86::MOVSX16rr8, X86::AH, S }, // SRem
+ { X86::DIV8r, 0, X86::MOVZX16rr8, X86::AL, U }, // UDiv
+ { X86::DIV8r, 0, X86::MOVZX16rr8, X86::AH, U }, // URem
+ }
+ }, // i8
+ { &X86::GR16RegClass, X86::AX, X86::DX, {
+ { X86::IDIV16r, X86::CWD, Copy, X86::AX, S }, // SDiv
+ { X86::IDIV16r, X86::CWD, Copy, X86::DX, S }, // SRem
+ { X86::DIV16r, X86::MOV32r0, Copy, X86::AX, U }, // UDiv
+ { X86::DIV16r, X86::MOV32r0, Copy, X86::DX, U }, // URem
+ }
+ }, // i16
+ { &X86::GR32RegClass, X86::EAX, X86::EDX, {
+ { X86::IDIV32r, X86::CDQ, Copy, X86::EAX, S }, // SDiv
+ { X86::IDIV32r, X86::CDQ, Copy, X86::EDX, S }, // SRem
+ { X86::DIV32r, X86::MOV32r0, Copy, X86::EAX, U }, // UDiv
+ { X86::DIV32r, X86::MOV32r0, Copy, X86::EDX, U }, // URem
+ }
+ }, // i32
+ { &X86::GR64RegClass, X86::RAX, X86::RDX, {
+ { X86::IDIV64r, X86::CQO, Copy, X86::RAX, S }, // SDiv
+ { X86::IDIV64r, X86::CQO, Copy, X86::RDX, S }, // SRem
+ { X86::DIV64r, X86::MOV32r0, Copy, X86::RAX, U }, // UDiv
+ { X86::DIV64r, X86::MOV32r0, Copy, X86::RDX, U }, // URem
+ }
+ }, // i64
+ };
+
+ MVT VT;
+ if (!isTypeLegal(I->getType(), VT))
+ return false;
+
+ unsigned TypeIndex, OpIndex;
+ switch (VT.SimpleTy) {
+ default: return false;
+ case MVT::i8: TypeIndex = 0; break;
+ case MVT::i16: TypeIndex = 1; break;
+ case MVT::i32: TypeIndex = 2; break;
+ case MVT::i64: TypeIndex = 3;
+ if (!Subtarget->is64Bit())
+ return false;
+ break;
+ }
+
+ switch (I->getOpcode()) {
+ default: llvm_unreachable("Unexpected div/rem opcode");
+ case Instruction::SDiv: OpIndex = 0; break;
+ case Instruction::SRem: OpIndex = 1; break;
+ case Instruction::UDiv: OpIndex = 2; break;
+ case Instruction::URem: OpIndex = 3; break;
+ }
+
+ const DivRemEntry &TypeEntry = OpTable[TypeIndex];
+ const DivRemEntry::DivRemResult &OpEntry = TypeEntry.ResultTable[OpIndex];
+ unsigned Op0Reg = getRegForValue(I->getOperand(0));
+ if (Op0Reg == 0)
+ return false;
+ unsigned Op1Reg = getRegForValue(I->getOperand(1));
+ if (Op1Reg == 0)
+ return false;
+
+ // Move op0 into low-order input register.
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
+ TII.get(OpEntry.OpCopy), TypeEntry.LowInReg).addReg(Op0Reg);
+ // Zero-extend or sign-extend into high-order input register.
+ if (OpEntry.OpSignExtend) {
+ if (OpEntry.IsOpSigned)
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
+ TII.get(OpEntry.OpSignExtend));
+ else {
+ unsigned Zero32 = createResultReg(&X86::GR32RegClass);
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
+ TII.get(X86::MOV32r0), Zero32);
+
+ // Copy the zero into the appropriate sub/super/identical physical
+ // register. Unfortunately the operations needed are not uniform enough
+ // to fit neatly into the table above.
+ if (VT.SimpleTy == MVT::i16) {
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
+ TII.get(Copy), TypeEntry.HighInReg)
+ .addReg(Zero32, 0, X86::sub_16bit);
+ } else if (VT.SimpleTy == MVT::i32) {
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
+ TII.get(Copy), TypeEntry.HighInReg)
+ .addReg(Zero32);
+ } else if (VT.SimpleTy == MVT::i64) {
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
+ TII.get(TargetOpcode::SUBREG_TO_REG), TypeEntry.HighInReg)
+ .addImm(0).addReg(Zero32).addImm(X86::sub_32bit);
+ }
+ }
+ }
+ // Generate the DIV/IDIV instruction.
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
+ TII.get(OpEntry.OpDivRem)).addReg(Op1Reg);
+ // For i8 remainder, we can't reference AH directly, as we'll end
+ // up with bogus copies like %R9B = COPY %AH. Reference AX
+ // instead to prevent AH references in a REX instruction.
+ //
+ // The current assumption of the fast register allocator is that isel
+ // won't generate explicit references to the GPR8_NOREX registers. If
+ // the allocator and/or the backend get enhanced to be more robust in
+ // that regard, this can be, and should be, removed.
+ unsigned ResultReg = 0;
+ if ((I->getOpcode() == Instruction::SRem ||
+ I->getOpcode() == Instruction::URem) &&
+ OpEntry.DivRemResultReg == X86::AH && Subtarget->is64Bit()) {
+ unsigned SourceSuperReg = createResultReg(&X86::GR16RegClass);
+ unsigned ResultSuperReg = createResultReg(&X86::GR16RegClass);
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
+ TII.get(Copy), SourceSuperReg).addReg(X86::AX);
+
+ // Shift AX right by 8 bits instead of using AH.
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::SHR16ri),
+ ResultSuperReg).addReg(SourceSuperReg).addImm(8);
+
+ // Now reference the 8-bit subreg of the result.
+ ResultReg = fastEmitInst_extractsubreg(MVT::i8, ResultSuperReg,
+ /*Kill=*/true, X86::sub_8bit);
+ }
+ // Copy the result out of the physreg if we haven't already.
+ if (!ResultReg) {
+ ResultReg = createResultReg(TypeEntry.RC);
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Copy), ResultReg)
+ .addReg(OpEntry.DivRemResultReg);
+ }
+ updateValueMap(I, ResultReg);
+
+ return true;
+}
+
+/// \brief Emit a conditional move instruction (if the are supported) to lower
+/// the select.
+bool X86FastISel::X86FastEmitCMoveSelect(MVT RetVT, const Instruction *I) {
+ // Check if the subtarget supports these instructions.
+ if (!Subtarget->hasCMov())
+ return false;
+
+ // FIXME: Add support for i8.
+ if (RetVT < MVT::i16 || RetVT > MVT::i64)
+ return false;
+
+ const Value *Cond = I->getOperand(0);
+ const TargetRegisterClass *RC = TLI.getRegClassFor(RetVT);
+ bool NeedTest = true;
+ X86::CondCode CC = X86::COND_NE;
+
+ // Optimize conditions coming from a compare if both instructions are in the
+ // same basic block (values defined in other basic blocks may not have
+ // initialized registers).
+ const auto *CI = dyn_cast<CmpInst>(Cond);
+ if (CI && (CI->getParent() == I->getParent())) {
+ CmpInst::Predicate Predicate = optimizeCmpPredicate(CI);
+
+ // FCMP_OEQ and FCMP_UNE cannot be checked with a single instruction.
+ static unsigned SETFOpcTable[2][3] = {
+ { X86::SETNPr, X86::SETEr , X86::TEST8rr },
+ { X86::SETPr, X86::SETNEr, X86::OR8rr }
+ };
+ unsigned *SETFOpc = nullptr;
+ switch (Predicate) {
+ default: break;
+ case CmpInst::FCMP_OEQ:
+ SETFOpc = &SETFOpcTable[0][0];
+ Predicate = CmpInst::ICMP_NE;
+ break;
+ case CmpInst::FCMP_UNE:
+ SETFOpc = &SETFOpcTable[1][0];
+ Predicate = CmpInst::ICMP_NE;
+ break;
+ }
+
+ bool NeedSwap;
+ std::tie(CC, NeedSwap) = getX86ConditionCode(Predicate);
+ assert(CC <= X86::LAST_VALID_COND && "Unexpected condition code.");
+
+ const Value *CmpLHS = CI->getOperand(0);
+ const Value *CmpRHS = CI->getOperand(1);
+ if (NeedSwap)
+ std::swap(CmpLHS, CmpRHS);
+
+ EVT CmpVT = TLI.getValueType(CmpLHS->getType());
+ // Emit a compare of the LHS and RHS, setting the flags.
+ if (!X86FastEmitCompare(CmpLHS, CmpRHS, CmpVT, CI->getDebugLoc()))
+ return false;
+
+ if (SETFOpc) {
+ unsigned FlagReg1 = createResultReg(&X86::GR8RegClass);
+ unsigned FlagReg2 = createResultReg(&X86::GR8RegClass);
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(SETFOpc[0]),
+ FlagReg1);
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(SETFOpc[1]),
+ FlagReg2);
+ auto const &II = TII.get(SETFOpc[2]);
+ if (II.getNumDefs()) {
+ unsigned TmpReg = createResultReg(&X86::GR8RegClass);
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, TmpReg)
+ .addReg(FlagReg2).addReg(FlagReg1);
+ } else {
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
+ .addReg(FlagReg2).addReg(FlagReg1);
+ }
+ }
+ NeedTest = false;
+ } else if (foldX86XALUIntrinsic(CC, I, Cond)) {
+ // Fake request the condition, otherwise the intrinsic might be completely
+ // optimized away.
+ unsigned TmpReg = getRegForValue(Cond);
+ if (TmpReg == 0)
+ return false;
+
+ NeedTest = false;
+ }
+
+ if (NeedTest) {
+ // Selects operate on i1, however, CondReg is 8 bits width and may contain
+ // garbage. Indeed, only the less significant bit is supposed to be
+ // accurate. If we read more than the lsb, we may see non-zero values
+ // whereas lsb is zero. Therefore, we have to truncate Op0Reg to i1 for
+ // the select. This is achieved by performing TEST against 1.
+ unsigned CondReg = getRegForValue(Cond);
+ if (CondReg == 0)
+ return false;
+ bool CondIsKill = hasTrivialKill(Cond);
+
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::TEST8ri))
+ .addReg(CondReg, getKillRegState(CondIsKill)).addImm(1);
+ }
+
+ const Value *LHS = I->getOperand(1);
+ const Value *RHS = I->getOperand(2);
+
+ unsigned RHSReg = getRegForValue(RHS);
+ bool RHSIsKill = hasTrivialKill(RHS);
+
+ unsigned LHSReg = getRegForValue(LHS);
+ bool LHSIsKill = hasTrivialKill(LHS);
+
+ if (!LHSReg || !RHSReg)
+ return false;
+
+ unsigned Opc = X86::getCMovFromCond(CC, RC->getSize());
+ unsigned ResultReg = fastEmitInst_rr(Opc, RC, RHSReg, RHSIsKill,
+ LHSReg, LHSIsKill);
+ updateValueMap(I, ResultReg);
+ return true;
+}
+
+/// \brief Emit SSE instructions to lower the select.
+///
+/// Try to use SSE1/SSE2 instructions to simulate a select without branches.
+/// This lowers fp selects into a CMP/AND/ANDN/OR sequence when the necessary
+/// SSE instructions are available.
+bool X86FastISel::X86FastEmitSSESelect(MVT RetVT, const Instruction *I) {
+ // Optimize conditions coming from a compare if both instructions are in the
+ // same basic block (values defined in other basic blocks may not have
+ // initialized registers).
+ const auto *CI = dyn_cast<FCmpInst>(I->getOperand(0));
+ if (!CI || (CI->getParent() != I->getParent()))
+ return false;
+
+ if (I->getType() != CI->getOperand(0)->getType() ||
+ !((Subtarget->hasSSE1() && RetVT == MVT::f32) ||
+ (Subtarget->hasSSE2() && RetVT == MVT::f64)))
+ return false;
+
+ const Value *CmpLHS = CI->getOperand(0);
+ const Value *CmpRHS = CI->getOperand(1);
+ CmpInst::Predicate Predicate = optimizeCmpPredicate(CI);
+
+ // The optimizer might have replaced fcmp oeq %x, %x with fcmp ord %x, 0.0.
+ // We don't have to materialize a zero constant for this case and can just use
+ // %x again on the RHS.
+ if (Predicate == CmpInst::FCMP_ORD || Predicate == CmpInst::FCMP_UNO) {
+ const auto *CmpRHSC = dyn_cast<ConstantFP>(CmpRHS);
+ if (CmpRHSC && CmpRHSC->isNullValue())
+ CmpRHS = CmpLHS;
+ }
+
+ unsigned CC;
+ bool NeedSwap;
+ std::tie(CC, NeedSwap) = getX86SSEConditionCode(Predicate);
+ if (CC > 7)
+ return false;
+
+ if (NeedSwap)
+ std::swap(CmpLHS, CmpRHS);
+
+ static unsigned OpcTable[2][2][4] = {
+ { { X86::CMPSSrr, X86::FsANDPSrr, X86::FsANDNPSrr, X86::FsORPSrr },
+ { X86::VCMPSSrr, X86::VFsANDPSrr, X86::VFsANDNPSrr, X86::VFsORPSrr } },
+ { { X86::CMPSDrr, X86::FsANDPDrr, X86::FsANDNPDrr, X86::FsORPDrr },
+ { X86::VCMPSDrr, X86::VFsANDPDrr, X86::VFsANDNPDrr, X86::VFsORPDrr } }
+ };
+
+ bool HasAVX = Subtarget->hasAVX();
+ unsigned *Opc = nullptr;
+ switch (RetVT.SimpleTy) {
+ default: return false;
+ case MVT::f32: Opc = &OpcTable[0][HasAVX][0]; break;
+ case MVT::f64: Opc = &OpcTable[1][HasAVX][0]; break;
+ }
+
+ const Value *LHS = I->getOperand(1);
+ const Value *RHS = I->getOperand(2);
+
+ unsigned LHSReg = getRegForValue(LHS);
+ bool LHSIsKill = hasTrivialKill(LHS);
+
+ unsigned RHSReg = getRegForValue(RHS);
+ bool RHSIsKill = hasTrivialKill(RHS);
+
+ unsigned CmpLHSReg = getRegForValue(CmpLHS);
+ bool CmpLHSIsKill = hasTrivialKill(CmpLHS);
+
+ unsigned CmpRHSReg = getRegForValue(CmpRHS);
+ bool CmpRHSIsKill = hasTrivialKill(CmpRHS);
+
+ if (!LHSReg || !RHSReg || !CmpLHS || !CmpRHS)
+ return false;
+
+ const TargetRegisterClass *RC = TLI.getRegClassFor(RetVT);
+ unsigned CmpReg = fastEmitInst_rri(Opc[0], RC, CmpLHSReg, CmpLHSIsKill,
+ CmpRHSReg, CmpRHSIsKill, CC);
+ unsigned AndReg = fastEmitInst_rr(Opc[1], RC, CmpReg, /*IsKill=*/false,
+ LHSReg, LHSIsKill);
+ unsigned AndNReg = fastEmitInst_rr(Opc[2], RC, CmpReg, /*IsKill=*/true,
+ RHSReg, RHSIsKill);
+ unsigned ResultReg = fastEmitInst_rr(Opc[3], RC, AndNReg, /*IsKill=*/true,
+ AndReg, /*IsKill=*/true);
+ updateValueMap(I, ResultReg);
+ return true;
+}
+
+bool X86FastISel::X86FastEmitPseudoSelect(MVT RetVT, const Instruction *I) {
+ // These are pseudo CMOV instructions and will be later expanded into control-
+ // flow.
+ unsigned Opc;
+ switch (RetVT.SimpleTy) {
+ default: return false;
+ case MVT::i8: Opc = X86::CMOV_GR8; break;
+ case MVT::i16: Opc = X86::CMOV_GR16; break;
+ case MVT::i32: Opc = X86::CMOV_GR32; break;
+ case MVT::f32: Opc = X86::CMOV_FR32; break;
+ case MVT::f64: Opc = X86::CMOV_FR64; break;
+ }
+
+ const Value *Cond = I->getOperand(0);
+ X86::CondCode CC = X86::COND_NE;
+
+ // Optimize conditions coming from a compare if both instructions are in the
+ // same basic block (values defined in other basic blocks may not have
+ // initialized registers).
+ const auto *CI = dyn_cast<CmpInst>(Cond);
+ if (CI && (CI->getParent() == I->getParent())) {
+ bool NeedSwap;
+ std::tie(CC, NeedSwap) = getX86ConditionCode(CI->getPredicate());
+ if (CC > X86::LAST_VALID_COND)
+ return false;
+
+ const Value *CmpLHS = CI->getOperand(0);
+ const Value *CmpRHS = CI->getOperand(1);
+
+ if (NeedSwap)
+ std::swap(CmpLHS, CmpRHS);
+
+ EVT CmpVT = TLI.getValueType(CmpLHS->getType());
+ if (!X86FastEmitCompare(CmpLHS, CmpRHS, CmpVT, CI->getDebugLoc()))
+ return false;
+ } else {
+ unsigned CondReg = getRegForValue(Cond);
+ if (CondReg == 0)
+ return false;
+ bool CondIsKill = hasTrivialKill(Cond);
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::TEST8ri))
+ .addReg(CondReg, getKillRegState(CondIsKill)).addImm(1);
+ }
+
+ const Value *LHS = I->getOperand(1);
+ const Value *RHS = I->getOperand(2);
+
+ unsigned LHSReg = getRegForValue(LHS);
+ bool LHSIsKill = hasTrivialKill(LHS);
+
+ unsigned RHSReg = getRegForValue(RHS);
+ bool RHSIsKill = hasTrivialKill(RHS);
+
+ if (!LHSReg || !RHSReg)
+ return false;
+
+ const TargetRegisterClass *RC = TLI.getRegClassFor(RetVT);
+
+ unsigned ResultReg =
+ fastEmitInst_rri(Opc, RC, RHSReg, RHSIsKill, LHSReg, LHSIsKill, CC);
+ updateValueMap(I, ResultReg);
+ return true;
+}
+
+bool X86FastISel::X86SelectSelect(const Instruction *I) {
+ MVT RetVT;
+ if (!isTypeLegal(I->getType(), RetVT))
+ return false;
+
+ // Check if we can fold the select.
+ if (const auto *CI = dyn_cast<CmpInst>(I->getOperand(0))) {
+ CmpInst::Predicate Predicate = optimizeCmpPredicate(CI);
+ const Value *Opnd = nullptr;
+ switch (Predicate) {
+ default: break;
+ case CmpInst::FCMP_FALSE: Opnd = I->getOperand(2); break;
+ case CmpInst::FCMP_TRUE: Opnd = I->getOperand(1); break;
+ }
+ // No need for a select anymore - this is an unconditional move.
+ if (Opnd) {
+ unsigned OpReg = getRegForValue(Opnd);
+ if (OpReg == 0)
+ return false;
+ bool OpIsKill = hasTrivialKill(Opnd);
+ const TargetRegisterClass *RC = TLI.getRegClassFor(RetVT);
+ unsigned ResultReg = createResultReg(RC);
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
+ TII.get(TargetOpcode::COPY), ResultReg)
+ .addReg(OpReg, getKillRegState(OpIsKill));
+ updateValueMap(I, ResultReg);
+ return true;
+ }
+ }
+
+ // First try to use real conditional move instructions.
+ if (X86FastEmitCMoveSelect(RetVT, I))
+ return true;
+
+ // Try to use a sequence of SSE instructions to simulate a conditional move.
+ if (X86FastEmitSSESelect(RetVT, I))
+ return true;
+
+ // Fall-back to pseudo conditional move instructions, which will be later
+ // converted to control-flow.
+ if (X86FastEmitPseudoSelect(RetVT, I))
+ return true;
+
+ return false;
+}
+
+bool X86FastISel::X86SelectFPExt(const Instruction *I) {
+ // fpext from float to double.
+ if (X86ScalarSSEf64 &&
+ I->getType()->isDoubleTy()) {
+ const Value *V = I->getOperand(0);
+ if (V->getType()->isFloatTy()) {
+ unsigned OpReg = getRegForValue(V);
+ if (OpReg == 0) return false;
+ unsigned ResultReg = createResultReg(&X86::FR64RegClass);
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
+ TII.get(X86::CVTSS2SDrr), ResultReg)
+ .addReg(OpReg);
+ updateValueMap(I, ResultReg);
+ return true;
+ }
+ }
+
+ return false;
+}
+
+bool X86FastISel::X86SelectFPTrunc(const Instruction *I) {
+ if (X86ScalarSSEf64) {
+ if (I->getType()->isFloatTy()) {
+ const Value *V = I->getOperand(0);
+ if (V->getType()->isDoubleTy()) {
+ unsigned OpReg = getRegForValue(V);
+ if (OpReg == 0) return false;
+ unsigned ResultReg = createResultReg(&X86::FR32RegClass);
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
+ TII.get(X86::CVTSD2SSrr), ResultReg)
+ .addReg(OpReg);
+ updateValueMap(I, ResultReg);
+ return true;
+ }
+ }
+ }
+
+ return false;
+}
+
+bool X86FastISel::X86SelectTrunc(const Instruction *I) {
+ EVT SrcVT = TLI.getValueType(I->getOperand(0)->getType());
+ EVT DstVT = TLI.getValueType(I->getType());
+
+ // This code only handles truncation to byte.
+ if (DstVT != MVT::i8 && DstVT != MVT::i1)
+ return false;
+ if (!TLI.isTypeLegal(SrcVT))
+ return false;
+
+ unsigned InputReg = getRegForValue(I->getOperand(0));
+ if (!InputReg)
+ // Unhandled operand. Halt "fast" selection and bail.
+ return false;
+
+ if (SrcVT == MVT::i8) {
+ // Truncate from i8 to i1; no code needed.
+ updateValueMap(I, InputReg);
+ return true;
+ }
+
+ if (!Subtarget->is64Bit()) {
+ // If we're on x86-32; we can't extract an i8 from a general register.
+ // First issue a copy to GR16_ABCD or GR32_ABCD.
+ const TargetRegisterClass *CopyRC =
+ (SrcVT == MVT::i16) ? &X86::GR16_ABCDRegClass : &X86::GR32_ABCDRegClass;
+ unsigned CopyReg = createResultReg(CopyRC);
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
+ TII.get(TargetOpcode::COPY), CopyReg).addReg(InputReg);
+ InputReg = CopyReg;
+ }
+
+ // Issue an extract_subreg.
+ unsigned ResultReg = fastEmitInst_extractsubreg(MVT::i8,
+ InputReg, /*Kill=*/true,
+ X86::sub_8bit);
+ if (!ResultReg)
+ return false;
+
+ updateValueMap(I, ResultReg);
+ return true;
+}
+
+bool X86FastISel::IsMemcpySmall(uint64_t Len) {
+ return Len <= (Subtarget->is64Bit() ? 32 : 16);
+}
+
+bool X86FastISel::TryEmitSmallMemcpy(X86AddressMode DestAM,
+ X86AddressMode SrcAM, uint64_t Len) {
+
+ // Make sure we don't bloat code by inlining very large memcpy's.
+ if (!IsMemcpySmall(Len))
+ return false;
+
+ bool i64Legal = Subtarget->is64Bit();
+
+ // We don't care about alignment here since we just emit integer accesses.
+ while (Len) {
+ MVT VT;
+ if (Len >= 8 && i64Legal)
+ VT = MVT::i64;
+ else if (Len >= 4)
+ VT = MVT::i32;
+ else if (Len >= 2)
+ VT = MVT::i16;
+ else
+ VT = MVT::i8;
+
+ unsigned Reg;
+ bool RV = X86FastEmitLoad(VT, SrcAM, nullptr, Reg);
+ RV &= X86FastEmitStore(VT, Reg, /*Kill=*/true, DestAM);
+ assert(RV && "Failed to emit load or store??");
+
+ unsigned Size = VT.getSizeInBits()/8;
+ Len -= Size;
+ DestAM.Disp += Size;
+ SrcAM.Disp += Size;
+ }
+
+ return true;
+}
+
+bool X86FastISel::fastLowerIntrinsicCall(const IntrinsicInst *II) {
+ // FIXME: Handle more intrinsics.
+ switch (II->getIntrinsicID()) {
+ default: return false;
+ case Intrinsic::frameaddress: {
+ Type *RetTy = II->getCalledFunction()->getReturnType();
+
+ MVT VT;
+ if (!isTypeLegal(RetTy, VT))
+ return false;
+
+ unsigned Opc;
+ const TargetRegisterClass *RC = nullptr;
+
+ switch (VT.SimpleTy) {
+ default: llvm_unreachable("Invalid result type for frameaddress.");
+ case MVT::i32: Opc = X86::MOV32rm; RC = &X86::GR32RegClass; break;
+ case MVT::i64: Opc = X86::MOV64rm; RC = &X86::GR64RegClass; break;
+ }
+
+ // This needs to be set before we call getPtrSizedFrameRegister, otherwise
+ // we get the wrong frame register.
+ MachineFrameInfo *MFI = FuncInfo.MF->getFrameInfo();
+ MFI->setFrameAddressIsTaken(true);
+
+ const X86RegisterInfo *RegInfo = static_cast<const X86RegisterInfo *>(
+ TM.getSubtargetImpl()->getRegisterInfo());
+ unsigned FrameReg = RegInfo->getPtrSizedFrameRegister(*(FuncInfo.MF));
+ assert(((FrameReg == X86::RBP && VT == MVT::i64) ||
+ (FrameReg == X86::EBP && VT == MVT::i32)) &&
+ "Invalid Frame Register!");
+
+ // Always make a copy of the frame register to to a vreg first, so that we
+ // never directly reference the frame register (the TwoAddressInstruction-
+ // Pass doesn't like that).
+ unsigned SrcReg = createResultReg(RC);
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
+ TII.get(TargetOpcode::COPY), SrcReg).addReg(FrameReg);
+
+ // Now recursively load from the frame address.
+ // movq (%rbp), %rax
+ // movq (%rax), %rax
+ // movq (%rax), %rax
+ // ...
+ unsigned DestReg;
+ unsigned Depth = cast<ConstantInt>(II->getOperand(0))->getZExtValue();
+ while (Depth--) {
+ DestReg = createResultReg(RC);
+ addDirectMem(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
+ TII.get(Opc), DestReg), SrcReg);
+ SrcReg = DestReg;
+ }
+
+ updateValueMap(II, SrcReg);
+ return true;
+ }
+ case Intrinsic::memcpy: {
+ const MemCpyInst *MCI = cast<MemCpyInst>(II);
+ // Don't handle volatile or variable length memcpys.
+ if (MCI->isVolatile())
+ return false;
+
+ if (isa<ConstantInt>(MCI->getLength())) {
+ // Small memcpy's are common enough that we want to do them
+ // without a call if possible.
+ uint64_t Len = cast<ConstantInt>(MCI->getLength())->getZExtValue();
+ if (IsMemcpySmall(Len)) {
+ X86AddressMode DestAM, SrcAM;
+ if (!X86SelectAddress(MCI->getRawDest(), DestAM) ||
+ !X86SelectAddress(MCI->getRawSource(), SrcAM))
+ return false;
+ TryEmitSmallMemcpy(DestAM, SrcAM, Len);
+ return true;
+ }
+ }
+
+ unsigned SizeWidth = Subtarget->is64Bit() ? 64 : 32;
+ if (!MCI->getLength()->getType()->isIntegerTy(SizeWidth))
+ return false;
+
+ if (MCI->getSourceAddressSpace() > 255 || MCI->getDestAddressSpace() > 255)
+ return false;
+
+ return lowerCallTo(II, "memcpy", II->getNumArgOperands() - 2);
+ }
+ case Intrinsic::memset: {
+ const MemSetInst *MSI = cast<MemSetInst>(II);
+
+ if (MSI->isVolatile())
+ return false;
+
+ unsigned SizeWidth = Subtarget->is64Bit() ? 64 : 32;
+ if (!MSI->getLength()->getType()->isIntegerTy(SizeWidth))
+ return false;
+
+ if (MSI->getDestAddressSpace() > 255)
+ return false;
+
+ return lowerCallTo(II, "memset", II->getNumArgOperands() - 2);
+ }
+ case Intrinsic::stackprotector: {
+ // Emit code to store the stack guard onto the stack.
+ EVT PtrTy = TLI.getPointerTy();
+
+ const Value *Op1 = II->getArgOperand(0); // The guard's value.
+ const AllocaInst *Slot = cast<AllocaInst>(II->getArgOperand(1));
+
+ MFI.setStackProtectorIndex(FuncInfo.StaticAllocaMap[Slot]);
+
+ // Grab the frame index.
+ X86AddressMode AM;
+ if (!X86SelectAddress(Slot, AM)) return false;
+ if (!X86FastEmitStore(PtrTy, Op1, AM)) return false;
+ return true;
+ }
+ case Intrinsic::dbg_declare: {
+ const DbgDeclareInst *DI = cast<DbgDeclareInst>(II);
+ X86AddressMode AM;
+ assert(DI->getAddress() && "Null address should be checked earlier!");
+ if (!X86SelectAddress(DI->getAddress(), AM))
+ return false;
+ const MCInstrDesc &II = TII.get(TargetOpcode::DBG_VALUE);
+ // FIXME may need to add RegState::Debug to any registers produced,
+ // although ESP/EBP should be the only ones at the moment.
+ addFullAddress(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II), AM)
+ .addImm(0)
+ .addMetadata(DI->getVariable())
+ .addMetadata(DI->getExpression());
+ return true;
+ }
+ case Intrinsic::trap: {
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::TRAP));
+ return true;
+ }
+ case Intrinsic::sqrt: {
+ if (!Subtarget->hasSSE1())
+ return false;
+
+ Type *RetTy = II->getCalledFunction()->getReturnType();
+
+ MVT VT;
+ if (!isTypeLegal(RetTy, VT))
+ return false;
+
+ // Unfortunately we can't use fastEmit_r, because the AVX version of FSQRT
+ // is not generated by FastISel yet.
+ // FIXME: Update this code once tablegen can handle it.
+ static const unsigned SqrtOpc[2][2] = {
+ {X86::SQRTSSr, X86::VSQRTSSr},
+ {X86::SQRTSDr, X86::VSQRTSDr}
+ };
+ bool HasAVX = Subtarget->hasAVX();
+ unsigned Opc;
+ const TargetRegisterClass *RC;
+ switch (VT.SimpleTy) {
+ default: return false;
+ case MVT::f32: Opc = SqrtOpc[0][HasAVX]; RC = &X86::FR32RegClass; break;
+ case MVT::f64: Opc = SqrtOpc[1][HasAVX]; RC = &X86::FR64RegClass; break;
+ }
+
+ const Value *SrcVal = II->getArgOperand(0);
+ unsigned SrcReg = getRegForValue(SrcVal);
+
+ if (SrcReg == 0)
+ return false;
+
+ unsigned ImplicitDefReg = 0;
+ if (HasAVX) {
+ ImplicitDefReg = createResultReg(RC);
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
+ TII.get(TargetOpcode::IMPLICIT_DEF), ImplicitDefReg);
+ }
+
+ unsigned ResultReg = createResultReg(RC);
+ MachineInstrBuilder MIB;
+ MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc),
+ ResultReg);
+
+ if (ImplicitDefReg)
+ MIB.addReg(ImplicitDefReg);
+
+ MIB.addReg(SrcReg);
+
+ updateValueMap(II, ResultReg);
+ return true;
+ }
+ case Intrinsic::sadd_with_overflow:
+ case Intrinsic::uadd_with_overflow:
+ case Intrinsic::ssub_with_overflow:
+ case Intrinsic::usub_with_overflow:
+ case Intrinsic::smul_with_overflow:
+ case Intrinsic::umul_with_overflow: {
+ // This implements the basic lowering of the xalu with overflow intrinsics
+ // into add/sub/mul followed by either seto or setb.
+ const Function *Callee = II->getCalledFunction();
+ auto *Ty = cast<StructType>(Callee->getReturnType());
+ Type *RetTy = Ty->getTypeAtIndex(0U);
+ Type *CondTy = Ty->getTypeAtIndex(1);
+
+ MVT VT;
+ if (!isTypeLegal(RetTy, VT))
+ return false;
+
+ if (VT < MVT::i8 || VT > MVT::i64)
+ return false;
+
+ const Value *LHS = II->getArgOperand(0);
+ const Value *RHS = II->getArgOperand(1);
+
+ // Canonicalize immediate to the RHS.
+ if (isa<ConstantInt>(LHS) && !isa<ConstantInt>(RHS) &&
+ isCommutativeIntrinsic(II))
+ std::swap(LHS, RHS);
+
+ bool UseIncDec = false;
+ if (isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isOne())
+ UseIncDec = true;
+
+ unsigned BaseOpc, CondOpc;
+ switch (II->getIntrinsicID()) {
+ default: llvm_unreachable("Unexpected intrinsic!");
+ case Intrinsic::sadd_with_overflow:
+ BaseOpc = UseIncDec ? unsigned(X86ISD::INC) : unsigned(ISD::ADD);
+ CondOpc = X86::SETOr;
+ break;
+ case Intrinsic::uadd_with_overflow:
+ BaseOpc = ISD::ADD; CondOpc = X86::SETBr; break;
+ case Intrinsic::ssub_with_overflow:
+ BaseOpc = UseIncDec ? unsigned(X86ISD::DEC) : unsigned(ISD::SUB);
+ CondOpc = X86::SETOr;
+ break;
+ case Intrinsic::usub_with_overflow:
+ BaseOpc = ISD::SUB; CondOpc = X86::SETBr; break;
+ case Intrinsic::smul_with_overflow:
+ BaseOpc = X86ISD::SMUL; CondOpc = X86::SETOr; break;
+ case Intrinsic::umul_with_overflow:
+ BaseOpc = X86ISD::UMUL; CondOpc = X86::SETOr; break;
+ }
+
+ unsigned LHSReg = getRegForValue(LHS);
+ if (LHSReg == 0)
+ return false;
+ bool LHSIsKill = hasTrivialKill(LHS);
+
+ unsigned ResultReg = 0;
+ // Check if we have an immediate version.
+ if (const auto *CI = dyn_cast<ConstantInt>(RHS)) {
+ static const unsigned Opc[2][4] = {
+ { X86::INC8r, X86::INC16r, X86::INC32r, X86::INC64r },
+ { X86::DEC8r, X86::DEC16r, X86::DEC32r, X86::DEC64r }
+ };
+
+ if (BaseOpc == X86ISD::INC || BaseOpc == X86ISD::DEC) {
+ ResultReg = createResultReg(TLI.getRegClassFor(VT));
+ bool IsDec = BaseOpc == X86ISD::DEC;
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
+ TII.get(Opc[IsDec][VT.SimpleTy-MVT::i8]), ResultReg)
+ .addReg(LHSReg, getKillRegState(LHSIsKill));
+ } else
+ ResultReg = fastEmit_ri(VT, VT, BaseOpc, LHSReg, LHSIsKill,
+ CI->getZExtValue());
+ }
+
+ unsigned RHSReg;
+ bool RHSIsKill;
+ if (!ResultReg) {
+ RHSReg = getRegForValue(RHS);
+ if (RHSReg == 0)
+ return false;
+ RHSIsKill = hasTrivialKill(RHS);
+ ResultReg = fastEmit_rr(VT, VT, BaseOpc, LHSReg, LHSIsKill, RHSReg,
+ RHSIsKill);
+ }
+
+ // FastISel doesn't have a pattern for all X86::MUL*r and X86::IMUL*r. Emit
+ // it manually.
+ if (BaseOpc == X86ISD::UMUL && !ResultReg) {
+ static const unsigned MULOpc[] =
+ { X86::MUL8r, X86::MUL16r, X86::MUL32r, X86::MUL64r };
+ static const unsigned Reg[] = { X86::AL, X86::AX, X86::EAX, X86::RAX };
+ // First copy the first operand into RAX, which is an implicit input to
+ // the X86::MUL*r instruction.
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
+ TII.get(TargetOpcode::COPY), Reg[VT.SimpleTy-MVT::i8])
+ .addReg(LHSReg, getKillRegState(LHSIsKill));
+ ResultReg = fastEmitInst_r(MULOpc[VT.SimpleTy-MVT::i8],
+ TLI.getRegClassFor(VT), RHSReg, RHSIsKill);
+ } else if (BaseOpc == X86ISD::SMUL && !ResultReg) {
+ static const unsigned MULOpc[] =
+ { X86::IMUL8r, X86::IMUL16rr, X86::IMUL32rr, X86::IMUL64rr };
+ if (VT == MVT::i8) {
+ // Copy the first operand into AL, which is an implicit input to the
+ // X86::IMUL8r instruction.
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
+ TII.get(TargetOpcode::COPY), X86::AL)
+ .addReg(LHSReg, getKillRegState(LHSIsKill));
+ ResultReg = fastEmitInst_r(MULOpc[0], TLI.getRegClassFor(VT), RHSReg,
+ RHSIsKill);
+ } else
+ ResultReg = fastEmitInst_rr(MULOpc[VT.SimpleTy-MVT::i8],
+ TLI.getRegClassFor(VT), LHSReg, LHSIsKill,
+ RHSReg, RHSIsKill);
+ }
+
+ if (!ResultReg)
+ return false;
+
+ unsigned ResultReg2 = FuncInfo.CreateRegs(CondTy);
+ assert((ResultReg+1) == ResultReg2 && "Nonconsecutive result registers.");
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(CondOpc),
+ ResultReg2);
+
+ updateValueMap(II, ResultReg, 2);
+ return true;
+ }
+ case Intrinsic::x86_sse_cvttss2si:
+ case Intrinsic::x86_sse_cvttss2si64:
+ case Intrinsic::x86_sse2_cvttsd2si:
+ case Intrinsic::x86_sse2_cvttsd2si64: {
+ bool IsInputDouble;
+ switch (II->getIntrinsicID()) {
+ default: llvm_unreachable("Unexpected intrinsic.");
+ case Intrinsic::x86_sse_cvttss2si:
+ case Intrinsic::x86_sse_cvttss2si64:
+ if (!Subtarget->hasSSE1())
+ return false;
+ IsInputDouble = false;
+ break;
+ case Intrinsic::x86_sse2_cvttsd2si:
+ case Intrinsic::x86_sse2_cvttsd2si64:
+ if (!Subtarget->hasSSE2())
+ return false;
+ IsInputDouble = true;
+ break;
+ }
+
+ Type *RetTy = II->getCalledFunction()->getReturnType();
+ MVT VT;
+ if (!isTypeLegal(RetTy, VT))
+ return false;
+
+ static const unsigned CvtOpc[2][2][2] = {
+ { { X86::CVTTSS2SIrr, X86::VCVTTSS2SIrr },
+ { X86::CVTTSS2SI64rr, X86::VCVTTSS2SI64rr } },
+ { { X86::CVTTSD2SIrr, X86::VCVTTSD2SIrr },
+ { X86::CVTTSD2SI64rr, X86::VCVTTSD2SI64rr } }
+ };
+ bool HasAVX = Subtarget->hasAVX();
+ unsigned Opc;
+ switch (VT.SimpleTy) {
+ default: llvm_unreachable("Unexpected result type.");
+ case MVT::i32: Opc = CvtOpc[IsInputDouble][0][HasAVX]; break;
+ case MVT::i64: Opc = CvtOpc[IsInputDouble][1][HasAVX]; break;
+ }
+
+ // Check if we can fold insertelement instructions into the convert.
+ const Value *Op = II->getArgOperand(0);
+ while (auto *IE = dyn_cast<InsertElementInst>(Op)) {
+ const Value *Index = IE->getOperand(2);
+ if (!isa<ConstantInt>(Index))
+ break;
+ unsigned Idx = cast<ConstantInt>(Index)->getZExtValue();
+
+ if (Idx == 0) {
+ Op = IE->getOperand(1);
+ break;
+ }
+ Op = IE->getOperand(0);
+ }
+
+ unsigned Reg = getRegForValue(Op);
+ if (Reg == 0)
+ return false;
+
+ unsigned ResultReg = createResultReg(TLI.getRegClassFor(VT));
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg)
+ .addReg(Reg);
+
+ updateValueMap(II, ResultReg);
+ return true;
+ }
+ }
+}
+
+bool X86FastISel::fastLowerArguments() {
+ if (!FuncInfo.CanLowerReturn)
+ return false;
+
+ const Function *F = FuncInfo.Fn;
+ if (F->isVarArg())
+ return false;
+
+ CallingConv::ID CC = F->getCallingConv();
+ if (CC != CallingConv::C)
+ return false;
+
+ if (Subtarget->isCallingConvWin64(CC))
+ return false;
+
+ if (!Subtarget->is64Bit())
+ return false;
+
+ // Only handle simple cases. i.e. Up to 6 i32/i64 scalar arguments.
+ unsigned GPRCnt = 0;
+ unsigned FPRCnt = 0;
+ unsigned Idx = 0;
+ for (auto const &Arg : F->args()) {
+ // The first argument is at index 1.
+ ++Idx;
+ if (F->getAttributes().hasAttribute(Idx, Attribute::ByVal) ||
+ F->getAttributes().hasAttribute(Idx, Attribute::InReg) ||
+ F->getAttributes().hasAttribute(Idx, Attribute::StructRet) ||
+ F->getAttributes().hasAttribute(Idx, Attribute::Nest))
+ return false;
+
+ Type *ArgTy = Arg.getType();
+ if (ArgTy->isStructTy() || ArgTy->isArrayTy() || ArgTy->isVectorTy())
+ return false;
+
+ EVT ArgVT = TLI.getValueType(ArgTy);
+ if (!ArgVT.isSimple()) return false;
+ switch (ArgVT.getSimpleVT().SimpleTy) {
+ default: return false;
+ case MVT::i32:
+ case MVT::i64:
+ ++GPRCnt;
+ break;
+ case MVT::f32:
+ case MVT::f64:
+ if (!Subtarget->hasSSE1())
+ return false;
+ ++FPRCnt;
+ break;
+ }
+
+ if (GPRCnt > 6)
+ return false;
+
+ if (FPRCnt > 8)
+ return false;
+ }
+
+ static const MCPhysReg GPR32ArgRegs[] = {
+ X86::EDI, X86::ESI, X86::EDX, X86::ECX, X86::R8D, X86::R9D
+ };
+ static const MCPhysReg GPR64ArgRegs[] = {
+ X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8 , X86::R9
+ };
+ static const MCPhysReg XMMArgRegs[] = {
+ X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
+ X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
+ };
+
+ unsigned GPRIdx = 0;
+ unsigned FPRIdx = 0;
+ for (auto const &Arg : F->args()) {
+ MVT VT = TLI.getSimpleValueType(Arg.getType());
+ const TargetRegisterClass *RC = TLI.getRegClassFor(VT);
+ unsigned SrcReg;
+ switch (VT.SimpleTy) {
+ default: llvm_unreachable("Unexpected value type.");
+ case MVT::i32: SrcReg = GPR32ArgRegs[GPRIdx++]; break;
+ case MVT::i64: SrcReg = GPR64ArgRegs[GPRIdx++]; break;
+ case MVT::f32: // fall-through
+ case MVT::f64: SrcReg = XMMArgRegs[FPRIdx++]; break;
+ }
+ unsigned DstReg = FuncInfo.MF->addLiveIn(SrcReg, RC);
+ // FIXME: Unfortunately it's necessary to emit a copy from the livein copy.
+ // Without this, EmitLiveInCopies may eliminate the livein if its only
+ // use is a bitcast (which isn't turned into an instruction).
+ unsigned ResultReg = createResultReg(RC);
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
+ TII.get(TargetOpcode::COPY), ResultReg)
+ .addReg(DstReg, getKillRegState(true));
+ updateValueMap(&Arg, ResultReg);
+ }
+ return true;
+}
+
+static unsigned computeBytesPoppedByCallee(const X86Subtarget *Subtarget,
+ CallingConv::ID CC,
+ ImmutableCallSite *CS) {
+ if (Subtarget->is64Bit())
+ return 0;
+ if (Subtarget->getTargetTriple().isOSMSVCRT())
+ return 0;
+ if (CC == CallingConv::Fast || CC == CallingConv::GHC ||
+ CC == CallingConv::HiPE)
+ return 0;
+ if (CS && !CS->paramHasAttr(1, Attribute::StructRet))
+ return 0;
+ if (CS && CS->paramHasAttr(1, Attribute::InReg))
+ return 0;
+ return 4;
+}
+
+bool X86FastISel::fastLowerCall(CallLoweringInfo &CLI) {
+ auto &OutVals = CLI.OutVals;
+ auto &OutFlags = CLI.OutFlags;
+ auto &OutRegs = CLI.OutRegs;
+ auto &Ins = CLI.Ins;
+ auto &InRegs = CLI.InRegs;
+ CallingConv::ID CC = CLI.CallConv;
+ bool &IsTailCall = CLI.IsTailCall;
+ bool IsVarArg = CLI.IsVarArg;
+ const Value *Callee = CLI.Callee;
+ const char *SymName = CLI.SymName;
+
+ bool Is64Bit = Subtarget->is64Bit();
+ bool IsWin64 = Subtarget->isCallingConvWin64(CC);
+
+ // Handle only C, fastcc, and webkit_js calling conventions for now.
+ switch (CC) {
+ default: return false;
+ case CallingConv::C:
+ case CallingConv::Fast:
+ case CallingConv::WebKit_JS:
+ case CallingConv::X86_FastCall:
+ case CallingConv::X86_64_Win64:
+ case CallingConv::X86_64_SysV:
+ break;
+ }
+
+ // Allow SelectionDAG isel to handle tail calls.
+ if (IsTailCall)
+ return false;
+
+ // fastcc with -tailcallopt is intended to provide a guaranteed
+ // tail call optimization. Fastisel doesn't know how to do that.
+ if (CC == CallingConv::Fast && TM.Options.GuaranteedTailCallOpt)
+ return false;
+
+ // Don't know how to handle Win64 varargs yet. Nothing special needed for
+ // x86-32. Special handling for x86-64 is implemented.
+ if (IsVarArg && IsWin64)
+ return false;
+
+ // Don't know about inalloca yet.
+ if (CLI.CS && CLI.CS->hasInAllocaArgument())
+ return false;
+
+ // Fast-isel doesn't know about callee-pop yet.
+ if (X86::isCalleePop(CC, Subtarget->is64Bit(), IsVarArg,
+ TM.Options.GuaranteedTailCallOpt))
+ return false;
+
+ SmallVector<MVT, 16> OutVTs;
+ SmallVector<unsigned, 16> ArgRegs;
+
+ // If this is a constant i1/i8/i16 argument, promote to i32 to avoid an extra
+ // instruction. This is safe because it is common to all FastISel supported
+ // calling conventions on x86.
+ for (int i = 0, e = OutVals.size(); i != e; ++i) {
+ Value *&Val = OutVals[i];
+ ISD::ArgFlagsTy Flags = OutFlags[i];
+ if (auto *CI = dyn_cast<ConstantInt>(Val)) {
+ if (CI->getBitWidth() < 32) {
+ if (Flags.isSExt())
+ Val = ConstantExpr::getSExt(CI, Type::getInt32Ty(CI->getContext()));
+ else
+ Val = ConstantExpr::getZExt(CI, Type::getInt32Ty(CI->getContext()));
+ }
+ }
+
+ // Passing bools around ends up doing a trunc to i1 and passing it.
+ // Codegen this as an argument + "and 1".
+ MVT VT;
+ auto *TI = dyn_cast<TruncInst>(Val);
+ unsigned ResultReg;
+ if (TI && TI->getType()->isIntegerTy(1) && CLI.CS &&
+ (TI->getParent() == CLI.CS->getInstruction()->getParent()) &&
+ TI->hasOneUse()) {
+ Value *PrevVal = TI->getOperand(0);
+ ResultReg = getRegForValue(PrevVal);
+
+ if (!ResultReg)
+ return false;
+
+ if (!isTypeLegal(PrevVal->getType(), VT))
+ return false;
+
+ ResultReg =
+ fastEmit_ri(VT, VT, ISD::AND, ResultReg, hasTrivialKill(PrevVal), 1);
+ } else {
+ if (!isTypeLegal(Val->getType(), VT))
+ return false;
+ ResultReg = getRegForValue(Val);
+ }
+
+ if (!ResultReg)
+ return false;
+
+ ArgRegs.push_back(ResultReg);
+ OutVTs.push_back(VT);
+ }
+
+ // Analyze operands of the call, assigning locations to each operand.
+ SmallVector<CCValAssign, 16> ArgLocs;
+ CCState CCInfo(CC, IsVarArg, *FuncInfo.MF, ArgLocs, CLI.RetTy->getContext());
+
+ // Allocate shadow area for Win64
+ if (IsWin64)
+ CCInfo.AllocateStack(32, 8);
+
+ CCInfo.AnalyzeCallOperands(OutVTs, OutFlags, CC_X86);
+
+ // Get a count of how many bytes are to be pushed on the stack.
+ unsigned NumBytes = CCInfo.getNextStackOffset();
+
+ // Issue CALLSEQ_START
+ unsigned AdjStackDown = TII.getCallFrameSetupOpcode();
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AdjStackDown))
+ .addImm(NumBytes).addImm(0);
+
+ // Walk the register/memloc assignments, inserting copies/loads.
+ const X86RegisterInfo *RegInfo = static_cast<const X86RegisterInfo *>(
+ TM.getSubtargetImpl()->getRegisterInfo());
+ for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
+ CCValAssign const &VA = ArgLocs[i];
+ const Value *ArgVal = OutVals[VA.getValNo()];
+ MVT ArgVT = OutVTs[VA.getValNo()];
+
+ if (ArgVT == MVT::x86mmx)
+ return false;
+
+ unsigned ArgReg = ArgRegs[VA.getValNo()];
+
+ // Promote the value if needed.
+ switch (VA.getLocInfo()) {
+ case CCValAssign::Full: break;
+ case CCValAssign::SExt: {
+ assert(VA.getLocVT().isInteger() && !VA.getLocVT().isVector() &&
+ "Unexpected extend");
+ bool Emitted = X86FastEmitExtend(ISD::SIGN_EXTEND, VA.getLocVT(), ArgReg,
+ ArgVT, ArgReg);
+ assert(Emitted && "Failed to emit a sext!"); (void)Emitted;
+ ArgVT = VA.getLocVT();
+ break;
+ }
+ case CCValAssign::ZExt: {
+ assert(VA.getLocVT().isInteger() && !VA.getLocVT().isVector() &&
+ "Unexpected extend");
+ bool Emitted = X86FastEmitExtend(ISD::ZERO_EXTEND, VA.getLocVT(), ArgReg,
+ ArgVT, ArgReg);
+ assert(Emitted && "Failed to emit a zext!"); (void)Emitted;
+ ArgVT = VA.getLocVT();
+ break;
+ }
+ case CCValAssign::AExt: {
+ assert(VA.getLocVT().isInteger() && !VA.getLocVT().isVector() &&
+ "Unexpected extend");
+ bool Emitted = X86FastEmitExtend(ISD::ANY_EXTEND, VA.getLocVT(), ArgReg,
+ ArgVT, ArgReg);
+ if (!Emitted)
+ Emitted = X86FastEmitExtend(ISD::ZERO_EXTEND, VA.getLocVT(), ArgReg,
+ ArgVT, ArgReg);
+ if (!Emitted)
+ Emitted = X86FastEmitExtend(ISD::SIGN_EXTEND, VA.getLocVT(), ArgReg,
+ ArgVT, ArgReg);
+
+ assert(Emitted && "Failed to emit a aext!"); (void)Emitted;
+ ArgVT = VA.getLocVT();
+ break;
+ }
+ case CCValAssign::BCvt: {
+ ArgReg = fastEmit_r(ArgVT, VA.getLocVT(), ISD::BITCAST, ArgReg,
+ /*TODO: Kill=*/false);
+ assert(ArgReg && "Failed to emit a bitcast!");
+ ArgVT = VA.getLocVT();
+ break;
+ }
+ case CCValAssign::VExt:
+ // VExt has not been implemented, so this should be impossible to reach
+ // for now. However, fallback to Selection DAG isel once implemented.
+ return false;
+ case CCValAssign::AExtUpper:
+ case CCValAssign::SExtUpper:
+ case CCValAssign::ZExtUpper:
+ case CCValAssign::FPExt:
+ llvm_unreachable("Unexpected loc info!");
+ case CCValAssign::Indirect:
+ // FIXME: Indirect doesn't need extending, but fast-isel doesn't fully
+ // support this.
+ return false;
+ }
+
+ if (VA.isRegLoc()) {
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
+ TII.get(TargetOpcode::COPY), VA.getLocReg()).addReg(ArgReg);
+ OutRegs.push_back(VA.getLocReg());
+ } else {
+ assert(VA.isMemLoc());
+
+ // Don't emit stores for undef values.
+ if (isa<UndefValue>(ArgVal))
+ continue;
+
+ unsigned LocMemOffset = VA.getLocMemOffset();
+ X86AddressMode AM;
+ AM.Base.Reg = RegInfo->getStackRegister();
+ AM.Disp = LocMemOffset;
+ ISD::ArgFlagsTy Flags = OutFlags[VA.getValNo()];
+ unsigned Alignment = DL.getABITypeAlignment(ArgVal->getType());
+ MachineMemOperand *MMO = FuncInfo.MF->getMachineMemOperand(
+ MachinePointerInfo::getStack(LocMemOffset), MachineMemOperand::MOStore,
+ ArgVT.getStoreSize(), Alignment);
+ if (Flags.isByVal()) {
+ X86AddressMode SrcAM;
+ SrcAM.Base.Reg = ArgReg;
+ if (!TryEmitSmallMemcpy(AM, SrcAM, Flags.getByValSize()))
+ return false;
+ } else if (isa<ConstantInt>(ArgVal) || isa<ConstantPointerNull>(ArgVal)) {
+ // If this is a really simple value, emit this with the Value* version
+ // of X86FastEmitStore. If it isn't simple, we don't want to do this,
+ // as it can cause us to reevaluate the argument.
+ if (!X86FastEmitStore(ArgVT, ArgVal, AM, MMO))
+ return false;
+ } else {
+ bool ValIsKill = hasTrivialKill(ArgVal);
+ if (!X86FastEmitStore(ArgVT, ArgReg, ValIsKill, AM, MMO))
+ return false;
+ }
+ }
+ }
+
+ // ELF / PIC requires GOT in the EBX register before function calls via PLT
+ // GOT pointer.
+ if (Subtarget->isPICStyleGOT()) {
+ unsigned Base = getInstrInfo()->getGlobalBaseReg(FuncInfo.MF);
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
+ TII.get(TargetOpcode::COPY), X86::EBX).addReg(Base);
+ }
+
+ if (Is64Bit && IsVarArg && !IsWin64) {
+ // From AMD64 ABI document:
+ // For calls that may call functions that use varargs or stdargs
+ // (prototype-less calls or calls to functions containing ellipsis (...) in
+ // the declaration) %al is used as hidden argument to specify the number
+ // of SSE registers used. The contents of %al do not need to match exactly
+ // the number of registers, but must be an ubound on the number of SSE
+ // registers used and is in the range 0 - 8 inclusive.
+
+ // Count the number of XMM registers allocated.
+ static const MCPhysReg XMMArgRegs[] = {
+ X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
+ X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
+ };
+ unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs, 8);
+ assert((Subtarget->hasSSE1() || !NumXMMRegs)
+ && "SSE registers cannot be used when SSE is disabled");
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::MOV8ri),
+ X86::AL).addImm(NumXMMRegs);
+ }
+
+ // Materialize callee address in a register. FIXME: GV address can be
+ // handled with a CALLpcrel32 instead.
+ X86AddressMode CalleeAM;
+ if (!X86SelectCallAddress(Callee, CalleeAM))
+ return false;
+
+ unsigned CalleeOp = 0;
+ const GlobalValue *GV = nullptr;
+ if (CalleeAM.GV != nullptr) {
+ GV = CalleeAM.GV;
+ } else if (CalleeAM.Base.Reg != 0) {
+ CalleeOp = CalleeAM.Base.Reg;
+ } else
+ return false;
+
+ // Issue the call.
+ MachineInstrBuilder MIB;
+ if (CalleeOp) {
+ // Register-indirect call.
+ unsigned CallOpc = Is64Bit ? X86::CALL64r : X86::CALL32r;
+ MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(CallOpc))
+ .addReg(CalleeOp);
+ } else {
+ // Direct call.
+ assert(GV && "Not a direct call");
+ unsigned CallOpc = Is64Bit ? X86::CALL64pcrel32 : X86::CALLpcrel32;
+
+ // See if we need any target-specific flags on the GV operand.
+ unsigned char OpFlags = 0;
+
+ // On ELF targets, in both X86-64 and X86-32 mode, direct calls to
+ // external symbols most go through the PLT in PIC mode. If the symbol
+ // has hidden or protected visibility, or if it is static or local, then
+ // we don't need to use the PLT - we can directly call it.
+ if (Subtarget->isTargetELF() &&
+ TM.getRelocationModel() == Reloc::PIC_ &&
+ GV->hasDefaultVisibility() && !GV->hasLocalLinkage()) {
+ OpFlags = X86II::MO_PLT;
+ } else if (Subtarget->isPICStyleStubAny() &&
+ (GV->isDeclaration() || GV->isWeakForLinker()) &&
+ (!Subtarget->getTargetTriple().isMacOSX() ||
+ Subtarget->getTargetTriple().isMacOSXVersionLT(10, 5))) {
+ // PC-relative references to external symbols should go through $stub,
+ // unless we're building with the leopard linker or later, which
+ // automatically synthesizes these stubs.
+ OpFlags = X86II::MO_DARWIN_STUB;
+ }
+
+ MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(CallOpc));
+ if (SymName)
+ MIB.addExternalSymbol(SymName, OpFlags);
+ else
+ MIB.addGlobalAddress(GV, 0, OpFlags);
+ }
+
+ // Add a register mask operand representing the call-preserved registers.
+ // Proper defs for return values will be added by setPhysRegsDeadExcept().
+ MIB.addRegMask(TRI.getCallPreservedMask(CC));
+
+ // Add an implicit use GOT pointer in EBX.
+ if (Subtarget->isPICStyleGOT())
+ MIB.addReg(X86::EBX, RegState::Implicit);
+
+ if (Is64Bit && IsVarArg && !IsWin64)
+ MIB.addReg(X86::AL, RegState::Implicit);
+
+ // Add implicit physical register uses to the call.
+ for (auto Reg : OutRegs)
+ MIB.addReg(Reg, RegState::Implicit);
+
+ // Issue CALLSEQ_END
+ unsigned NumBytesForCalleeToPop =
+ computeBytesPoppedByCallee(Subtarget, CC, CLI.CS);
+ unsigned AdjStackUp = TII.getCallFrameDestroyOpcode();
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AdjStackUp))
+ .addImm(NumBytes).addImm(NumBytesForCalleeToPop);
+
+ // Now handle call return values.
+ SmallVector<CCValAssign, 16> RVLocs;
+ CCState CCRetInfo(CC, IsVarArg, *FuncInfo.MF, RVLocs,
+ CLI.RetTy->getContext());
+ CCRetInfo.AnalyzeCallResult(Ins, RetCC_X86);
+
+ // Copy all of the result registers out of their specified physreg.
+ unsigned ResultReg = FuncInfo.CreateRegs(CLI.RetTy);
+ for (unsigned i = 0; i != RVLocs.size(); ++i) {
+ CCValAssign &VA = RVLocs[i];
+ EVT CopyVT = VA.getValVT();
+ unsigned CopyReg = ResultReg + i;
+
+ // If this is x86-64, and we disabled SSE, we can't return FP values
+ if ((CopyVT == MVT::f32 || CopyVT == MVT::f64) &&
+ ((Is64Bit || Ins[i].Flags.isInReg()) && !Subtarget->hasSSE1())) {
+ report_fatal_error("SSE register return with SSE disabled");
+ }
+
+ // If we prefer to use the value in xmm registers, copy it out as f80 and
+ // use a truncate to move it from fp stack reg to xmm reg.
+ if ((VA.getLocReg() == X86::FP0 || VA.getLocReg() == X86::FP1) &&
+ isScalarFPTypeInSSEReg(VA.getValVT())) {
+ CopyVT = MVT::f80;
+ CopyReg = createResultReg(&X86::RFP80RegClass);
+ }
+
+ // Copy out the result.
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
+ TII.get(TargetOpcode::COPY), CopyReg).addReg(VA.getLocReg());
+ InRegs.push_back(VA.getLocReg());
+
+ // Round the f80 to the right size, which also moves it to the appropriate
+ // xmm register. This is accomplished by storing the f80 value in memory
+ // and then loading it back.
+ if (CopyVT != VA.getValVT()) {
+ EVT ResVT = VA.getValVT();
+ unsigned Opc = ResVT == MVT::f32 ? X86::ST_Fp80m32 : X86::ST_Fp80m64;
+ unsigned MemSize = ResVT.getSizeInBits()/8;
+ int FI = MFI.CreateStackObject(MemSize, MemSize, false);
+ addFrameReference(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
+ TII.get(Opc)), FI)
+ .addReg(CopyReg);
+ Opc = ResVT == MVT::f32 ? X86::MOVSSrm : X86::MOVSDrm;
+ addFrameReference(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
+ TII.get(Opc), ResultReg + i), FI);
+ }
+ }
+
+ CLI.ResultReg = ResultReg;
+ CLI.NumResultRegs = RVLocs.size();
+ CLI.Call = MIB;
+
+ return true;
+}
+
+bool
+X86FastISel::fastSelectInstruction(const Instruction *I) {
+ switch (I->getOpcode()) {
+ default: break;
+ case Instruction::Load:
+ return X86SelectLoad(I);
+ case Instruction::Store:
+ return X86SelectStore(I);
+ case Instruction::Ret:
+ return X86SelectRet(I);
+ case Instruction::ICmp:
+ case Instruction::FCmp:
+ return X86SelectCmp(I);
+ case Instruction::ZExt:
+ return X86SelectZExt(I);
+ case Instruction::Br:
+ return X86SelectBranch(I);
+ case Instruction::LShr:
+ case Instruction::AShr:
+ case Instruction::Shl:
+ return X86SelectShift(I);
+ case Instruction::SDiv:
+ case Instruction::UDiv:
+ case Instruction::SRem:
+ case Instruction::URem:
+ return X86SelectDivRem(I);
+ case Instruction::Select:
+ return X86SelectSelect(I);
+ case Instruction::Trunc:
+ return X86SelectTrunc(I);
+ case Instruction::FPExt:
+ return X86SelectFPExt(I);
+ case Instruction::FPTrunc:
+ return X86SelectFPTrunc(I);
+ case Instruction::IntToPtr: // Deliberate fall-through.
+ case Instruction::PtrToInt: {
+ EVT SrcVT = TLI.getValueType(I->getOperand(0)->getType());
+ EVT DstVT = TLI.getValueType(I->getType());
+ if (DstVT.bitsGT(SrcVT))
+ return X86SelectZExt(I);
+ if (DstVT.bitsLT(SrcVT))
+ return X86SelectTrunc(I);
+ unsigned Reg = getRegForValue(I->getOperand(0));
+ if (Reg == 0) return false;
+ updateValueMap(I, Reg);
+ return true;
+ }
+ }
+
+ return false;
+}
+
+unsigned X86FastISel::X86MaterializeInt(const ConstantInt *CI, MVT VT) {
+ if (VT > MVT::i64)
+ return 0;
+
+ uint64_t Imm = CI->getZExtValue();
+ if (Imm == 0) {
+ unsigned SrcReg = fastEmitInst_(X86::MOV32r0, &X86::GR32RegClass);
+ switch (VT.SimpleTy) {
+ default: llvm_unreachable("Unexpected value type");
+ case MVT::i1:
+ case MVT::i8:
+ return fastEmitInst_extractsubreg(MVT::i8, SrcReg, /*Kill=*/true,
+ X86::sub_8bit);
+ case MVT::i16:
+ return fastEmitInst_extractsubreg(MVT::i16, SrcReg, /*Kill=*/true,
+ X86::sub_16bit);
+ case MVT::i32:
+ return SrcReg;
+ case MVT::i64: {
+ unsigned ResultReg = createResultReg(&X86::GR64RegClass);
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
+ TII.get(TargetOpcode::SUBREG_TO_REG), ResultReg)
+ .addImm(0).addReg(SrcReg).addImm(X86::sub_32bit);
+ return ResultReg;
+ }
+ }
+ }
+
+ unsigned Opc = 0;
+ switch (VT.SimpleTy) {
+ default: llvm_unreachable("Unexpected value type");
+ case MVT::i1: VT = MVT::i8; // fall-through
+ case MVT::i8: Opc = X86::MOV8ri; break;
+ case MVT::i16: Opc = X86::MOV16ri; break;
+ case MVT::i32: Opc = X86::MOV32ri; break;
+ case MVT::i64: {
+ if (isUInt<32>(Imm))
+ Opc = X86::MOV32ri;
+ else if (isInt<32>(Imm))
+ Opc = X86::MOV64ri32;
+ else
+ Opc = X86::MOV64ri;
+ break;
+ }
+ }
+ if (VT == MVT::i64 && Opc == X86::MOV32ri) {
+ unsigned SrcReg = fastEmitInst_i(Opc, &X86::GR32RegClass, Imm);
+ unsigned ResultReg = createResultReg(&X86::GR64RegClass);
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
+ TII.get(TargetOpcode::SUBREG_TO_REG), ResultReg)
+ .addImm(0).addReg(SrcReg).addImm(X86::sub_32bit);
+ return ResultReg;
+ }
+ return fastEmitInst_i(Opc, TLI.getRegClassFor(VT), Imm);
+}
+
+unsigned X86FastISel::X86MaterializeFP(const ConstantFP *CFP, MVT VT) {
+ if (CFP->isNullValue())
+ return fastMaterializeFloatZero(CFP);
+
+ // Can't handle alternate code models yet.
+ CodeModel::Model CM = TM.getCodeModel();
+ if (CM != CodeModel::Small && CM != CodeModel::Large)
+ return 0;
+
+ // Get opcode and regclass of the output for the given load instruction.
+ unsigned Opc = 0;
+ const TargetRegisterClass *RC = nullptr;
+ switch (VT.SimpleTy) {
+ default: return 0;
+ case MVT::f32:
+ if (X86ScalarSSEf32) {
+ Opc = Subtarget->hasAVX() ? X86::VMOVSSrm : X86::MOVSSrm;
+ RC = &X86::FR32RegClass;
+ } else {
+ Opc = X86::LD_Fp32m;
+ RC = &X86::RFP32RegClass;
+ }
+ break;
+ case MVT::f64:
+ if (X86ScalarSSEf64) {
+ Opc = Subtarget->hasAVX() ? X86::VMOVSDrm : X86::MOVSDrm;
+ RC = &X86::FR64RegClass;
+ } else {
+ Opc = X86::LD_Fp64m;
+ RC = &X86::RFP64RegClass;
+ }
+ break;
+ case MVT::f80:
+ // No f80 support yet.
+ return 0;
+ }
+
+ // MachineConstantPool wants an explicit alignment.
+ unsigned Align = DL.getPrefTypeAlignment(CFP->getType());
+ if (Align == 0) {
+ // Alignment of vector types. FIXME!
+ Align = DL.getTypeAllocSize(CFP->getType());
+ }
+
+ // x86-32 PIC requires a PIC base register for constant pools.
+ unsigned PICBase = 0;
+ unsigned char OpFlag = 0;
+ if (Subtarget->isPICStyleStubPIC()) { // Not dynamic-no-pic
+ OpFlag = X86II::MO_PIC_BASE_OFFSET;
+ PICBase = getInstrInfo()->getGlobalBaseReg(FuncInfo.MF);
+ } else if (Subtarget->isPICStyleGOT()) {
+ OpFlag = X86II::MO_GOTOFF;
+ PICBase = getInstrInfo()->getGlobalBaseReg(FuncInfo.MF);
+ } else if (Subtarget->isPICStyleRIPRel() &&
+ TM.getCodeModel() == CodeModel::Small) {
+ PICBase = X86::RIP;
+ }
+
+ // Create the load from the constant pool.
+ unsigned CPI = MCP.getConstantPoolIndex(CFP, Align);
+ unsigned ResultReg = createResultReg(RC);
+
+ if (CM == CodeModel::Large) {
+ unsigned AddrReg = createResultReg(&X86::GR64RegClass);
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::MOV64ri),
+ AddrReg)
+ .addConstantPoolIndex(CPI, 0, OpFlag);
+ MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
+ TII.get(Opc), ResultReg);
+ addDirectMem(MIB, AddrReg);
+ MachineMemOperand *MMO = FuncInfo.MF->getMachineMemOperand(
+ MachinePointerInfo::getConstantPool(), MachineMemOperand::MOLoad,
+ TM.getDataLayout()->getPointerSize(), Align);
+ MIB->addMemOperand(*FuncInfo.MF, MMO);
+ return ResultReg;
+ }
+
+ addConstantPoolReference(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
+ TII.get(Opc), ResultReg),
+ CPI, PICBase, OpFlag);
+ return ResultReg;
+}
+
+unsigned X86FastISel::X86MaterializeGV(const GlobalValue *GV, MVT VT) {
+ // Can't handle alternate code models yet.
+ if (TM.getCodeModel() != CodeModel::Small)
+ return 0;
+
+ // Materialize addresses with LEA/MOV instructions.
+ X86AddressMode AM;
+ if (X86SelectAddress(GV, AM)) {
+ // If the expression is just a basereg, then we're done, otherwise we need
+ // to emit an LEA.
+ if (AM.BaseType == X86AddressMode::RegBase &&
+ AM.IndexReg == 0 && AM.Disp == 0 && AM.GV == nullptr)
+ return AM.Base.Reg;
+
+ unsigned ResultReg = createResultReg(TLI.getRegClassFor(VT));
+ if (TM.getRelocationModel() == Reloc::Static &&
+ TLI.getPointerTy() == MVT::i64) {
+ // The displacement code could be more than 32 bits away so we need to use
+ // an instruction with a 64 bit immediate
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::MOV64ri),
+ ResultReg)
+ .addGlobalAddress(GV);
+ } else {
+ unsigned Opc = TLI.getPointerTy() == MVT::i32
+ ? (Subtarget->isTarget64BitILP32()
+ ? X86::LEA64_32r : X86::LEA32r)
+ : X86::LEA64r;
+ addFullAddress(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
+ TII.get(Opc), ResultReg), AM);
+ }
+ return ResultReg;
+ }
+ return 0;
+}
+
+unsigned X86FastISel::fastMaterializeConstant(const Constant *C) {
+ EVT CEVT = TLI.getValueType(C->getType(), true);
+
+ // Only handle simple types.
+ if (!CEVT.isSimple())
+ return 0;
+ MVT VT = CEVT.getSimpleVT();
+
+ if (const auto *CI = dyn_cast<ConstantInt>(C))
+ return X86MaterializeInt(CI, VT);
+ else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
+ return X86MaterializeFP(CFP, VT);
+ else if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
+ return X86MaterializeGV(GV, VT);
+
+ return 0;
+}
+
+unsigned X86FastISel::fastMaterializeAlloca(const AllocaInst *C) {
+ // Fail on dynamic allocas. At this point, getRegForValue has already
+ // checked its CSE maps, so if we're here trying to handle a dynamic
+ // alloca, we're not going to succeed. X86SelectAddress has a
+ // check for dynamic allocas, because it's called directly from
+ // various places, but targetMaterializeAlloca also needs a check
+ // in order to avoid recursion between getRegForValue,
+ // X86SelectAddrss, and targetMaterializeAlloca.
+ if (!FuncInfo.StaticAllocaMap.count(C))
+ return 0;
+ assert(C->isStaticAlloca() && "dynamic alloca in the static alloca map?");
+
+ X86AddressMode AM;
+ if (!X86SelectAddress(C, AM))
+ return 0;
+ unsigned Opc = TLI.getPointerTy() == MVT::i32
+ ? (Subtarget->isTarget64BitILP32()
+ ? X86::LEA64_32r : X86::LEA32r)
+ : X86::LEA64r;
+ const TargetRegisterClass* RC = TLI.getRegClassFor(TLI.getPointerTy());
+ unsigned ResultReg = createResultReg(RC);
+ addFullAddress(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
+ TII.get(Opc), ResultReg), AM);
+ return ResultReg;
+}
+
+unsigned X86FastISel::fastMaterializeFloatZero(const ConstantFP *CF) {
+ MVT VT;
+ if (!isTypeLegal(CF->getType(), VT))
+ return 0;
+
+ // Get opcode and regclass for the given zero.
+ unsigned Opc = 0;
+ const TargetRegisterClass *RC = nullptr;
+ switch (VT.SimpleTy) {
+ default: return 0;
+ case MVT::f32:
+ if (X86ScalarSSEf32) {
+ Opc = X86::FsFLD0SS;
+ RC = &X86::FR32RegClass;
+ } else {
+ Opc = X86::LD_Fp032;
+ RC = &X86::RFP32RegClass;
+ }
+ break;
+ case MVT::f64:
+ if (X86ScalarSSEf64) {
+ Opc = X86::FsFLD0SD;
+ RC = &X86::FR64RegClass;
+ } else {
+ Opc = X86::LD_Fp064;
+ RC = &X86::RFP64RegClass;
+ }
+ break;
+ case MVT::f80:
+ // No f80 support yet.
+ return 0;
+ }
+
+ unsigned ResultReg = createResultReg(RC);
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg);
+ return ResultReg;
+}
+
+
+bool X86FastISel::tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo,
+ const LoadInst *LI) {
+ const Value *Ptr = LI->getPointerOperand();
+ X86AddressMode AM;
+ if (!X86SelectAddress(Ptr, AM))
+ return false;
+
+ const X86InstrInfo &XII = (const X86InstrInfo &)TII;
+
+ unsigned Size = DL.getTypeAllocSize(LI->getType());
+ unsigned Alignment = LI->getAlignment();
+
+ if (Alignment == 0) // Ensure that codegen never sees alignment 0
+ Alignment = DL.getABITypeAlignment(LI->getType());
+
+ SmallVector<MachineOperand, 8> AddrOps;
+ AM.getFullAddress(AddrOps);
+
+ MachineInstr *Result =
+ XII.foldMemoryOperandImpl(*FuncInfo.MF, MI, OpNo, AddrOps,
+ Size, Alignment, /*AllowCommute=*/true);
+ if (!Result)
+ return false;
+
+ Result->addMemOperand(*FuncInfo.MF, createMachineMemOperandFor(LI));
+ FuncInfo.MBB->insert(FuncInfo.InsertPt, Result);
+ MI->eraseFromParent();
+ return true;
+}
+
+
+namespace llvm {
+ FastISel *X86::createFastISel(FunctionLoweringInfo &funcInfo,
+ const TargetLibraryInfo *libInfo) {
+ return new X86FastISel(funcInfo, libInfo);
+ }
+}
diff --git a/llvm/lib/Target/X86/X86FrameLowering.cpp b/llvm/lib/Target/X86/X86FrameLowering.cpp index 930163c3688..80b141654c0 100644 --- a/llvm/lib/Target/X86/X86FrameLowering.cpp +++ b/llvm/lib/Target/X86/X86FrameLowering.cpp @@ -1,2103 +1,2020 @@ -//===-- X86FrameLowering.cpp - X86 Frame Information ----------------------===// -// -// The LLVM Compiler Infrastructure -// -// This file is distributed under the University of Illinois Open Source -// License. See LICENSE.TXT for details. -// -//===----------------------------------------------------------------------===// -// -// This file contains the X86 implementation of TargetFrameLowering class. -// -//===----------------------------------------------------------------------===// - -#include "X86FrameLowering.h" -#include "X86InstrBuilder.h" -#include "X86InstrInfo.h" -#include "X86MachineFunctionInfo.h" -#include "X86Subtarget.h" -#include "X86TargetMachine.h" -#include "llvm/ADT/SmallSet.h" -#include "llvm/CodeGen/MachineFrameInfo.h" -#include "llvm/CodeGen/MachineFunction.h" -#include "llvm/CodeGen/MachineInstrBuilder.h" -#include "llvm/CodeGen/MachineModuleInfo.h" -#include "llvm/CodeGen/MachineRegisterInfo.h" -#include "llvm/IR/DataLayout.h" -#include "llvm/IR/Function.h" -#include "llvm/MC/MCAsmInfo.h" -#include "llvm/MC/MCSymbol.h" -#include "llvm/Support/CommandLine.h" -#include "llvm/Target/TargetOptions.h" -#include "llvm/Support/Debug.h" -#include <cstdlib> - -using namespace llvm; - -// FIXME: completely move here. -extern cl::opt<bool> ForceStackAlign; - -bool X86FrameLowering::hasReservedCallFrame(const MachineFunction &MF) const { - return !MF.getFrameInfo()->hasVarSizedObjects(); -} - -/// hasFP - Return true if the specified function should have a dedicated frame -/// pointer register. This is true if the function has variable sized allocas -/// or if frame pointer elimination is disabled. -bool X86FrameLowering::hasFP(const MachineFunction &MF) const { - const MachineFrameInfo *MFI = MF.getFrameInfo(); - const MachineModuleInfo &MMI = MF.getMMI(); - const TargetRegisterInfo *RegInfo = MF.getSubtarget().getRegisterInfo(); - - return (MF.getTarget().Options.DisableFramePointerElim(MF) || - RegInfo->needsStackRealignment(MF) || - MFI->hasVarSizedObjects() || - MFI->isFrameAddressTaken() || MFI->hasInlineAsmWithSPAdjust() || - MF.getInfo<X86MachineFunctionInfo>()->getForceFramePointer() || - MMI.callsUnwindInit() || MMI.callsEHReturn() || - MFI->hasStackMap() || MFI->hasPatchPoint()); -} - -static unsigned getSUBriOpcode(unsigned IsLP64, int64_t Imm) { - if (IsLP64) { - if (isInt<8>(Imm)) - return X86::SUB64ri8; - return X86::SUB64ri32; - } else { - if (isInt<8>(Imm)) - return X86::SUB32ri8; - return X86::SUB32ri; - } -} - -static unsigned getADDriOpcode(unsigned IsLP64, int64_t Imm) { - if (IsLP64) { - if (isInt<8>(Imm)) - return X86::ADD64ri8; - return X86::ADD64ri32; - } else { - if (isInt<8>(Imm)) - return X86::ADD32ri8; - return X86::ADD32ri; - } -} - -static unsigned getSUBrrOpcode(unsigned isLP64) { - return isLP64 ? X86::SUB64rr : X86::SUB32rr; -} - -static unsigned getADDrrOpcode(unsigned isLP64) { - return isLP64 ? X86::ADD64rr : X86::ADD32rr; -} - -static unsigned getANDriOpcode(bool IsLP64, int64_t Imm) { - if (IsLP64) { - if (isInt<8>(Imm)) - return X86::AND64ri8; - return X86::AND64ri32; - } - if (isInt<8>(Imm)) - return X86::AND32ri8; - return X86::AND32ri; -} - -static unsigned getPUSHiOpcode(bool IsLP64, MachineOperand MO) { - // We don't support LP64 for now. - assert(!IsLP64); - - if (MO.isImm() && isInt<8>(MO.getImm())) - return X86::PUSH32i8; - - return X86::PUSHi32;; -} - -static unsigned getLEArOpcode(unsigned IsLP64) { - return IsLP64 ? X86::LEA64r : X86::LEA32r; -} - -/// findDeadCallerSavedReg - Return a caller-saved register that isn't live -/// when it reaches the "return" instruction. We can then pop a stack object -/// to this register without worry about clobbering it. -static unsigned findDeadCallerSavedReg(MachineBasicBlock &MBB, - MachineBasicBlock::iterator &MBBI, - const TargetRegisterInfo &TRI, - bool Is64Bit) { - const MachineFunction *MF = MBB.getParent(); - const Function *F = MF->getFunction(); - if (!F || MF->getMMI().callsEHReturn()) - return 0; - - static const uint16_t CallerSavedRegs32Bit[] = { - X86::EAX, X86::EDX, X86::ECX, 0 - }; - - static const uint16_t CallerSavedRegs64Bit[] = { - X86::RAX, X86::RDX, X86::RCX, X86::RSI, X86::RDI, - X86::R8, X86::R9, X86::R10, X86::R11, 0 - }; - - unsigned Opc = MBBI->getOpcode(); - switch (Opc) { - default: return 0; - case X86::RETL: - case X86::RETQ: - case X86::RETIL: - case X86::RETIQ: - case X86::TCRETURNdi: - case X86::TCRETURNri: - case X86::TCRETURNmi: - case X86::TCRETURNdi64: - case X86::TCRETURNri64: - case X86::TCRETURNmi64: - case X86::EH_RETURN: - case X86::EH_RETURN64: { - SmallSet<uint16_t, 8> Uses; - for (unsigned i = 0, e = MBBI->getNumOperands(); i != e; ++i) { - MachineOperand &MO = MBBI->getOperand(i); - if (!MO.isReg() || MO.isDef()) - continue; - unsigned Reg = MO.getReg(); - if (!Reg) - continue; - for (MCRegAliasIterator AI(Reg, &TRI, true); AI.isValid(); ++AI) - Uses.insert(*AI); - } - - const uint16_t *CS = Is64Bit ? CallerSavedRegs64Bit : CallerSavedRegs32Bit; - for (; *CS; ++CS) - if (!Uses.count(*CS)) - return *CS; - } - } - - return 0; -} - -static bool isEAXLiveIn(MachineFunction &MF) { - for (MachineRegisterInfo::livein_iterator II = MF.getRegInfo().livein_begin(), - EE = MF.getRegInfo().livein_end(); II != EE; ++II) { - unsigned Reg = II->first; - - if (Reg == X86::RAX || Reg == X86::EAX || Reg == X86::AX || - Reg == X86::AH || Reg == X86::AL) - return true; - } - - return false; -} - -/// emitSPUpdate - Emit a series of instructions to increment / decrement the -/// stack pointer by a constant value. -static -void emitSPUpdate(MachineBasicBlock &MBB, MachineBasicBlock::iterator &MBBI, - unsigned StackPtr, int64_t NumBytes, - bool Is64BitTarget, bool Is64BitStackPtr, bool UseLEA, - const TargetInstrInfo &TII, const TargetRegisterInfo &TRI) { - bool isSub = NumBytes < 0; - uint64_t Offset = isSub ? -NumBytes : NumBytes; - unsigned Opc; - if (UseLEA) - Opc = getLEArOpcode(Is64BitStackPtr); - else - Opc = isSub - ? getSUBriOpcode(Is64BitStackPtr, Offset) - : getADDriOpcode(Is64BitStackPtr, Offset); - - uint64_t Chunk = (1LL << 31) - 1; - DebugLoc DL = MBB.findDebugLoc(MBBI); - - while (Offset) { - if (Offset > Chunk) { - // Rather than emit a long series of instructions for large offsets, - // load the offset into a register and do one sub/add - unsigned Reg = 0; - - if (isSub && !isEAXLiveIn(*MBB.getParent())) - Reg = (unsigned)(Is64BitTarget ? X86::RAX : X86::EAX); - else - Reg = findDeadCallerSavedReg(MBB, MBBI, TRI, Is64BitTarget); - - if (Reg) { - Opc = Is64BitTarget ? X86::MOV64ri : X86::MOV32ri; - BuildMI(MBB, MBBI, DL, TII.get(Opc), Reg) - .addImm(Offset); - Opc = isSub - ? getSUBrrOpcode(Is64BitTarget) - : getADDrrOpcode(Is64BitTarget); - MachineInstr *MI = BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr) - .addReg(StackPtr) - .addReg(Reg); - MI->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead. - Offset = 0; - continue; - } - } - - uint64_t ThisVal = (Offset > Chunk) ? Chunk : Offset; - if (ThisVal == (Is64BitTarget ? 8 : 4)) { - // Use push / pop instead. - unsigned Reg = isSub - ? (unsigned)(Is64BitTarget ? X86::RAX : X86::EAX) - : findDeadCallerSavedReg(MBB, MBBI, TRI, Is64BitTarget); - if (Reg) { - Opc = isSub - ? (Is64BitTarget ? X86::PUSH64r : X86::PUSH32r) - : (Is64BitTarget ? X86::POP64r : X86::POP32r); - MachineInstr *MI = BuildMI(MBB, MBBI, DL, TII.get(Opc)) - .addReg(Reg, getDefRegState(!isSub) | getUndefRegState(isSub)); - if (isSub) - MI->setFlag(MachineInstr::FrameSetup); - Offset -= ThisVal; - continue; - } - } - - MachineInstr *MI = nullptr; - - if (UseLEA) { - MI = addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr), - StackPtr, false, isSub ? -ThisVal : ThisVal); - } else { - MI = BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr) - .addReg(StackPtr) - .addImm(ThisVal); - MI->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead. - } - - if (isSub) - MI->setFlag(MachineInstr::FrameSetup); - - Offset -= ThisVal; - } -} - -/// mergeSPUpdatesUp - Merge two stack-manipulating instructions upper iterator. -static -void mergeSPUpdatesUp(MachineBasicBlock &MBB, MachineBasicBlock::iterator &MBBI, - unsigned StackPtr, uint64_t *NumBytes = nullptr) { - if (MBBI == MBB.begin()) return; - - MachineBasicBlock::iterator PI = std::prev(MBBI); - unsigned Opc = PI->getOpcode(); - if ((Opc == X86::ADD64ri32 || Opc == X86::ADD64ri8 || - Opc == X86::ADD32ri || Opc == X86::ADD32ri8 || - Opc == X86::LEA32r || Opc == X86::LEA64_32r) && - PI->getOperand(0).getReg() == StackPtr) { - if (NumBytes) - *NumBytes += PI->getOperand(2).getImm(); - MBB.erase(PI); - } else if ((Opc == X86::SUB64ri32 || Opc == X86::SUB64ri8 || - Opc == X86::SUB32ri || Opc == X86::SUB32ri8) && - PI->getOperand(0).getReg() == StackPtr) { - if (NumBytes) - *NumBytes -= PI->getOperand(2).getImm(); - MBB.erase(PI); - } -} - -/// mergeSPUpdatesDown - Merge two stack-manipulating instructions lower -/// iterator. -static -void mergeSPUpdatesDown(MachineBasicBlock &MBB, - MachineBasicBlock::iterator &MBBI, - unsigned StackPtr, uint64_t *NumBytes = nullptr) { - // FIXME: THIS ISN'T RUN!!! - return; - - if (MBBI == MBB.end()) return; - - MachineBasicBlock::iterator NI = std::next(MBBI); - if (NI == MBB.end()) return; - - unsigned Opc = NI->getOpcode(); - if ((Opc == X86::ADD64ri32 || Opc == X86::ADD64ri8 || - Opc == X86::ADD32ri || Opc == X86::ADD32ri8) && - NI->getOperand(0).getReg() == StackPtr) { - if (NumBytes) - *NumBytes -= NI->getOperand(2).getImm(); - MBB.erase(NI); - MBBI = NI; - } else if ((Opc == X86::SUB64ri32 || Opc == X86::SUB64ri8 || - Opc == X86::SUB32ri || Opc == X86::SUB32ri8) && - NI->getOperand(0).getReg() == StackPtr) { - if (NumBytes) - *NumBytes += NI->getOperand(2).getImm(); - MBB.erase(NI); - MBBI = NI; - } -} - -/// mergeSPUpdates - Checks the instruction before/after the passed -/// instruction. If it is an ADD/SUB/LEA instruction it is deleted argument and -/// the stack adjustment is returned as a positive value for ADD/LEA and a -/// negative for SUB. -static int mergeSPUpdates(MachineBasicBlock &MBB, - MachineBasicBlock::iterator &MBBI, unsigned StackPtr, - bool doMergeWithPrevious) { - if ((doMergeWithPrevious && MBBI == MBB.begin()) || - (!doMergeWithPrevious && MBBI == MBB.end())) - return 0; - - MachineBasicBlock::iterator PI = doMergeWithPrevious ? std::prev(MBBI) : MBBI; - MachineBasicBlock::iterator NI = doMergeWithPrevious ? nullptr - : std::next(MBBI); - unsigned Opc = PI->getOpcode(); - int Offset = 0; - - if ((Opc == X86::ADD64ri32 || Opc == X86::ADD64ri8 || - Opc == X86::ADD32ri || Opc == X86::ADD32ri8 || - Opc == X86::LEA32r || Opc == X86::LEA64_32r) && - PI->getOperand(0).getReg() == StackPtr){ - Offset += PI->getOperand(2).getImm(); - MBB.erase(PI); - if (!doMergeWithPrevious) MBBI = NI; - } else if ((Opc == X86::SUB64ri32 || Opc == X86::SUB64ri8 || - Opc == X86::SUB32ri || Opc == X86::SUB32ri8) && - PI->getOperand(0).getReg() == StackPtr) { - Offset -= PI->getOperand(2).getImm(); - MBB.erase(PI); - if (!doMergeWithPrevious) MBBI = NI; - } - - return Offset; -} - -void -X86FrameLowering::emitCalleeSavedFrameMoves(MachineBasicBlock &MBB, - MachineBasicBlock::iterator MBBI, - DebugLoc DL) const { - MachineFunction &MF = *MBB.getParent(); - MachineFrameInfo *MFI = MF.getFrameInfo(); - MachineModuleInfo &MMI = MF.getMMI(); - const MCRegisterInfo *MRI = MMI.getContext().getRegisterInfo(); - const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); - - // Add callee saved registers to move list. - const std::vector<CalleeSavedInfo> &CSI = MFI->getCalleeSavedInfo(); - if (CSI.empty()) return; - - // Calculate offsets. - for (std::vector<CalleeSavedInfo>::const_iterator - I = CSI.begin(), E = CSI.end(); I != E; ++I) { - int64_t Offset = MFI->getObjectOffset(I->getFrameIdx()); - unsigned Reg = I->getReg(); - - unsigned DwarfReg = MRI->getDwarfRegNum(Reg, true); - unsigned CFIIndex = - MMI.addFrameInst(MCCFIInstruction::createOffset(nullptr, DwarfReg, - Offset)); - BuildMI(MBB, MBBI, DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) - .addCFIIndex(CFIIndex); - } -} - -/// usesTheStack - This function checks if any of the users of EFLAGS -/// copies the EFLAGS. We know that the code that lowers COPY of EFLAGS has -/// to use the stack, and if we don't adjust the stack we clobber the first -/// frame index. -/// See X86InstrInfo::copyPhysReg. -static bool usesTheStack(const MachineFunction &MF) { - const MachineRegisterInfo &MRI = MF.getRegInfo(); - - for (MachineRegisterInfo::reg_instr_iterator - ri = MRI.reg_instr_begin(X86::EFLAGS), re = MRI.reg_instr_end(); - ri != re; ++ri) - if (ri->isCopy()) - return true; - - return false; -} - -void X86FrameLowering::emitStackProbeCall(MachineFunction &MF, - MachineBasicBlock &MBB, - MachineBasicBlock::iterator MBBI, - DebugLoc DL) { - const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); - const X86Subtarget &STI = MF.getTarget().getSubtarget<X86Subtarget>(); - bool Is64Bit = STI.is64Bit(); - bool IsLargeCodeModel = MF.getTarget().getCodeModel() == CodeModel::Large; - - unsigned CallOp; - if (Is64Bit) - CallOp = IsLargeCodeModel ? X86::CALL64r : X86::CALL64pcrel32; - else - CallOp = X86::CALLpcrel32; - - const char *Symbol; - if (Is64Bit) { - if (STI.isTargetCygMing()) { - Symbol = "___chkstk_ms"; - } else { - Symbol = "__chkstk"; - } - } else if (STI.isTargetCygMing()) - Symbol = "_alloca"; - else - Symbol = "_chkstk"; - - MachineInstrBuilder CI; - - // All current stack probes take AX and SP as input, clobber flags, and - // preserve all registers. x86_64 probes leave RSP unmodified. - if (Is64Bit && MF.getTarget().getCodeModel() == CodeModel::Large) { - // For the large code model, we have to call through a register. Use R11, - // as it is scratch in all supported calling conventions. - BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64ri), X86::R11) - .addExternalSymbol(Symbol); - CI = BuildMI(MBB, MBBI, DL, TII.get(CallOp)).addReg(X86::R11); - } else { - CI = BuildMI(MBB, MBBI, DL, TII.get(CallOp)).addExternalSymbol(Symbol); - } - - unsigned AX = Is64Bit ? X86::RAX : X86::EAX; - unsigned SP = Is64Bit ? X86::RSP : X86::ESP; - CI.addReg(AX, RegState::Implicit) - .addReg(SP, RegState::Implicit) - .addReg(AX, RegState::Define | RegState::Implicit) - .addReg(SP, RegState::Define | RegState::Implicit) - .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit); - - if (Is64Bit) { - // MSVC x64's __chkstk and cygwin/mingw's ___chkstk_ms do not adjust %rsp - // themselves. It also does not clobber %rax so we can reuse it when - // adjusting %rsp. - BuildMI(MBB, MBBI, DL, TII.get(X86::SUB64rr), X86::RSP) - .addReg(X86::RSP) - .addReg(X86::RAX); - } -} - -/// emitPrologue - Push callee-saved registers onto the stack, which -/// automatically adjust the stack pointer. Adjust the stack pointer to allocate -/// space for local variables. Also emit labels used by the exception handler to -/// generate the exception handling frames. - -/* - Here's a gist of what gets emitted: - - ; Establish frame pointer, if needed - [if needs FP] - push %rbp - .cfi_def_cfa_offset 16 - .cfi_offset %rbp, -16 - .seh_pushreg %rpb - mov %rsp, %rbp - .cfi_def_cfa_register %rbp - - ; Spill general-purpose registers - [for all callee-saved GPRs] - pushq %<reg> - [if not needs FP] - .cfi_def_cfa_offset (offset from RETADDR) - .seh_pushreg %<reg> - - ; If the required stack alignment > default stack alignment - ; rsp needs to be re-aligned. This creates a "re-alignment gap" - ; of unknown size in the stack frame. - [if stack needs re-alignment] - and $MASK, %rsp - - ; Allocate space for locals - [if target is Windows and allocated space > 4096 bytes] - ; Windows needs special care for allocations larger - ; than one page. - mov $NNN, %rax - call ___chkstk_ms/___chkstk - sub %rax, %rsp - [else] - sub $NNN, %rsp - - [if needs FP] - .seh_stackalloc (size of XMM spill slots) - .seh_setframe %rbp, SEHFrameOffset ; = size of all spill slots - [else] - .seh_stackalloc NNN - - ; Spill XMMs - ; Note, that while only Windows 64 ABI specifies XMMs as callee-preserved, - ; they may get spilled on any platform, if the current function - ; calls @llvm.eh.unwind.init - [if needs FP] - [for all callee-saved XMM registers] - movaps %<xmm reg>, -MMM(%rbp) - [for all callee-saved XMM registers] - .seh_savexmm %<xmm reg>, (-MMM + SEHFrameOffset) - ; i.e. the offset relative to (%rbp - SEHFrameOffset) - [else] - [for all callee-saved XMM registers] - movaps %<xmm reg>, KKK(%rsp) - [for all callee-saved XMM registers] - .seh_savexmm %<xmm reg>, KKK - - .seh_endprologue - - [if needs base pointer] - mov %rsp, %rbx - [if needs to restore base pointer] - mov %rsp, -MMM(%rbp) - - ; Emit CFI info - [if needs FP] - [for all callee-saved registers] - .cfi_offset %<reg>, (offset from %rbp) - [else] - .cfi_def_cfa_offset (offset from RETADDR) - [for all callee-saved registers] - .cfi_offset %<reg>, (offset from %rsp) - - Notes: - - .seh directives are emitted only for Windows 64 ABI - - .cfi directives are emitted for all other ABIs - - for 32-bit code, substitute %e?? registers for %r?? -*/ - -void X86FrameLowering::emitPrologue(MachineFunction &MF) const { - MachineBasicBlock &MBB = MF.front(); // Prologue goes in entry BB. - MachineBasicBlock::iterator MBBI = MBB.begin(); - MachineFrameInfo *MFI = MF.getFrameInfo(); - const Function *Fn = MF.getFunction(); - const X86RegisterInfo *RegInfo = - static_cast<const X86RegisterInfo *>(MF.getSubtarget().getRegisterInfo()); - const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); - MachineModuleInfo &MMI = MF.getMMI(); - X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); - uint64_t MaxAlign = MFI->getMaxAlignment(); // Desired stack alignment. - uint64_t StackSize = MFI->getStackSize(); // Number of bytes to allocate. - bool HasFP = hasFP(MF); - const X86Subtarget &STI = MF.getTarget().getSubtarget<X86Subtarget>(); - bool Is64Bit = STI.is64Bit(); - // standard x86_64 and NaCl use 64-bit frame/stack pointers, x32 - 32-bit. - const bool Uses64BitFramePtr = STI.isTarget64BitLP64() || STI.isTargetNaCl64(); - bool IsWin64 = STI.isTargetWin64(); - // Not necessarily synonymous with IsWin64. - bool IsWinEH = MF.getTarget().getMCAsmInfo()->usesWindowsCFI(); - bool NeedsWinEH = IsWinEH && Fn->needsUnwindTableEntry(); - bool NeedsDwarfCFI = - !IsWinEH && (MMI.hasDebugInfo() || Fn->needsUnwindTableEntry()); - bool UseLEA = STI.useLeaForSP(); - unsigned StackAlign = getStackAlignment(); - unsigned SlotSize = RegInfo->getSlotSize(); - unsigned FramePtr = RegInfo->getFrameRegister(MF); - const unsigned MachineFramePtr = STI.isTarget64BitILP32() ? - getX86SubSuperRegister(FramePtr, MVT::i64, false) : FramePtr; - unsigned StackPtr = RegInfo->getStackRegister(); - unsigned BasePtr = RegInfo->getBaseRegister(); - DebugLoc DL; - - // If we're forcing a stack realignment we can't rely on just the frame - // info, we need to know the ABI stack alignment as well in case we - // have a call out. Otherwise just make sure we have some alignment - we'll - // go with the minimum SlotSize. - if (ForceStackAlign) { - if (MFI->hasCalls()) - MaxAlign = (StackAlign > MaxAlign) ? StackAlign : MaxAlign; - else if (MaxAlign < SlotSize) - MaxAlign = SlotSize; - } - - // Add RETADDR move area to callee saved frame size. - int TailCallReturnAddrDelta = X86FI->getTCReturnAddrDelta(); - if (TailCallReturnAddrDelta < 0) - X86FI->setCalleeSavedFrameSize( - X86FI->getCalleeSavedFrameSize() - TailCallReturnAddrDelta); - - bool UseStackProbe = (STI.isOSWindows() && !STI.isTargetMachO()); - - // The default stack probe size is 4096 if the function has no stackprobesize - // attribute. - unsigned StackProbeSize = 4096; - if (Fn->hasFnAttribute("stack-probe-size")) - Fn->getFnAttribute("stack-probe-size") - .getValueAsString() - .getAsInteger(0, StackProbeSize); - - // If this is x86-64 and the Red Zone is not disabled, if we are a leaf - // function, and use up to 128 bytes of stack space, don't have a frame - // pointer, calls, or dynamic alloca then we do not need to adjust the - // stack pointer (we fit in the Red Zone). We also check that we don't - // push and pop from the stack. - if (Is64Bit && !Fn->getAttributes().hasAttribute(AttributeSet::FunctionIndex, - Attribute::NoRedZone) && - !RegInfo->needsStackRealignment(MF) && - !MFI->hasVarSizedObjects() && // No dynamic alloca. - !MFI->adjustsStack() && // No calls. - !IsWin64 && // Win64 has no Red Zone - !usesTheStack(MF) && // Don't push and pop. - !MF.shouldSplitStack()) { // Regular stack - uint64_t MinSize = X86FI->getCalleeSavedFrameSize(); - if (HasFP) MinSize += SlotSize; - StackSize = std::max(MinSize, StackSize > 128 ? StackSize - 128 : 0); - MFI->setStackSize(StackSize); - } - - // Insert stack pointer adjustment for later moving of return addr. Only - // applies to tail call optimized functions where the callee argument stack - // size is bigger than the callers. - if (TailCallReturnAddrDelta < 0) { - MachineInstr *MI = - BuildMI(MBB, MBBI, DL, - TII.get(getSUBriOpcode(Uses64BitFramePtr, -TailCallReturnAddrDelta)), - StackPtr) - .addReg(StackPtr) - .addImm(-TailCallReturnAddrDelta) - .setMIFlag(MachineInstr::FrameSetup); - MI->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead. - } - - // Mapping for machine moves: - // - // DST: VirtualFP AND - // SRC: VirtualFP => DW_CFA_def_cfa_offset - // ELSE => DW_CFA_def_cfa - // - // SRC: VirtualFP AND - // DST: Register => DW_CFA_def_cfa_register - // - // ELSE - // OFFSET < 0 => DW_CFA_offset_extended_sf - // REG < 64 => DW_CFA_offset + Reg - // ELSE => DW_CFA_offset_extended - - uint64_t NumBytes = 0; - int stackGrowth = -SlotSize; - - if (HasFP) { - // Calculate required stack adjustment. - uint64_t FrameSize = StackSize - SlotSize; - // If required, include space for extra hidden slot for stashing base pointer. - if (X86FI->getRestoreBasePointer()) - FrameSize += SlotSize; - if (RegInfo->needsStackRealignment(MF)) { - // Callee-saved registers are pushed on stack before the stack - // is realigned. - FrameSize -= X86FI->getCalleeSavedFrameSize(); - NumBytes = (FrameSize + MaxAlign - 1) / MaxAlign * MaxAlign; - } else { - NumBytes = FrameSize - X86FI->getCalleeSavedFrameSize(); - } - - // Get the offset of the stack slot for the EBP register, which is - // guaranteed to be the last slot by processFunctionBeforeFrameFinalized. - // Update the frame offset adjustment. - MFI->setOffsetAdjustment(-NumBytes); - - // Save EBP/RBP into the appropriate stack slot. - BuildMI(MBB, MBBI, DL, TII.get(Is64Bit ? X86::PUSH64r : X86::PUSH32r)) - .addReg(MachineFramePtr, RegState::Kill) - .setMIFlag(MachineInstr::FrameSetup); - - if (NeedsDwarfCFI) { - // Mark the place where EBP/RBP was saved. - // Define the current CFA rule to use the provided offset. - assert(StackSize); - unsigned CFIIndex = MMI.addFrameInst( - MCCFIInstruction::createDefCfaOffset(nullptr, 2 * stackGrowth)); - BuildMI(MBB, MBBI, DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) - .addCFIIndex(CFIIndex); - - // Change the rule for the FramePtr to be an "offset" rule. - unsigned DwarfFramePtr = RegInfo->getDwarfRegNum(MachineFramePtr, true); - CFIIndex = MMI.addFrameInst( - MCCFIInstruction::createOffset(nullptr, - DwarfFramePtr, 2 * stackGrowth)); - BuildMI(MBB, MBBI, DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) - .addCFIIndex(CFIIndex); - } - - if (NeedsWinEH) { - BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_PushReg)) - .addImm(FramePtr) - .setMIFlag(MachineInstr::FrameSetup); - } - - // Update EBP with the new base value. - BuildMI(MBB, MBBI, DL, - TII.get(Uses64BitFramePtr ? X86::MOV64rr : X86::MOV32rr), FramePtr) - .addReg(StackPtr) - .setMIFlag(MachineInstr::FrameSetup); - - if (NeedsDwarfCFI) { - // Mark effective beginning of when frame pointer becomes valid. - // Define the current CFA to use the EBP/RBP register. - unsigned DwarfFramePtr = RegInfo->getDwarfRegNum(MachineFramePtr, true); - unsigned CFIIndex = MMI.addFrameInst( - MCCFIInstruction::createDefCfaRegister(nullptr, DwarfFramePtr)); - BuildMI(MBB, MBBI, DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) - .addCFIIndex(CFIIndex); - } - - // Mark the FramePtr as live-in in every block. - for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I) - I->addLiveIn(MachineFramePtr); - } else { - NumBytes = StackSize - X86FI->getCalleeSavedFrameSize(); - } - - // Skip the callee-saved push instructions. - bool PushedRegs = false; - int StackOffset = 2 * stackGrowth; - - while (MBBI != MBB.end() && - (MBBI->getOpcode() == X86::PUSH32r || - MBBI->getOpcode() == X86::PUSH64r)) { - PushedRegs = true; - unsigned Reg = MBBI->getOperand(0).getReg(); - ++MBBI; - - if (!HasFP && NeedsDwarfCFI) { - // Mark callee-saved push instruction. - // Define the current CFA rule to use the provided offset. - assert(StackSize); - unsigned CFIIndex = MMI.addFrameInst( - MCCFIInstruction::createDefCfaOffset(nullptr, StackOffset)); - BuildMI(MBB, MBBI, DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) - .addCFIIndex(CFIIndex); - StackOffset += stackGrowth; - } - - if (NeedsWinEH) { - BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_PushReg)).addImm(Reg).setMIFlag( - MachineInstr::FrameSetup); - } - } - - // Realign stack after we pushed callee-saved registers (so that we'll be - // able to calculate their offsets from the frame pointer). - if (RegInfo->needsStackRealignment(MF)) { - assert(HasFP && "There should be a frame pointer if stack is realigned."); - uint64_t Val = -MaxAlign; - MachineInstr *MI = - BuildMI(MBB, MBBI, DL, - TII.get(getANDriOpcode(Uses64BitFramePtr, Val)), StackPtr) - .addReg(StackPtr) - .addImm(Val) - .setMIFlag(MachineInstr::FrameSetup); - - // The EFLAGS implicit def is dead. - MI->getOperand(3).setIsDead(); - } - - // If there is an SUB32ri of ESP immediately before this instruction, merge - // the two. This can be the case when tail call elimination is enabled and - // the callee has more arguments then the caller. - NumBytes -= mergeSPUpdates(MBB, MBBI, StackPtr, true); - - // If there is an ADD32ri or SUB32ri of ESP immediately after this - // instruction, merge the two instructions. - mergeSPUpdatesDown(MBB, MBBI, StackPtr, &NumBytes); - - // Adjust stack pointer: ESP -= numbytes. - - // Windows and cygwin/mingw require a prologue helper routine when allocating - // more than 4K bytes on the stack. Windows uses __chkstk and cygwin/mingw - // uses __alloca. __alloca and the 32-bit version of __chkstk will probe the - // stack and adjust the stack pointer in one go. The 64-bit version of - // __chkstk is only responsible for probing the stack. The 64-bit prologue is - // responsible for adjusting the stack pointer. Touching the stack at 4K - // increments is necessary to ensure that the guard pages used by the OS - // virtual memory manager are allocated in correct sequence. - if (NumBytes >= StackProbeSize && UseStackProbe) { - // Check whether EAX is livein for this function. - bool isEAXAlive = isEAXLiveIn(MF); - - if (isEAXAlive) { - // Sanity check that EAX is not livein for this function. - // It should not be, so throw an assert. - assert(!Is64Bit && "EAX is livein in x64 case!"); - - // Save EAX - BuildMI(MBB, MBBI, DL, TII.get(X86::PUSH32r)) - .addReg(X86::EAX, RegState::Kill) - .setMIFlag(MachineInstr::FrameSetup); - } - - if (Is64Bit) { - // Handle the 64-bit Windows ABI case where we need to call __chkstk. - // Function prologue is responsible for adjusting the stack pointer. - BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64ri), X86::RAX) - .addImm(NumBytes) - .setMIFlag(MachineInstr::FrameSetup); - } else { - // Allocate NumBytes-4 bytes on stack in case of isEAXAlive. - // We'll also use 4 already allocated bytes for EAX. - BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32ri), X86::EAX) - .addImm(isEAXAlive ? NumBytes - 4 : NumBytes) - .setMIFlag(MachineInstr::FrameSetup); - } - - // Save a pointer to the MI where we set AX. - MachineBasicBlock::iterator SetRAX = MBBI; - --SetRAX; - - // Call __chkstk, __chkstk_ms, or __alloca. - emitStackProbeCall(MF, MBB, MBBI, DL); - - // Apply the frame setup flag to all inserted instrs. - for (; SetRAX != MBBI; ++SetRAX) - SetRAX->setFlag(MachineInstr::FrameSetup); - - if (isEAXAlive) { - // Restore EAX - MachineInstr *MI = addRegOffset(BuildMI(MF, DL, TII.get(X86::MOV32rm), - X86::EAX), - StackPtr, false, NumBytes - 4); - MI->setFlag(MachineInstr::FrameSetup); - MBB.insert(MBBI, MI); - } - } else if (NumBytes) { - emitSPUpdate(MBB, MBBI, StackPtr, -(int64_t)NumBytes, Is64Bit, Uses64BitFramePtr, - UseLEA, TII, *RegInfo); - } - - int SEHFrameOffset = 0; - if (NeedsWinEH) { - if (HasFP) { - // We need to set frame base offset low enough such that all saved - // register offsets would be positive relative to it, but we can't - // just use NumBytes, because .seh_setframe offset must be <=240. - // So we pretend to have only allocated enough space to spill the - // non-volatile registers. - // We don't care about the rest of stack allocation, because unwinder - // will restore SP to (BP - SEHFrameOffset) - for (const CalleeSavedInfo &Info : MFI->getCalleeSavedInfo()) { - int offset = MFI->getObjectOffset(Info.getFrameIdx()); - SEHFrameOffset = std::max(SEHFrameOffset, std::abs(offset)); - } - SEHFrameOffset += SEHFrameOffset % 16; // ensure alignmant - - // This only needs to account for XMM spill slots, GPR slots - // are covered by the .seh_pushreg's emitted above. - unsigned Size = SEHFrameOffset - X86FI->getCalleeSavedFrameSize(); - if (Size) { - BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_StackAlloc)) - .addImm(Size) - .setMIFlag(MachineInstr::FrameSetup); - } - - BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_SetFrame)) - .addImm(FramePtr) - .addImm(SEHFrameOffset) - .setMIFlag(MachineInstr::FrameSetup); - } else { - // SP will be the base register for restoring XMMs - if (NumBytes) { - BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_StackAlloc)) - .addImm(NumBytes) - .setMIFlag(MachineInstr::FrameSetup); - } - } - } - - // Skip the rest of register spilling code - while (MBBI != MBB.end() && MBBI->getFlag(MachineInstr::FrameSetup)) - ++MBBI; - - // Emit SEH info for non-GPRs - if (NeedsWinEH) { - for (const CalleeSavedInfo &Info : MFI->getCalleeSavedInfo()) { - unsigned Reg = Info.getReg(); - if (X86::GR64RegClass.contains(Reg) || X86::GR32RegClass.contains(Reg)) - continue; - assert(X86::FR64RegClass.contains(Reg) && "Unexpected register class"); - - int Offset = getFrameIndexOffset(MF, Info.getFrameIdx()); - Offset += SEHFrameOffset; - - BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_SaveXMM)) - .addImm(Reg) - .addImm(Offset) - .setMIFlag(MachineInstr::FrameSetup); - } - - BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_EndPrologue)) - .setMIFlag(MachineInstr::FrameSetup); - } - - // If we need a base pointer, set it up here. It's whatever the value - // of the stack pointer is at this point. Any variable size objects - // will be allocated after this, so we can still use the base pointer - // to reference locals. - if (RegInfo->hasBasePointer(MF)) { - // Update the base pointer with the current stack pointer. - unsigned Opc = Uses64BitFramePtr ? X86::MOV64rr : X86::MOV32rr; - BuildMI(MBB, MBBI, DL, TII.get(Opc), BasePtr) - .addReg(StackPtr) - .setMIFlag(MachineInstr::FrameSetup); - if (X86FI->getRestoreBasePointer()) { - // Stash value of base pointer. Saving RSP instead of EBP shortens dependence chain. - unsigned Opm = Uses64BitFramePtr ? X86::MOV64mr : X86::MOV32mr; - addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(Opm)), - FramePtr, true, X86FI->getRestoreBasePointerOffset()) - .addReg(StackPtr) - .setMIFlag(MachineInstr::FrameSetup); - } - } - - if (((!HasFP && NumBytes) || PushedRegs) && NeedsDwarfCFI) { - // Mark end of stack pointer adjustment. - if (!HasFP && NumBytes) { - // Define the current CFA rule to use the provided offset. - assert(StackSize); - unsigned CFIIndex = MMI.addFrameInst( - MCCFIInstruction::createDefCfaOffset(nullptr, - -StackSize + stackGrowth)); - - BuildMI(MBB, MBBI, DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) - .addCFIIndex(CFIIndex); - } - - // Emit DWARF info specifying the offsets of the callee-saved registers. - if (PushedRegs) - emitCalleeSavedFrameMoves(MBB, MBBI, DL); - } -} - -void X86FrameLowering::emitEpilogue(MachineFunction &MF, - MachineBasicBlock &MBB) const { - const MachineFrameInfo *MFI = MF.getFrameInfo(); - X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); - const X86RegisterInfo *RegInfo = - static_cast<const X86RegisterInfo *>(MF.getSubtarget().getRegisterInfo()); - const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); - MachineBasicBlock::iterator MBBI = MBB.getLastNonDebugInstr(); - assert(MBBI != MBB.end() && "Returning block has no instructions"); - unsigned RetOpcode = MBBI->getOpcode(); - DebugLoc DL = MBBI->getDebugLoc(); - const X86Subtarget &STI = MF.getTarget().getSubtarget<X86Subtarget>(); - bool Is64Bit = STI.is64Bit(); - // standard x86_64 and NaCl use 64-bit frame/stack pointers, x32 - 32-bit. - const bool Uses64BitFramePtr = STI.isTarget64BitLP64() || STI.isTargetNaCl64(); - const bool Is64BitILP32 = STI.isTarget64BitILP32(); - bool UseLEA = STI.useLeaForSP(); - unsigned StackAlign = getStackAlignment(); - unsigned SlotSize = RegInfo->getSlotSize(); - unsigned FramePtr = RegInfo->getFrameRegister(MF); - unsigned MachineFramePtr = Is64BitILP32 ? - getX86SubSuperRegister(FramePtr, MVT::i64, false) : FramePtr; - unsigned StackPtr = RegInfo->getStackRegister(); - - bool IsWinEH = MF.getTarget().getMCAsmInfo()->usesWindowsCFI(); - bool NeedsWinEH = IsWinEH && MF.getFunction()->needsUnwindTableEntry(); - - switch (RetOpcode) { - default: - llvm_unreachable("Can only insert epilog into returning blocks"); - case X86::RETQ: - case X86::RETL: - case X86::RETIL: - case X86::RETIQ: - case X86::TCRETURNdi: - case X86::TCRETURNri: - case X86::TCRETURNmi: - case X86::TCRETURNdi64: - case X86::TCRETURNri64: - case X86::TCRETURNmi64: - case X86::EH_RETURN: - case X86::EH_RETURN64: - break; // These are ok - } - - // Get the number of bytes to allocate from the FrameInfo. - uint64_t StackSize = MFI->getStackSize(); - uint64_t MaxAlign = MFI->getMaxAlignment(); - unsigned CSSize = X86FI->getCalleeSavedFrameSize(); - uint64_t NumBytes = 0; - - // If we're forcing a stack realignment we can't rely on just the frame - // info, we need to know the ABI stack alignment as well in case we - // have a call out. Otherwise just make sure we have some alignment - we'll - // go with the minimum. - if (ForceStackAlign) { - if (MFI->hasCalls()) - MaxAlign = (StackAlign > MaxAlign) ? StackAlign : MaxAlign; - else - MaxAlign = MaxAlign ? MaxAlign : 4; - } - - if (hasFP(MF)) { - // Calculate required stack adjustment. - uint64_t FrameSize = StackSize - SlotSize; - if (RegInfo->needsStackRealignment(MF)) { - // Callee-saved registers were pushed on stack before the stack - // was realigned. - FrameSize -= CSSize; - NumBytes = (FrameSize + MaxAlign - 1) / MaxAlign * MaxAlign; - } else { - NumBytes = FrameSize - CSSize; - } - - // Pop EBP. - BuildMI(MBB, MBBI, DL, - TII.get(Is64Bit ? X86::POP64r : X86::POP32r), MachineFramePtr); - } else { - NumBytes = StackSize - CSSize; - } - - // Skip the callee-saved pop instructions. - while (MBBI != MBB.begin()) { - MachineBasicBlock::iterator PI = std::prev(MBBI); - unsigned Opc = PI->getOpcode(); - - if (Opc != X86::POP32r && Opc != X86::POP64r && Opc != X86::DBG_VALUE && - !PI->isTerminator()) - break; - - --MBBI; - } - MachineBasicBlock::iterator FirstCSPop = MBBI; - - DL = MBBI->getDebugLoc(); - - // If there is an ADD32ri or SUB32ri of ESP immediately before this - // instruction, merge the two instructions. - if (NumBytes || MFI->hasVarSizedObjects()) - mergeSPUpdatesUp(MBB, MBBI, StackPtr, &NumBytes); - - // If dynamic alloca is used, then reset esp to point to the last callee-saved - // slot before popping them off! Same applies for the case, when stack was - // realigned. - if (RegInfo->needsStackRealignment(MF) || MFI->hasVarSizedObjects()) { - if (RegInfo->needsStackRealignment(MF)) - MBBI = FirstCSPop; - if (CSSize != 0) { - unsigned Opc = getLEArOpcode(Uses64BitFramePtr); - addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr), - FramePtr, false, -CSSize); - --MBBI; - } else { - unsigned Opc = (Uses64BitFramePtr ? X86::MOV64rr : X86::MOV32rr); - BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr) - .addReg(FramePtr); - --MBBI; - } - } else if (NumBytes) { - // Adjust stack pointer back: ESP += numbytes. - emitSPUpdate(MBB, MBBI, StackPtr, NumBytes, Is64Bit, Uses64BitFramePtr, UseLEA, - TII, *RegInfo); - --MBBI; - } - - // Windows unwinder will not invoke function's exception handler if IP is - // either in prologue or in epilogue. This behavior causes a problem when a - // call immediately precedes an epilogue, because the return address points - // into the epilogue. To cope with that, we insert an epilogue marker here, - // then replace it with a 'nop' if it ends up immediately after a CALL in the - // final emitted code. - if (NeedsWinEH) - BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_Epilogue)); - - // We're returning from function via eh_return. - if (RetOpcode == X86::EH_RETURN || RetOpcode == X86::EH_RETURN64) { - MBBI = MBB.getLastNonDebugInstr(); - MachineOperand &DestAddr = MBBI->getOperand(0); - assert(DestAddr.isReg() && "Offset should be in register!"); - BuildMI(MBB, MBBI, DL, - TII.get(Uses64BitFramePtr ? X86::MOV64rr : X86::MOV32rr), - StackPtr).addReg(DestAddr.getReg()); - } else if (RetOpcode == X86::TCRETURNri || RetOpcode == X86::TCRETURNdi || - RetOpcode == X86::TCRETURNmi || - RetOpcode == X86::TCRETURNri64 || RetOpcode == X86::TCRETURNdi64 || - RetOpcode == X86::TCRETURNmi64) { - bool isMem = RetOpcode == X86::TCRETURNmi || RetOpcode == X86::TCRETURNmi64; - // Tail call return: adjust the stack pointer and jump to callee. - MBBI = MBB.getLastNonDebugInstr(); - MachineOperand &JumpTarget = MBBI->getOperand(0); - MachineOperand &StackAdjust = MBBI->getOperand(isMem ? 5 : 1); - assert(StackAdjust.isImm() && "Expecting immediate value."); - - // Adjust stack pointer. - int StackAdj = StackAdjust.getImm(); - int MaxTCDelta = X86FI->getTCReturnAddrDelta(); - int Offset = 0; - assert(MaxTCDelta <= 0 && "MaxTCDelta should never be positive"); - - // Incoporate the retaddr area. - Offset = StackAdj-MaxTCDelta; - assert(Offset >= 0 && "Offset should never be negative"); - - if (Offset) { - // Check for possible merge with preceding ADD instruction. - Offset += mergeSPUpdates(MBB, MBBI, StackPtr, true); - emitSPUpdate(MBB, MBBI, StackPtr, Offset, Is64Bit, Uses64BitFramePtr, - UseLEA, TII, *RegInfo); - } - - // Jump to label or value in register. - bool IsWin64 = STI.isTargetWin64(); - if (RetOpcode == X86::TCRETURNdi || RetOpcode == X86::TCRETURNdi64) { - unsigned Op = (RetOpcode == X86::TCRETURNdi) - ? X86::TAILJMPd - : (IsWin64 ? X86::TAILJMPd64_REX : X86::TAILJMPd64); - MachineInstrBuilder MIB = BuildMI(MBB, MBBI, DL, TII.get(Op)); - if (JumpTarget.isGlobal()) - MIB.addGlobalAddress(JumpTarget.getGlobal(), JumpTarget.getOffset(), - JumpTarget.getTargetFlags()); - else { - assert(JumpTarget.isSymbol()); - MIB.addExternalSymbol(JumpTarget.getSymbolName(), - JumpTarget.getTargetFlags()); - } - } else if (RetOpcode == X86::TCRETURNmi || RetOpcode == X86::TCRETURNmi64) { - unsigned Op = (RetOpcode == X86::TCRETURNmi) - ? X86::TAILJMPm - : (IsWin64 ? X86::TAILJMPm64_REX : X86::TAILJMPm64); - MachineInstrBuilder MIB = BuildMI(MBB, MBBI, DL, TII.get(Op)); - for (unsigned i = 0; i != 5; ++i) - MIB.addOperand(MBBI->getOperand(i)); - } else if (RetOpcode == X86::TCRETURNri64) { - BuildMI(MBB, MBBI, DL, - TII.get(IsWin64 ? X86::TAILJMPr64_REX : X86::TAILJMPr64)) - .addReg(JumpTarget.getReg(), RegState::Kill); - } else { - BuildMI(MBB, MBBI, DL, TII.get(X86::TAILJMPr)). - addReg(JumpTarget.getReg(), RegState::Kill); - } - - MachineInstr *NewMI = std::prev(MBBI); - NewMI->copyImplicitOps(MF, MBBI); - - // Delete the pseudo instruction TCRETURN. - MBB.erase(MBBI); - } else if ((RetOpcode == X86::RETQ || RetOpcode == X86::RETL || - RetOpcode == X86::RETIQ || RetOpcode == X86::RETIL) && - (X86FI->getTCReturnAddrDelta() < 0)) { - // Add the return addr area delta back since we are not tail calling. - int delta = -1*X86FI->getTCReturnAddrDelta(); - MBBI = MBB.getLastNonDebugInstr(); - - // Check for possible merge with preceding ADD instruction. - delta += mergeSPUpdates(MBB, MBBI, StackPtr, true); - emitSPUpdate(MBB, MBBI, StackPtr, delta, Is64Bit, Uses64BitFramePtr, UseLEA, TII, - *RegInfo); - } -} - -int X86FrameLowering::getFrameIndexOffset(const MachineFunction &MF, - int FI) const { - const X86RegisterInfo *RegInfo = - static_cast<const X86RegisterInfo *>(MF.getSubtarget().getRegisterInfo()); - const MachineFrameInfo *MFI = MF.getFrameInfo(); - int Offset = MFI->getObjectOffset(FI) - getOffsetOfLocalArea(); - uint64_t StackSize = MFI->getStackSize(); - - if (RegInfo->hasBasePointer(MF)) { - assert (hasFP(MF) && "VLAs and dynamic stack realign, but no FP?!"); - if (FI < 0) { - // Skip the saved EBP. - return Offset + RegInfo->getSlotSize(); - } else { - assert((-(Offset + StackSize)) % MFI->getObjectAlignment(FI) == 0); - return Offset + StackSize; - } - } else if (RegInfo->needsStackRealignment(MF)) { - if (FI < 0) { - // Skip the saved EBP. - return Offset + RegInfo->getSlotSize(); - } else { - assert((-(Offset + StackSize)) % MFI->getObjectAlignment(FI) == 0); - return Offset + StackSize; - } - // FIXME: Support tail calls - } else { - if (!hasFP(MF)) - return Offset + StackSize; - - // Skip the saved EBP. - Offset += RegInfo->getSlotSize(); - - // Skip the RETADDR move area - const X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); - int TailCallReturnAddrDelta = X86FI->getTCReturnAddrDelta(); - if (TailCallReturnAddrDelta < 0) - Offset -= TailCallReturnAddrDelta; - } - - return Offset; -} - -int X86FrameLowering::getFrameIndexReference(const MachineFunction &MF, int FI, - unsigned &FrameReg) const { - const X86RegisterInfo *RegInfo = - static_cast<const X86RegisterInfo *>(MF.getSubtarget().getRegisterInfo()); - // We can't calculate offset from frame pointer if the stack is realigned, - // so enforce usage of stack/base pointer. The base pointer is used when we - // have dynamic allocas in addition to dynamic realignment. - if (RegInfo->hasBasePointer(MF)) - FrameReg = RegInfo->getBaseRegister(); - else if (RegInfo->needsStackRealignment(MF)) - FrameReg = RegInfo->getStackRegister(); - else - FrameReg = RegInfo->getFrameRegister(MF); - return getFrameIndexOffset(MF, FI); -} - -// Simplified from getFrameIndexOffset keeping only StackPointer cases -int X86FrameLowering::getFrameIndexOffsetFromSP(const MachineFunction &MF, int FI) const { - const MachineFrameInfo *MFI = MF.getFrameInfo(); - // Does not include any dynamic realign. - const uint64_t StackSize = MFI->getStackSize(); - { -#ifndef NDEBUG - const X86RegisterInfo *RegInfo = - static_cast<const X86RegisterInfo*>(MF.getSubtarget().getRegisterInfo()); - // Note: LLVM arranges the stack as: - // Args > Saved RetPC (<--FP) > CSRs > dynamic alignment (<--BP) - // > "Stack Slots" (<--SP) - // We can always address StackSlots from RSP. We can usually (unless - // needsStackRealignment) address CSRs from RSP, but sometimes need to - // address them from RBP. FixedObjects can be placed anywhere in the stack - // frame depending on their specific requirements (i.e. we can actually - // refer to arguments to the function which are stored in the *callers* - // frame). As a result, THE RESULT OF THIS CALL IS MEANINGLESS FOR CSRs - // AND FixedObjects IFF needsStackRealignment or hasVarSizedObject. - - assert(!RegInfo->hasBasePointer(MF) && "we don't handle this case"); - - // We don't handle tail calls, and shouldn't be seeing them - // either. - int TailCallReturnAddrDelta = - MF.getInfo<X86MachineFunctionInfo>()->getTCReturnAddrDelta(); - assert(!(TailCallReturnAddrDelta < 0) && "we don't handle this case!"); -#endif - } - - // This is how the math works out: - // - // %rsp grows (i.e. gets lower) left to right. Each box below is - // one word (eight bytes). Obj0 is the stack slot we're trying to - // get to. - // - // ---------------------------------- - // | BP | Obj0 | Obj1 | ... | ObjN | - // ---------------------------------- - // ^ ^ ^ ^ - // A B C E - // - // A is the incoming stack pointer. - // (B - A) is the local area offset (-8 for x86-64) [1] - // (C - A) is the Offset returned by MFI->getObjectOffset for Obj0 [2] - // - // |(E - B)| is the StackSize (absolute value, positive). For a - // stack that grown down, this works out to be (B - E). [3] - // - // E is also the value of %rsp after stack has been set up, and we - // want (C - E) -- the value we can add to %rsp to get to Obj0. Now - // (C - E) == (C - A) - (B - A) + (B - E) - // { Using [1], [2] and [3] above } - // == getObjectOffset - LocalAreaOffset + StackSize - // - - // Get the Offset from the StackPointer - int Offset = MFI->getObjectOffset(FI) - getOffsetOfLocalArea(); - - return Offset + StackSize; -} -// Simplified from getFrameIndexReference keeping only StackPointer cases -int X86FrameLowering::getFrameIndexReferenceFromSP(const MachineFunction &MF, int FI, - unsigned &FrameReg) const { - const X86RegisterInfo *RegInfo = - static_cast<const X86RegisterInfo*>(MF.getSubtarget().getRegisterInfo()); - - assert(!RegInfo->hasBasePointer(MF) && "we don't handle this case"); - - FrameReg = RegInfo->getStackRegister(); - return getFrameIndexOffsetFromSP(MF, FI); -} - -bool X86FrameLowering::assignCalleeSavedSpillSlots( - MachineFunction &MF, const TargetRegisterInfo *TRI, - std::vector<CalleeSavedInfo> &CSI) const { - MachineFrameInfo *MFI = MF.getFrameInfo(); - const X86RegisterInfo *RegInfo = - static_cast<const X86RegisterInfo *>(MF.getSubtarget().getRegisterInfo()); - unsigned SlotSize = RegInfo->getSlotSize(); - X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); - - unsigned CalleeSavedFrameSize = 0; - int SpillSlotOffset = getOffsetOfLocalArea() + X86FI->getTCReturnAddrDelta(); - - if (hasFP(MF)) { - // emitPrologue always spills frame register the first thing. - SpillSlotOffset -= SlotSize; - MFI->CreateFixedSpillStackObject(SlotSize, SpillSlotOffset); - - // Since emitPrologue and emitEpilogue will handle spilling and restoring of - // the frame register, we can delete it from CSI list and not have to worry - // about avoiding it later. - unsigned FPReg = RegInfo->getFrameRegister(MF); - for (unsigned i = 0; i < CSI.size(); ++i) { - if (TRI->regsOverlap(CSI[i].getReg(),FPReg)) { - CSI.erase(CSI.begin() + i); - break; - } - } - } - - // Assign slots for GPRs. It increases frame size. - for (unsigned i = CSI.size(); i != 0; --i) { - unsigned Reg = CSI[i - 1].getReg(); - - if (!X86::GR64RegClass.contains(Reg) && !X86::GR32RegClass.contains(Reg)) - continue; - - SpillSlotOffset -= SlotSize; - CalleeSavedFrameSize += SlotSize; - - int SlotIndex = MFI->CreateFixedSpillStackObject(SlotSize, SpillSlotOffset); - CSI[i - 1].setFrameIdx(SlotIndex); - } - - X86FI->setCalleeSavedFrameSize(CalleeSavedFrameSize); - - // Assign slots for XMMs. - for (unsigned i = CSI.size(); i != 0; --i) { - unsigned Reg = CSI[i - 1].getReg(); - if (X86::GR64RegClass.contains(Reg) || X86::GR32RegClass.contains(Reg)) - continue; - - const TargetRegisterClass *RC = RegInfo->getMinimalPhysRegClass(Reg); - // ensure alignment - SpillSlotOffset -= std::abs(SpillSlotOffset) % RC->getAlignment(); - // spill into slot - SpillSlotOffset -= RC->getSize(); - int SlotIndex = - MFI->CreateFixedSpillStackObject(RC->getSize(), SpillSlotOffset); - CSI[i - 1].setFrameIdx(SlotIndex); - MFI->ensureMaxAlignment(RC->getAlignment()); - } - - return true; -} - -bool X86FrameLowering::spillCalleeSavedRegisters( - MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, - const std::vector<CalleeSavedInfo> &CSI, - const TargetRegisterInfo *TRI) const { - DebugLoc DL = MBB.findDebugLoc(MI); - - MachineFunction &MF = *MBB.getParent(); - const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); - const X86Subtarget &STI = MF.getTarget().getSubtarget<X86Subtarget>(); - - // Push GPRs. It increases frame size. - unsigned Opc = STI.is64Bit() ? X86::PUSH64r : X86::PUSH32r; - for (unsigned i = CSI.size(); i != 0; --i) { - unsigned Reg = CSI[i - 1].getReg(); - - if (!X86::GR64RegClass.contains(Reg) && !X86::GR32RegClass.contains(Reg)) - continue; - // Add the callee-saved register as live-in. It's killed at the spill. - MBB.addLiveIn(Reg); - - BuildMI(MBB, MI, DL, TII.get(Opc)).addReg(Reg, RegState::Kill) - .setMIFlag(MachineInstr::FrameSetup); - } - - // Make XMM regs spilled. X86 does not have ability of push/pop XMM. - // It can be done by spilling XMMs to stack frame. - for (unsigned i = CSI.size(); i != 0; --i) { - unsigned Reg = CSI[i-1].getReg(); - if (X86::GR64RegClass.contains(Reg) || - X86::GR32RegClass.contains(Reg)) - continue; - // Add the callee-saved register as live-in. It's killed at the spill. - MBB.addLiveIn(Reg); - const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg); - - TII.storeRegToStackSlot(MBB, MI, Reg, true, CSI[i - 1].getFrameIdx(), RC, - TRI); - --MI; - MI->setFlag(MachineInstr::FrameSetup); - ++MI; - } - - return true; -} - -bool X86FrameLowering::restoreCalleeSavedRegisters(MachineBasicBlock &MBB, - MachineBasicBlock::iterator MI, - const std::vector<CalleeSavedInfo> &CSI, - const TargetRegisterInfo *TRI) const { - if (CSI.empty()) - return false; - - DebugLoc DL = MBB.findDebugLoc(MI); - - MachineFunction &MF = *MBB.getParent(); - const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); - const X86Subtarget &STI = MF.getTarget().getSubtarget<X86Subtarget>(); - - // Reload XMMs from stack frame. - for (unsigned i = 0, e = CSI.size(); i != e; ++i) { - unsigned Reg = CSI[i].getReg(); - if (X86::GR64RegClass.contains(Reg) || - X86::GR32RegClass.contains(Reg)) - continue; - - const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg); - TII.loadRegFromStackSlot(MBB, MI, Reg, CSI[i].getFrameIdx(), RC, TRI); - } - - // POP GPRs. - unsigned Opc = STI.is64Bit() ? X86::POP64r : X86::POP32r; - for (unsigned i = 0, e = CSI.size(); i != e; ++i) { - unsigned Reg = CSI[i].getReg(); - if (!X86::GR64RegClass.contains(Reg) && - !X86::GR32RegClass.contains(Reg)) - continue; - - BuildMI(MBB, MI, DL, TII.get(Opc), Reg); - } - return true; -} - -void -X86FrameLowering::processFunctionBeforeCalleeSavedScan(MachineFunction &MF, - RegScavenger *RS) const { - MachineFrameInfo *MFI = MF.getFrameInfo(); - const X86RegisterInfo *RegInfo = - static_cast<const X86RegisterInfo *>(MF.getSubtarget().getRegisterInfo()); - unsigned SlotSize = RegInfo->getSlotSize(); - - X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); - int64_t TailCallReturnAddrDelta = X86FI->getTCReturnAddrDelta(); - - if (TailCallReturnAddrDelta < 0) { - // create RETURNADDR area - // arg - // arg - // RETADDR - // { ... - // RETADDR area - // ... - // } - // [EBP] - MFI->CreateFixedObject(-TailCallReturnAddrDelta, - TailCallReturnAddrDelta - SlotSize, true); - } - - // Spill the BasePtr if it's used. - if (RegInfo->hasBasePointer(MF)) - MF.getRegInfo().setPhysRegUsed(RegInfo->getBaseRegister()); -} - -static bool -HasNestArgument(const MachineFunction *MF) { - const Function *F = MF->getFunction(); - for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end(); - I != E; I++) { - if (I->hasNestAttr()) - return true; - } - return false; -} - -/// GetScratchRegister - Get a temp register for performing work in the -/// segmented stack and the Erlang/HiPE stack prologue. Depending on platform -/// and the properties of the function either one or two registers will be -/// needed. Set primary to true for the first register, false for the second. -static unsigned -GetScratchRegister(bool Is64Bit, bool IsLP64, const MachineFunction &MF, bool Primary) { - CallingConv::ID CallingConvention = MF.getFunction()->getCallingConv(); - - // Erlang stuff. - if (CallingConvention == CallingConv::HiPE) { - if (Is64Bit) - return Primary ? X86::R14 : X86::R13; - else - return Primary ? X86::EBX : X86::EDI; - } - - if (Is64Bit) { - if (IsLP64) - return Primary ? X86::R11 : X86::R12; - else - return Primary ? X86::R11D : X86::R12D; - } - - bool IsNested = HasNestArgument(&MF); - - if (CallingConvention == CallingConv::X86_FastCall || - CallingConvention == CallingConv::Fast) { - if (IsNested) - report_fatal_error("Segmented stacks does not support fastcall with " - "nested function."); - return Primary ? X86::EAX : X86::ECX; - } - if (IsNested) - return Primary ? X86::EDX : X86::EAX; - return Primary ? X86::ECX : X86::EAX; -} - -// The stack limit in the TCB is set to this many bytes above the actual stack -// limit. -static const uint64_t kSplitStackAvailable = 256; - -void -X86FrameLowering::adjustForSegmentedStacks(MachineFunction &MF) const { - MachineBasicBlock &prologueMBB = MF.front(); - MachineFrameInfo *MFI = MF.getFrameInfo(); - const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); - uint64_t StackSize; - const X86Subtarget &STI = MF.getTarget().getSubtarget<X86Subtarget>(); - bool Is64Bit = STI.is64Bit(); - const bool IsLP64 = STI.isTarget64BitLP64(); - unsigned TlsReg, TlsOffset; - DebugLoc DL; - - unsigned ScratchReg = GetScratchRegister(Is64Bit, IsLP64, MF, true); - assert(!MF.getRegInfo().isLiveIn(ScratchReg) && - "Scratch register is live-in"); - - if (MF.getFunction()->isVarArg()) - report_fatal_error("Segmented stacks do not support vararg functions."); - if (!STI.isTargetLinux() && !STI.isTargetDarwin() && !STI.isTargetWin32() && - !STI.isTargetWin64() && !STI.isTargetFreeBSD() && - !STI.isTargetDragonFly()) - report_fatal_error("Segmented stacks not supported on this platform."); - - // Eventually StackSize will be calculated by a link-time pass; which will - // also decide whether checking code needs to be injected into this particular - // prologue. - StackSize = MFI->getStackSize(); - - // Do not generate a prologue for functions with a stack of size zero - if (StackSize == 0) - return; - - MachineBasicBlock *allocMBB = MF.CreateMachineBasicBlock(); - MachineBasicBlock *checkMBB = MF.CreateMachineBasicBlock(); - X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); - bool IsNested = false; - - // We need to know if the function has a nest argument only in 64 bit mode. - if (Is64Bit) - IsNested = HasNestArgument(&MF); - - // The MOV R10, RAX needs to be in a different block, since the RET we emit in - // allocMBB needs to be last (terminating) instruction. - - for (MachineBasicBlock::livein_iterator i = prologueMBB.livein_begin(), - e = prologueMBB.livein_end(); i != e; i++) { - allocMBB->addLiveIn(*i); - checkMBB->addLiveIn(*i); - } - - if (IsNested) - allocMBB->addLiveIn(IsLP64 ? X86::R10 : X86::R10D); - - MF.push_front(allocMBB); - MF.push_front(checkMBB); - - // When the frame size is less than 256 we just compare the stack - // boundary directly to the value of the stack pointer, per gcc. - bool CompareStackPointer = StackSize < kSplitStackAvailable; - - // Read the limit off the current stacklet off the stack_guard location. - if (Is64Bit) { - if (STI.isTargetLinux()) { - TlsReg = X86::FS; - TlsOffset = IsLP64 ? 0x70 : 0x40; - } else if (STI.isTargetDarwin()) { - TlsReg = X86::GS; - TlsOffset = 0x60 + 90*8; // See pthread_machdep.h. Steal TLS slot 90. - } else if (STI.isTargetWin64()) { - TlsReg = X86::GS; - TlsOffset = 0x28; // pvArbitrary, reserved for application use - } else if (STI.isTargetFreeBSD()) { - TlsReg = X86::FS; - TlsOffset = 0x18; - } else if (STI.isTargetDragonFly()) { - TlsReg = X86::FS; - TlsOffset = 0x20; // use tls_tcb.tcb_segstack - } else { - report_fatal_error("Segmented stacks not supported on this platform."); - } - - if (CompareStackPointer) - ScratchReg = IsLP64 ? X86::RSP : X86::ESP; - else - BuildMI(checkMBB, DL, TII.get(IsLP64 ? X86::LEA64r : X86::LEA64_32r), ScratchReg).addReg(X86::RSP) - .addImm(1).addReg(0).addImm(-StackSize).addReg(0); - - BuildMI(checkMBB, DL, TII.get(IsLP64 ? X86::CMP64rm : X86::CMP32rm)).addReg(ScratchReg) - .addReg(0).addImm(1).addReg(0).addImm(TlsOffset).addReg(TlsReg); - } else { - if (STI.isTargetLinux()) { - TlsReg = X86::GS; - TlsOffset = 0x30; - } else if (STI.isTargetDarwin()) { - TlsReg = X86::GS; - TlsOffset = 0x48 + 90*4; - } else if (STI.isTargetWin32()) { - TlsReg = X86::FS; - TlsOffset = 0x14; // pvArbitrary, reserved for application use - } else if (STI.isTargetDragonFly()) { - TlsReg = X86::FS; - TlsOffset = 0x10; // use tls_tcb.tcb_segstack - } else if (STI.isTargetFreeBSD()) { - report_fatal_error("Segmented stacks not supported on FreeBSD i386."); - } else { - report_fatal_error("Segmented stacks not supported on this platform."); - } - - if (CompareStackPointer) - ScratchReg = X86::ESP; - else - BuildMI(checkMBB, DL, TII.get(X86::LEA32r), ScratchReg).addReg(X86::ESP) - .addImm(1).addReg(0).addImm(-StackSize).addReg(0); - - if (STI.isTargetLinux() || STI.isTargetWin32() || STI.isTargetWin64() || - STI.isTargetDragonFly()) { - BuildMI(checkMBB, DL, TII.get(X86::CMP32rm)).addReg(ScratchReg) - .addReg(0).addImm(0).addReg(0).addImm(TlsOffset).addReg(TlsReg); - } else if (STI.isTargetDarwin()) { - - // TlsOffset doesn't fit into a mod r/m byte so we need an extra register. - unsigned ScratchReg2; - bool SaveScratch2; - if (CompareStackPointer) { - // The primary scratch register is available for holding the TLS offset. - ScratchReg2 = GetScratchRegister(Is64Bit, IsLP64, MF, true); - SaveScratch2 = false; - } else { - // Need to use a second register to hold the TLS offset - ScratchReg2 = GetScratchRegister(Is64Bit, IsLP64, MF, false); - - // Unfortunately, with fastcc the second scratch register may hold an - // argument. - SaveScratch2 = MF.getRegInfo().isLiveIn(ScratchReg2); - } - - // If Scratch2 is live-in then it needs to be saved. - assert((!MF.getRegInfo().isLiveIn(ScratchReg2) || SaveScratch2) && - "Scratch register is live-in and not saved"); - - if (SaveScratch2) - BuildMI(checkMBB, DL, TII.get(X86::PUSH32r)) - .addReg(ScratchReg2, RegState::Kill); - - BuildMI(checkMBB, DL, TII.get(X86::MOV32ri), ScratchReg2) - .addImm(TlsOffset); - BuildMI(checkMBB, DL, TII.get(X86::CMP32rm)) - .addReg(ScratchReg) - .addReg(ScratchReg2).addImm(1).addReg(0) - .addImm(0) - .addReg(TlsReg); - - if (SaveScratch2) - BuildMI(checkMBB, DL, TII.get(X86::POP32r), ScratchReg2); - } - } - - // This jump is taken if SP >= (Stacklet Limit + Stack Space required). - // It jumps to normal execution of the function body. - BuildMI(checkMBB, DL, TII.get(X86::JA_1)).addMBB(&prologueMBB); - - // On 32 bit we first push the arguments size and then the frame size. On 64 - // bit, we pass the stack frame size in r10 and the argument size in r11. - if (Is64Bit) { - // Functions with nested arguments use R10, so it needs to be saved across - // the call to _morestack - - const unsigned RegAX = IsLP64 ? X86::RAX : X86::EAX; - const unsigned Reg10 = IsLP64 ? X86::R10 : X86::R10D; - const unsigned Reg11 = IsLP64 ? X86::R11 : X86::R11D; - const unsigned MOVrr = IsLP64 ? X86::MOV64rr : X86::MOV32rr; - const unsigned MOVri = IsLP64 ? X86::MOV64ri : X86::MOV32ri; - - if (IsNested) - BuildMI(allocMBB, DL, TII.get(MOVrr), RegAX).addReg(Reg10); - - BuildMI(allocMBB, DL, TII.get(MOVri), Reg10) - .addImm(StackSize); - BuildMI(allocMBB, DL, TII.get(MOVri), Reg11) - .addImm(X86FI->getArgumentStackSize()); - MF.getRegInfo().setPhysRegUsed(Reg10); - MF.getRegInfo().setPhysRegUsed(Reg11); - } else { - BuildMI(allocMBB, DL, TII.get(X86::PUSHi32)) - .addImm(X86FI->getArgumentStackSize()); - BuildMI(allocMBB, DL, TII.get(X86::PUSHi32)) - .addImm(StackSize); - } - - // __morestack is in libgcc - if (Is64Bit && MF.getTarget().getCodeModel() == CodeModel::Large) { - // Under the large code model, we cannot assume that __morestack lives - // within 2^31 bytes of the call site, so we cannot use pc-relative - // addressing. We cannot perform the call via a temporary register, - // as the rax register may be used to store the static chain, and all - // other suitable registers may be either callee-save or used for - // parameter passing. We cannot use the stack at this point either - // because __morestack manipulates the stack directly. - // - // To avoid these issues, perform an indirect call via a read-only memory - // location containing the address. - // - // This solution is not perfect, as it assumes that the .rodata section - // is laid out within 2^31 bytes of each function body, but this seems - // to be sufficient for JIT. - BuildMI(allocMBB, DL, TII.get(X86::CALL64m)) - .addReg(X86::RIP) - .addImm(0) - .addReg(0) - .addExternalSymbol("__morestack_addr") - .addReg(0); - MF.getMMI().setUsesMorestackAddr(true); - } else { - if (Is64Bit) - BuildMI(allocMBB, DL, TII.get(X86::CALL64pcrel32)) - .addExternalSymbol("__morestack"); - else - BuildMI(allocMBB, DL, TII.get(X86::CALLpcrel32)) - .addExternalSymbol("__morestack"); - } - - if (IsNested) - BuildMI(allocMBB, DL, TII.get(X86::MORESTACK_RET_RESTORE_R10)); - else - BuildMI(allocMBB, DL, TII.get(X86::MORESTACK_RET)); - - allocMBB->addSuccessor(&prologueMBB); - - checkMBB->addSuccessor(allocMBB); - checkMBB->addSuccessor(&prologueMBB); - -#ifdef XDEBUG - MF.verify(); -#endif -} - -/// Erlang programs may need a special prologue to handle the stack size they -/// might need at runtime. That is because Erlang/OTP does not implement a C -/// stack but uses a custom implementation of hybrid stack/heap architecture. -/// (for more information see Eric Stenman's Ph.D. thesis: -/// http://publications.uu.se/uu/fulltext/nbn_se_uu_diva-2688.pdf) -/// -/// CheckStack: -/// temp0 = sp - MaxStack -/// if( temp0 < SP_LIMIT(P) ) goto IncStack else goto OldStart -/// OldStart: -/// ... -/// IncStack: -/// call inc_stack # doubles the stack space -/// temp0 = sp - MaxStack -/// if( temp0 < SP_LIMIT(P) ) goto IncStack else goto OldStart -void X86FrameLowering::adjustForHiPEPrologue(MachineFunction &MF) const { - const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); - MachineFrameInfo *MFI = MF.getFrameInfo(); - const unsigned SlotSize = - static_cast<const X86RegisterInfo *>(MF.getSubtarget().getRegisterInfo()) - ->getSlotSize(); - const X86Subtarget &STI = MF.getTarget().getSubtarget<X86Subtarget>(); - const bool Is64Bit = STI.is64Bit(); - const bool IsLP64 = STI.isTarget64BitLP64(); - DebugLoc DL; - // HiPE-specific values - const unsigned HipeLeafWords = 24; - const unsigned CCRegisteredArgs = Is64Bit ? 6 : 5; - const unsigned Guaranteed = HipeLeafWords * SlotSize; - unsigned CallerStkArity = MF.getFunction()->arg_size() > CCRegisteredArgs ? - MF.getFunction()->arg_size() - CCRegisteredArgs : 0; - unsigned MaxStack = MFI->getStackSize() + CallerStkArity*SlotSize + SlotSize; - - assert(STI.isTargetLinux() && - "HiPE prologue is only supported on Linux operating systems."); - - // Compute the largest caller's frame that is needed to fit the callees' - // frames. This 'MaxStack' is computed from: - // - // a) the fixed frame size, which is the space needed for all spilled temps, - // b) outgoing on-stack parameter areas, and - // c) the minimum stack space this function needs to make available for the - // functions it calls (a tunable ABI property). - if (MFI->hasCalls()) { - unsigned MoreStackForCalls = 0; - - for (MachineFunction::iterator MBBI = MF.begin(), MBBE = MF.end(); - MBBI != MBBE; ++MBBI) - for (MachineBasicBlock::iterator MI = MBBI->begin(), ME = MBBI->end(); - MI != ME; ++MI) { - if (!MI->isCall()) - continue; - - // Get callee operand. - const MachineOperand &MO = MI->getOperand(0); - - // Only take account of global function calls (no closures etc.). - if (!MO.isGlobal()) - continue; - - const Function *F = dyn_cast<Function>(MO.getGlobal()); - if (!F) - continue; - - // Do not update 'MaxStack' for primitive and built-in functions - // (encoded with names either starting with "erlang."/"bif_" or not - // having a ".", such as a simple <Module>.<Function>.<Arity>, or an - // "_", such as the BIF "suspend_0") as they are executed on another - // stack. - if (F->getName().find("erlang.") != StringRef::npos || - F->getName().find("bif_") != StringRef::npos || - F->getName().find_first_of("._") == StringRef::npos) - continue; - - unsigned CalleeStkArity = - F->arg_size() > CCRegisteredArgs ? F->arg_size()-CCRegisteredArgs : 0; - if (HipeLeafWords - 1 > CalleeStkArity) - MoreStackForCalls = std::max(MoreStackForCalls, - (HipeLeafWords - 1 - CalleeStkArity) * SlotSize); - } - MaxStack += MoreStackForCalls; - } - - // If the stack frame needed is larger than the guaranteed then runtime checks - // and calls to "inc_stack_0" BIF should be inserted in the assembly prologue. - if (MaxStack > Guaranteed) { - MachineBasicBlock &prologueMBB = MF.front(); - MachineBasicBlock *stackCheckMBB = MF.CreateMachineBasicBlock(); - MachineBasicBlock *incStackMBB = MF.CreateMachineBasicBlock(); - - for (MachineBasicBlock::livein_iterator I = prologueMBB.livein_begin(), - E = prologueMBB.livein_end(); I != E; I++) { - stackCheckMBB->addLiveIn(*I); - incStackMBB->addLiveIn(*I); - } - - MF.push_front(incStackMBB); - MF.push_front(stackCheckMBB); - - unsigned ScratchReg, SPReg, PReg, SPLimitOffset; - unsigned LEAop, CMPop, CALLop; - if (Is64Bit) { - SPReg = X86::RSP; - PReg = X86::RBP; - LEAop = X86::LEA64r; - CMPop = X86::CMP64rm; - CALLop = X86::CALL64pcrel32; - SPLimitOffset = 0x90; - } else { - SPReg = X86::ESP; - PReg = X86::EBP; - LEAop = X86::LEA32r; - CMPop = X86::CMP32rm; - CALLop = X86::CALLpcrel32; - SPLimitOffset = 0x4c; - } - - ScratchReg = GetScratchRegister(Is64Bit, IsLP64, MF, true); - assert(!MF.getRegInfo().isLiveIn(ScratchReg) && - "HiPE prologue scratch register is live-in"); - - // Create new MBB for StackCheck: - addRegOffset(BuildMI(stackCheckMBB, DL, TII.get(LEAop), ScratchReg), - SPReg, false, -MaxStack); - // SPLimitOffset is in a fixed heap location (pointed by BP). - addRegOffset(BuildMI(stackCheckMBB, DL, TII.get(CMPop)) - .addReg(ScratchReg), PReg, false, SPLimitOffset); - BuildMI(stackCheckMBB, DL, TII.get(X86::JAE_1)).addMBB(&prologueMBB); - - // Create new MBB for IncStack: - BuildMI(incStackMBB, DL, TII.get(CALLop)). - addExternalSymbol("inc_stack_0"); - addRegOffset(BuildMI(incStackMBB, DL, TII.get(LEAop), ScratchReg), - SPReg, false, -MaxStack); - addRegOffset(BuildMI(incStackMBB, DL, TII.get(CMPop)) - .addReg(ScratchReg), PReg, false, SPLimitOffset); - BuildMI(incStackMBB, DL, TII.get(X86::JLE_1)).addMBB(incStackMBB); - - stackCheckMBB->addSuccessor(&prologueMBB, 99); - stackCheckMBB->addSuccessor(incStackMBB, 1); - incStackMBB->addSuccessor(&prologueMBB, 99); - incStackMBB->addSuccessor(incStackMBB, 1); - } -#ifdef XDEBUG - MF.verify(); -#endif -} - -bool X86FrameLowering:: -convertArgMovsToPushes(MachineFunction &MF, MachineBasicBlock &MBB, - MachineBasicBlock::iterator I, uint64_t Amount) const { - const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); - const X86RegisterInfo &RegInfo = *static_cast<const X86RegisterInfo *>( - MF.getSubtarget().getRegisterInfo()); - unsigned StackPtr = RegInfo.getStackRegister(); - - // Scan the call setup sequence for the pattern we're looking for. - // We only handle a simple case now - a sequence of MOV32mi or MOV32mr - // instructions, that push a sequence of 32-bit values onto the stack, with - // no gaps. - std::map<int64_t, MachineBasicBlock::iterator> MovMap; - do { - int Opcode = I->getOpcode(); - if (Opcode != X86::MOV32mi && Opcode != X86::MOV32mr) - break; - - // We only want movs of the form: - // movl imm/r32, k(%ecx) - // If we run into something else, bail - // Note that AddrBaseReg may, counterintuitively, not be a register... - if (!I->getOperand(X86::AddrBaseReg).isReg() || - (I->getOperand(X86::AddrBaseReg).getReg() != StackPtr) || - !I->getOperand(X86::AddrScaleAmt).isImm() || - (I->getOperand(X86::AddrScaleAmt).getImm() != 1) || - (I->getOperand(X86::AddrIndexReg).getReg() != X86::NoRegister) || - (I->getOperand(X86::AddrSegmentReg).getReg() != X86::NoRegister) || - !I->getOperand(X86::AddrDisp).isImm()) - return false; - - int64_t StackDisp = I->getOperand(X86::AddrDisp).getImm(); - - // We don't want to consider the unaligned case. - if (StackDisp % 4) - return false; - - // If the same stack slot is being filled twice, something's fishy. - if (!MovMap.insert(std::pair<int64_t, MachineInstr*>(StackDisp, I)).second) - return false; - - ++I; - } while (I != MBB.end()); - - // We now expect the end of the sequence - a call and a stack adjust. - if (I == MBB.end()) - return false; - if (!I->isCall()) - return false; - MachineBasicBlock::iterator Call = I; - if ((++I)->getOpcode() != TII.getCallFrameDestroyOpcode()) - return false; - - // Now, go through the map, and see that we don't have any gaps, - // but only a series of 32-bit MOVs. - // Since std::map provides ordered iteration, the original order - // of the MOVs doesn't matter. - int64_t ExpectedDist = 0; - for (auto MMI = MovMap.begin(), MME = MovMap.end(); MMI != MME; - ++MMI, ExpectedDist += 4) - if (MMI->first != ExpectedDist) - return false; - - // Ok, everything looks fine. Do the transformation. - DebugLoc DL = I->getDebugLoc(); - - // It's possible the original stack adjustment amount was larger than - // that done by the pushes. If so, we still need a SUB. - Amount -= ExpectedDist; - if (Amount) { - MachineInstr* Sub = BuildMI(MBB, Call, DL, - TII.get(getSUBriOpcode(false, Amount)), StackPtr) - .addReg(StackPtr).addImm(Amount); - Sub->getOperand(3).setIsDead(); - } - - // Now, iterate through the map in reverse order, and replace the movs - // with pushes. MOVmi/MOVmr doesn't have any defs, so need to replace uses. - for (auto MMI = MovMap.rbegin(), MME = MovMap.rend(); MMI != MME; ++MMI) { - MachineBasicBlock::iterator MOV = MMI->second; - MachineOperand PushOp = MOV->getOperand(X86::AddrNumOperands); - - // Replace MOVmr with PUSH32r, and MOVmi with PUSHi of appropriate size - int PushOpcode = X86::PUSH32r; - if (MOV->getOpcode() == X86::MOV32mi) - PushOpcode = getPUSHiOpcode(false, PushOp); - - BuildMI(MBB, Call, DL, TII.get(PushOpcode)).addOperand(PushOp); - MBB.erase(MOV); - } - - return true; -} - -void X86FrameLowering:: -eliminateCallFramePseudoInstr(MachineFunction &MF, MachineBasicBlock &MBB, - MachineBasicBlock::iterator I) const { - const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); - const X86RegisterInfo &RegInfo = *static_cast<const X86RegisterInfo *>( - MF.getSubtarget().getRegisterInfo()); - unsigned StackPtr = RegInfo.getStackRegister(); - bool reserveCallFrame = hasReservedCallFrame(MF); - int Opcode = I->getOpcode(); - bool isDestroy = Opcode == TII.getCallFrameDestroyOpcode(); - const X86Subtarget &STI = MF.getTarget().getSubtarget<X86Subtarget>(); - bool IsLP64 = STI.isTarget64BitLP64(); - DebugLoc DL = I->getDebugLoc(); - uint64_t Amount = !reserveCallFrame ? I->getOperand(0).getImm() : 0; - uint64_t CalleeAmt = isDestroy ? I->getOperand(1).getImm() : 0; - I = MBB.erase(I); - - if (!reserveCallFrame) { - // If the stack pointer can be changed after prologue, turn the - // adjcallstackup instruction into a 'sub ESP, <amt>' and the - // adjcallstackdown instruction into 'add ESP, <amt>' - if (Amount == 0) - return; - - // We need to keep the stack aligned properly. To do this, we round the - // amount of space needed for the outgoing arguments up to the next - // alignment boundary. - unsigned StackAlign = MF.getTarget() - .getSubtargetImpl() - ->getFrameLowering() - ->getStackAlignment(); - Amount = (Amount + StackAlign - 1) / StackAlign * StackAlign; - - MachineInstr *New = nullptr; - if (Opcode == TII.getCallFrameSetupOpcode()) { - // Try to convert movs to the stack into pushes. - // We currently only look for a pattern that appears in 32-bit - // calling conventions. - if (!IsLP64 && convertArgMovsToPushes(MF, MBB, I, Amount)) - return; - - New = BuildMI(MF, DL, TII.get(getSUBriOpcode(IsLP64, Amount)), - StackPtr) - .addReg(StackPtr) - .addImm(Amount); - } else { - assert(Opcode == TII.getCallFrameDestroyOpcode()); - - // Factor out the amount the callee already popped. - Amount -= CalleeAmt; - - if (Amount) { - unsigned Opc = getADDriOpcode(IsLP64, Amount); - New = BuildMI(MF, DL, TII.get(Opc), StackPtr) - .addReg(StackPtr).addImm(Amount); - } - } - - if (New) { - // The EFLAGS implicit def is dead. - New->getOperand(3).setIsDead(); - - // Replace the pseudo instruction with a new instruction. - MBB.insert(I, New); - } - - return; - } - - if (Opcode == TII.getCallFrameDestroyOpcode() && CalleeAmt) { - // If we are performing frame pointer elimination and if the callee pops - // something off the stack pointer, add it back. We do this until we have - // more advanced stack pointer tracking ability. - unsigned Opc = getSUBriOpcode(IsLP64, CalleeAmt); - MachineInstr *New = BuildMI(MF, DL, TII.get(Opc), StackPtr) - .addReg(StackPtr).addImm(CalleeAmt); - - // The EFLAGS implicit def is dead. - New->getOperand(3).setIsDead(); - - // We are not tracking the stack pointer adjustment by the callee, so make - // sure we restore the stack pointer immediately after the call, there may - // be spill code inserted between the CALL and ADJCALLSTACKUP instructions. - MachineBasicBlock::iterator B = MBB.begin(); - while (I != B && !std::prev(I)->isCall()) - --I; - MBB.insert(I, New); - } -} - +//===-- X86FrameLowering.cpp - X86 Frame Information ----------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains the X86 implementation of TargetFrameLowering class.
+//
+//===----------------------------------------------------------------------===//
+
+#include "X86FrameLowering.h"
+#include "X86InstrBuilder.h"
+#include "X86InstrInfo.h"
+#include "X86MachineFunctionInfo.h"
+#include "X86Subtarget.h"
+#include "X86TargetMachine.h"
+#include "llvm/ADT/SmallSet.h"
+#include "llvm/CodeGen/MachineFrameInfo.h"
+#include "llvm/CodeGen/MachineFunction.h"
+#include "llvm/CodeGen/MachineInstrBuilder.h"
+#include "llvm/CodeGen/MachineModuleInfo.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/Function.h"
+#include "llvm/MC/MCAsmInfo.h"
+#include "llvm/MC/MCSymbol.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Target/TargetOptions.h"
+#include "llvm/Support/Debug.h"
+#include <cstdlib>
+
+using namespace llvm;
+
+// FIXME: completely move here.
+extern cl::opt<bool> ForceStackAlign;
+
+bool X86FrameLowering::hasReservedCallFrame(const MachineFunction &MF) const {
+ return !MF.getFrameInfo()->hasVarSizedObjects() &&
+ !MF.getInfo<X86MachineFunctionInfo>()->getHasPushSequences();
+}
+
+/// canSimplifyCallFramePseudos - If there is a reserved call frame, the
+/// call frame pseudos can be simplified. Having a FP, as in the default
+/// implementation, is not sufficient here since we can't always use it.
+/// Use a more nuanced condition.
+bool
+X86FrameLowering::canSimplifyCallFramePseudos(const MachineFunction &MF) const {
+ const X86RegisterInfo *TRI = static_cast<const X86RegisterInfo *>
+ (MF.getSubtarget().getRegisterInfo());
+ return hasReservedCallFrame(MF) ||
+ (hasFP(MF) && !TRI->needsStackRealignment(MF))
+ || TRI->hasBasePointer(MF);
+}
+
+// needsFrameIndexResolution - Do we need to perform FI resolution for
+// this function. Normally, this is required only when the function
+// has any stack objects. However, FI resolution actually has another job,
+// not apparent from the title - it resolves callframesetup/destroy
+// that were not simplified earlier.
+// So, this is required for x86 functions that have push sequences even
+// when there are no stack objects.
+bool
+X86FrameLowering::needsFrameIndexResolution(const MachineFunction &MF) const {
+ return MF.getFrameInfo()->hasStackObjects() ||
+ MF.getInfo<X86MachineFunctionInfo>()->getHasPushSequences();
+}
+
+/// hasFP - Return true if the specified function should have a dedicated frame
+/// pointer register. This is true if the function has variable sized allocas
+/// or if frame pointer elimination is disabled.
+bool X86FrameLowering::hasFP(const MachineFunction &MF) const {
+ const MachineFrameInfo *MFI = MF.getFrameInfo();
+ const MachineModuleInfo &MMI = MF.getMMI();
+ const TargetRegisterInfo *RegInfo = MF.getSubtarget().getRegisterInfo();
+
+ return (MF.getTarget().Options.DisableFramePointerElim(MF) ||
+ RegInfo->needsStackRealignment(MF) ||
+ MFI->hasVarSizedObjects() ||
+ MFI->isFrameAddressTaken() || MFI->hasInlineAsmWithSPAdjust() ||
+ MF.getInfo<X86MachineFunctionInfo>()->getForceFramePointer() ||
+ MMI.callsUnwindInit() || MMI.callsEHReturn() ||
+ MFI->hasStackMap() || MFI->hasPatchPoint());
+}
+
+static unsigned getSUBriOpcode(unsigned IsLP64, int64_t Imm) {
+ if (IsLP64) {
+ if (isInt<8>(Imm))
+ return X86::SUB64ri8;
+ return X86::SUB64ri32;
+ } else {
+ if (isInt<8>(Imm))
+ return X86::SUB32ri8;
+ return X86::SUB32ri;
+ }
+}
+
+static unsigned getADDriOpcode(unsigned IsLP64, int64_t Imm) {
+ if (IsLP64) {
+ if (isInt<8>(Imm))
+ return X86::ADD64ri8;
+ return X86::ADD64ri32;
+ } else {
+ if (isInt<8>(Imm))
+ return X86::ADD32ri8;
+ return X86::ADD32ri;
+ }
+}
+
+static unsigned getSUBrrOpcode(unsigned isLP64) {
+ return isLP64 ? X86::SUB64rr : X86::SUB32rr;
+}
+
+static unsigned getADDrrOpcode(unsigned isLP64) {
+ return isLP64 ? X86::ADD64rr : X86::ADD32rr;
+}
+
+static unsigned getANDriOpcode(bool IsLP64, int64_t Imm) {
+ if (IsLP64) {
+ if (isInt<8>(Imm))
+ return X86::AND64ri8;
+ return X86::AND64ri32;
+ }
+ if (isInt<8>(Imm))
+ return X86::AND32ri8;
+ return X86::AND32ri;
+}
+
+static unsigned getLEArOpcode(unsigned IsLP64) {
+ return IsLP64 ? X86::LEA64r : X86::LEA32r;
+}
+
+/// findDeadCallerSavedReg - Return a caller-saved register that isn't live
+/// when it reaches the "return" instruction. We can then pop a stack object
+/// to this register without worry about clobbering it.
+static unsigned findDeadCallerSavedReg(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator &MBBI,
+ const TargetRegisterInfo &TRI,
+ bool Is64Bit) {
+ const MachineFunction *MF = MBB.getParent();
+ const Function *F = MF->getFunction();
+ if (!F || MF->getMMI().callsEHReturn())
+ return 0;
+
+ static const uint16_t CallerSavedRegs32Bit[] = {
+ X86::EAX, X86::EDX, X86::ECX, 0
+ };
+
+ static const uint16_t CallerSavedRegs64Bit[] = {
+ X86::RAX, X86::RDX, X86::RCX, X86::RSI, X86::RDI,
+ X86::R8, X86::R9, X86::R10, X86::R11, 0
+ };
+
+ unsigned Opc = MBBI->getOpcode();
+ switch (Opc) {
+ default: return 0;
+ case X86::RETL:
+ case X86::RETQ:
+ case X86::RETIL:
+ case X86::RETIQ:
+ case X86::TCRETURNdi:
+ case X86::TCRETURNri:
+ case X86::TCRETURNmi:
+ case X86::TCRETURNdi64:
+ case X86::TCRETURNri64:
+ case X86::TCRETURNmi64:
+ case X86::EH_RETURN:
+ case X86::EH_RETURN64: {
+ SmallSet<uint16_t, 8> Uses;
+ for (unsigned i = 0, e = MBBI->getNumOperands(); i != e; ++i) {
+ MachineOperand &MO = MBBI->getOperand(i);
+ if (!MO.isReg() || MO.isDef())
+ continue;
+ unsigned Reg = MO.getReg();
+ if (!Reg)
+ continue;
+ for (MCRegAliasIterator AI(Reg, &TRI, true); AI.isValid(); ++AI)
+ Uses.insert(*AI);
+ }
+
+ const uint16_t *CS = Is64Bit ? CallerSavedRegs64Bit : CallerSavedRegs32Bit;
+ for (; *CS; ++CS)
+ if (!Uses.count(*CS))
+ return *CS;
+ }
+ }
+
+ return 0;
+}
+
+static bool isEAXLiveIn(MachineFunction &MF) {
+ for (MachineRegisterInfo::livein_iterator II = MF.getRegInfo().livein_begin(),
+ EE = MF.getRegInfo().livein_end(); II != EE; ++II) {
+ unsigned Reg = II->first;
+
+ if (Reg == X86::RAX || Reg == X86::EAX || Reg == X86::AX ||
+ Reg == X86::AH || Reg == X86::AL)
+ return true;
+ }
+
+ return false;
+}
+
+/// emitSPUpdate - Emit a series of instructions to increment / decrement the
+/// stack pointer by a constant value.
+static
+void emitSPUpdate(MachineBasicBlock &MBB, MachineBasicBlock::iterator &MBBI,
+ unsigned StackPtr, int64_t NumBytes,
+ bool Is64BitTarget, bool Is64BitStackPtr, bool UseLEA,
+ const TargetInstrInfo &TII, const TargetRegisterInfo &TRI) {
+ bool isSub = NumBytes < 0;
+ uint64_t Offset = isSub ? -NumBytes : NumBytes;
+ unsigned Opc;
+ if (UseLEA)
+ Opc = getLEArOpcode(Is64BitStackPtr);
+ else
+ Opc = isSub
+ ? getSUBriOpcode(Is64BitStackPtr, Offset)
+ : getADDriOpcode(Is64BitStackPtr, Offset);
+
+ uint64_t Chunk = (1LL << 31) - 1;
+ DebugLoc DL = MBB.findDebugLoc(MBBI);
+
+ while (Offset) {
+ if (Offset > Chunk) {
+ // Rather than emit a long series of instructions for large offsets,
+ // load the offset into a register and do one sub/add
+ unsigned Reg = 0;
+
+ if (isSub && !isEAXLiveIn(*MBB.getParent()))
+ Reg = (unsigned)(Is64BitTarget ? X86::RAX : X86::EAX);
+ else
+ Reg = findDeadCallerSavedReg(MBB, MBBI, TRI, Is64BitTarget);
+
+ if (Reg) {
+ Opc = Is64BitTarget ? X86::MOV64ri : X86::MOV32ri;
+ BuildMI(MBB, MBBI, DL, TII.get(Opc), Reg)
+ .addImm(Offset);
+ Opc = isSub
+ ? getSUBrrOpcode(Is64BitTarget)
+ : getADDrrOpcode(Is64BitTarget);
+ MachineInstr *MI = BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr)
+ .addReg(StackPtr)
+ .addReg(Reg);
+ MI->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead.
+ Offset = 0;
+ continue;
+ }
+ }
+
+ uint64_t ThisVal = (Offset > Chunk) ? Chunk : Offset;
+ if (ThisVal == (Is64BitTarget ? 8 : 4)) {
+ // Use push / pop instead.
+ unsigned Reg = isSub
+ ? (unsigned)(Is64BitTarget ? X86::RAX : X86::EAX)
+ : findDeadCallerSavedReg(MBB, MBBI, TRI, Is64BitTarget);
+ if (Reg) {
+ Opc = isSub
+ ? (Is64BitTarget ? X86::PUSH64r : X86::PUSH32r)
+ : (Is64BitTarget ? X86::POP64r : X86::POP32r);
+ MachineInstr *MI = BuildMI(MBB, MBBI, DL, TII.get(Opc))
+ .addReg(Reg, getDefRegState(!isSub) | getUndefRegState(isSub));
+ if (isSub)
+ MI->setFlag(MachineInstr::FrameSetup);
+ Offset -= ThisVal;
+ continue;
+ }
+ }
+
+ MachineInstr *MI = nullptr;
+
+ if (UseLEA) {
+ MI = addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr),
+ StackPtr, false, isSub ? -ThisVal : ThisVal);
+ } else {
+ MI = BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr)
+ .addReg(StackPtr)
+ .addImm(ThisVal);
+ MI->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead.
+ }
+
+ if (isSub)
+ MI->setFlag(MachineInstr::FrameSetup);
+
+ Offset -= ThisVal;
+ }
+}
+
+/// mergeSPUpdatesUp - Merge two stack-manipulating instructions upper iterator.
+static
+void mergeSPUpdatesUp(MachineBasicBlock &MBB, MachineBasicBlock::iterator &MBBI,
+ unsigned StackPtr, uint64_t *NumBytes = nullptr) {
+ if (MBBI == MBB.begin()) return;
+
+ MachineBasicBlock::iterator PI = std::prev(MBBI);
+ unsigned Opc = PI->getOpcode();
+ if ((Opc == X86::ADD64ri32 || Opc == X86::ADD64ri8 ||
+ Opc == X86::ADD32ri || Opc == X86::ADD32ri8 ||
+ Opc == X86::LEA32r || Opc == X86::LEA64_32r) &&
+ PI->getOperand(0).getReg() == StackPtr) {
+ if (NumBytes)
+ *NumBytes += PI->getOperand(2).getImm();
+ MBB.erase(PI);
+ } else if ((Opc == X86::SUB64ri32 || Opc == X86::SUB64ri8 ||
+ Opc == X86::SUB32ri || Opc == X86::SUB32ri8) &&
+ PI->getOperand(0).getReg() == StackPtr) {
+ if (NumBytes)
+ *NumBytes -= PI->getOperand(2).getImm();
+ MBB.erase(PI);
+ }
+}
+
+/// mergeSPUpdatesDown - Merge two stack-manipulating instructions lower
+/// iterator.
+static
+void mergeSPUpdatesDown(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator &MBBI,
+ unsigned StackPtr, uint64_t *NumBytes = nullptr) {
+ // FIXME: THIS ISN'T RUN!!!
+ return;
+
+ if (MBBI == MBB.end()) return;
+
+ MachineBasicBlock::iterator NI = std::next(MBBI);
+ if (NI == MBB.end()) return;
+
+ unsigned Opc = NI->getOpcode();
+ if ((Opc == X86::ADD64ri32 || Opc == X86::ADD64ri8 ||
+ Opc == X86::ADD32ri || Opc == X86::ADD32ri8) &&
+ NI->getOperand(0).getReg() == StackPtr) {
+ if (NumBytes)
+ *NumBytes -= NI->getOperand(2).getImm();
+ MBB.erase(NI);
+ MBBI = NI;
+ } else if ((Opc == X86::SUB64ri32 || Opc == X86::SUB64ri8 ||
+ Opc == X86::SUB32ri || Opc == X86::SUB32ri8) &&
+ NI->getOperand(0).getReg() == StackPtr) {
+ if (NumBytes)
+ *NumBytes += NI->getOperand(2).getImm();
+ MBB.erase(NI);
+ MBBI = NI;
+ }
+}
+
+/// mergeSPUpdates - Checks the instruction before/after the passed
+/// instruction. If it is an ADD/SUB/LEA instruction it is deleted argument and
+/// the stack adjustment is returned as a positive value for ADD/LEA and a
+/// negative for SUB.
+static int mergeSPUpdates(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator &MBBI, unsigned StackPtr,
+ bool doMergeWithPrevious) {
+ if ((doMergeWithPrevious && MBBI == MBB.begin()) ||
+ (!doMergeWithPrevious && MBBI == MBB.end()))
+ return 0;
+
+ MachineBasicBlock::iterator PI = doMergeWithPrevious ? std::prev(MBBI) : MBBI;
+ MachineBasicBlock::iterator NI = doMergeWithPrevious ? nullptr
+ : std::next(MBBI);
+ unsigned Opc = PI->getOpcode();
+ int Offset = 0;
+
+ if ((Opc == X86::ADD64ri32 || Opc == X86::ADD64ri8 ||
+ Opc == X86::ADD32ri || Opc == X86::ADD32ri8 ||
+ Opc == X86::LEA32r || Opc == X86::LEA64_32r) &&
+ PI->getOperand(0).getReg() == StackPtr){
+ Offset += PI->getOperand(2).getImm();
+ MBB.erase(PI);
+ if (!doMergeWithPrevious) MBBI = NI;
+ } else if ((Opc == X86::SUB64ri32 || Opc == X86::SUB64ri8 ||
+ Opc == X86::SUB32ri || Opc == X86::SUB32ri8) &&
+ PI->getOperand(0).getReg() == StackPtr) {
+ Offset -= PI->getOperand(2).getImm();
+ MBB.erase(PI);
+ if (!doMergeWithPrevious) MBBI = NI;
+ }
+
+ return Offset;
+}
+
+void
+X86FrameLowering::emitCalleeSavedFrameMoves(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator MBBI,
+ DebugLoc DL) const {
+ MachineFunction &MF = *MBB.getParent();
+ MachineFrameInfo *MFI = MF.getFrameInfo();
+ MachineModuleInfo &MMI = MF.getMMI();
+ const MCRegisterInfo *MRI = MMI.getContext().getRegisterInfo();
+ const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
+
+ // Add callee saved registers to move list.
+ const std::vector<CalleeSavedInfo> &CSI = MFI->getCalleeSavedInfo();
+ if (CSI.empty()) return;
+
+ // Calculate offsets.
+ for (std::vector<CalleeSavedInfo>::const_iterator
+ I = CSI.begin(), E = CSI.end(); I != E; ++I) {
+ int64_t Offset = MFI->getObjectOffset(I->getFrameIdx());
+ unsigned Reg = I->getReg();
+
+ unsigned DwarfReg = MRI->getDwarfRegNum(Reg, true);
+ unsigned CFIIndex =
+ MMI.addFrameInst(MCCFIInstruction::createOffset(nullptr, DwarfReg,
+ Offset));
+ BuildMI(MBB, MBBI, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
+ .addCFIIndex(CFIIndex);
+ }
+}
+
+/// usesTheStack - This function checks if any of the users of EFLAGS
+/// copies the EFLAGS. We know that the code that lowers COPY of EFLAGS has
+/// to use the stack, and if we don't adjust the stack we clobber the first
+/// frame index.
+/// See X86InstrInfo::copyPhysReg.
+static bool usesTheStack(const MachineFunction &MF) {
+ const MachineRegisterInfo &MRI = MF.getRegInfo();
+
+ for (MachineRegisterInfo::reg_instr_iterator
+ ri = MRI.reg_instr_begin(X86::EFLAGS), re = MRI.reg_instr_end();
+ ri != re; ++ri)
+ if (ri->isCopy())
+ return true;
+
+ return false;
+}
+
+void X86FrameLowering::emitStackProbeCall(MachineFunction &MF,
+ MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator MBBI,
+ DebugLoc DL) {
+ const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
+ const X86Subtarget &STI = MF.getTarget().getSubtarget<X86Subtarget>();
+ bool Is64Bit = STI.is64Bit();
+ bool IsLargeCodeModel = MF.getTarget().getCodeModel() == CodeModel::Large;
+
+ unsigned CallOp;
+ if (Is64Bit)
+ CallOp = IsLargeCodeModel ? X86::CALL64r : X86::CALL64pcrel32;
+ else
+ CallOp = X86::CALLpcrel32;
+
+ const char *Symbol;
+ if (Is64Bit) {
+ if (STI.isTargetCygMing()) {
+ Symbol = "___chkstk_ms";
+ } else {
+ Symbol = "__chkstk";
+ }
+ } else if (STI.isTargetCygMing())
+ Symbol = "_alloca";
+ else
+ Symbol = "_chkstk";
+
+ MachineInstrBuilder CI;
+
+ // All current stack probes take AX and SP as input, clobber flags, and
+ // preserve all registers. x86_64 probes leave RSP unmodified.
+ if (Is64Bit && MF.getTarget().getCodeModel() == CodeModel::Large) {
+ // For the large code model, we have to call through a register. Use R11,
+ // as it is scratch in all supported calling conventions.
+ BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64ri), X86::R11)
+ .addExternalSymbol(Symbol);
+ CI = BuildMI(MBB, MBBI, DL, TII.get(CallOp)).addReg(X86::R11);
+ } else {
+ CI = BuildMI(MBB, MBBI, DL, TII.get(CallOp)).addExternalSymbol(Symbol);
+ }
+
+ unsigned AX = Is64Bit ? X86::RAX : X86::EAX;
+ unsigned SP = Is64Bit ? X86::RSP : X86::ESP;
+ CI.addReg(AX, RegState::Implicit)
+ .addReg(SP, RegState::Implicit)
+ .addReg(AX, RegState::Define | RegState::Implicit)
+ .addReg(SP, RegState::Define | RegState::Implicit)
+ .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
+
+ if (Is64Bit) {
+ // MSVC x64's __chkstk and cygwin/mingw's ___chkstk_ms do not adjust %rsp
+ // themselves. It also does not clobber %rax so we can reuse it when
+ // adjusting %rsp.
+ BuildMI(MBB, MBBI, DL, TII.get(X86::SUB64rr), X86::RSP)
+ .addReg(X86::RSP)
+ .addReg(X86::RAX);
+ }
+}
+
+/// emitPrologue - Push callee-saved registers onto the stack, which
+/// automatically adjust the stack pointer. Adjust the stack pointer to allocate
+/// space for local variables. Also emit labels used by the exception handler to
+/// generate the exception handling frames.
+
+/*
+ Here's a gist of what gets emitted:
+
+ ; Establish frame pointer, if needed
+ [if needs FP]
+ push %rbp
+ .cfi_def_cfa_offset 16
+ .cfi_offset %rbp, -16
+ .seh_pushreg %rpb
+ mov %rsp, %rbp
+ .cfi_def_cfa_register %rbp
+
+ ; Spill general-purpose registers
+ [for all callee-saved GPRs]
+ pushq %<reg>
+ [if not needs FP]
+ .cfi_def_cfa_offset (offset from RETADDR)
+ .seh_pushreg %<reg>
+
+ ; If the required stack alignment > default stack alignment
+ ; rsp needs to be re-aligned. This creates a "re-alignment gap"
+ ; of unknown size in the stack frame.
+ [if stack needs re-alignment]
+ and $MASK, %rsp
+
+ ; Allocate space for locals
+ [if target is Windows and allocated space > 4096 bytes]
+ ; Windows needs special care for allocations larger
+ ; than one page.
+ mov $NNN, %rax
+ call ___chkstk_ms/___chkstk
+ sub %rax, %rsp
+ [else]
+ sub $NNN, %rsp
+
+ [if needs FP]
+ .seh_stackalloc (size of XMM spill slots)
+ .seh_setframe %rbp, SEHFrameOffset ; = size of all spill slots
+ [else]
+ .seh_stackalloc NNN
+
+ ; Spill XMMs
+ ; Note, that while only Windows 64 ABI specifies XMMs as callee-preserved,
+ ; they may get spilled on any platform, if the current function
+ ; calls @llvm.eh.unwind.init
+ [if needs FP]
+ [for all callee-saved XMM registers]
+ movaps %<xmm reg>, -MMM(%rbp)
+ [for all callee-saved XMM registers]
+ .seh_savexmm %<xmm reg>, (-MMM + SEHFrameOffset)
+ ; i.e. the offset relative to (%rbp - SEHFrameOffset)
+ [else]
+ [for all callee-saved XMM registers]
+ movaps %<xmm reg>, KKK(%rsp)
+ [for all callee-saved XMM registers]
+ .seh_savexmm %<xmm reg>, KKK
+
+ .seh_endprologue
+
+ [if needs base pointer]
+ mov %rsp, %rbx
+ [if needs to restore base pointer]
+ mov %rsp, -MMM(%rbp)
+
+ ; Emit CFI info
+ [if needs FP]
+ [for all callee-saved registers]
+ .cfi_offset %<reg>, (offset from %rbp)
+ [else]
+ .cfi_def_cfa_offset (offset from RETADDR)
+ [for all callee-saved registers]
+ .cfi_offset %<reg>, (offset from %rsp)
+
+ Notes:
+ - .seh directives are emitted only for Windows 64 ABI
+ - .cfi directives are emitted for all other ABIs
+ - for 32-bit code, substitute %e?? registers for %r??
+*/
+
+void X86FrameLowering::emitPrologue(MachineFunction &MF) const {
+ MachineBasicBlock &MBB = MF.front(); // Prologue goes in entry BB.
+ MachineBasicBlock::iterator MBBI = MBB.begin();
+ MachineFrameInfo *MFI = MF.getFrameInfo();
+ const Function *Fn = MF.getFunction();
+ const X86RegisterInfo *RegInfo =
+ static_cast<const X86RegisterInfo *>(MF.getSubtarget().getRegisterInfo());
+ const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
+ MachineModuleInfo &MMI = MF.getMMI();
+ X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
+ uint64_t MaxAlign = MFI->getMaxAlignment(); // Desired stack alignment.
+ uint64_t StackSize = MFI->getStackSize(); // Number of bytes to allocate.
+ bool HasFP = hasFP(MF);
+ const X86Subtarget &STI = MF.getTarget().getSubtarget<X86Subtarget>();
+ bool Is64Bit = STI.is64Bit();
+ // standard x86_64 and NaCl use 64-bit frame/stack pointers, x32 - 32-bit.
+ const bool Uses64BitFramePtr = STI.isTarget64BitLP64() || STI.isTargetNaCl64();
+ bool IsWin64 = STI.isTargetWin64();
+ // Not necessarily synonymous with IsWin64.
+ bool IsWinEH = MF.getTarget().getMCAsmInfo()->usesWindowsCFI();
+ bool NeedsWinEH = IsWinEH && Fn->needsUnwindTableEntry();
+ bool NeedsDwarfCFI =
+ !IsWinEH && (MMI.hasDebugInfo() || Fn->needsUnwindTableEntry());
+ bool UseLEA = STI.useLeaForSP();
+ unsigned StackAlign = getStackAlignment();
+ unsigned SlotSize = RegInfo->getSlotSize();
+ unsigned FramePtr = RegInfo->getFrameRegister(MF);
+ const unsigned MachineFramePtr = STI.isTarget64BitILP32() ?
+ getX86SubSuperRegister(FramePtr, MVT::i64, false) : FramePtr;
+ unsigned StackPtr = RegInfo->getStackRegister();
+ unsigned BasePtr = RegInfo->getBaseRegister();
+ DebugLoc DL;
+
+ // If we're forcing a stack realignment we can't rely on just the frame
+ // info, we need to know the ABI stack alignment as well in case we
+ // have a call out. Otherwise just make sure we have some alignment - we'll
+ // go with the minimum SlotSize.
+ if (ForceStackAlign) {
+ if (MFI->hasCalls())
+ MaxAlign = (StackAlign > MaxAlign) ? StackAlign : MaxAlign;
+ else if (MaxAlign < SlotSize)
+ MaxAlign = SlotSize;
+ }
+
+ // Add RETADDR move area to callee saved frame size.
+ int TailCallReturnAddrDelta = X86FI->getTCReturnAddrDelta();
+ if (TailCallReturnAddrDelta < 0)
+ X86FI->setCalleeSavedFrameSize(
+ X86FI->getCalleeSavedFrameSize() - TailCallReturnAddrDelta);
+
+ bool UseStackProbe = (STI.isOSWindows() && !STI.isTargetMachO());
+
+ // The default stack probe size is 4096 if the function has no stackprobesize
+ // attribute.
+ unsigned StackProbeSize = 4096;
+ if (Fn->hasFnAttribute("stack-probe-size"))
+ Fn->getFnAttribute("stack-probe-size")
+ .getValueAsString()
+ .getAsInteger(0, StackProbeSize);
+
+ // If this is x86-64 and the Red Zone is not disabled, if we are a leaf
+ // function, and use up to 128 bytes of stack space, don't have a frame
+ // pointer, calls, or dynamic alloca then we do not need to adjust the
+ // stack pointer (we fit in the Red Zone). We also check that we don't
+ // push and pop from the stack.
+ if (Is64Bit && !Fn->getAttributes().hasAttribute(AttributeSet::FunctionIndex,
+ Attribute::NoRedZone) &&
+ !RegInfo->needsStackRealignment(MF) &&
+ !MFI->hasVarSizedObjects() && // No dynamic alloca.
+ !MFI->adjustsStack() && // No calls.
+ !IsWin64 && // Win64 has no Red Zone
+ !usesTheStack(MF) && // Don't push and pop.
+ !MF.shouldSplitStack()) { // Regular stack
+ uint64_t MinSize = X86FI->getCalleeSavedFrameSize();
+ if (HasFP) MinSize += SlotSize;
+ StackSize = std::max(MinSize, StackSize > 128 ? StackSize - 128 : 0);
+ MFI->setStackSize(StackSize);
+ }
+
+ // Insert stack pointer adjustment for later moving of return addr. Only
+ // applies to tail call optimized functions where the callee argument stack
+ // size is bigger than the callers.
+ if (TailCallReturnAddrDelta < 0) {
+ MachineInstr *MI =
+ BuildMI(MBB, MBBI, DL,
+ TII.get(getSUBriOpcode(Uses64BitFramePtr, -TailCallReturnAddrDelta)),
+ StackPtr)
+ .addReg(StackPtr)
+ .addImm(-TailCallReturnAddrDelta)
+ .setMIFlag(MachineInstr::FrameSetup);
+ MI->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead.
+ }
+
+ // Mapping for machine moves:
+ //
+ // DST: VirtualFP AND
+ // SRC: VirtualFP => DW_CFA_def_cfa_offset
+ // ELSE => DW_CFA_def_cfa
+ //
+ // SRC: VirtualFP AND
+ // DST: Register => DW_CFA_def_cfa_register
+ //
+ // ELSE
+ // OFFSET < 0 => DW_CFA_offset_extended_sf
+ // REG < 64 => DW_CFA_offset + Reg
+ // ELSE => DW_CFA_offset_extended
+
+ uint64_t NumBytes = 0;
+ int stackGrowth = -SlotSize;
+
+ if (HasFP) {
+ // Calculate required stack adjustment.
+ uint64_t FrameSize = StackSize - SlotSize;
+ // If required, include space for extra hidden slot for stashing base pointer.
+ if (X86FI->getRestoreBasePointer())
+ FrameSize += SlotSize;
+ if (RegInfo->needsStackRealignment(MF)) {
+ // Callee-saved registers are pushed on stack before the stack
+ // is realigned.
+ FrameSize -= X86FI->getCalleeSavedFrameSize();
+ NumBytes = (FrameSize + MaxAlign - 1) / MaxAlign * MaxAlign;
+ } else {
+ NumBytes = FrameSize - X86FI->getCalleeSavedFrameSize();
+ }
+
+ // Get the offset of the stack slot for the EBP register, which is
+ // guaranteed to be the last slot by processFunctionBeforeFrameFinalized.
+ // Update the frame offset adjustment.
+ MFI->setOffsetAdjustment(-NumBytes);
+
+ // Save EBP/RBP into the appropriate stack slot.
+ BuildMI(MBB, MBBI, DL, TII.get(Is64Bit ? X86::PUSH64r : X86::PUSH32r))
+ .addReg(MachineFramePtr, RegState::Kill)
+ .setMIFlag(MachineInstr::FrameSetup);
+
+ if (NeedsDwarfCFI) {
+ // Mark the place where EBP/RBP was saved.
+ // Define the current CFA rule to use the provided offset.
+ assert(StackSize);
+ unsigned CFIIndex = MMI.addFrameInst(
+ MCCFIInstruction::createDefCfaOffset(nullptr, 2 * stackGrowth));
+ BuildMI(MBB, MBBI, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
+ .addCFIIndex(CFIIndex);
+
+ // Change the rule for the FramePtr to be an "offset" rule.
+ unsigned DwarfFramePtr = RegInfo->getDwarfRegNum(MachineFramePtr, true);
+ CFIIndex = MMI.addFrameInst(
+ MCCFIInstruction::createOffset(nullptr,
+ DwarfFramePtr, 2 * stackGrowth));
+ BuildMI(MBB, MBBI, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
+ .addCFIIndex(CFIIndex);
+ }
+
+ if (NeedsWinEH) {
+ BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_PushReg))
+ .addImm(FramePtr)
+ .setMIFlag(MachineInstr::FrameSetup);
+ }
+
+ // Update EBP with the new base value.
+ BuildMI(MBB, MBBI, DL,
+ TII.get(Uses64BitFramePtr ? X86::MOV64rr : X86::MOV32rr), FramePtr)
+ .addReg(StackPtr)
+ .setMIFlag(MachineInstr::FrameSetup);
+
+ if (NeedsDwarfCFI) {
+ // Mark effective beginning of when frame pointer becomes valid.
+ // Define the current CFA to use the EBP/RBP register.
+ unsigned DwarfFramePtr = RegInfo->getDwarfRegNum(MachineFramePtr, true);
+ unsigned CFIIndex = MMI.addFrameInst(
+ MCCFIInstruction::createDefCfaRegister(nullptr, DwarfFramePtr));
+ BuildMI(MBB, MBBI, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
+ .addCFIIndex(CFIIndex);
+ }
+
+ // Mark the FramePtr as live-in in every block.
+ for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I)
+ I->addLiveIn(MachineFramePtr);
+ } else {
+ NumBytes = StackSize - X86FI->getCalleeSavedFrameSize();
+ }
+
+ // Skip the callee-saved push instructions.
+ bool PushedRegs = false;
+ int StackOffset = 2 * stackGrowth;
+
+ while (MBBI != MBB.end() &&
+ (MBBI->getOpcode() == X86::PUSH32r ||
+ MBBI->getOpcode() == X86::PUSH64r)) {
+ PushedRegs = true;
+ unsigned Reg = MBBI->getOperand(0).getReg();
+ ++MBBI;
+
+ if (!HasFP && NeedsDwarfCFI) {
+ // Mark callee-saved push instruction.
+ // Define the current CFA rule to use the provided offset.
+ assert(StackSize);
+ unsigned CFIIndex = MMI.addFrameInst(
+ MCCFIInstruction::createDefCfaOffset(nullptr, StackOffset));
+ BuildMI(MBB, MBBI, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
+ .addCFIIndex(CFIIndex);
+ StackOffset += stackGrowth;
+ }
+
+ if (NeedsWinEH) {
+ BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_PushReg)).addImm(Reg).setMIFlag(
+ MachineInstr::FrameSetup);
+ }
+ }
+
+ // Realign stack after we pushed callee-saved registers (so that we'll be
+ // able to calculate their offsets from the frame pointer).
+ if (RegInfo->needsStackRealignment(MF)) {
+ assert(HasFP && "There should be a frame pointer if stack is realigned.");
+ uint64_t Val = -MaxAlign;
+ MachineInstr *MI =
+ BuildMI(MBB, MBBI, DL,
+ TII.get(getANDriOpcode(Uses64BitFramePtr, Val)), StackPtr)
+ .addReg(StackPtr)
+ .addImm(Val)
+ .setMIFlag(MachineInstr::FrameSetup);
+
+ // The EFLAGS implicit def is dead.
+ MI->getOperand(3).setIsDead();
+ }
+
+ // If there is an SUB32ri of ESP immediately before this instruction, merge
+ // the two. This can be the case when tail call elimination is enabled and
+ // the callee has more arguments then the caller.
+ NumBytes -= mergeSPUpdates(MBB, MBBI, StackPtr, true);
+
+ // If there is an ADD32ri or SUB32ri of ESP immediately after this
+ // instruction, merge the two instructions.
+ mergeSPUpdatesDown(MBB, MBBI, StackPtr, &NumBytes);
+
+ // Adjust stack pointer: ESP -= numbytes.
+
+ // Windows and cygwin/mingw require a prologue helper routine when allocating
+ // more than 4K bytes on the stack. Windows uses __chkstk and cygwin/mingw
+ // uses __alloca. __alloca and the 32-bit version of __chkstk will probe the
+ // stack and adjust the stack pointer in one go. The 64-bit version of
+ // __chkstk is only responsible for probing the stack. The 64-bit prologue is
+ // responsible for adjusting the stack pointer. Touching the stack at 4K
+ // increments is necessary to ensure that the guard pages used by the OS
+ // virtual memory manager are allocated in correct sequence.
+ if (NumBytes >= StackProbeSize && UseStackProbe) {
+ // Check whether EAX is livein for this function.
+ bool isEAXAlive = isEAXLiveIn(MF);
+
+ if (isEAXAlive) {
+ // Sanity check that EAX is not livein for this function.
+ // It should not be, so throw an assert.
+ assert(!Is64Bit && "EAX is livein in x64 case!");
+
+ // Save EAX
+ BuildMI(MBB, MBBI, DL, TII.get(X86::PUSH32r))
+ .addReg(X86::EAX, RegState::Kill)
+ .setMIFlag(MachineInstr::FrameSetup);
+ }
+
+ if (Is64Bit) {
+ // Handle the 64-bit Windows ABI case where we need to call __chkstk.
+ // Function prologue is responsible for adjusting the stack pointer.
+ BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64ri), X86::RAX)
+ .addImm(NumBytes)
+ .setMIFlag(MachineInstr::FrameSetup);
+ } else {
+ // Allocate NumBytes-4 bytes on stack in case of isEAXAlive.
+ // We'll also use 4 already allocated bytes for EAX.
+ BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32ri), X86::EAX)
+ .addImm(isEAXAlive ? NumBytes - 4 : NumBytes)
+ .setMIFlag(MachineInstr::FrameSetup);
+ }
+
+ // Save a pointer to the MI where we set AX.
+ MachineBasicBlock::iterator SetRAX = MBBI;
+ --SetRAX;
+
+ // Call __chkstk, __chkstk_ms, or __alloca.
+ emitStackProbeCall(MF, MBB, MBBI, DL);
+
+ // Apply the frame setup flag to all inserted instrs.
+ for (; SetRAX != MBBI; ++SetRAX)
+ SetRAX->setFlag(MachineInstr::FrameSetup);
+
+ if (isEAXAlive) {
+ // Restore EAX
+ MachineInstr *MI = addRegOffset(BuildMI(MF, DL, TII.get(X86::MOV32rm),
+ X86::EAX),
+ StackPtr, false, NumBytes - 4);
+ MI->setFlag(MachineInstr::FrameSetup);
+ MBB.insert(MBBI, MI);
+ }
+ } else if (NumBytes) {
+ emitSPUpdate(MBB, MBBI, StackPtr, -(int64_t)NumBytes, Is64Bit, Uses64BitFramePtr,
+ UseLEA, TII, *RegInfo);
+ }
+
+ int SEHFrameOffset = 0;
+ if (NeedsWinEH) {
+ if (HasFP) {
+ // We need to set frame base offset low enough such that all saved
+ // register offsets would be positive relative to it, but we can't
+ // just use NumBytes, because .seh_setframe offset must be <=240.
+ // So we pretend to have only allocated enough space to spill the
+ // non-volatile registers.
+ // We don't care about the rest of stack allocation, because unwinder
+ // will restore SP to (BP - SEHFrameOffset)
+ for (const CalleeSavedInfo &Info : MFI->getCalleeSavedInfo()) {
+ int offset = MFI->getObjectOffset(Info.getFrameIdx());
+ SEHFrameOffset = std::max(SEHFrameOffset, std::abs(offset));
+ }
+ SEHFrameOffset += SEHFrameOffset % 16; // ensure alignmant
+
+ // This only needs to account for XMM spill slots, GPR slots
+ // are covered by the .seh_pushreg's emitted above.
+ unsigned Size = SEHFrameOffset - X86FI->getCalleeSavedFrameSize();
+ if (Size) {
+ BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_StackAlloc))
+ .addImm(Size)
+ .setMIFlag(MachineInstr::FrameSetup);
+ }
+
+ BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_SetFrame))
+ .addImm(FramePtr)
+ .addImm(SEHFrameOffset)
+ .setMIFlag(MachineInstr::FrameSetup);
+ } else {
+ // SP will be the base register for restoring XMMs
+ if (NumBytes) {
+ BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_StackAlloc))
+ .addImm(NumBytes)
+ .setMIFlag(MachineInstr::FrameSetup);
+ }
+ }
+ }
+
+ // Skip the rest of register spilling code
+ while (MBBI != MBB.end() && MBBI->getFlag(MachineInstr::FrameSetup))
+ ++MBBI;
+
+ // Emit SEH info for non-GPRs
+ if (NeedsWinEH) {
+ for (const CalleeSavedInfo &Info : MFI->getCalleeSavedInfo()) {
+ unsigned Reg = Info.getReg();
+ if (X86::GR64RegClass.contains(Reg) || X86::GR32RegClass.contains(Reg))
+ continue;
+ assert(X86::FR64RegClass.contains(Reg) && "Unexpected register class");
+
+ int Offset = getFrameIndexOffset(MF, Info.getFrameIdx());
+ Offset += SEHFrameOffset;
+
+ BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_SaveXMM))
+ .addImm(Reg)
+ .addImm(Offset)
+ .setMIFlag(MachineInstr::FrameSetup);
+ }
+
+ BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_EndPrologue))
+ .setMIFlag(MachineInstr::FrameSetup);
+ }
+
+ // If we need a base pointer, set it up here. It's whatever the value
+ // of the stack pointer is at this point. Any variable size objects
+ // will be allocated after this, so we can still use the base pointer
+ // to reference locals.
+ if (RegInfo->hasBasePointer(MF)) {
+ // Update the base pointer with the current stack pointer.
+ unsigned Opc = Uses64BitFramePtr ? X86::MOV64rr : X86::MOV32rr;
+ BuildMI(MBB, MBBI, DL, TII.get(Opc), BasePtr)
+ .addReg(StackPtr)
+ .setMIFlag(MachineInstr::FrameSetup);
+ if (X86FI->getRestoreBasePointer()) {
+ // Stash value of base pointer. Saving RSP instead of EBP shortens dependence chain.
+ unsigned Opm = Uses64BitFramePtr ? X86::MOV64mr : X86::MOV32mr;
+ addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(Opm)),
+ FramePtr, true, X86FI->getRestoreBasePointerOffset())
+ .addReg(StackPtr)
+ .setMIFlag(MachineInstr::FrameSetup);
+ }
+ }
+
+ if (((!HasFP && NumBytes) || PushedRegs) && NeedsDwarfCFI) {
+ // Mark end of stack pointer adjustment.
+ if (!HasFP && NumBytes) {
+ // Define the current CFA rule to use the provided offset.
+ assert(StackSize);
+ unsigned CFIIndex = MMI.addFrameInst(
+ MCCFIInstruction::createDefCfaOffset(nullptr,
+ -StackSize + stackGrowth));
+
+ BuildMI(MBB, MBBI, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
+ .addCFIIndex(CFIIndex);
+ }
+
+ // Emit DWARF info specifying the offsets of the callee-saved registers.
+ if (PushedRegs)
+ emitCalleeSavedFrameMoves(MBB, MBBI, DL);
+ }
+}
+
+void X86FrameLowering::emitEpilogue(MachineFunction &MF,
+ MachineBasicBlock &MBB) const {
+ const MachineFrameInfo *MFI = MF.getFrameInfo();
+ X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
+ const X86RegisterInfo *RegInfo =
+ static_cast<const X86RegisterInfo *>(MF.getSubtarget().getRegisterInfo());
+ const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
+ MachineBasicBlock::iterator MBBI = MBB.getLastNonDebugInstr();
+ assert(MBBI != MBB.end() && "Returning block has no instructions");
+ unsigned RetOpcode = MBBI->getOpcode();
+ DebugLoc DL = MBBI->getDebugLoc();
+ const X86Subtarget &STI = MF.getTarget().getSubtarget<X86Subtarget>();
+ bool Is64Bit = STI.is64Bit();
+ // standard x86_64 and NaCl use 64-bit frame/stack pointers, x32 - 32-bit.
+ const bool Uses64BitFramePtr = STI.isTarget64BitLP64() || STI.isTargetNaCl64();
+ const bool Is64BitILP32 = STI.isTarget64BitILP32();
+ bool UseLEA = STI.useLeaForSP();
+ unsigned StackAlign = getStackAlignment();
+ unsigned SlotSize = RegInfo->getSlotSize();
+ unsigned FramePtr = RegInfo->getFrameRegister(MF);
+ unsigned MachineFramePtr = Is64BitILP32 ?
+ getX86SubSuperRegister(FramePtr, MVT::i64, false) : FramePtr;
+ unsigned StackPtr = RegInfo->getStackRegister();
+
+ bool IsWinEH = MF.getTarget().getMCAsmInfo()->usesWindowsCFI();
+ bool NeedsWinEH = IsWinEH && MF.getFunction()->needsUnwindTableEntry();
+
+ switch (RetOpcode) {
+ default:
+ llvm_unreachable("Can only insert epilog into returning blocks");
+ case X86::RETQ:
+ case X86::RETL:
+ case X86::RETIL:
+ case X86::RETIQ:
+ case X86::TCRETURNdi:
+ case X86::TCRETURNri:
+ case X86::TCRETURNmi:
+ case X86::TCRETURNdi64:
+ case X86::TCRETURNri64:
+ case X86::TCRETURNmi64:
+ case X86::EH_RETURN:
+ case X86::EH_RETURN64:
+ break; // These are ok
+ }
+
+ // Get the number of bytes to allocate from the FrameInfo.
+ uint64_t StackSize = MFI->getStackSize();
+ uint64_t MaxAlign = MFI->getMaxAlignment();
+ unsigned CSSize = X86FI->getCalleeSavedFrameSize();
+ uint64_t NumBytes = 0;
+
+ // If we're forcing a stack realignment we can't rely on just the frame
+ // info, we need to know the ABI stack alignment as well in case we
+ // have a call out. Otherwise just make sure we have some alignment - we'll
+ // go with the minimum.
+ if (ForceStackAlign) {
+ if (MFI->hasCalls())
+ MaxAlign = (StackAlign > MaxAlign) ? StackAlign : MaxAlign;
+ else
+ MaxAlign = MaxAlign ? MaxAlign : 4;
+ }
+
+ if (hasFP(MF)) {
+ // Calculate required stack adjustment.
+ uint64_t FrameSize = StackSize - SlotSize;
+ if (RegInfo->needsStackRealignment(MF)) {
+ // Callee-saved registers were pushed on stack before the stack
+ // was realigned.
+ FrameSize -= CSSize;
+ NumBytes = (FrameSize + MaxAlign - 1) / MaxAlign * MaxAlign;
+ } else {
+ NumBytes = FrameSize - CSSize;
+ }
+
+ // Pop EBP.
+ BuildMI(MBB, MBBI, DL,
+ TII.get(Is64Bit ? X86::POP64r : X86::POP32r), MachineFramePtr);
+ } else {
+ NumBytes = StackSize - CSSize;
+ }
+
+ // Skip the callee-saved pop instructions.
+ while (MBBI != MBB.begin()) {
+ MachineBasicBlock::iterator PI = std::prev(MBBI);
+ unsigned Opc = PI->getOpcode();
+
+ if (Opc != X86::POP32r && Opc != X86::POP64r && Opc != X86::DBG_VALUE &&
+ !PI->isTerminator())
+ break;
+
+ --MBBI;
+ }
+ MachineBasicBlock::iterator FirstCSPop = MBBI;
+
+ DL = MBBI->getDebugLoc();
+
+ // If there is an ADD32ri or SUB32ri of ESP immediately before this
+ // instruction, merge the two instructions.
+ if (NumBytes || MFI->hasVarSizedObjects())
+ mergeSPUpdatesUp(MBB, MBBI, StackPtr, &NumBytes);
+
+ // If dynamic alloca is used, then reset esp to point to the last callee-saved
+ // slot before popping them off! Same applies for the case, when stack was
+ // realigned.
+ if (RegInfo->needsStackRealignment(MF) || MFI->hasVarSizedObjects()) {
+ if (RegInfo->needsStackRealignment(MF))
+ MBBI = FirstCSPop;
+ if (CSSize != 0) {
+ unsigned Opc = getLEArOpcode(Uses64BitFramePtr);
+ addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr),
+ FramePtr, false, -CSSize);
+ --MBBI;
+ } else {
+ unsigned Opc = (Uses64BitFramePtr ? X86::MOV64rr : X86::MOV32rr);
+ BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr)
+ .addReg(FramePtr);
+ --MBBI;
+ }
+ } else if (NumBytes) {
+ // Adjust stack pointer back: ESP += numbytes.
+ emitSPUpdate(MBB, MBBI, StackPtr, NumBytes, Is64Bit, Uses64BitFramePtr, UseLEA,
+ TII, *RegInfo);
+ --MBBI;
+ }
+
+ // Windows unwinder will not invoke function's exception handler if IP is
+ // either in prologue or in epilogue. This behavior causes a problem when a
+ // call immediately precedes an epilogue, because the return address points
+ // into the epilogue. To cope with that, we insert an epilogue marker here,
+ // then replace it with a 'nop' if it ends up immediately after a CALL in the
+ // final emitted code.
+ if (NeedsWinEH)
+ BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_Epilogue));
+
+ // We're returning from function via eh_return.
+ if (RetOpcode == X86::EH_RETURN || RetOpcode == X86::EH_RETURN64) {
+ MBBI = MBB.getLastNonDebugInstr();
+ MachineOperand &DestAddr = MBBI->getOperand(0);
+ assert(DestAddr.isReg() && "Offset should be in register!");
+ BuildMI(MBB, MBBI, DL,
+ TII.get(Uses64BitFramePtr ? X86::MOV64rr : X86::MOV32rr),
+ StackPtr).addReg(DestAddr.getReg());
+ } else if (RetOpcode == X86::TCRETURNri || RetOpcode == X86::TCRETURNdi ||
+ RetOpcode == X86::TCRETURNmi ||
+ RetOpcode == X86::TCRETURNri64 || RetOpcode == X86::TCRETURNdi64 ||
+ RetOpcode == X86::TCRETURNmi64) {
+ bool isMem = RetOpcode == X86::TCRETURNmi || RetOpcode == X86::TCRETURNmi64;
+ // Tail call return: adjust the stack pointer and jump to callee.
+ MBBI = MBB.getLastNonDebugInstr();
+ MachineOperand &JumpTarget = MBBI->getOperand(0);
+ MachineOperand &StackAdjust = MBBI->getOperand(isMem ? 5 : 1);
+ assert(StackAdjust.isImm() && "Expecting immediate value.");
+
+ // Adjust stack pointer.
+ int StackAdj = StackAdjust.getImm();
+ int MaxTCDelta = X86FI->getTCReturnAddrDelta();
+ int Offset = 0;
+ assert(MaxTCDelta <= 0 && "MaxTCDelta should never be positive");
+
+ // Incoporate the retaddr area.
+ Offset = StackAdj-MaxTCDelta;
+ assert(Offset >= 0 && "Offset should never be negative");
+
+ if (Offset) {
+ // Check for possible merge with preceding ADD instruction.
+ Offset += mergeSPUpdates(MBB, MBBI, StackPtr, true);
+ emitSPUpdate(MBB, MBBI, StackPtr, Offset, Is64Bit, Uses64BitFramePtr,
+ UseLEA, TII, *RegInfo);
+ }
+
+ // Jump to label or value in register.
+ bool IsWin64 = STI.isTargetWin64();
+ if (RetOpcode == X86::TCRETURNdi || RetOpcode == X86::TCRETURNdi64) {
+ unsigned Op = (RetOpcode == X86::TCRETURNdi)
+ ? X86::TAILJMPd
+ : (IsWin64 ? X86::TAILJMPd64_REX : X86::TAILJMPd64);
+ MachineInstrBuilder MIB = BuildMI(MBB, MBBI, DL, TII.get(Op));
+ if (JumpTarget.isGlobal())
+ MIB.addGlobalAddress(JumpTarget.getGlobal(), JumpTarget.getOffset(),
+ JumpTarget.getTargetFlags());
+ else {
+ assert(JumpTarget.isSymbol());
+ MIB.addExternalSymbol(JumpTarget.getSymbolName(),
+ JumpTarget.getTargetFlags());
+ }
+ } else if (RetOpcode == X86::TCRETURNmi || RetOpcode == X86::TCRETURNmi64) {
+ unsigned Op = (RetOpcode == X86::TCRETURNmi)
+ ? X86::TAILJMPm
+ : (IsWin64 ? X86::TAILJMPm64_REX : X86::TAILJMPm64);
+ MachineInstrBuilder MIB = BuildMI(MBB, MBBI, DL, TII.get(Op));
+ for (unsigned i = 0; i != 5; ++i)
+ MIB.addOperand(MBBI->getOperand(i));
+ } else if (RetOpcode == X86::TCRETURNri64) {
+ BuildMI(MBB, MBBI, DL,
+ TII.get(IsWin64 ? X86::TAILJMPr64_REX : X86::TAILJMPr64))
+ .addReg(JumpTarget.getReg(), RegState::Kill);
+ } else {
+ BuildMI(MBB, MBBI, DL, TII.get(X86::TAILJMPr)).
+ addReg(JumpTarget.getReg(), RegState::Kill);
+ }
+
+ MachineInstr *NewMI = std::prev(MBBI);
+ NewMI->copyImplicitOps(MF, MBBI);
+
+ // Delete the pseudo instruction TCRETURN.
+ MBB.erase(MBBI);
+ } else if ((RetOpcode == X86::RETQ || RetOpcode == X86::RETL ||
+ RetOpcode == X86::RETIQ || RetOpcode == X86::RETIL) &&
+ (X86FI->getTCReturnAddrDelta() < 0)) {
+ // Add the return addr area delta back since we are not tail calling.
+ int delta = -1*X86FI->getTCReturnAddrDelta();
+ MBBI = MBB.getLastNonDebugInstr();
+
+ // Check for possible merge with preceding ADD instruction.
+ delta += mergeSPUpdates(MBB, MBBI, StackPtr, true);
+ emitSPUpdate(MBB, MBBI, StackPtr, delta, Is64Bit, Uses64BitFramePtr, UseLEA, TII,
+ *RegInfo);
+ }
+}
+
+int X86FrameLowering::getFrameIndexOffset(const MachineFunction &MF,
+ int FI) const {
+ const X86RegisterInfo *RegInfo =
+ static_cast<const X86RegisterInfo *>(MF.getSubtarget().getRegisterInfo());
+ const MachineFrameInfo *MFI = MF.getFrameInfo();
+ int Offset = MFI->getObjectOffset(FI) - getOffsetOfLocalArea();
+ uint64_t StackSize = MFI->getStackSize();
+
+ if (RegInfo->hasBasePointer(MF)) {
+ assert (hasFP(MF) && "VLAs and dynamic stack realign, but no FP?!");
+ if (FI < 0) {
+ // Skip the saved EBP.
+ return Offset + RegInfo->getSlotSize();
+ } else {
+ assert((-(Offset + StackSize)) % MFI->getObjectAlignment(FI) == 0);
+ return Offset + StackSize;
+ }
+ } else if (RegInfo->needsStackRealignment(MF)) {
+ if (FI < 0) {
+ // Skip the saved EBP.
+ return Offset + RegInfo->getSlotSize();
+ } else {
+ assert((-(Offset + StackSize)) % MFI->getObjectAlignment(FI) == 0);
+ return Offset + StackSize;
+ }
+ // FIXME: Support tail calls
+ } else {
+ if (!hasFP(MF))
+ return Offset + StackSize;
+
+ // Skip the saved EBP.
+ Offset += RegInfo->getSlotSize();
+
+ // Skip the RETADDR move area
+ const X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
+ int TailCallReturnAddrDelta = X86FI->getTCReturnAddrDelta();
+ if (TailCallReturnAddrDelta < 0)
+ Offset -= TailCallReturnAddrDelta;
+ }
+
+ return Offset;
+}
+
+int X86FrameLowering::getFrameIndexReference(const MachineFunction &MF, int FI,
+ unsigned &FrameReg) const {
+ const X86RegisterInfo *RegInfo =
+ static_cast<const X86RegisterInfo *>(MF.getSubtarget().getRegisterInfo());
+ // We can't calculate offset from frame pointer if the stack is realigned,
+ // so enforce usage of stack/base pointer. The base pointer is used when we
+ // have dynamic allocas in addition to dynamic realignment.
+ if (RegInfo->hasBasePointer(MF))
+ FrameReg = RegInfo->getBaseRegister();
+ else if (RegInfo->needsStackRealignment(MF))
+ FrameReg = RegInfo->getStackRegister();
+ else
+ FrameReg = RegInfo->getFrameRegister(MF);
+ return getFrameIndexOffset(MF, FI);
+}
+
+// Simplified from getFrameIndexOffset keeping only StackPointer cases
+int X86FrameLowering::getFrameIndexOffsetFromSP(const MachineFunction &MF, int FI) const {
+ const MachineFrameInfo *MFI = MF.getFrameInfo();
+ // Does not include any dynamic realign.
+ const uint64_t StackSize = MFI->getStackSize();
+ {
+#ifndef NDEBUG
+ const X86RegisterInfo *RegInfo =
+ static_cast<const X86RegisterInfo*>(MF.getSubtarget().getRegisterInfo());
+ // Note: LLVM arranges the stack as:
+ // Args > Saved RetPC (<--FP) > CSRs > dynamic alignment (<--BP)
+ // > "Stack Slots" (<--SP)
+ // We can always address StackSlots from RSP. We can usually (unless
+ // needsStackRealignment) address CSRs from RSP, but sometimes need to
+ // address them from RBP. FixedObjects can be placed anywhere in the stack
+ // frame depending on their specific requirements (i.e. we can actually
+ // refer to arguments to the function which are stored in the *callers*
+ // frame). As a result, THE RESULT OF THIS CALL IS MEANINGLESS FOR CSRs
+ // AND FixedObjects IFF needsStackRealignment or hasVarSizedObject.
+
+ assert(!RegInfo->hasBasePointer(MF) && "we don't handle this case");
+
+ // We don't handle tail calls, and shouldn't be seeing them
+ // either.
+ int TailCallReturnAddrDelta =
+ MF.getInfo<X86MachineFunctionInfo>()->getTCReturnAddrDelta();
+ assert(!(TailCallReturnAddrDelta < 0) && "we don't handle this case!");
+#endif
+ }
+
+ // This is how the math works out:
+ //
+ // %rsp grows (i.e. gets lower) left to right. Each box below is
+ // one word (eight bytes). Obj0 is the stack slot we're trying to
+ // get to.
+ //
+ // ----------------------------------
+ // | BP | Obj0 | Obj1 | ... | ObjN |
+ // ----------------------------------
+ // ^ ^ ^ ^
+ // A B C E
+ //
+ // A is the incoming stack pointer.
+ // (B - A) is the local area offset (-8 for x86-64) [1]
+ // (C - A) is the Offset returned by MFI->getObjectOffset for Obj0 [2]
+ //
+ // |(E - B)| is the StackSize (absolute value, positive). For a
+ // stack that grown down, this works out to be (B - E). [3]
+ //
+ // E is also the value of %rsp after stack has been set up, and we
+ // want (C - E) -- the value we can add to %rsp to get to Obj0. Now
+ // (C - E) == (C - A) - (B - A) + (B - E)
+ // { Using [1], [2] and [3] above }
+ // == getObjectOffset - LocalAreaOffset + StackSize
+ //
+
+ // Get the Offset from the StackPointer
+ int Offset = MFI->getObjectOffset(FI) - getOffsetOfLocalArea();
+
+ return Offset + StackSize;
+}
+// Simplified from getFrameIndexReference keeping only StackPointer cases
+int X86FrameLowering::getFrameIndexReferenceFromSP(const MachineFunction &MF, int FI,
+ unsigned &FrameReg) const {
+ const X86RegisterInfo *RegInfo =
+ static_cast<const X86RegisterInfo*>(MF.getSubtarget().getRegisterInfo());
+
+ assert(!RegInfo->hasBasePointer(MF) && "we don't handle this case");
+
+ FrameReg = RegInfo->getStackRegister();
+ return getFrameIndexOffsetFromSP(MF, FI);
+}
+
+bool X86FrameLowering::assignCalleeSavedSpillSlots(
+ MachineFunction &MF, const TargetRegisterInfo *TRI,
+ std::vector<CalleeSavedInfo> &CSI) const {
+ MachineFrameInfo *MFI = MF.getFrameInfo();
+ const X86RegisterInfo *RegInfo =
+ static_cast<const X86RegisterInfo *>(MF.getSubtarget().getRegisterInfo());
+ unsigned SlotSize = RegInfo->getSlotSize();
+ X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
+
+ unsigned CalleeSavedFrameSize = 0;
+ int SpillSlotOffset = getOffsetOfLocalArea() + X86FI->getTCReturnAddrDelta();
+
+ if (hasFP(MF)) {
+ // emitPrologue always spills frame register the first thing.
+ SpillSlotOffset -= SlotSize;
+ MFI->CreateFixedSpillStackObject(SlotSize, SpillSlotOffset);
+
+ // Since emitPrologue and emitEpilogue will handle spilling and restoring of
+ // the frame register, we can delete it from CSI list and not have to worry
+ // about avoiding it later.
+ unsigned FPReg = RegInfo->getFrameRegister(MF);
+ for (unsigned i = 0; i < CSI.size(); ++i) {
+ if (TRI->regsOverlap(CSI[i].getReg(),FPReg)) {
+ CSI.erase(CSI.begin() + i);
+ break;
+ }
+ }
+ }
+
+ // Assign slots for GPRs. It increases frame size.
+ for (unsigned i = CSI.size(); i != 0; --i) {
+ unsigned Reg = CSI[i - 1].getReg();
+
+ if (!X86::GR64RegClass.contains(Reg) && !X86::GR32RegClass.contains(Reg))
+ continue;
+
+ SpillSlotOffset -= SlotSize;
+ CalleeSavedFrameSize += SlotSize;
+
+ int SlotIndex = MFI->CreateFixedSpillStackObject(SlotSize, SpillSlotOffset);
+ CSI[i - 1].setFrameIdx(SlotIndex);
+ }
+
+ X86FI->setCalleeSavedFrameSize(CalleeSavedFrameSize);
+
+ // Assign slots for XMMs.
+ for (unsigned i = CSI.size(); i != 0; --i) {
+ unsigned Reg = CSI[i - 1].getReg();
+ if (X86::GR64RegClass.contains(Reg) || X86::GR32RegClass.contains(Reg))
+ continue;
+
+ const TargetRegisterClass *RC = RegInfo->getMinimalPhysRegClass(Reg);
+ // ensure alignment
+ SpillSlotOffset -= std::abs(SpillSlotOffset) % RC->getAlignment();
+ // spill into slot
+ SpillSlotOffset -= RC->getSize();
+ int SlotIndex =
+ MFI->CreateFixedSpillStackObject(RC->getSize(), SpillSlotOffset);
+ CSI[i - 1].setFrameIdx(SlotIndex);
+ MFI->ensureMaxAlignment(RC->getAlignment());
+ }
+
+ return true;
+}
+
+bool X86FrameLowering::spillCalleeSavedRegisters(
+ MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
+ const std::vector<CalleeSavedInfo> &CSI,
+ const TargetRegisterInfo *TRI) const {
+ DebugLoc DL = MBB.findDebugLoc(MI);
+
+ MachineFunction &MF = *MBB.getParent();
+ const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
+ const X86Subtarget &STI = MF.getTarget().getSubtarget<X86Subtarget>();
+
+ // Push GPRs. It increases frame size.
+ unsigned Opc = STI.is64Bit() ? X86::PUSH64r : X86::PUSH32r;
+ for (unsigned i = CSI.size(); i != 0; --i) {
+ unsigned Reg = CSI[i - 1].getReg();
+
+ if (!X86::GR64RegClass.contains(Reg) && !X86::GR32RegClass.contains(Reg))
+ continue;
+ // Add the callee-saved register as live-in. It's killed at the spill.
+ MBB.addLiveIn(Reg);
+
+ BuildMI(MBB, MI, DL, TII.get(Opc)).addReg(Reg, RegState::Kill)
+ .setMIFlag(MachineInstr::FrameSetup);
+ }
+
+ // Make XMM regs spilled. X86 does not have ability of push/pop XMM.
+ // It can be done by spilling XMMs to stack frame.
+ for (unsigned i = CSI.size(); i != 0; --i) {
+ unsigned Reg = CSI[i-1].getReg();
+ if (X86::GR64RegClass.contains(Reg) ||
+ X86::GR32RegClass.contains(Reg))
+ continue;
+ // Add the callee-saved register as live-in. It's killed at the spill.
+ MBB.addLiveIn(Reg);
+ const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg);
+
+ TII.storeRegToStackSlot(MBB, MI, Reg, true, CSI[i - 1].getFrameIdx(), RC,
+ TRI);
+ --MI;
+ MI->setFlag(MachineInstr::FrameSetup);
+ ++MI;
+ }
+
+ return true;
+}
+
+bool X86FrameLowering::restoreCalleeSavedRegisters(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator MI,
+ const std::vector<CalleeSavedInfo> &CSI,
+ const TargetRegisterInfo *TRI) const {
+ if (CSI.empty())
+ return false;
+
+ DebugLoc DL = MBB.findDebugLoc(MI);
+
+ MachineFunction &MF = *MBB.getParent();
+ const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
+ const X86Subtarget &STI = MF.getTarget().getSubtarget<X86Subtarget>();
+
+ // Reload XMMs from stack frame.
+ for (unsigned i = 0, e = CSI.size(); i != e; ++i) {
+ unsigned Reg = CSI[i].getReg();
+ if (X86::GR64RegClass.contains(Reg) ||
+ X86::GR32RegClass.contains(Reg))
+ continue;
+
+ const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg);
+ TII.loadRegFromStackSlot(MBB, MI, Reg, CSI[i].getFrameIdx(), RC, TRI);
+ }
+
+ // POP GPRs.
+ unsigned Opc = STI.is64Bit() ? X86::POP64r : X86::POP32r;
+ for (unsigned i = 0, e = CSI.size(); i != e; ++i) {
+ unsigned Reg = CSI[i].getReg();
+ if (!X86::GR64RegClass.contains(Reg) &&
+ !X86::GR32RegClass.contains(Reg))
+ continue;
+
+ BuildMI(MBB, MI, DL, TII.get(Opc), Reg);
+ }
+ return true;
+}
+
+void
+X86FrameLowering::processFunctionBeforeCalleeSavedScan(MachineFunction &MF,
+ RegScavenger *RS) const {
+ MachineFrameInfo *MFI = MF.getFrameInfo();
+ const X86RegisterInfo *RegInfo =
+ static_cast<const X86RegisterInfo *>(MF.getSubtarget().getRegisterInfo());
+ unsigned SlotSize = RegInfo->getSlotSize();
+
+ X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
+ int64_t TailCallReturnAddrDelta = X86FI->getTCReturnAddrDelta();
+
+ if (TailCallReturnAddrDelta < 0) {
+ // create RETURNADDR area
+ // arg
+ // arg
+ // RETADDR
+ // { ...
+ // RETADDR area
+ // ...
+ // }
+ // [EBP]
+ MFI->CreateFixedObject(-TailCallReturnAddrDelta,
+ TailCallReturnAddrDelta - SlotSize, true);
+ }
+
+ // Spill the BasePtr if it's used.
+ if (RegInfo->hasBasePointer(MF))
+ MF.getRegInfo().setPhysRegUsed(RegInfo->getBaseRegister());
+}
+
+static bool
+HasNestArgument(const MachineFunction *MF) {
+ const Function *F = MF->getFunction();
+ for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
+ I != E; I++) {
+ if (I->hasNestAttr())
+ return true;
+ }
+ return false;
+}
+
+/// GetScratchRegister - Get a temp register for performing work in the
+/// segmented stack and the Erlang/HiPE stack prologue. Depending on platform
+/// and the properties of the function either one or two registers will be
+/// needed. Set primary to true for the first register, false for the second.
+static unsigned
+GetScratchRegister(bool Is64Bit, bool IsLP64, const MachineFunction &MF, bool Primary) {
+ CallingConv::ID CallingConvention = MF.getFunction()->getCallingConv();
+
+ // Erlang stuff.
+ if (CallingConvention == CallingConv::HiPE) {
+ if (Is64Bit)
+ return Primary ? X86::R14 : X86::R13;
+ else
+ return Primary ? X86::EBX : X86::EDI;
+ }
+
+ if (Is64Bit) {
+ if (IsLP64)
+ return Primary ? X86::R11 : X86::R12;
+ else
+ return Primary ? X86::R11D : X86::R12D;
+ }
+
+ bool IsNested = HasNestArgument(&MF);
+
+ if (CallingConvention == CallingConv::X86_FastCall ||
+ CallingConvention == CallingConv::Fast) {
+ if (IsNested)
+ report_fatal_error("Segmented stacks does not support fastcall with "
+ "nested function.");
+ return Primary ? X86::EAX : X86::ECX;
+ }
+ if (IsNested)
+ return Primary ? X86::EDX : X86::EAX;
+ return Primary ? X86::ECX : X86::EAX;
+}
+
+// The stack limit in the TCB is set to this many bytes above the actual stack
+// limit.
+static const uint64_t kSplitStackAvailable = 256;
+
+void
+X86FrameLowering::adjustForSegmentedStacks(MachineFunction &MF) const {
+ MachineBasicBlock &prologueMBB = MF.front();
+ MachineFrameInfo *MFI = MF.getFrameInfo();
+ const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
+ uint64_t StackSize;
+ const X86Subtarget &STI = MF.getTarget().getSubtarget<X86Subtarget>();
+ bool Is64Bit = STI.is64Bit();
+ const bool IsLP64 = STI.isTarget64BitLP64();
+ unsigned TlsReg, TlsOffset;
+ DebugLoc DL;
+
+ unsigned ScratchReg = GetScratchRegister(Is64Bit, IsLP64, MF, true);
+ assert(!MF.getRegInfo().isLiveIn(ScratchReg) &&
+ "Scratch register is live-in");
+
+ if (MF.getFunction()->isVarArg())
+ report_fatal_error("Segmented stacks do not support vararg functions.");
+ if (!STI.isTargetLinux() && !STI.isTargetDarwin() && !STI.isTargetWin32() &&
+ !STI.isTargetWin64() && !STI.isTargetFreeBSD() &&
+ !STI.isTargetDragonFly())
+ report_fatal_error("Segmented stacks not supported on this platform.");
+
+ // Eventually StackSize will be calculated by a link-time pass; which will
+ // also decide whether checking code needs to be injected into this particular
+ // prologue.
+ StackSize = MFI->getStackSize();
+
+ // Do not generate a prologue for functions with a stack of size zero
+ if (StackSize == 0)
+ return;
+
+ MachineBasicBlock *allocMBB = MF.CreateMachineBasicBlock();
+ MachineBasicBlock *checkMBB = MF.CreateMachineBasicBlock();
+ X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
+ bool IsNested = false;
+
+ // We need to know if the function has a nest argument only in 64 bit mode.
+ if (Is64Bit)
+ IsNested = HasNestArgument(&MF);
+
+ // The MOV R10, RAX needs to be in a different block, since the RET we emit in
+ // allocMBB needs to be last (terminating) instruction.
+
+ for (MachineBasicBlock::livein_iterator i = prologueMBB.livein_begin(),
+ e = prologueMBB.livein_end(); i != e; i++) {
+ allocMBB->addLiveIn(*i);
+ checkMBB->addLiveIn(*i);
+ }
+
+ if (IsNested)
+ allocMBB->addLiveIn(IsLP64 ? X86::R10 : X86::R10D);
+
+ MF.push_front(allocMBB);
+ MF.push_front(checkMBB);
+
+ // When the frame size is less than 256 we just compare the stack
+ // boundary directly to the value of the stack pointer, per gcc.
+ bool CompareStackPointer = StackSize < kSplitStackAvailable;
+
+ // Read the limit off the current stacklet off the stack_guard location.
+ if (Is64Bit) {
+ if (STI.isTargetLinux()) {
+ TlsReg = X86::FS;
+ TlsOffset = IsLP64 ? 0x70 : 0x40;
+ } else if (STI.isTargetDarwin()) {
+ TlsReg = X86::GS;
+ TlsOffset = 0x60 + 90*8; // See pthread_machdep.h. Steal TLS slot 90.
+ } else if (STI.isTargetWin64()) {
+ TlsReg = X86::GS;
+ TlsOffset = 0x28; // pvArbitrary, reserved for application use
+ } else if (STI.isTargetFreeBSD()) {
+ TlsReg = X86::FS;
+ TlsOffset = 0x18;
+ } else if (STI.isTargetDragonFly()) {
+ TlsReg = X86::FS;
+ TlsOffset = 0x20; // use tls_tcb.tcb_segstack
+ } else {
+ report_fatal_error("Segmented stacks not supported on this platform.");
+ }
+
+ if (CompareStackPointer)
+ ScratchReg = IsLP64 ? X86::RSP : X86::ESP;
+ else
+ BuildMI(checkMBB, DL, TII.get(IsLP64 ? X86::LEA64r : X86::LEA64_32r), ScratchReg).addReg(X86::RSP)
+ .addImm(1).addReg(0).addImm(-StackSize).addReg(0);
+
+ BuildMI(checkMBB, DL, TII.get(IsLP64 ? X86::CMP64rm : X86::CMP32rm)).addReg(ScratchReg)
+ .addReg(0).addImm(1).addReg(0).addImm(TlsOffset).addReg(TlsReg);
+ } else {
+ if (STI.isTargetLinux()) {
+ TlsReg = X86::GS;
+ TlsOffset = 0x30;
+ } else if (STI.isTargetDarwin()) {
+ TlsReg = X86::GS;
+ TlsOffset = 0x48 + 90*4;
+ } else if (STI.isTargetWin32()) {
+ TlsReg = X86::FS;
+ TlsOffset = 0x14; // pvArbitrary, reserved for application use
+ } else if (STI.isTargetDragonFly()) {
+ TlsReg = X86::FS;
+ TlsOffset = 0x10; // use tls_tcb.tcb_segstack
+ } else if (STI.isTargetFreeBSD()) {
+ report_fatal_error("Segmented stacks not supported on FreeBSD i386.");
+ } else {
+ report_fatal_error("Segmented stacks not supported on this platform.");
+ }
+
+ if (CompareStackPointer)
+ ScratchReg = X86::ESP;
+ else
+ BuildMI(checkMBB, DL, TII.get(X86::LEA32r), ScratchReg).addReg(X86::ESP)
+ .addImm(1).addReg(0).addImm(-StackSize).addReg(0);
+
+ if (STI.isTargetLinux() || STI.isTargetWin32() || STI.isTargetWin64() ||
+ STI.isTargetDragonFly()) {
+ BuildMI(checkMBB, DL, TII.get(X86::CMP32rm)).addReg(ScratchReg)
+ .addReg(0).addImm(0).addReg(0).addImm(TlsOffset).addReg(TlsReg);
+ } else if (STI.isTargetDarwin()) {
+
+ // TlsOffset doesn't fit into a mod r/m byte so we need an extra register.
+ unsigned ScratchReg2;
+ bool SaveScratch2;
+ if (CompareStackPointer) {
+ // The primary scratch register is available for holding the TLS offset.
+ ScratchReg2 = GetScratchRegister(Is64Bit, IsLP64, MF, true);
+ SaveScratch2 = false;
+ } else {
+ // Need to use a second register to hold the TLS offset
+ ScratchReg2 = GetScratchRegister(Is64Bit, IsLP64, MF, false);
+
+ // Unfortunately, with fastcc the second scratch register may hold an
+ // argument.
+ SaveScratch2 = MF.getRegInfo().isLiveIn(ScratchReg2);
+ }
+
+ // If Scratch2 is live-in then it needs to be saved.
+ assert((!MF.getRegInfo().isLiveIn(ScratchReg2) || SaveScratch2) &&
+ "Scratch register is live-in and not saved");
+
+ if (SaveScratch2)
+ BuildMI(checkMBB, DL, TII.get(X86::PUSH32r))
+ .addReg(ScratchReg2, RegState::Kill);
+
+ BuildMI(checkMBB, DL, TII.get(X86::MOV32ri), ScratchReg2)
+ .addImm(TlsOffset);
+ BuildMI(checkMBB, DL, TII.get(X86::CMP32rm))
+ .addReg(ScratchReg)
+ .addReg(ScratchReg2).addImm(1).addReg(0)
+ .addImm(0)
+ .addReg(TlsReg);
+
+ if (SaveScratch2)
+ BuildMI(checkMBB, DL, TII.get(X86::POP32r), ScratchReg2);
+ }
+ }
+
+ // This jump is taken if SP >= (Stacklet Limit + Stack Space required).
+ // It jumps to normal execution of the function body.
+ BuildMI(checkMBB, DL, TII.get(X86::JA_1)).addMBB(&prologueMBB);
+
+ // On 32 bit we first push the arguments size and then the frame size. On 64
+ // bit, we pass the stack frame size in r10 and the argument size in r11.
+ if (Is64Bit) {
+ // Functions with nested arguments use R10, so it needs to be saved across
+ // the call to _morestack
+
+ const unsigned RegAX = IsLP64 ? X86::RAX : X86::EAX;
+ const unsigned Reg10 = IsLP64 ? X86::R10 : X86::R10D;
+ const unsigned Reg11 = IsLP64 ? X86::R11 : X86::R11D;
+ const unsigned MOVrr = IsLP64 ? X86::MOV64rr : X86::MOV32rr;
+ const unsigned MOVri = IsLP64 ? X86::MOV64ri : X86::MOV32ri;
+
+ if (IsNested)
+ BuildMI(allocMBB, DL, TII.get(MOVrr), RegAX).addReg(Reg10);
+
+ BuildMI(allocMBB, DL, TII.get(MOVri), Reg10)
+ .addImm(StackSize);
+ BuildMI(allocMBB, DL, TII.get(MOVri), Reg11)
+ .addImm(X86FI->getArgumentStackSize());
+ MF.getRegInfo().setPhysRegUsed(Reg10);
+ MF.getRegInfo().setPhysRegUsed(Reg11);
+ } else {
+ BuildMI(allocMBB, DL, TII.get(X86::PUSHi32))
+ .addImm(X86FI->getArgumentStackSize());
+ BuildMI(allocMBB, DL, TII.get(X86::PUSHi32))
+ .addImm(StackSize);
+ }
+
+ // __morestack is in libgcc
+ if (Is64Bit && MF.getTarget().getCodeModel() == CodeModel::Large) {
+ // Under the large code model, we cannot assume that __morestack lives
+ // within 2^31 bytes of the call site, so we cannot use pc-relative
+ // addressing. We cannot perform the call via a temporary register,
+ // as the rax register may be used to store the static chain, and all
+ // other suitable registers may be either callee-save or used for
+ // parameter passing. We cannot use the stack at this point either
+ // because __morestack manipulates the stack directly.
+ //
+ // To avoid these issues, perform an indirect call via a read-only memory
+ // location containing the address.
+ //
+ // This solution is not perfect, as it assumes that the .rodata section
+ // is laid out within 2^31 bytes of each function body, but this seems
+ // to be sufficient for JIT.
+ BuildMI(allocMBB, DL, TII.get(X86::CALL64m))
+ .addReg(X86::RIP)
+ .addImm(0)
+ .addReg(0)
+ .addExternalSymbol("__morestack_addr")
+ .addReg(0);
+ MF.getMMI().setUsesMorestackAddr(true);
+ } else {
+ if (Is64Bit)
+ BuildMI(allocMBB, DL, TII.get(X86::CALL64pcrel32))
+ .addExternalSymbol("__morestack");
+ else
+ BuildMI(allocMBB, DL, TII.get(X86::CALLpcrel32))
+ .addExternalSymbol("__morestack");
+ }
+
+ if (IsNested)
+ BuildMI(allocMBB, DL, TII.get(X86::MORESTACK_RET_RESTORE_R10));
+ else
+ BuildMI(allocMBB, DL, TII.get(X86::MORESTACK_RET));
+
+ allocMBB->addSuccessor(&prologueMBB);
+
+ checkMBB->addSuccessor(allocMBB);
+ checkMBB->addSuccessor(&prologueMBB);
+
+#ifdef XDEBUG
+ MF.verify();
+#endif
+}
+
+/// Erlang programs may need a special prologue to handle the stack size they
+/// might need at runtime. That is because Erlang/OTP does not implement a C
+/// stack but uses a custom implementation of hybrid stack/heap architecture.
+/// (for more information see Eric Stenman's Ph.D. thesis:
+/// http://publications.uu.se/uu/fulltext/nbn_se_uu_diva-2688.pdf)
+///
+/// CheckStack:
+/// temp0 = sp - MaxStack
+/// if( temp0 < SP_LIMIT(P) ) goto IncStack else goto OldStart
+/// OldStart:
+/// ...
+/// IncStack:
+/// call inc_stack # doubles the stack space
+/// temp0 = sp - MaxStack
+/// if( temp0 < SP_LIMIT(P) ) goto IncStack else goto OldStart
+void X86FrameLowering::adjustForHiPEPrologue(MachineFunction &MF) const {
+ const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
+ MachineFrameInfo *MFI = MF.getFrameInfo();
+ const unsigned SlotSize =
+ static_cast<const X86RegisterInfo *>(MF.getSubtarget().getRegisterInfo())
+ ->getSlotSize();
+ const X86Subtarget &STI = MF.getTarget().getSubtarget<X86Subtarget>();
+ const bool Is64Bit = STI.is64Bit();
+ const bool IsLP64 = STI.isTarget64BitLP64();
+ DebugLoc DL;
+ // HiPE-specific values
+ const unsigned HipeLeafWords = 24;
+ const unsigned CCRegisteredArgs = Is64Bit ? 6 : 5;
+ const unsigned Guaranteed = HipeLeafWords * SlotSize;
+ unsigned CallerStkArity = MF.getFunction()->arg_size() > CCRegisteredArgs ?
+ MF.getFunction()->arg_size() - CCRegisteredArgs : 0;
+ unsigned MaxStack = MFI->getStackSize() + CallerStkArity*SlotSize + SlotSize;
+
+ assert(STI.isTargetLinux() &&
+ "HiPE prologue is only supported on Linux operating systems.");
+
+ // Compute the largest caller's frame that is needed to fit the callees'
+ // frames. This 'MaxStack' is computed from:
+ //
+ // a) the fixed frame size, which is the space needed for all spilled temps,
+ // b) outgoing on-stack parameter areas, and
+ // c) the minimum stack space this function needs to make available for the
+ // functions it calls (a tunable ABI property).
+ if (MFI->hasCalls()) {
+ unsigned MoreStackForCalls = 0;
+
+ for (MachineFunction::iterator MBBI = MF.begin(), MBBE = MF.end();
+ MBBI != MBBE; ++MBBI)
+ for (MachineBasicBlock::iterator MI = MBBI->begin(), ME = MBBI->end();
+ MI != ME; ++MI) {
+ if (!MI->isCall())
+ continue;
+
+ // Get callee operand.
+ const MachineOperand &MO = MI->getOperand(0);
+
+ // Only take account of global function calls (no closures etc.).
+ if (!MO.isGlobal())
+ continue;
+
+ const Function *F = dyn_cast<Function>(MO.getGlobal());
+ if (!F)
+ continue;
+
+ // Do not update 'MaxStack' for primitive and built-in functions
+ // (encoded with names either starting with "erlang."/"bif_" or not
+ // having a ".", such as a simple <Module>.<Function>.<Arity>, or an
+ // "_", such as the BIF "suspend_0") as they are executed on another
+ // stack.
+ if (F->getName().find("erlang.") != StringRef::npos ||
+ F->getName().find("bif_") != StringRef::npos ||
+ F->getName().find_first_of("._") == StringRef::npos)
+ continue;
+
+ unsigned CalleeStkArity =
+ F->arg_size() > CCRegisteredArgs ? F->arg_size()-CCRegisteredArgs : 0;
+ if (HipeLeafWords - 1 > CalleeStkArity)
+ MoreStackForCalls = std::max(MoreStackForCalls,
+ (HipeLeafWords - 1 - CalleeStkArity) * SlotSize);
+ }
+ MaxStack += MoreStackForCalls;
+ }
+
+ // If the stack frame needed is larger than the guaranteed then runtime checks
+ // and calls to "inc_stack_0" BIF should be inserted in the assembly prologue.
+ if (MaxStack > Guaranteed) {
+ MachineBasicBlock &prologueMBB = MF.front();
+ MachineBasicBlock *stackCheckMBB = MF.CreateMachineBasicBlock();
+ MachineBasicBlock *incStackMBB = MF.CreateMachineBasicBlock();
+
+ for (MachineBasicBlock::livein_iterator I = prologueMBB.livein_begin(),
+ E = prologueMBB.livein_end(); I != E; I++) {
+ stackCheckMBB->addLiveIn(*I);
+ incStackMBB->addLiveIn(*I);
+ }
+
+ MF.push_front(incStackMBB);
+ MF.push_front(stackCheckMBB);
+
+ unsigned ScratchReg, SPReg, PReg, SPLimitOffset;
+ unsigned LEAop, CMPop, CALLop;
+ if (Is64Bit) {
+ SPReg = X86::RSP;
+ PReg = X86::RBP;
+ LEAop = X86::LEA64r;
+ CMPop = X86::CMP64rm;
+ CALLop = X86::CALL64pcrel32;
+ SPLimitOffset = 0x90;
+ } else {
+ SPReg = X86::ESP;
+ PReg = X86::EBP;
+ LEAop = X86::LEA32r;
+ CMPop = X86::CMP32rm;
+ CALLop = X86::CALLpcrel32;
+ SPLimitOffset = 0x4c;
+ }
+
+ ScratchReg = GetScratchRegister(Is64Bit, IsLP64, MF, true);
+ assert(!MF.getRegInfo().isLiveIn(ScratchReg) &&
+ "HiPE prologue scratch register is live-in");
+
+ // Create new MBB for StackCheck:
+ addRegOffset(BuildMI(stackCheckMBB, DL, TII.get(LEAop), ScratchReg),
+ SPReg, false, -MaxStack);
+ // SPLimitOffset is in a fixed heap location (pointed by BP).
+ addRegOffset(BuildMI(stackCheckMBB, DL, TII.get(CMPop))
+ .addReg(ScratchReg), PReg, false, SPLimitOffset);
+ BuildMI(stackCheckMBB, DL, TII.get(X86::JAE_1)).addMBB(&prologueMBB);
+
+ // Create new MBB for IncStack:
+ BuildMI(incStackMBB, DL, TII.get(CALLop)).
+ addExternalSymbol("inc_stack_0");
+ addRegOffset(BuildMI(incStackMBB, DL, TII.get(LEAop), ScratchReg),
+ SPReg, false, -MaxStack);
+ addRegOffset(BuildMI(incStackMBB, DL, TII.get(CMPop))
+ .addReg(ScratchReg), PReg, false, SPLimitOffset);
+ BuildMI(incStackMBB, DL, TII.get(X86::JLE_1)).addMBB(incStackMBB);
+
+ stackCheckMBB->addSuccessor(&prologueMBB, 99);
+ stackCheckMBB->addSuccessor(incStackMBB, 1);
+ incStackMBB->addSuccessor(&prologueMBB, 99);
+ incStackMBB->addSuccessor(incStackMBB, 1);
+ }
+#ifdef XDEBUG
+ MF.verify();
+#endif
+}
+
+void X86FrameLowering::
+eliminateCallFramePseudoInstr(MachineFunction &MF, MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator I) const {
+ const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
+ const X86RegisterInfo &RegInfo = *static_cast<const X86RegisterInfo *>(
+ MF.getSubtarget().getRegisterInfo());
+ unsigned StackPtr = RegInfo.getStackRegister();
+ bool reserveCallFrame = hasReservedCallFrame(MF);
+ int Opcode = I->getOpcode();
+ bool isDestroy = Opcode == TII.getCallFrameDestroyOpcode();
+ const X86Subtarget &STI = MF.getTarget().getSubtarget<X86Subtarget>();
+ bool IsLP64 = STI.isTarget64BitLP64();
+ DebugLoc DL = I->getDebugLoc();
+ uint64_t Amount = !reserveCallFrame ? I->getOperand(0).getImm() : 0;
+ uint64_t InternalAmt = (isDestroy || Amount) ? I->getOperand(1).getImm() : 0;
+ I = MBB.erase(I);
+
+ if (!reserveCallFrame) {
+ // If the stack pointer can be changed after prologue, turn the
+ // adjcallstackup instruction into a 'sub ESP, <amt>' and the
+ // adjcallstackdown instruction into 'add ESP, <amt>'
+ if (Amount == 0)
+ return;
+
+ // We need to keep the stack aligned properly. To do this, we round the
+ // amount of space needed for the outgoing arguments up to the next
+ // alignment boundary.
+ unsigned StackAlign = MF.getTarget()
+ .getSubtargetImpl()
+ ->getFrameLowering()
+ ->getStackAlignment();
+ Amount = (Amount + StackAlign - 1) / StackAlign * StackAlign;
+
+ MachineInstr *New = nullptr;
+
+ // Factor out the amount that gets handled inside the sequence
+ // (Pushes of argument for frame setup, callee pops for frame destroy)
+ Amount -= InternalAmt;
+
+ if (Amount) {
+ if (Opcode == TII.getCallFrameSetupOpcode()) {
+ New = BuildMI(MF, DL, TII.get(getSUBriOpcode(IsLP64, Amount)), StackPtr)
+ .addReg(StackPtr).addImm(Amount);
+ } else {
+ assert(Opcode == TII.getCallFrameDestroyOpcode());
+
+ unsigned Opc = getADDriOpcode(IsLP64, Amount);
+ New = BuildMI(MF, DL, TII.get(Opc), StackPtr)
+ .addReg(StackPtr).addImm(Amount);
+ }
+ }
+
+ if (New) {
+ // The EFLAGS implicit def is dead.
+ New->getOperand(3).setIsDead();
+
+ // Replace the pseudo instruction with a new instruction.
+ MBB.insert(I, New);
+ }
+
+ return;
+ }
+
+ if (Opcode == TII.getCallFrameDestroyOpcode() && InternalAmt) {
+ // If we are performing frame pointer elimination and if the callee pops
+ // something off the stack pointer, add it back. We do this until we have
+ // more advanced stack pointer tracking ability.
+ unsigned Opc = getSUBriOpcode(IsLP64, InternalAmt);
+ MachineInstr *New = BuildMI(MF, DL, TII.get(Opc), StackPtr)
+ .addReg(StackPtr).addImm(InternalAmt);
+
+ // The EFLAGS implicit def is dead.
+ New->getOperand(3).setIsDead();
+
+ // We are not tracking the stack pointer adjustment by the callee, so make
+ // sure we restore the stack pointer immediately after the call, there may
+ // be spill code inserted between the CALL and ADJCALLSTACKUP instructions.
+ MachineBasicBlock::iterator B = MBB.begin();
+ while (I != B && !std::prev(I)->isCall())
+ --I;
+ MBB.insert(I, New);
+ }
+}
+
diff --git a/llvm/lib/Target/X86/X86FrameLowering.h b/llvm/lib/Target/X86/X86FrameLowering.h index dd8fc3240c2..d93c9467182 100644 --- a/llvm/lib/Target/X86/X86FrameLowering.h +++ b/llvm/lib/Target/X86/X86FrameLowering.h @@ -1,95 +1,97 @@ -//===-- X86TargetFrameLowering.h - Define frame lowering for X86 -*- C++ -*-==// -// -// The LLVM Compiler Infrastructure -// -// This file is distributed under the University of Illinois Open Source -// License. See LICENSE.TXT for details. -// -//===----------------------------------------------------------------------===// -// -// This class implements X86-specific bits of TargetFrameLowering class. -// -//===----------------------------------------------------------------------===// - -#ifndef LLVM_LIB_TARGET_X86_X86FRAMELOWERING_H -#define LLVM_LIB_TARGET_X86_X86FRAMELOWERING_H - -#include "llvm/Target/TargetFrameLowering.h" - -namespace llvm { - -class MCSymbol; -class X86TargetMachine; -class X86Subtarget; - -class X86FrameLowering : public TargetFrameLowering { -public: - explicit X86FrameLowering(StackDirection D, unsigned StackAl, int LAO) - : TargetFrameLowering(StackGrowsDown, StackAl, LAO) {} - - /// Emit a call to the target's stack probe function. This is required for all - /// large stack allocations on Windows. The caller is required to materialize - /// the number of bytes to probe in RAX/EAX. - static void emitStackProbeCall(MachineFunction &MF, MachineBasicBlock &MBB, - MachineBasicBlock::iterator MBBI, DebugLoc DL); - - void emitCalleeSavedFrameMoves(MachineBasicBlock &MBB, - MachineBasicBlock::iterator MBBI, - DebugLoc DL) const; - - /// emitProlog/emitEpilog - These methods insert prolog and epilog code into - /// the function. - void emitPrologue(MachineFunction &MF) const override; - void emitEpilogue(MachineFunction &MF, MachineBasicBlock &MBB) const override; - - void adjustForSegmentedStacks(MachineFunction &MF) const override; - - void adjustForHiPEPrologue(MachineFunction &MF) const override; - - void processFunctionBeforeCalleeSavedScan(MachineFunction &MF, - RegScavenger *RS = nullptr) const override; - - bool - assignCalleeSavedSpillSlots(MachineFunction &MF, - const TargetRegisterInfo *TRI, - std::vector<CalleeSavedInfo> &CSI) const override; - - bool spillCalleeSavedRegisters(MachineBasicBlock &MBB, - MachineBasicBlock::iterator MI, - const std::vector<CalleeSavedInfo> &CSI, - const TargetRegisterInfo *TRI) const override; - - bool restoreCalleeSavedRegisters(MachineBasicBlock &MBB, - MachineBasicBlock::iterator MI, - const std::vector<CalleeSavedInfo> &CSI, - const TargetRegisterInfo *TRI) const override; - - bool hasFP(const MachineFunction &MF) const override; - bool hasReservedCallFrame(const MachineFunction &MF) const override; - - int getFrameIndexOffset(const MachineFunction &MF, int FI) const override; - int getFrameIndexReference(const MachineFunction &MF, int FI, - unsigned &FrameReg) const override; - - int getFrameIndexOffsetFromSP(const MachineFunction &MF, int FI) const; - int getFrameIndexReferenceFromSP(const MachineFunction &MF, int FI, - unsigned &FrameReg) const override; - - void eliminateCallFramePseudoInstr(MachineFunction &MF, - MachineBasicBlock &MBB, - MachineBasicBlock::iterator MI) const override; - -private: - /// convertArgMovsToPushes - This method tries to convert a call sequence - /// that uses sub and mov instructions to put the argument onto the stack - /// into a series of pushes. - /// Returns true if the transformation succeeded, false if not. - bool convertArgMovsToPushes(MachineFunction &MF, - MachineBasicBlock &MBB, - MachineBasicBlock::iterator I, - uint64_t Amount) const; -}; - -} // End llvm namespace - -#endif +//===-- X86TargetFrameLowering.h - Define frame lowering for X86 -*- C++ -*-==//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This class implements X86-specific bits of TargetFrameLowering class.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_LIB_TARGET_X86_X86FRAMELOWERING_H
+#define LLVM_LIB_TARGET_X86_X86FRAMELOWERING_H
+
+#include "llvm/Target/TargetFrameLowering.h"
+
+namespace llvm {
+
+class MCSymbol;
+class X86TargetMachine;
+class X86Subtarget;
+
+class X86FrameLowering : public TargetFrameLowering {
+public:
+ explicit X86FrameLowering(StackDirection D, unsigned StackAl, int LAO)
+ : TargetFrameLowering(StackGrowsDown, StackAl, LAO) {}
+
+ /// Emit a call to the target's stack probe function. This is required for all
+ /// large stack allocations on Windows. The caller is required to materialize
+ /// the number of bytes to probe in RAX/EAX.
+ static void emitStackProbeCall(MachineFunction &MF, MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator MBBI, DebugLoc DL);
+
+ void emitCalleeSavedFrameMoves(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator MBBI,
+ DebugLoc DL) const;
+
+ /// emitProlog/emitEpilog - These methods insert prolog and epilog code into
+ /// the function.
+ void emitPrologue(MachineFunction &MF) const override;
+ void emitEpilogue(MachineFunction &MF, MachineBasicBlock &MBB) const override;
+
+ void adjustForSegmentedStacks(MachineFunction &MF) const override;
+
+ void adjustForHiPEPrologue(MachineFunction &MF) const override;
+
+ void processFunctionBeforeCalleeSavedScan(MachineFunction &MF,
+ RegScavenger *RS = nullptr) const override;
+
+ bool
+ assignCalleeSavedSpillSlots(MachineFunction &MF,
+ const TargetRegisterInfo *TRI,
+ std::vector<CalleeSavedInfo> &CSI) const override;
+
+ bool spillCalleeSavedRegisters(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator MI,
+ const std::vector<CalleeSavedInfo> &CSI,
+ const TargetRegisterInfo *TRI) const override;
+
+ bool restoreCalleeSavedRegisters(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator MI,
+ const std::vector<CalleeSavedInfo> &CSI,
+ const TargetRegisterInfo *TRI) const override;
+
+ bool hasFP(const MachineFunction &MF) const override;
+ bool hasReservedCallFrame(const MachineFunction &MF) const override;
+ bool canSimplifyCallFramePseudos(const MachineFunction &MF) const override;
+ bool needsFrameIndexResolution(const MachineFunction &MF) const override;
+
+ int getFrameIndexOffset(const MachineFunction &MF, int FI) const override;
+ int getFrameIndexReference(const MachineFunction &MF, int FI,
+ unsigned &FrameReg) const override;
+
+ int getFrameIndexOffsetFromSP(const MachineFunction &MF, int FI) const;
+ int getFrameIndexReferenceFromSP(const MachineFunction &MF, int FI,
+ unsigned &FrameReg) const override;
+
+ void eliminateCallFramePseudoInstr(MachineFunction &MF,
+ MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator MI) const override;
+
+private:
+ /// convertArgMovsToPushes - This method tries to convert a call sequence
+ /// that uses sub and mov instructions to put the argument onto the stack
+ /// into a series of pushes.
+ /// Returns true if the transformation succeeded, false if not.
+ bool convertArgMovsToPushes(MachineFunction &MF,
+ MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator I,
+ uint64_t Amount) const;
+};
+
+} // End llvm namespace
+
+#endif
diff --git a/llvm/lib/Target/X86/X86InstrCompiler.td b/llvm/lib/Target/X86/X86InstrCompiler.td index be0e4b790a2..fa1dfa7a524 100644 --- a/llvm/lib/Target/X86/X86InstrCompiler.td +++ b/llvm/lib/Target/X86/X86InstrCompiler.td @@ -1,1848 +1,1852 @@ -//===- X86InstrCompiler.td - Compiler Pseudos and Patterns -*- tablegen -*-===// -// -// The LLVM Compiler Infrastructure -// -// This file is distributed under the University of Illinois Open Source -// License. See LICENSE.TXT for details. -// -//===----------------------------------------------------------------------===// -// -// This file describes the various pseudo instructions used by the compiler, -// as well as Pat patterns used during instruction selection. -// -//===----------------------------------------------------------------------===// - -//===----------------------------------------------------------------------===// -// Pattern Matching Support - -def GetLo32XForm : SDNodeXForm<imm, [{ - // Transformation function: get the low 32 bits. - return getI32Imm((unsigned)N->getZExtValue()); -}]>; - -def GetLo8XForm : SDNodeXForm<imm, [{ - // Transformation function: get the low 8 bits. - return getI8Imm((uint8_t)N->getZExtValue()); -}]>; - - -//===----------------------------------------------------------------------===// -// Random Pseudo Instructions. - -// PIC base construction. This expands to code that looks like this: -// call $next_inst -// popl %destreg" -let hasSideEffects = 0, isNotDuplicable = 1, Uses = [ESP] in - def MOVPC32r : Ii32<0xE8, Pseudo, (outs GR32:$reg), (ins i32imm:$label), - "", []>; - - -// ADJCALLSTACKDOWN/UP implicitly use/def ESP because they may be expanded into -// a stack adjustment and the codegen must know that they may modify the stack -// pointer before prolog-epilog rewriting occurs. -// Pessimistically assume ADJCALLSTACKDOWN / ADJCALLSTACKUP will become -// sub / add which can clobber EFLAGS. -let Defs = [ESP, EFLAGS], Uses = [ESP] in { -def ADJCALLSTACKDOWN32 : I<0, Pseudo, (outs), (ins i32imm:$amt), - "#ADJCALLSTACKDOWN", - [(X86callseq_start timm:$amt)]>, - Requires<[NotLP64]>; -def ADJCALLSTACKUP32 : I<0, Pseudo, (outs), (ins i32imm:$amt1, i32imm:$amt2), - "#ADJCALLSTACKUP", - [(X86callseq_end timm:$amt1, timm:$amt2)]>, - Requires<[NotLP64]>; -} - -// ADJCALLSTACKDOWN/UP implicitly use/def RSP because they may be expanded into -// a stack adjustment and the codegen must know that they may modify the stack -// pointer before prolog-epilog rewriting occurs. -// Pessimistically assume ADJCALLSTACKDOWN / ADJCALLSTACKUP will become -// sub / add which can clobber EFLAGS. -let Defs = [RSP, EFLAGS], Uses = [RSP] in { -def ADJCALLSTACKDOWN64 : I<0, Pseudo, (outs), (ins i32imm:$amt), - "#ADJCALLSTACKDOWN", - [(X86callseq_start timm:$amt)]>, - Requires<[IsLP64]>; -def ADJCALLSTACKUP64 : I<0, Pseudo, (outs), (ins i32imm:$amt1, i32imm:$amt2), - "#ADJCALLSTACKUP", - [(X86callseq_end timm:$amt1, timm:$amt2)]>, - Requires<[IsLP64]>; -} - - - -// x86-64 va_start lowering magic. -let usesCustomInserter = 1, Defs = [EFLAGS] in { -def VASTART_SAVE_XMM_REGS : I<0, Pseudo, - (outs), - (ins GR8:$al, - i64imm:$regsavefi, i64imm:$offset, - variable_ops), - "#VASTART_SAVE_XMM_REGS $al, $regsavefi, $offset", - [(X86vastart_save_xmm_regs GR8:$al, - imm:$regsavefi, - imm:$offset), - (implicit EFLAGS)]>; - -// The VAARG_64 pseudo-instruction takes the address of the va_list, -// and places the address of the next argument into a register. -let Defs = [EFLAGS] in -def VAARG_64 : I<0, Pseudo, - (outs GR64:$dst), - (ins i8mem:$ap, i32imm:$size, i8imm:$mode, i32imm:$align), - "#VAARG_64 $dst, $ap, $size, $mode, $align", - [(set GR64:$dst, - (X86vaarg64 addr:$ap, imm:$size, imm:$mode, imm:$align)), - (implicit EFLAGS)]>; - -// Dynamic stack allocation yields a _chkstk or _alloca call for all Windows -// targets. These calls are needed to probe the stack when allocating more than -// 4k bytes in one go. Touching the stack at 4K increments is necessary to -// ensure that the guard pages used by the OS virtual memory manager are -// allocated in correct sequence. -// The main point of having separate instruction are extra unmodelled effects -// (compared to ordinary calls) like stack pointer change. - -let Defs = [EAX, ESP, EFLAGS], Uses = [ESP] in - def WIN_ALLOCA : I<0, Pseudo, (outs), (ins), - "# dynamic stack allocation", - [(X86WinAlloca)]>; - -// When using segmented stacks these are lowered into instructions which first -// check if the current stacklet has enough free memory. If it does, memory is -// allocated by bumping the stack pointer. Otherwise memory is allocated from -// the heap. - -let Defs = [EAX, ESP, EFLAGS], Uses = [ESP] in -def SEG_ALLOCA_32 : I<0, Pseudo, (outs GR32:$dst), (ins GR32:$size), - "# variable sized alloca for segmented stacks", - [(set GR32:$dst, - (X86SegAlloca GR32:$size))]>, - Requires<[NotLP64]>; - -let Defs = [RAX, RSP, EFLAGS], Uses = [RSP] in -def SEG_ALLOCA_64 : I<0, Pseudo, (outs GR64:$dst), (ins GR64:$size), - "# variable sized alloca for segmented stacks", - [(set GR64:$dst, - (X86SegAlloca GR64:$size))]>, - Requires<[In64BitMode]>; -} - -// The MSVC runtime contains an _ftol2 routine for converting floating-point -// to integer values. It has a strange calling convention: the input is -// popped from the x87 stack, and the return value is given in EDX:EAX. ECX is -// used as a temporary register. No other registers (aside from flags) are -// touched. -// Microsoft toolchains do not support 80-bit precision, so a WIN_FTOL_80 -// variant is unnecessary. - -let Defs = [EAX, EDX, ECX, EFLAGS], FPForm = SpecialFP in { - def WIN_FTOL_32 : I<0, Pseudo, (outs), (ins RFP32:$src), - "# win32 fptoui", - [(X86WinFTOL RFP32:$src)]>, - Requires<[Not64BitMode]>; - - def WIN_FTOL_64 : I<0, Pseudo, (outs), (ins RFP64:$src), - "# win32 fptoui", - [(X86WinFTOL RFP64:$src)]>, - Requires<[Not64BitMode]>; -} - -//===----------------------------------------------------------------------===// -// EH Pseudo Instructions -// -let SchedRW = [WriteSystem] in { -let isTerminator = 1, isReturn = 1, isBarrier = 1, - hasCtrlDep = 1, isCodeGenOnly = 1 in { -def EH_RETURN : I<0xC3, RawFrm, (outs), (ins GR32:$addr), - "ret\t#eh_return, addr: $addr", - [(X86ehret GR32:$addr)], IIC_RET>, Sched<[WriteJumpLd]>; - -} - -let isTerminator = 1, isReturn = 1, isBarrier = 1, - hasCtrlDep = 1, isCodeGenOnly = 1 in { -def EH_RETURN64 : I<0xC3, RawFrm, (outs), (ins GR64:$addr), - "ret\t#eh_return, addr: $addr", - [(X86ehret GR64:$addr)], IIC_RET>, Sched<[WriteJumpLd]>; - -} - -let hasSideEffects = 1, isBarrier = 1, isCodeGenOnly = 1, - usesCustomInserter = 1 in { - def EH_SjLj_SetJmp32 : I<0, Pseudo, (outs GR32:$dst), (ins i32mem:$buf), - "#EH_SJLJ_SETJMP32", - [(set GR32:$dst, (X86eh_sjlj_setjmp addr:$buf))]>, - Requires<[Not64BitMode]>; - def EH_SjLj_SetJmp64 : I<0, Pseudo, (outs GR32:$dst), (ins i64mem:$buf), - "#EH_SJLJ_SETJMP64", - [(set GR32:$dst, (X86eh_sjlj_setjmp addr:$buf))]>, - Requires<[In64BitMode]>; - let isTerminator = 1 in { - def EH_SjLj_LongJmp32 : I<0, Pseudo, (outs), (ins i32mem:$buf), - "#EH_SJLJ_LONGJMP32", - [(X86eh_sjlj_longjmp addr:$buf)]>, - Requires<[Not64BitMode]>; - def EH_SjLj_LongJmp64 : I<0, Pseudo, (outs), (ins i64mem:$buf), - "#EH_SJLJ_LONGJMP64", - [(X86eh_sjlj_longjmp addr:$buf)]>, - Requires<[In64BitMode]>; - } -} -} // SchedRW - -let isBranch = 1, isTerminator = 1, isCodeGenOnly = 1 in { - def EH_SjLj_Setup : I<0, Pseudo, (outs), (ins brtarget:$dst), - "#EH_SjLj_Setup\t$dst", []>; -} - -//===----------------------------------------------------------------------===// -// Pseudo instructions used by unwind info. -// -let isPseudo = 1 in { - def SEH_PushReg : I<0, Pseudo, (outs), (ins i32imm:$reg), - "#SEH_PushReg $reg", []>; - def SEH_SaveReg : I<0, Pseudo, (outs), (ins i32imm:$reg, i32imm:$dst), - "#SEH_SaveReg $reg, $dst", []>; - def SEH_SaveXMM : I<0, Pseudo, (outs), (ins i32imm:$reg, i32imm:$dst), - "#SEH_SaveXMM $reg, $dst", []>; - def SEH_StackAlloc : I<0, Pseudo, (outs), (ins i32imm:$size), - "#SEH_StackAlloc $size", []>; - def SEH_SetFrame : I<0, Pseudo, (outs), (ins i32imm:$reg, i32imm:$offset), - "#SEH_SetFrame $reg, $offset", []>; - def SEH_PushFrame : I<0, Pseudo, (outs), (ins i1imm:$mode), - "#SEH_PushFrame $mode", []>; - def SEH_EndPrologue : I<0, Pseudo, (outs), (ins), - "#SEH_EndPrologue", []>; - def SEH_Epilogue : I<0, Pseudo, (outs), (ins), - "#SEH_Epilogue", []>; -} - -//===----------------------------------------------------------------------===// -// Pseudo instructions used by segmented stacks. -// - -// This is lowered into a RET instruction by MCInstLower. We need -// this so that we don't have to have a MachineBasicBlock which ends -// with a RET and also has successors. -let isPseudo = 1 in { -def MORESTACK_RET: I<0, Pseudo, (outs), (ins), - "", []>; - -// This instruction is lowered to a RET followed by a MOV. The two -// instructions are not generated on a higher level since then the -// verifier sees a MachineBasicBlock ending with a non-terminator. -def MORESTACK_RET_RESTORE_R10 : I<0, Pseudo, (outs), (ins), - "", []>; -} - -//===----------------------------------------------------------------------===// -// Alias Instructions -//===----------------------------------------------------------------------===// - -// Alias instruction mapping movr0 to xor. -// FIXME: remove when we can teach regalloc that xor reg, reg is ok. -let Defs = [EFLAGS], isReMaterializable = 1, isAsCheapAsAMove = 1, - isPseudo = 1 in -def MOV32r0 : I<0, Pseudo, (outs GR32:$dst), (ins), "", - [(set GR32:$dst, 0)], IIC_ALU_NONMEM>, Sched<[WriteZero]>; - -// Other widths can also make use of the 32-bit xor, which may have a smaller -// encoding and avoid partial register updates. -def : Pat<(i8 0), (EXTRACT_SUBREG (MOV32r0), sub_8bit)>; -def : Pat<(i16 0), (EXTRACT_SUBREG (MOV32r0), sub_16bit)>; -def : Pat<(i64 0), (SUBREG_TO_REG (i64 0), (MOV32r0), sub_32bit)> { - let AddedComplexity = 20; -} - -// Materialize i64 constant where top 32-bits are zero. This could theoretically -// use MOV32ri with a SUBREG_TO_REG to represent the zero-extension, however -// that would make it more difficult to rematerialize. -let AddedComplexity = 1, isReMaterializable = 1, isAsCheapAsAMove = 1, - isCodeGenOnly = 1, hasSideEffects = 0 in -def MOV32ri64 : Ii32<0xb8, AddRegFrm, (outs GR32:$dst), (ins i64i32imm:$src), - "", [], IIC_ALU_NONMEM>, Sched<[WriteALU]>; - -// This 64-bit pseudo-move can be used for both a 64-bit constant that is -// actually the zero-extension of a 32-bit constant, and for labels in the -// x86-64 small code model. -def mov64imm32 : ComplexPattern<i64, 1, "SelectMOV64Imm32", [imm, X86Wrapper]>; - -let AddedComplexity = 1 in -def : Pat<(i64 mov64imm32:$src), - (SUBREG_TO_REG (i64 0), (MOV32ri64 mov64imm32:$src), sub_32bit)>; - -// Use sbb to materialize carry bit. -let Uses = [EFLAGS], Defs = [EFLAGS], isPseudo = 1, SchedRW = [WriteALU] in { -// FIXME: These are pseudo ops that should be replaced with Pat<> patterns. -// However, Pat<> can't replicate the destination reg into the inputs of the -// result. -def SETB_C8r : I<0, Pseudo, (outs GR8:$dst), (ins), "", - [(set GR8:$dst, (X86setcc_c X86_COND_B, EFLAGS))]>; -def SETB_C16r : I<0, Pseudo, (outs GR16:$dst), (ins), "", - [(set GR16:$dst, (X86setcc_c X86_COND_B, EFLAGS))]>; -def SETB_C32r : I<0, Pseudo, (outs GR32:$dst), (ins), "", - [(set GR32:$dst, (X86setcc_c X86_COND_B, EFLAGS))]>; -def SETB_C64r : I<0, Pseudo, (outs GR64:$dst), (ins), "", - [(set GR64:$dst, (X86setcc_c X86_COND_B, EFLAGS))]>; -} // isCodeGenOnly - - -def : Pat<(i16 (anyext (i8 (X86setcc_c X86_COND_B, EFLAGS)))), - (SETB_C16r)>; -def : Pat<(i32 (anyext (i8 (X86setcc_c X86_COND_B, EFLAGS)))), - (SETB_C32r)>; -def : Pat<(i64 (anyext (i8 (X86setcc_c X86_COND_B, EFLAGS)))), - (SETB_C64r)>; - -def : Pat<(i16 (sext (i8 (X86setcc_c X86_COND_B, EFLAGS)))), - (SETB_C16r)>; -def : Pat<(i32 (sext (i8 (X86setcc_c X86_COND_B, EFLAGS)))), - (SETB_C32r)>; -def : Pat<(i64 (sext (i8 (X86setcc_c X86_COND_B, EFLAGS)))), - (SETB_C64r)>; - -// We canonicalize 'setb' to "(and (sbb reg,reg), 1)" on the hope that the and -// will be eliminated and that the sbb can be extended up to a wider type. When -// this happens, it is great. However, if we are left with an 8-bit sbb and an -// and, we might as well just match it as a setb. -def : Pat<(and (i8 (X86setcc_c X86_COND_B, EFLAGS)), 1), - (SETBr)>; - -// (add OP, SETB) -> (adc OP, 0) -def : Pat<(add (and (i8 (X86setcc_c X86_COND_B, EFLAGS)), 1), GR8:$op), - (ADC8ri GR8:$op, 0)>; -def : Pat<(add (and (i32 (X86setcc_c X86_COND_B, EFLAGS)), 1), GR32:$op), - (ADC32ri8 GR32:$op, 0)>; -def : Pat<(add (and (i64 (X86setcc_c X86_COND_B, EFLAGS)), 1), GR64:$op), - (ADC64ri8 GR64:$op, 0)>; - -// (sub OP, SETB) -> (sbb OP, 0) -def : Pat<(sub GR8:$op, (and (i8 (X86setcc_c X86_COND_B, EFLAGS)), 1)), - (SBB8ri GR8:$op, 0)>; -def : Pat<(sub GR32:$op, (and (i32 (X86setcc_c X86_COND_B, EFLAGS)), 1)), - (SBB32ri8 GR32:$op, 0)>; -def : Pat<(sub GR64:$op, (and (i64 (X86setcc_c X86_COND_B, EFLAGS)), 1)), - (SBB64ri8 GR64:$op, 0)>; - -// (sub OP, SETCC_CARRY) -> (adc OP, 0) -def : Pat<(sub GR8:$op, (i8 (X86setcc_c X86_COND_B, EFLAGS))), - (ADC8ri GR8:$op, 0)>; -def : Pat<(sub GR32:$op, (i32 (X86setcc_c X86_COND_B, EFLAGS))), - (ADC32ri8 GR32:$op, 0)>; -def : Pat<(sub GR64:$op, (i64 (X86setcc_c X86_COND_B, EFLAGS))), - (ADC64ri8 GR64:$op, 0)>; - -//===----------------------------------------------------------------------===// -// String Pseudo Instructions -// -let SchedRW = [WriteMicrocoded] in { -let Defs = [ECX,EDI,ESI], Uses = [ECX,EDI,ESI], isCodeGenOnly = 1 in { -def REP_MOVSB_32 : I<0xA4, RawFrm, (outs), (ins), "{rep;movsb|rep movsb}", - [(X86rep_movs i8)], IIC_REP_MOVS>, REP, - Requires<[Not64BitMode]>; -def REP_MOVSW_32 : I<0xA5, RawFrm, (outs), (ins), "{rep;movsw|rep movsw}", - [(X86rep_movs i16)], IIC_REP_MOVS>, REP, OpSize16, - Requires<[Not64BitMode]>; -def REP_MOVSD_32 : I<0xA5, RawFrm, (outs), (ins), "{rep;movsl|rep movsd}", - [(X86rep_movs i32)], IIC_REP_MOVS>, REP, OpSize32, - Requires<[Not64BitMode]>; -} - -let Defs = [RCX,RDI,RSI], Uses = [RCX,RDI,RSI], isCodeGenOnly = 1 in { -def REP_MOVSB_64 : I<0xA4, RawFrm, (outs), (ins), "{rep;movsb|rep movsb}", - [(X86rep_movs i8)], IIC_REP_MOVS>, REP, - Requires<[In64BitMode]>; -def REP_MOVSW_64 : I<0xA5, RawFrm, (outs), (ins), "{rep;movsw|rep movsw}", - [(X86rep_movs i16)], IIC_REP_MOVS>, REP, OpSize16, - Requires<[In64BitMode]>; -def REP_MOVSD_64 : I<0xA5, RawFrm, (outs), (ins), "{rep;movsl|rep movsd}", - [(X86rep_movs i32)], IIC_REP_MOVS>, REP, OpSize32, - Requires<[In64BitMode]>; -def REP_MOVSQ_64 : RI<0xA5, RawFrm, (outs), (ins), "{rep;movsq|rep movsq}", - [(X86rep_movs i64)], IIC_REP_MOVS>, REP, - Requires<[In64BitMode]>; -} - -// FIXME: Should use "(X86rep_stos AL)" as the pattern. -let Defs = [ECX,EDI], isCodeGenOnly = 1 in { - let Uses = [AL,ECX,EDI] in - def REP_STOSB_32 : I<0xAA, RawFrm, (outs), (ins), "{rep;stosb|rep stosb}", - [(X86rep_stos i8)], IIC_REP_STOS>, REP, - Requires<[Not64BitMode]>; - let Uses = [AX,ECX,EDI] in - def REP_STOSW_32 : I<0xAB, RawFrm, (outs), (ins), "{rep;stosw|rep stosw}", - [(X86rep_stos i16)], IIC_REP_STOS>, REP, OpSize16, - Requires<[Not64BitMode]>; - let Uses = [EAX,ECX,EDI] in - def REP_STOSD_32 : I<0xAB, RawFrm, (outs), (ins), "{rep;stosl|rep stosd}", - [(X86rep_stos i32)], IIC_REP_STOS>, REP, OpSize32, - Requires<[Not64BitMode]>; -} - -let Defs = [RCX,RDI], isCodeGenOnly = 1 in { - let Uses = [AL,RCX,RDI] in - def REP_STOSB_64 : I<0xAA, RawFrm, (outs), (ins), "{rep;stosb|rep stosb}", - [(X86rep_stos i8)], IIC_REP_STOS>, REP, - Requires<[In64BitMode]>; - let Uses = [AX,RCX,RDI] in - def REP_STOSW_64 : I<0xAB, RawFrm, (outs), (ins), "{rep;stosw|rep stosw}", - [(X86rep_stos i16)], IIC_REP_STOS>, REP, OpSize16, - Requires<[In64BitMode]>; - let Uses = [RAX,RCX,RDI] in - def REP_STOSD_64 : I<0xAB, RawFrm, (outs), (ins), "{rep;stosl|rep stosd}", - [(X86rep_stos i32)], IIC_REP_STOS>, REP, OpSize32, - Requires<[In64BitMode]>; - - let Uses = [RAX,RCX,RDI] in - def REP_STOSQ_64 : RI<0xAB, RawFrm, (outs), (ins), "{rep;stosq|rep stosq}", - [(X86rep_stos i64)], IIC_REP_STOS>, REP, - Requires<[In64BitMode]>; -} -} // SchedRW - -//===----------------------------------------------------------------------===// -// Thread Local Storage Instructions -// - -// ELF TLS Support -// All calls clobber the non-callee saved registers. ESP is marked as -// a use to prevent stack-pointer assignments that appear immediately -// before calls from potentially appearing dead. -let Defs = [EAX, ECX, EDX, FP0, FP1, FP2, FP3, FP4, FP5, FP6, FP7, - ST0, ST1, ST2, ST3, ST4, ST5, ST6, ST7, - MM0, MM1, MM2, MM3, MM4, MM5, MM6, MM7, - XMM0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7, - XMM8, XMM9, XMM10, XMM11, XMM12, XMM13, XMM14, XMM15, EFLAGS], - Uses = [ESP] in { -def TLS_addr32 : I<0, Pseudo, (outs), (ins i32mem:$sym), - "# TLS_addr32", - [(X86tlsaddr tls32addr:$sym)]>, - Requires<[Not64BitMode]>; -def TLS_base_addr32 : I<0, Pseudo, (outs), (ins i32mem:$sym), - "# TLS_base_addr32", - [(X86tlsbaseaddr tls32baseaddr:$sym)]>, - Requires<[Not64BitMode]>; -} - -// All calls clobber the non-callee saved registers. RSP is marked as -// a use to prevent stack-pointer assignments that appear immediately -// before calls from potentially appearing dead. -let Defs = [RAX, RCX, RDX, RSI, RDI, R8, R9, R10, R11, - FP0, FP1, FP2, FP3, FP4, FP5, FP6, FP7, - ST0, ST1, ST2, ST3, ST4, ST5, ST6, ST7, - MM0, MM1, MM2, MM3, MM4, MM5, MM6, MM7, - XMM0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7, - XMM8, XMM9, XMM10, XMM11, XMM12, XMM13, XMM14, XMM15, EFLAGS], - Uses = [RSP] in { -def TLS_addr64 : I<0, Pseudo, (outs), (ins i64mem:$sym), - "# TLS_addr64", - [(X86tlsaddr tls64addr:$sym)]>, - Requires<[In64BitMode]>; -def TLS_base_addr64 : I<0, Pseudo, (outs), (ins i64mem:$sym), - "# TLS_base_addr64", - [(X86tlsbaseaddr tls64baseaddr:$sym)]>, - Requires<[In64BitMode]>; -} - -// Darwin TLS Support -// For i386, the address of the thunk is passed on the stack, on return the -// address of the variable is in %eax. %ecx is trashed during the function -// call. All other registers are preserved. -let Defs = [EAX, ECX, EFLAGS], - Uses = [ESP], - usesCustomInserter = 1 in -def TLSCall_32 : I<0, Pseudo, (outs), (ins i32mem:$sym), - "# TLSCall_32", - [(X86TLSCall addr:$sym)]>, - Requires<[Not64BitMode]>; - -// For x86_64, the address of the thunk is passed in %rdi, on return -// the address of the variable is in %rax. All other registers are preserved. -let Defs = [RAX, EFLAGS], - Uses = [RSP, RDI], - usesCustomInserter = 1 in -def TLSCall_64 : I<0, Pseudo, (outs), (ins i64mem:$sym), - "# TLSCall_64", - [(X86TLSCall addr:$sym)]>, - Requires<[In64BitMode]>; - - -//===----------------------------------------------------------------------===// -// Conditional Move Pseudo Instructions - -// X86 doesn't have 8-bit conditional moves. Use a customInserter to -// emit control flow. An alternative to this is to mark i8 SELECT as Promote, -// however that requires promoting the operands, and can induce additional -// i8 register pressure. -let usesCustomInserter = 1, Uses = [EFLAGS] in { -def CMOV_GR8 : I<0, Pseudo, - (outs GR8:$dst), (ins GR8:$src1, GR8:$src2, i8imm:$cond), - "#CMOV_GR8 PSEUDO!", - [(set GR8:$dst, (X86cmov GR8:$src1, GR8:$src2, - imm:$cond, EFLAGS))]>; - -let Predicates = [NoCMov] in { -def CMOV_GR32 : I<0, Pseudo, - (outs GR32:$dst), (ins GR32:$src1, GR32:$src2, i8imm:$cond), - "#CMOV_GR32* PSEUDO!", - [(set GR32:$dst, - (X86cmov GR32:$src1, GR32:$src2, imm:$cond, EFLAGS))]>; -def CMOV_GR16 : I<0, Pseudo, - (outs GR16:$dst), (ins GR16:$src1, GR16:$src2, i8imm:$cond), - "#CMOV_GR16* PSEUDO!", - [(set GR16:$dst, - (X86cmov GR16:$src1, GR16:$src2, imm:$cond, EFLAGS))]>; -} // Predicates = [NoCMov] - -// fcmov doesn't handle all possible EFLAGS, provide a fallback if there is no -// SSE1. -let Predicates = [FPStackf32] in -def CMOV_RFP32 : I<0, Pseudo, - (outs RFP32:$dst), - (ins RFP32:$src1, RFP32:$src2, i8imm:$cond), - "#CMOV_RFP32 PSEUDO!", - [(set RFP32:$dst, - (X86cmov RFP32:$src1, RFP32:$src2, imm:$cond, - EFLAGS))]>; -// fcmov doesn't handle all possible EFLAGS, provide a fallback if there is no -// SSE2. -let Predicates = [FPStackf64] in -def CMOV_RFP64 : I<0, Pseudo, - (outs RFP64:$dst), - (ins RFP64:$src1, RFP64:$src2, i8imm:$cond), - "#CMOV_RFP64 PSEUDO!", - [(set RFP64:$dst, - (X86cmov RFP64:$src1, RFP64:$src2, imm:$cond, - EFLAGS))]>; -def CMOV_RFP80 : I<0, Pseudo, - (outs RFP80:$dst), - (ins RFP80:$src1, RFP80:$src2, i8imm:$cond), - "#CMOV_RFP80 PSEUDO!", - [(set RFP80:$dst, - (X86cmov RFP80:$src1, RFP80:$src2, imm:$cond, - EFLAGS))]>; -} // UsesCustomInserter = 1, Uses = [EFLAGS] - - -//===----------------------------------------------------------------------===// -// Normal-Instructions-With-Lock-Prefix Pseudo Instructions -//===----------------------------------------------------------------------===// - -// FIXME: Use normal instructions and add lock prefix dynamically. - -// Memory barriers - -// TODO: Get this to fold the constant into the instruction. -let isCodeGenOnly = 1, Defs = [EFLAGS] in -def OR32mrLocked : I<0x09, MRMDestMem, (outs), (ins i32mem:$dst, GR32:$zero), - "or{l}\t{$zero, $dst|$dst, $zero}", - [], IIC_ALU_MEM>, Requires<[Not64BitMode]>, LOCK, - Sched<[WriteALULd, WriteRMW]>; - -let hasSideEffects = 1 in -def Int_MemBarrier : I<0, Pseudo, (outs), (ins), - "#MEMBARRIER", - [(X86MemBarrier)]>, Sched<[WriteLoad]>; - -// RegOpc corresponds to the mr version of the instruction -// ImmOpc corresponds to the mi version of the instruction -// ImmOpc8 corresponds to the mi8 version of the instruction -// ImmMod corresponds to the instruction format of the mi and mi8 versions -multiclass LOCK_ArithBinOp<bits<8> RegOpc, bits<8> ImmOpc, bits<8> ImmOpc8, - Format ImmMod, string mnemonic> { -let Defs = [EFLAGS], mayLoad = 1, mayStore = 1, isCodeGenOnly = 1, - SchedRW = [WriteALULd, WriteRMW] in { - -def NAME#8mr : I<{RegOpc{7}, RegOpc{6}, RegOpc{5}, RegOpc{4}, - RegOpc{3}, RegOpc{2}, RegOpc{1}, 0 }, - MRMDestMem, (outs), (ins i8mem:$dst, GR8:$src2), - !strconcat(mnemonic, "{b}\t", - "{$src2, $dst|$dst, $src2}"), - [], IIC_ALU_NONMEM>, LOCK; -def NAME#16mr : I<{RegOpc{7}, RegOpc{6}, RegOpc{5}, RegOpc{4}, - RegOpc{3}, RegOpc{2}, RegOpc{1}, 1 }, - MRMDestMem, (outs), (ins i16mem:$dst, GR16:$src2), - !strconcat(mnemonic, "{w}\t", - "{$src2, $dst|$dst, $src2}"), - [], IIC_ALU_NONMEM>, OpSize16, LOCK; -def NAME#32mr : I<{RegOpc{7}, RegOpc{6}, RegOpc{5}, RegOpc{4}, - RegOpc{3}, RegOpc{2}, RegOpc{1}, 1 }, - MRMDestMem, (outs), (ins i32mem:$dst, GR32:$src2), - !strconcat(mnemonic, "{l}\t", - "{$src2, $dst|$dst, $src2}"), - [], IIC_ALU_NONMEM>, OpSize32, LOCK; -def NAME#64mr : RI<{RegOpc{7}, RegOpc{6}, RegOpc{5}, RegOpc{4}, - RegOpc{3}, RegOpc{2}, RegOpc{1}, 1 }, - MRMDestMem, (outs), (ins i64mem:$dst, GR64:$src2), - !strconcat(mnemonic, "{q}\t", - "{$src2, $dst|$dst, $src2}"), - [], IIC_ALU_NONMEM>, LOCK; - -def NAME#8mi : Ii8<{ImmOpc{7}, ImmOpc{6}, ImmOpc{5}, ImmOpc{4}, - ImmOpc{3}, ImmOpc{2}, ImmOpc{1}, 0 }, - ImmMod, (outs), (ins i8mem :$dst, i8imm :$src2), - !strconcat(mnemonic, "{b}\t", - "{$src2, $dst|$dst, $src2}"), - [], IIC_ALU_MEM>, LOCK; - -def NAME#16mi : Ii16<{ImmOpc{7}, ImmOpc{6}, ImmOpc{5}, ImmOpc{4}, - ImmOpc{3}, ImmOpc{2}, ImmOpc{1}, 1 }, - ImmMod, (outs), (ins i16mem :$dst, i16imm :$src2), - !strconcat(mnemonic, "{w}\t", - "{$src2, $dst|$dst, $src2}"), - [], IIC_ALU_MEM>, OpSize16, LOCK; - -def NAME#32mi : Ii32<{ImmOpc{7}, ImmOpc{6}, ImmOpc{5}, ImmOpc{4}, - ImmOpc{3}, ImmOpc{2}, ImmOpc{1}, 1 }, - ImmMod, (outs), (ins i32mem :$dst, i32imm :$src2), - !strconcat(mnemonic, "{l}\t", - "{$src2, $dst|$dst, $src2}"), - [], IIC_ALU_MEM>, OpSize32, LOCK; - -def NAME#64mi32 : RIi32S<{ImmOpc{7}, ImmOpc{6}, ImmOpc{5}, ImmOpc{4}, - ImmOpc{3}, ImmOpc{2}, ImmOpc{1}, 1 }, - ImmMod, (outs), (ins i64mem :$dst, i64i32imm :$src2), - !strconcat(mnemonic, "{q}\t", - "{$src2, $dst|$dst, $src2}"), - [], IIC_ALU_MEM>, LOCK; - -def NAME#16mi8 : Ii8<{ImmOpc8{7}, ImmOpc8{6}, ImmOpc8{5}, ImmOpc8{4}, - ImmOpc8{3}, ImmOpc8{2}, ImmOpc8{1}, 1 }, - ImmMod, (outs), (ins i16mem :$dst, i16i8imm :$src2), - !strconcat(mnemonic, "{w}\t", - "{$src2, $dst|$dst, $src2}"), - [], IIC_ALU_MEM>, OpSize16, LOCK; -def NAME#32mi8 : Ii8<{ImmOpc8{7}, ImmOpc8{6}, ImmOpc8{5}, ImmOpc8{4}, - ImmOpc8{3}, ImmOpc8{2}, ImmOpc8{1}, 1 }, - ImmMod, (outs), (ins i32mem :$dst, i32i8imm :$src2), - !strconcat(mnemonic, "{l}\t", - "{$src2, $dst|$dst, $src2}"), - [], IIC_ALU_MEM>, OpSize32, LOCK; -def NAME#64mi8 : RIi8<{ImmOpc8{7}, ImmOpc8{6}, ImmOpc8{5}, ImmOpc8{4}, - ImmOpc8{3}, ImmOpc8{2}, ImmOpc8{1}, 1 }, - ImmMod, (outs), (ins i64mem :$dst, i64i8imm :$src2), - !strconcat(mnemonic, "{q}\t", - "{$src2, $dst|$dst, $src2}"), - [], IIC_ALU_MEM>, LOCK; - -} - -} - -defm LOCK_ADD : LOCK_ArithBinOp<0x00, 0x80, 0x83, MRM0m, "add">; -defm LOCK_SUB : LOCK_ArithBinOp<0x28, 0x80, 0x83, MRM5m, "sub">; -defm LOCK_OR : LOCK_ArithBinOp<0x08, 0x80, 0x83, MRM1m, "or">; -defm LOCK_AND : LOCK_ArithBinOp<0x20, 0x80, 0x83, MRM4m, "and">; -defm LOCK_XOR : LOCK_ArithBinOp<0x30, 0x80, 0x83, MRM6m, "xor">; - -// Optimized codegen when the non-memory output is not used. -multiclass LOCK_ArithUnOp<bits<8> Opc8, bits<8> Opc, Format Form, - string mnemonic> { -let Defs = [EFLAGS], mayLoad = 1, mayStore = 1, isCodeGenOnly = 1, - SchedRW = [WriteALULd, WriteRMW] in { - -def NAME#8m : I<Opc8, Form, (outs), (ins i8mem :$dst), - !strconcat(mnemonic, "{b}\t$dst"), - [], IIC_UNARY_MEM>, LOCK; -def NAME#16m : I<Opc, Form, (outs), (ins i16mem:$dst), - !strconcat(mnemonic, "{w}\t$dst"), - [], IIC_UNARY_MEM>, OpSize16, LOCK; -def NAME#32m : I<Opc, Form, (outs), (ins i32mem:$dst), - !strconcat(mnemonic, "{l}\t$dst"), - [], IIC_UNARY_MEM>, OpSize32, LOCK; -def NAME#64m : RI<Opc, Form, (outs), (ins i64mem:$dst), - !strconcat(mnemonic, "{q}\t$dst"), - [], IIC_UNARY_MEM>, LOCK; -} -} - -defm LOCK_INC : LOCK_ArithUnOp<0xFE, 0xFF, MRM0m, "inc">; -defm LOCK_DEC : LOCK_ArithUnOp<0xFE, 0xFF, MRM1m, "dec">; - -// Atomic compare and swap. -multiclass LCMPXCHG_UnOp<bits<8> Opc, Format Form, string mnemonic, - SDPatternOperator frag, X86MemOperand x86memop, - InstrItinClass itin> { -let isCodeGenOnly = 1 in { - def NAME : I<Opc, Form, (outs), (ins x86memop:$ptr), - !strconcat(mnemonic, "\t$ptr"), - [(frag addr:$ptr)], itin>, TB, LOCK; -} -} - -multiclass LCMPXCHG_BinOp<bits<8> Opc8, bits<8> Opc, Format Form, - string mnemonic, SDPatternOperator frag, - InstrItinClass itin8, InstrItinClass itin> { -let isCodeGenOnly = 1, SchedRW = [WriteALULd, WriteRMW] in { - let Defs = [AL, EFLAGS], Uses = [AL] in - def NAME#8 : I<Opc8, Form, (outs), (ins i8mem:$ptr, GR8:$swap), - !strconcat(mnemonic, "{b}\t{$swap, $ptr|$ptr, $swap}"), - [(frag addr:$ptr, GR8:$swap, 1)], itin8>, TB, LOCK; - let Defs = [AX, EFLAGS], Uses = [AX] in - def NAME#16 : I<Opc, Form, (outs), (ins i16mem:$ptr, GR16:$swap), - !strconcat(mnemonic, "{w}\t{$swap, $ptr|$ptr, $swap}"), - [(frag addr:$ptr, GR16:$swap, 2)], itin>, TB, OpSize16, LOCK; - let Defs = [EAX, EFLAGS], Uses = [EAX] in - def NAME#32 : I<Opc, Form, (outs), (ins i32mem:$ptr, GR32:$swap), - !strconcat(mnemonic, "{l}\t{$swap, $ptr|$ptr, $swap}"), - [(frag addr:$ptr, GR32:$swap, 4)], itin>, TB, OpSize32, LOCK; - let Defs = [RAX, EFLAGS], Uses = [RAX] in - def NAME#64 : RI<Opc, Form, (outs), (ins i64mem:$ptr, GR64:$swap), - !strconcat(mnemonic, "{q}\t{$swap, $ptr|$ptr, $swap}"), - [(frag addr:$ptr, GR64:$swap, 8)], itin>, TB, LOCK; -} -} - -let Defs = [EAX, EDX, EFLAGS], Uses = [EAX, EBX, ECX, EDX], - SchedRW = [WriteALULd, WriteRMW] in { -defm LCMPXCHG8B : LCMPXCHG_UnOp<0xC7, MRM1m, "cmpxchg8b", - X86cas8, i64mem, - IIC_CMPX_LOCK_8B>; -} - -let Defs = [RAX, RDX, EFLAGS], Uses = [RAX, RBX, RCX, RDX], - Predicates = [HasCmpxchg16b], SchedRW = [WriteALULd, WriteRMW] in { -defm LCMPXCHG16B : LCMPXCHG_UnOp<0xC7, MRM1m, "cmpxchg16b", - X86cas16, i128mem, - IIC_CMPX_LOCK_16B>, REX_W; -} - -defm LCMPXCHG : LCMPXCHG_BinOp<0xB0, 0xB1, MRMDestMem, "cmpxchg", - X86cas, IIC_CMPX_LOCK_8, IIC_CMPX_LOCK>; - -// Atomic exchange and add -multiclass ATOMIC_LOAD_BINOP<bits<8> opc8, bits<8> opc, string mnemonic, - string frag, - InstrItinClass itin8, InstrItinClass itin> { - let Constraints = "$val = $dst", Defs = [EFLAGS], isCodeGenOnly = 1, - SchedRW = [WriteALULd, WriteRMW] in { - def NAME#8 : I<opc8, MRMSrcMem, (outs GR8:$dst), - (ins GR8:$val, i8mem:$ptr), - !strconcat(mnemonic, "{b}\t{$val, $ptr|$ptr, $val}"), - [(set GR8:$dst, - (!cast<PatFrag>(frag # "_8") addr:$ptr, GR8:$val))], - itin8>; - def NAME#16 : I<opc, MRMSrcMem, (outs GR16:$dst), - (ins GR16:$val, i16mem:$ptr), - !strconcat(mnemonic, "{w}\t{$val, $ptr|$ptr, $val}"), - [(set - GR16:$dst, - (!cast<PatFrag>(frag # "_16") addr:$ptr, GR16:$val))], - itin>, OpSize16; - def NAME#32 : I<opc, MRMSrcMem, (outs GR32:$dst), - (ins GR32:$val, i32mem:$ptr), - !strconcat(mnemonic, "{l}\t{$val, $ptr|$ptr, $val}"), - [(set - GR32:$dst, - (!cast<PatFrag>(frag # "_32") addr:$ptr, GR32:$val))], - itin>, OpSize32; - def NAME#64 : RI<opc, MRMSrcMem, (outs GR64:$dst), - (ins GR64:$val, i64mem:$ptr), - !strconcat(mnemonic, "{q}\t{$val, $ptr|$ptr, $val}"), - [(set - GR64:$dst, - (!cast<PatFrag>(frag # "_64") addr:$ptr, GR64:$val))], - itin>; - } -} - -defm LXADD : ATOMIC_LOAD_BINOP<0xc0, 0xc1, "xadd", "atomic_load_add", - IIC_XADD_LOCK_MEM8, IIC_XADD_LOCK_MEM>, - TB, LOCK; - -/* The following multiclass tries to make sure that in code like - * x.store (immediate op x.load(acquire), release) - * an operation directly on memory is generated instead of wasting a register. - * It is not automatic as atomic_store/load are only lowered to MOV instructions - * extremely late to prevent them from being accidentally reordered in the backend - * (see below the RELEASE_MOV* / ACQUIRE_MOV* pseudo-instructions) - */ -multiclass RELEASE_BINOP_MI<string op> { - def NAME#8mi : I<0, Pseudo, (outs), (ins i8mem:$dst, i8imm:$src), - "#RELEASE_BINOP PSEUDO!", - [(atomic_store_8 addr:$dst, (!cast<PatFrag>(op) - (atomic_load_8 addr:$dst), (i8 imm:$src)))]>; - // NAME#16 is not generated as 16-bit arithmetic instructions are considered - // costly and avoided as far as possible by this backend anyway - def NAME#32mi : I<0, Pseudo, (outs), (ins i32mem:$dst, i32imm:$src), - "#RELEASE_BINOP PSEUDO!", - [(atomic_store_32 addr:$dst, (!cast<PatFrag>(op) - (atomic_load_32 addr:$dst), (i32 imm:$src)))]>; - def NAME#64mi32 : I<0, Pseudo, (outs), (ins i64mem:$dst, i64i32imm:$src), - "#RELEASE_BINOP PSEUDO!", - [(atomic_store_64 addr:$dst, (!cast<PatFrag>(op) - (atomic_load_64 addr:$dst), (i64immSExt32:$src)))]>; -} -defm RELEASE_ADD : RELEASE_BINOP_MI<"add">; -defm RELEASE_AND : RELEASE_BINOP_MI<"and">; -defm RELEASE_OR : RELEASE_BINOP_MI<"or">; -defm RELEASE_XOR : RELEASE_BINOP_MI<"xor">; -// Note: we don't deal with sub, because substractions of constants are -// optimized into additions before this code can run - -multiclass RELEASE_UNOP<dag dag8, dag dag16, dag dag32, dag dag64> { - def NAME#8m : I<0, Pseudo, (outs), (ins i8mem:$dst), - "#RELEASE_UNOP PSEUDO!", - [(atomic_store_8 addr:$dst, dag8)]>; - def NAME#16m : I<0, Pseudo, (outs), (ins i16mem:$dst), - "#RELEASE_UNOP PSEUDO!", - [(atomic_store_16 addr:$dst, dag16)]>; - def NAME#32m : I<0, Pseudo, (outs), (ins i32mem:$dst), - "#RELEASE_UNOP PSEUDO!", - [(atomic_store_32 addr:$dst, dag32)]>; - def NAME#64m : I<0, Pseudo, (outs), (ins i64mem:$dst), - "#RELEASE_UNOP PSEUDO!", - [(atomic_store_64 addr:$dst, dag64)]>; -} - -defm RELEASE_INC : RELEASE_UNOP< - (add (atomic_load_8 addr:$dst), (i8 1)), - (add (atomic_load_16 addr:$dst), (i16 1)), - (add (atomic_load_32 addr:$dst), (i32 1)), - (add (atomic_load_64 addr:$dst), (i64 1))>, Requires<[NotSlowIncDec]>; -defm RELEASE_DEC : RELEASE_UNOP< - (add (atomic_load_8 addr:$dst), (i8 -1)), - (add (atomic_load_16 addr:$dst), (i16 -1)), - (add (atomic_load_32 addr:$dst), (i32 -1)), - (add (atomic_load_64 addr:$dst), (i64 -1))>, Requires<[NotSlowIncDec]>; -/* -TODO: These don't work because the type inference of TableGen fails. -TODO: find a way to fix it. -defm RELEASE_NEG : RELEASE_UNOP< - (ineg (atomic_load_8 addr:$dst)), - (ineg (atomic_load_16 addr:$dst)), - (ineg (atomic_load_32 addr:$dst)), - (ineg (atomic_load_64 addr:$dst))>; -defm RELEASE_NOT : RELEASE_UNOP< - (not (atomic_load_8 addr:$dst)), - (not (atomic_load_16 addr:$dst)), - (not (atomic_load_32 addr:$dst)), - (not (atomic_load_64 addr:$dst))>; -*/ - -def RELEASE_MOV8mi : I<0, Pseudo, (outs), (ins i8mem:$dst, i8imm:$src), - "#RELEASE_MOV PSEUDO !", - [(atomic_store_8 addr:$dst, (i8 imm:$src))]>; -def RELEASE_MOV16mi : I<0, Pseudo, (outs), (ins i16mem:$dst, i16imm:$src), - "#RELEASE_MOV PSEUDO !", - [(atomic_store_16 addr:$dst, (i16 imm:$src))]>; -def RELEASE_MOV32mi : I<0, Pseudo, (outs), (ins i32mem:$dst, i32imm:$src), - "#RELEASE_MOV PSEUDO !", - [(atomic_store_32 addr:$dst, (i32 imm:$src))]>; -def RELEASE_MOV64mi32 : I<0, Pseudo, (outs), (ins i64mem:$dst, i64i32imm:$src), - "#RELEASE_MOV PSEUDO !", - [(atomic_store_64 addr:$dst, i64immSExt32:$src)]>; - -def RELEASE_MOV8mr : I<0, Pseudo, (outs), (ins i8mem :$dst, GR8 :$src), - "#RELEASE_MOV PSEUDO!", - [(atomic_store_8 addr:$dst, GR8 :$src)]>; -def RELEASE_MOV16mr : I<0, Pseudo, (outs), (ins i16mem:$dst, GR16:$src), - "#RELEASE_MOV PSEUDO!", - [(atomic_store_16 addr:$dst, GR16:$src)]>; -def RELEASE_MOV32mr : I<0, Pseudo, (outs), (ins i32mem:$dst, GR32:$src), - "#RELEASE_MOV PSEUDO!", - [(atomic_store_32 addr:$dst, GR32:$src)]>; -def RELEASE_MOV64mr : I<0, Pseudo, (outs), (ins i64mem:$dst, GR64:$src), - "#RELEASE_MOV PSEUDO!", - [(atomic_store_64 addr:$dst, GR64:$src)]>; - -def ACQUIRE_MOV8rm : I<0, Pseudo, (outs GR8 :$dst), (ins i8mem :$src), - "#ACQUIRE_MOV PSEUDO!", - [(set GR8:$dst, (atomic_load_8 addr:$src))]>; -def ACQUIRE_MOV16rm : I<0, Pseudo, (outs GR16:$dst), (ins i16mem:$src), - "#ACQUIRE_MOV PSEUDO!", - [(set GR16:$dst, (atomic_load_16 addr:$src))]>; -def ACQUIRE_MOV32rm : I<0, Pseudo, (outs GR32:$dst), (ins i32mem:$src), - "#ACQUIRE_MOV PSEUDO!", - [(set GR32:$dst, (atomic_load_32 addr:$src))]>; -def ACQUIRE_MOV64rm : I<0, Pseudo, (outs GR64:$dst), (ins i64mem:$src), - "#ACQUIRE_MOV PSEUDO!", - [(set GR64:$dst, (atomic_load_64 addr:$src))]>; -//===----------------------------------------------------------------------===// -// Conditional Move Pseudo Instructions. -//===----------------------------------------------------------------------===// - -// CMOV* - Used to implement the SSE SELECT DAG operation. Expanded after -// instruction selection into a branch sequence. -let Uses = [EFLAGS], usesCustomInserter = 1 in { - def CMOV_FR32 : I<0, Pseudo, - (outs FR32:$dst), (ins FR32:$t, FR32:$f, i8imm:$cond), - "#CMOV_FR32 PSEUDO!", - [(set FR32:$dst, (X86cmov FR32:$t, FR32:$f, imm:$cond, - EFLAGS))]>; - def CMOV_FR64 : I<0, Pseudo, - (outs FR64:$dst), (ins FR64:$t, FR64:$f, i8imm:$cond), - "#CMOV_FR64 PSEUDO!", - [(set FR64:$dst, (X86cmov FR64:$t, FR64:$f, imm:$cond, - EFLAGS))]>; - def CMOV_V4F32 : I<0, Pseudo, - (outs VR128:$dst), (ins VR128:$t, VR128:$f, i8imm:$cond), - "#CMOV_V4F32 PSEUDO!", - [(set VR128:$dst, - (v4f32 (X86cmov VR128:$t, VR128:$f, imm:$cond, - EFLAGS)))]>; - def CMOV_V2F64 : I<0, Pseudo, - (outs VR128:$dst), (ins VR128:$t, VR128:$f, i8imm:$cond), - "#CMOV_V2F64 PSEUDO!", - [(set VR128:$dst, - (v2f64 (X86cmov VR128:$t, VR128:$f, imm:$cond, - EFLAGS)))]>; - def CMOV_V2I64 : I<0, Pseudo, - (outs VR128:$dst), (ins VR128:$t, VR128:$f, i8imm:$cond), - "#CMOV_V2I64 PSEUDO!", - [(set VR128:$dst, - (v2i64 (X86cmov VR128:$t, VR128:$f, imm:$cond, - EFLAGS)))]>; - def CMOV_V8F32 : I<0, Pseudo, - (outs VR256:$dst), (ins VR256:$t, VR256:$f, i8imm:$cond), - "#CMOV_V8F32 PSEUDO!", - [(set VR256:$dst, - (v8f32 (X86cmov VR256:$t, VR256:$f, imm:$cond, - EFLAGS)))]>; - def CMOV_V4F64 : I<0, Pseudo, - (outs VR256:$dst), (ins VR256:$t, VR256:$f, i8imm:$cond), - "#CMOV_V4F64 PSEUDO!", - [(set VR256:$dst, - (v4f64 (X86cmov VR256:$t, VR256:$f, imm:$cond, - EFLAGS)))]>; - def CMOV_V4I64 : I<0, Pseudo, - (outs VR256:$dst), (ins VR256:$t, VR256:$f, i8imm:$cond), - "#CMOV_V4I64 PSEUDO!", - [(set VR256:$dst, - (v4i64 (X86cmov VR256:$t, VR256:$f, imm:$cond, - EFLAGS)))]>; - def CMOV_V8I64 : I<0, Pseudo, - (outs VR512:$dst), (ins VR512:$t, VR512:$f, i8imm:$cond), - "#CMOV_V8I64 PSEUDO!", - [(set VR512:$dst, - (v8i64 (X86cmov VR512:$t, VR512:$f, imm:$cond, - EFLAGS)))]>; - def CMOV_V8F64 : I<0, Pseudo, - (outs VR512:$dst), (ins VR512:$t, VR512:$f, i8imm:$cond), - "#CMOV_V8F64 PSEUDO!", - [(set VR512:$dst, - (v8f64 (X86cmov VR512:$t, VR512:$f, imm:$cond, - EFLAGS)))]>; - def CMOV_V16F32 : I<0, Pseudo, - (outs VR512:$dst), (ins VR512:$t, VR512:$f, i8imm:$cond), - "#CMOV_V16F32 PSEUDO!", - [(set VR512:$dst, - (v16f32 (X86cmov VR512:$t, VR512:$f, imm:$cond, - EFLAGS)))]>; -} - - -//===----------------------------------------------------------------------===// -// DAG Pattern Matching Rules -//===----------------------------------------------------------------------===// - -// ConstantPool GlobalAddress, ExternalSymbol, and JumpTable -def : Pat<(i32 (X86Wrapper tconstpool :$dst)), (MOV32ri tconstpool :$dst)>; -def : Pat<(i32 (X86Wrapper tjumptable :$dst)), (MOV32ri tjumptable :$dst)>; -def : Pat<(i32 (X86Wrapper tglobaltlsaddr:$dst)),(MOV32ri tglobaltlsaddr:$dst)>; -def : Pat<(i32 (X86Wrapper tglobaladdr :$dst)), (MOV32ri tglobaladdr :$dst)>; -def : Pat<(i32 (X86Wrapper texternalsym:$dst)), (MOV32ri texternalsym:$dst)>; -def : Pat<(i32 (X86Wrapper tblockaddress:$dst)), (MOV32ri tblockaddress:$dst)>; - -def : Pat<(add GR32:$src1, (X86Wrapper tconstpool:$src2)), - (ADD32ri GR32:$src1, tconstpool:$src2)>; -def : Pat<(add GR32:$src1, (X86Wrapper tjumptable:$src2)), - (ADD32ri GR32:$src1, tjumptable:$src2)>; -def : Pat<(add GR32:$src1, (X86Wrapper tglobaladdr :$src2)), - (ADD32ri GR32:$src1, tglobaladdr:$src2)>; -def : Pat<(add GR32:$src1, (X86Wrapper texternalsym:$src2)), - (ADD32ri GR32:$src1, texternalsym:$src2)>; -def : Pat<(add GR32:$src1, (X86Wrapper tblockaddress:$src2)), - (ADD32ri GR32:$src1, tblockaddress:$src2)>; - -def : Pat<(store (i32 (X86Wrapper tglobaladdr:$src)), addr:$dst), - (MOV32mi addr:$dst, tglobaladdr:$src)>; -def : Pat<(store (i32 (X86Wrapper texternalsym:$src)), addr:$dst), - (MOV32mi addr:$dst, texternalsym:$src)>; -def : Pat<(store (i32 (X86Wrapper tblockaddress:$src)), addr:$dst), - (MOV32mi addr:$dst, tblockaddress:$src)>; - -// ConstantPool GlobalAddress, ExternalSymbol, and JumpTable when not in small -// code model mode, should use 'movabs'. FIXME: This is really a hack, the -// 'movabs' predicate should handle this sort of thing. -def : Pat<(i64 (X86Wrapper tconstpool :$dst)), - (MOV64ri tconstpool :$dst)>, Requires<[FarData]>; -def : Pat<(i64 (X86Wrapper tjumptable :$dst)), - (MOV64ri tjumptable :$dst)>, Requires<[FarData]>; -def : Pat<(i64 (X86Wrapper tglobaladdr :$dst)), - (MOV64ri tglobaladdr :$dst)>, Requires<[FarData]>; -def : Pat<(i64 (X86Wrapper texternalsym:$dst)), - (MOV64ri texternalsym:$dst)>, Requires<[FarData]>; -def : Pat<(i64 (X86Wrapper tblockaddress:$dst)), - (MOV64ri tblockaddress:$dst)>, Requires<[FarData]>; - -// In kernel code model, we can get the address of a label -// into a register with 'movq'. FIXME: This is a hack, the 'imm' predicate of -// the MOV64ri32 should accept these. -def : Pat<(i64 (X86Wrapper tconstpool :$dst)), - (MOV64ri32 tconstpool :$dst)>, Requires<[KernelCode]>; -def : Pat<(i64 (X86Wrapper tjumptable :$dst)), - (MOV64ri32 tjumptable :$dst)>, Requires<[KernelCode]>; -def : Pat<(i64 (X86Wrapper tglobaladdr :$dst)), - (MOV64ri32 tglobaladdr :$dst)>, Requires<[KernelCode]>; -def : Pat<(i64 (X86Wrapper texternalsym:$dst)), - (MOV64ri32 texternalsym:$dst)>, Requires<[KernelCode]>; -def : Pat<(i64 (X86Wrapper tblockaddress:$dst)), - (MOV64ri32 tblockaddress:$dst)>, Requires<[KernelCode]>; - -// If we have small model and -static mode, it is safe to store global addresses -// directly as immediates. FIXME: This is really a hack, the 'imm' predicate -// for MOV64mi32 should handle this sort of thing. -def : Pat<(store (i64 (X86Wrapper tconstpool:$src)), addr:$dst), - (MOV64mi32 addr:$dst, tconstpool:$src)>, - Requires<[NearData, IsStatic]>; -def : Pat<(store (i64 (X86Wrapper tjumptable:$src)), addr:$dst), - (MOV64mi32 addr:$dst, tjumptable:$src)>, - Requires<[NearData, IsStatic]>; -def : Pat<(store (i64 (X86Wrapper tglobaladdr:$src)), addr:$dst), - (MOV64mi32 addr:$dst, tglobaladdr:$src)>, - Requires<[NearData, IsStatic]>; -def : Pat<(store (i64 (X86Wrapper texternalsym:$src)), addr:$dst), - (MOV64mi32 addr:$dst, texternalsym:$src)>, - Requires<[NearData, IsStatic]>; -def : Pat<(store (i64 (X86Wrapper tblockaddress:$src)), addr:$dst), - (MOV64mi32 addr:$dst, tblockaddress:$src)>, - Requires<[NearData, IsStatic]>; - -def : Pat<(i32 (X86RecoverFrameAlloc texternalsym:$dst)), (MOV32ri texternalsym:$dst)>; -def : Pat<(i64 (X86RecoverFrameAlloc texternalsym:$dst)), (MOV64ri texternalsym:$dst)>; - -// Calls - -// tls has some funny stuff here... -// This corresponds to movabs $foo@tpoff, %rax -def : Pat<(i64 (X86Wrapper tglobaltlsaddr :$dst)), - (MOV64ri32 tglobaltlsaddr :$dst)>; -// This corresponds to add $foo@tpoff, %rax -def : Pat<(add GR64:$src1, (X86Wrapper tglobaltlsaddr :$dst)), - (ADD64ri32 GR64:$src1, tglobaltlsaddr :$dst)>; - - -// Direct PC relative function call for small code model. 32-bit displacement -// sign extended to 64-bit. -def : Pat<(X86call (i64 tglobaladdr:$dst)), - (CALL64pcrel32 tglobaladdr:$dst)>; -def : Pat<(X86call (i64 texternalsym:$dst)), - (CALL64pcrel32 texternalsym:$dst)>; - -// Tailcall stuff. The TCRETURN instructions execute after the epilog, so they -// can never use callee-saved registers. That is the purpose of the GR64_TC -// register classes. -// -// The only volatile register that is never used by the calling convention is -// %r11. This happens when calling a vararg function with 6 arguments. -// -// Match an X86tcret that uses less than 7 volatile registers. -def X86tcret_6regs : PatFrag<(ops node:$ptr, node:$off), - (X86tcret node:$ptr, node:$off), [{ - // X86tcret args: (*chain, ptr, imm, regs..., glue) - unsigned NumRegs = 0; - for (unsigned i = 3, e = N->getNumOperands(); i != e; ++i) - if (isa<RegisterSDNode>(N->getOperand(i)) && ++NumRegs > 6) - return false; - return true; -}]>; - -def : Pat<(X86tcret ptr_rc_tailcall:$dst, imm:$off), - (TCRETURNri ptr_rc_tailcall:$dst, imm:$off)>, - Requires<[Not64BitMode]>; - -// FIXME: This is disabled for 32-bit PIC mode because the global base -// register which is part of the address mode may be assigned a -// callee-saved register. -def : Pat<(X86tcret (load addr:$dst), imm:$off), - (TCRETURNmi addr:$dst, imm:$off)>, - Requires<[Not64BitMode, IsNotPIC]>; - -def : Pat<(X86tcret (i32 tglobaladdr:$dst), imm:$off), - (TCRETURNdi tglobaladdr:$dst, imm:$off)>, - Requires<[NotLP64]>; - -def : Pat<(X86tcret (i32 texternalsym:$dst), imm:$off), - (TCRETURNdi texternalsym:$dst, imm:$off)>, - Requires<[NotLP64]>; - -def : Pat<(X86tcret ptr_rc_tailcall:$dst, imm:$off), - (TCRETURNri64 ptr_rc_tailcall:$dst, imm:$off)>, - Requires<[In64BitMode]>; - -// Don't fold loads into X86tcret requiring more than 6 regs. -// There wouldn't be enough scratch registers for base+index. -def : Pat<(X86tcret_6regs (load addr:$dst), imm:$off), - (TCRETURNmi64 addr:$dst, imm:$off)>, - Requires<[In64BitMode]>; - -def : Pat<(X86tcret (i64 tglobaladdr:$dst), imm:$off), - (TCRETURNdi64 tglobaladdr:$dst, imm:$off)>, - Requires<[IsLP64]>; - -def : Pat<(X86tcret (i64 texternalsym:$dst), imm:$off), - (TCRETURNdi64 texternalsym:$dst, imm:$off)>, - Requires<[IsLP64]>; - -// Normal calls, with various flavors of addresses. -def : Pat<(X86call (i32 tglobaladdr:$dst)), - (CALLpcrel32 tglobaladdr:$dst)>; -def : Pat<(X86call (i32 texternalsym:$dst)), - (CALLpcrel32 texternalsym:$dst)>; -def : Pat<(X86call (i32 imm:$dst)), - (CALLpcrel32 imm:$dst)>, Requires<[CallImmAddr]>; - -// Comparisons. - -// TEST R,R is smaller than CMP R,0 -def : Pat<(X86cmp GR8:$src1, 0), - (TEST8rr GR8:$src1, GR8:$src1)>; -def : Pat<(X86cmp GR16:$src1, 0), - (TEST16rr GR16:$src1, GR16:$src1)>; -def : Pat<(X86cmp GR32:$src1, 0), - (TEST32rr GR32:$src1, GR32:$src1)>; -def : Pat<(X86cmp GR64:$src1, 0), - (TEST64rr GR64:$src1, GR64:$src1)>; - -// Conditional moves with folded loads with operands swapped and conditions -// inverted. -multiclass CMOVmr<PatLeaf InvertedCond, Instruction Inst16, Instruction Inst32, - Instruction Inst64> { - let Predicates = [HasCMov] in { - def : Pat<(X86cmov (loadi16 addr:$src1), GR16:$src2, InvertedCond, EFLAGS), - (Inst16 GR16:$src2, addr:$src1)>; - def : Pat<(X86cmov (loadi32 addr:$src1), GR32:$src2, InvertedCond, EFLAGS), - (Inst32 GR32:$src2, addr:$src1)>; - def : Pat<(X86cmov (loadi64 addr:$src1), GR64:$src2, InvertedCond, EFLAGS), - (Inst64 GR64:$src2, addr:$src1)>; - } -} - -defm : CMOVmr<X86_COND_B , CMOVAE16rm, CMOVAE32rm, CMOVAE64rm>; -defm : CMOVmr<X86_COND_AE, CMOVB16rm , CMOVB32rm , CMOVB64rm>; -defm : CMOVmr<X86_COND_E , CMOVNE16rm, CMOVNE32rm, CMOVNE64rm>; -defm : CMOVmr<X86_COND_NE, CMOVE16rm , CMOVE32rm , CMOVE64rm>; -defm : CMOVmr<X86_COND_BE, CMOVA16rm , CMOVA32rm , CMOVA64rm>; -defm : CMOVmr<X86_COND_A , CMOVBE16rm, CMOVBE32rm, CMOVBE64rm>; -defm : CMOVmr<X86_COND_L , CMOVGE16rm, CMOVGE32rm, CMOVGE64rm>; -defm : CMOVmr<X86_COND_GE, CMOVL16rm , CMOVL32rm , CMOVL64rm>; -defm : CMOVmr<X86_COND_LE, CMOVG16rm , CMOVG32rm , CMOVG64rm>; -defm : CMOVmr<X86_COND_G , CMOVLE16rm, CMOVLE32rm, CMOVLE64rm>; -defm : CMOVmr<X86_COND_P , CMOVNP16rm, CMOVNP32rm, CMOVNP64rm>; -defm : CMOVmr<X86_COND_NP, CMOVP16rm , CMOVP32rm , CMOVP64rm>; -defm : CMOVmr<X86_COND_S , CMOVNS16rm, CMOVNS32rm, CMOVNS64rm>; -defm : CMOVmr<X86_COND_NS, CMOVS16rm , CMOVS32rm , CMOVS64rm>; -defm : CMOVmr<X86_COND_O , CMOVNO16rm, CMOVNO32rm, CMOVNO64rm>; -defm : CMOVmr<X86_COND_NO, CMOVO16rm , CMOVO32rm , CMOVO64rm>; - -// zextload bool -> zextload byte -def : Pat<(zextloadi8i1 addr:$src), (MOV8rm addr:$src)>; -def : Pat<(zextloadi16i1 addr:$src), (MOVZX16rm8 addr:$src)>; -def : Pat<(zextloadi32i1 addr:$src), (MOVZX32rm8 addr:$src)>; -def : Pat<(zextloadi64i1 addr:$src), - (SUBREG_TO_REG (i64 0), (MOVZX32rm8 addr:$src), sub_32bit)>; - -// extload bool -> extload byte -// When extloading from 16-bit and smaller memory locations into 64-bit -// registers, use zero-extending loads so that the entire 64-bit register is -// defined, avoiding partial-register updates. - -def : Pat<(extloadi8i1 addr:$src), (MOV8rm addr:$src)>; -def : Pat<(extloadi16i1 addr:$src), (MOVZX16rm8 addr:$src)>; -def : Pat<(extloadi32i1 addr:$src), (MOVZX32rm8 addr:$src)>; -def : Pat<(extloadi16i8 addr:$src), (MOVZX16rm8 addr:$src)>; -def : Pat<(extloadi32i8 addr:$src), (MOVZX32rm8 addr:$src)>; -def : Pat<(extloadi32i16 addr:$src), (MOVZX32rm16 addr:$src)>; - -// For other extloads, use subregs, since the high contents of the register are -// defined after an extload. -def : Pat<(extloadi64i1 addr:$src), - (SUBREG_TO_REG (i64 0), (MOVZX32rm8 addr:$src), sub_32bit)>; -def : Pat<(extloadi64i8 addr:$src), - (SUBREG_TO_REG (i64 0), (MOVZX32rm8 addr:$src), sub_32bit)>; -def : Pat<(extloadi64i16 addr:$src), - (SUBREG_TO_REG (i64 0), (MOVZX32rm16 addr:$src), sub_32bit)>; -def : Pat<(extloadi64i32 addr:$src), - (SUBREG_TO_REG (i64 0), (MOV32rm addr:$src), sub_32bit)>; - -// anyext. Define these to do an explicit zero-extend to -// avoid partial-register updates. -def : Pat<(i16 (anyext GR8 :$src)), (EXTRACT_SUBREG - (MOVZX32rr8 GR8 :$src), sub_16bit)>; -def : Pat<(i32 (anyext GR8 :$src)), (MOVZX32rr8 GR8 :$src)>; - -// Except for i16 -> i32 since isel expect i16 ops to be promoted to i32. -def : Pat<(i32 (anyext GR16:$src)), - (INSERT_SUBREG (i32 (IMPLICIT_DEF)), GR16:$src, sub_16bit)>; - -def : Pat<(i64 (anyext GR8 :$src)), - (SUBREG_TO_REG (i64 0), (MOVZX32rr8 GR8 :$src), sub_32bit)>; -def : Pat<(i64 (anyext GR16:$src)), - (SUBREG_TO_REG (i64 0), (MOVZX32rr16 GR16 :$src), sub_32bit)>; -def : Pat<(i64 (anyext GR32:$src)), - (SUBREG_TO_REG (i64 0), GR32:$src, sub_32bit)>; - - -// Any instruction that defines a 32-bit result leaves the high half of the -// register. Truncate can be lowered to EXTRACT_SUBREG. CopyFromReg may -// be copying from a truncate. And x86's cmov doesn't do anything if the -// condition is false. But any other 32-bit operation will zero-extend -// up to 64 bits. -def def32 : PatLeaf<(i32 GR32:$src), [{ - return N->getOpcode() != ISD::TRUNCATE && - N->getOpcode() != TargetOpcode::EXTRACT_SUBREG && - N->getOpcode() != ISD::CopyFromReg && - N->getOpcode() != ISD::AssertSext && - N->getOpcode() != X86ISD::CMOV; -}]>; - -// In the case of a 32-bit def that is known to implicitly zero-extend, -// we can use a SUBREG_TO_REG. -def : Pat<(i64 (zext def32:$src)), - (SUBREG_TO_REG (i64 0), GR32:$src, sub_32bit)>; - -//===----------------------------------------------------------------------===// -// Pattern match OR as ADD -//===----------------------------------------------------------------------===// - -// If safe, we prefer to pattern match OR as ADD at isel time. ADD can be -// 3-addressified into an LEA instruction to avoid copies. However, we also -// want to finally emit these instructions as an or at the end of the code -// generator to make the generated code easier to read. To do this, we select -// into "disjoint bits" pseudo ops. - -// Treat an 'or' node is as an 'add' if the or'ed bits are known to be zero. -def or_is_add : PatFrag<(ops node:$lhs, node:$rhs), (or node:$lhs, node:$rhs),[{ - if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N->getOperand(1))) - return CurDAG->MaskedValueIsZero(N->getOperand(0), CN->getAPIntValue()); - - APInt KnownZero0, KnownOne0; - CurDAG->computeKnownBits(N->getOperand(0), KnownZero0, KnownOne0, 0); - APInt KnownZero1, KnownOne1; - CurDAG->computeKnownBits(N->getOperand(1), KnownZero1, KnownOne1, 0); - return (~KnownZero0 & ~KnownZero1) == 0; -}]>; - - -// (or x1, x2) -> (add x1, x2) if two operands are known not to share bits. -// Try this before the selecting to OR. -let AddedComplexity = 5, SchedRW = [WriteALU] in { - -let isConvertibleToThreeAddress = 1, - Constraints = "$src1 = $dst", Defs = [EFLAGS] in { -let isCommutable = 1 in { -def ADD16rr_DB : I<0, Pseudo, (outs GR16:$dst), (ins GR16:$src1, GR16:$src2), - "", // orw/addw REG, REG - [(set GR16:$dst, (or_is_add GR16:$src1, GR16:$src2))]>; -def ADD32rr_DB : I<0, Pseudo, (outs GR32:$dst), (ins GR32:$src1, GR32:$src2), - "", // orl/addl REG, REG - [(set GR32:$dst, (or_is_add GR32:$src1, GR32:$src2))]>; -def ADD64rr_DB : I<0, Pseudo, (outs GR64:$dst), (ins GR64:$src1, GR64:$src2), - "", // orq/addq REG, REG - [(set GR64:$dst, (or_is_add GR64:$src1, GR64:$src2))]>; -} // isCommutable - -// NOTE: These are order specific, we want the ri8 forms to be listed -// first so that they are slightly preferred to the ri forms. - -def ADD16ri8_DB : I<0, Pseudo, - (outs GR16:$dst), (ins GR16:$src1, i16i8imm:$src2), - "", // orw/addw REG, imm8 - [(set GR16:$dst,(or_is_add GR16:$src1,i16immSExt8:$src2))]>; -def ADD16ri_DB : I<0, Pseudo, (outs GR16:$dst), (ins GR16:$src1, i16imm:$src2), - "", // orw/addw REG, imm - [(set GR16:$dst, (or_is_add GR16:$src1, imm:$src2))]>; - -def ADD32ri8_DB : I<0, Pseudo, - (outs GR32:$dst), (ins GR32:$src1, i32i8imm:$src2), - "", // orl/addl REG, imm8 - [(set GR32:$dst,(or_is_add GR32:$src1,i32immSExt8:$src2))]>; -def ADD32ri_DB : I<0, Pseudo, (outs GR32:$dst), (ins GR32:$src1, i32imm:$src2), - "", // orl/addl REG, imm - [(set GR32:$dst, (or_is_add GR32:$src1, imm:$src2))]>; - - -def ADD64ri8_DB : I<0, Pseudo, - (outs GR64:$dst), (ins GR64:$src1, i64i8imm:$src2), - "", // orq/addq REG, imm8 - [(set GR64:$dst, (or_is_add GR64:$src1, - i64immSExt8:$src2))]>; -def ADD64ri32_DB : I<0, Pseudo, - (outs GR64:$dst), (ins GR64:$src1, i64i32imm:$src2), - "", // orq/addq REG, imm - [(set GR64:$dst, (or_is_add GR64:$src1, - i64immSExt32:$src2))]>; -} -} // AddedComplexity, SchedRW - - -//===----------------------------------------------------------------------===// -// Some peepholes -//===----------------------------------------------------------------------===// - -// Odd encoding trick: -128 fits into an 8-bit immediate field while -// +128 doesn't, so in this special case use a sub instead of an add. -def : Pat<(add GR16:$src1, 128), - (SUB16ri8 GR16:$src1, -128)>; -def : Pat<(store (add (loadi16 addr:$dst), 128), addr:$dst), - (SUB16mi8 addr:$dst, -128)>; - -def : Pat<(add GR32:$src1, 128), - (SUB32ri8 GR32:$src1, -128)>; -def : Pat<(store (add (loadi32 addr:$dst), 128), addr:$dst), - (SUB32mi8 addr:$dst, -128)>; - -def : Pat<(add GR64:$src1, 128), - (SUB64ri8 GR64:$src1, -128)>; -def : Pat<(store (add (loadi64 addr:$dst), 128), addr:$dst), - (SUB64mi8 addr:$dst, -128)>; - -// The same trick applies for 32-bit immediate fields in 64-bit -// instructions. -def : Pat<(add GR64:$src1, 0x0000000080000000), - (SUB64ri32 GR64:$src1, 0xffffffff80000000)>; -def : Pat<(store (add (loadi64 addr:$dst), 0x00000000800000000), addr:$dst), - (SUB64mi32 addr:$dst, 0xffffffff80000000)>; - -// To avoid needing to materialize an immediate in a register, use a 32-bit and -// with implicit zero-extension instead of a 64-bit and if the immediate has at -// least 32 bits of leading zeros. If in addition the last 32 bits can be -// represented with a sign extension of a 8 bit constant, use that. - -def : Pat<(and GR64:$src, i64immZExt32SExt8:$imm), - (SUBREG_TO_REG - (i64 0), - (AND32ri8 - (EXTRACT_SUBREG GR64:$src, sub_32bit), - (i32 (GetLo8XForm imm:$imm))), - sub_32bit)>; - -def : Pat<(and GR64:$src, i64immZExt32:$imm), - (SUBREG_TO_REG - (i64 0), - (AND32ri - (EXTRACT_SUBREG GR64:$src, sub_32bit), - (i32 (GetLo32XForm imm:$imm))), - sub_32bit)>; - - -// r & (2^16-1) ==> movz -def : Pat<(and GR32:$src1, 0xffff), - (MOVZX32rr16 (EXTRACT_SUBREG GR32:$src1, sub_16bit))>; -// r & (2^8-1) ==> movz -def : Pat<(and GR32:$src1, 0xff), - (MOVZX32rr8 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src1, - GR32_ABCD)), - sub_8bit))>, - Requires<[Not64BitMode]>; -// r & (2^8-1) ==> movz -def : Pat<(and GR16:$src1, 0xff), - (EXTRACT_SUBREG (MOVZX32rr8 (EXTRACT_SUBREG - (i16 (COPY_TO_REGCLASS GR16:$src1, GR16_ABCD)), sub_8bit)), - sub_16bit)>, - Requires<[Not64BitMode]>; - -// r & (2^32-1) ==> movz -def : Pat<(and GR64:$src, 0x00000000FFFFFFFF), - (SUBREG_TO_REG (i64 0), - (MOV32rr (EXTRACT_SUBREG GR64:$src, sub_32bit)), - sub_32bit)>; -// r & (2^16-1) ==> movz -def : Pat<(and GR64:$src, 0xffff), - (SUBREG_TO_REG (i64 0), - (MOVZX32rr16 (i16 (EXTRACT_SUBREG GR64:$src, sub_16bit))), - sub_32bit)>; -// r & (2^8-1) ==> movz -def : Pat<(and GR64:$src, 0xff), - (SUBREG_TO_REG (i64 0), - (MOVZX32rr8 (i8 (EXTRACT_SUBREG GR64:$src, sub_8bit))), - sub_32bit)>; -// r & (2^8-1) ==> movz -def : Pat<(and GR32:$src1, 0xff), - (MOVZX32rr8 (EXTRACT_SUBREG GR32:$src1, sub_8bit))>, - Requires<[In64BitMode]>; -// r & (2^8-1) ==> movz -def : Pat<(and GR16:$src1, 0xff), - (EXTRACT_SUBREG (MOVZX32rr8 (i8 - (EXTRACT_SUBREG GR16:$src1, sub_8bit))), sub_16bit)>, - Requires<[In64BitMode]>; - - -// sext_inreg patterns -def : Pat<(sext_inreg GR32:$src, i16), - (MOVSX32rr16 (EXTRACT_SUBREG GR32:$src, sub_16bit))>; -def : Pat<(sext_inreg GR32:$src, i8), - (MOVSX32rr8 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src, - GR32_ABCD)), - sub_8bit))>, - Requires<[Not64BitMode]>; - -def : Pat<(sext_inreg GR16:$src, i8), - (EXTRACT_SUBREG (i32 (MOVSX32rr8 (EXTRACT_SUBREG - (i32 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)), sub_8bit))), - sub_16bit)>, - Requires<[Not64BitMode]>; - -def : Pat<(sext_inreg GR64:$src, i32), - (MOVSX64rr32 (EXTRACT_SUBREG GR64:$src, sub_32bit))>; -def : Pat<(sext_inreg GR64:$src, i16), - (MOVSX64rr16 (EXTRACT_SUBREG GR64:$src, sub_16bit))>; -def : Pat<(sext_inreg GR64:$src, i8), - (MOVSX64rr8 (EXTRACT_SUBREG GR64:$src, sub_8bit))>; -def : Pat<(sext_inreg GR32:$src, i8), - (MOVSX32rr8 (EXTRACT_SUBREG GR32:$src, sub_8bit))>, - Requires<[In64BitMode]>; -def : Pat<(sext_inreg GR16:$src, i8), - (EXTRACT_SUBREG (MOVSX32rr8 - (EXTRACT_SUBREG GR16:$src, sub_8bit)), sub_16bit)>, - Requires<[In64BitMode]>; - -// sext, sext_load, zext, zext_load -def: Pat<(i16 (sext GR8:$src)), - (EXTRACT_SUBREG (MOVSX32rr8 GR8:$src), sub_16bit)>; -def: Pat<(sextloadi16i8 addr:$src), - (EXTRACT_SUBREG (MOVSX32rm8 addr:$src), sub_16bit)>; -def: Pat<(i16 (zext GR8:$src)), - (EXTRACT_SUBREG (MOVZX32rr8 GR8:$src), sub_16bit)>; -def: Pat<(zextloadi16i8 addr:$src), - (EXTRACT_SUBREG (MOVZX32rm8 addr:$src), sub_16bit)>; - -// trunc patterns -def : Pat<(i16 (trunc GR32:$src)), - (EXTRACT_SUBREG GR32:$src, sub_16bit)>; -def : Pat<(i8 (trunc GR32:$src)), - (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src, GR32_ABCD)), - sub_8bit)>, - Requires<[Not64BitMode]>; -def : Pat<(i8 (trunc GR16:$src)), - (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)), - sub_8bit)>, - Requires<[Not64BitMode]>; -def : Pat<(i32 (trunc GR64:$src)), - (EXTRACT_SUBREG GR64:$src, sub_32bit)>; -def : Pat<(i16 (trunc GR64:$src)), - (EXTRACT_SUBREG GR64:$src, sub_16bit)>; -def : Pat<(i8 (trunc GR64:$src)), - (EXTRACT_SUBREG GR64:$src, sub_8bit)>; -def : Pat<(i8 (trunc GR32:$src)), - (EXTRACT_SUBREG GR32:$src, sub_8bit)>, - Requires<[In64BitMode]>; -def : Pat<(i8 (trunc GR16:$src)), - (EXTRACT_SUBREG GR16:$src, sub_8bit)>, - Requires<[In64BitMode]>; - -// h-register tricks -def : Pat<(i8 (trunc (srl_su GR16:$src, (i8 8)))), - (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)), - sub_8bit_hi)>, - Requires<[Not64BitMode]>; -def : Pat<(i8 (trunc (srl_su GR32:$src, (i8 8)))), - (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src, GR32_ABCD)), - sub_8bit_hi)>, - Requires<[Not64BitMode]>; -def : Pat<(srl GR16:$src, (i8 8)), - (EXTRACT_SUBREG - (MOVZX32rr8 - (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)), - sub_8bit_hi)), - sub_16bit)>, - Requires<[Not64BitMode]>; -def : Pat<(i32 (zext (srl_su GR16:$src, (i8 8)))), - (MOVZX32rr8 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, - GR16_ABCD)), - sub_8bit_hi))>, - Requires<[Not64BitMode]>; -def : Pat<(i32 (anyext (srl_su GR16:$src, (i8 8)))), - (MOVZX32rr8 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, - GR16_ABCD)), - sub_8bit_hi))>, - Requires<[Not64BitMode]>; -def : Pat<(and (srl_su GR32:$src, (i8 8)), (i32 255)), - (MOVZX32rr8 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src, - GR32_ABCD)), - sub_8bit_hi))>, - Requires<[Not64BitMode]>; -def : Pat<(srl (and_su GR32:$src, 0xff00), (i8 8)), - (MOVZX32rr8 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src, - GR32_ABCD)), - sub_8bit_hi))>, - Requires<[Not64BitMode]>; - -// h-register tricks. -// For now, be conservative on x86-64 and use an h-register extract only if the -// value is immediately zero-extended or stored, which are somewhat common -// cases. This uses a bunch of code to prevent a register requiring a REX prefix -// from being allocated in the same instruction as the h register, as there's -// currently no way to describe this requirement to the register allocator. - -// h-register extract and zero-extend. -def : Pat<(and (srl_su GR64:$src, (i8 8)), (i64 255)), - (SUBREG_TO_REG - (i64 0), - (MOVZX32_NOREXrr8 - (EXTRACT_SUBREG (i64 (COPY_TO_REGCLASS GR64:$src, GR64_ABCD)), - sub_8bit_hi)), - sub_32bit)>; -def : Pat<(and (srl_su GR32:$src, (i8 8)), (i32 255)), - (MOVZX32_NOREXrr8 - (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src, GR32_ABCD)), - sub_8bit_hi))>, - Requires<[In64BitMode]>; -def : Pat<(srl (and_su GR32:$src, 0xff00), (i8 8)), - (MOVZX32_NOREXrr8 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src, - GR32_ABCD)), - sub_8bit_hi))>, - Requires<[In64BitMode]>; -def : Pat<(srl GR16:$src, (i8 8)), - (EXTRACT_SUBREG - (MOVZX32_NOREXrr8 - (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)), - sub_8bit_hi)), - sub_16bit)>, - Requires<[In64BitMode]>; -def : Pat<(i32 (zext (srl_su GR16:$src, (i8 8)))), - (MOVZX32_NOREXrr8 - (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)), - sub_8bit_hi))>, - Requires<[In64BitMode]>; -def : Pat<(i32 (anyext (srl_su GR16:$src, (i8 8)))), - (MOVZX32_NOREXrr8 - (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)), - sub_8bit_hi))>, - Requires<[In64BitMode]>; -def : Pat<(i64 (zext (srl_su GR16:$src, (i8 8)))), - (SUBREG_TO_REG - (i64 0), - (MOVZX32_NOREXrr8 - (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)), - sub_8bit_hi)), - sub_32bit)>; -def : Pat<(i64 (anyext (srl_su GR16:$src, (i8 8)))), - (SUBREG_TO_REG - (i64 0), - (MOVZX32_NOREXrr8 - (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)), - sub_8bit_hi)), - sub_32bit)>; - -// h-register extract and store. -def : Pat<(store (i8 (trunc_su (srl_su GR64:$src, (i8 8)))), addr:$dst), - (MOV8mr_NOREX - addr:$dst, - (EXTRACT_SUBREG (i64 (COPY_TO_REGCLASS GR64:$src, GR64_ABCD)), - sub_8bit_hi))>; -def : Pat<(store (i8 (trunc_su (srl_su GR32:$src, (i8 8)))), addr:$dst), - (MOV8mr_NOREX - addr:$dst, - (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src, GR32_ABCD)), - sub_8bit_hi))>, - Requires<[In64BitMode]>; -def : Pat<(store (i8 (trunc_su (srl_su GR16:$src, (i8 8)))), addr:$dst), - (MOV8mr_NOREX - addr:$dst, - (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)), - sub_8bit_hi))>, - Requires<[In64BitMode]>; - - -// (shl x, 1) ==> (add x, x) -// Note that if x is undef (immediate or otherwise), we could theoretically -// end up with the two uses of x getting different values, producing a result -// where the least significant bit is not 0. However, the probability of this -// happening is considered low enough that this is officially not a -// "real problem". -def : Pat<(shl GR8 :$src1, (i8 1)), (ADD8rr GR8 :$src1, GR8 :$src1)>; -def : Pat<(shl GR16:$src1, (i8 1)), (ADD16rr GR16:$src1, GR16:$src1)>; -def : Pat<(shl GR32:$src1, (i8 1)), (ADD32rr GR32:$src1, GR32:$src1)>; -def : Pat<(shl GR64:$src1, (i8 1)), (ADD64rr GR64:$src1, GR64:$src1)>; - -// Helper imms that check if a mask doesn't change significant shift bits. -def immShift32 : ImmLeaf<i8, [{ return CountTrailingOnes_32(Imm) >= 5; }]>; -def immShift64 : ImmLeaf<i8, [{ return CountTrailingOnes_32(Imm) >= 6; }]>; - -// Shift amount is implicitly masked. -multiclass MaskedShiftAmountPats<SDNode frag, string name> { - // (shift x (and y, 31)) ==> (shift x, y) - def : Pat<(frag GR8:$src1, (and CL, immShift32)), - (!cast<Instruction>(name # "8rCL") GR8:$src1)>; - def : Pat<(frag GR16:$src1, (and CL, immShift32)), - (!cast<Instruction>(name # "16rCL") GR16:$src1)>; - def : Pat<(frag GR32:$src1, (and CL, immShift32)), - (!cast<Instruction>(name # "32rCL") GR32:$src1)>; - def : Pat<(store (frag (loadi8 addr:$dst), (and CL, immShift32)), addr:$dst), - (!cast<Instruction>(name # "8mCL") addr:$dst)>; - def : Pat<(store (frag (loadi16 addr:$dst), (and CL, immShift32)), addr:$dst), - (!cast<Instruction>(name # "16mCL") addr:$dst)>; - def : Pat<(store (frag (loadi32 addr:$dst), (and CL, immShift32)), addr:$dst), - (!cast<Instruction>(name # "32mCL") addr:$dst)>; - - // (shift x (and y, 63)) ==> (shift x, y) - def : Pat<(frag GR64:$src1, (and CL, immShift64)), - (!cast<Instruction>(name # "64rCL") GR64:$src1)>; - def : Pat<(store (frag (loadi64 addr:$dst), (and CL, 63)), addr:$dst), - (!cast<Instruction>(name # "64mCL") addr:$dst)>; -} - -defm : MaskedShiftAmountPats<shl, "SHL">; -defm : MaskedShiftAmountPats<srl, "SHR">; -defm : MaskedShiftAmountPats<sra, "SAR">; -defm : MaskedShiftAmountPats<rotl, "ROL">; -defm : MaskedShiftAmountPats<rotr, "ROR">; - -// (anyext (setcc_carry)) -> (setcc_carry) -def : Pat<(i16 (anyext (i8 (X86setcc_c X86_COND_B, EFLAGS)))), - (SETB_C16r)>; -def : Pat<(i32 (anyext (i8 (X86setcc_c X86_COND_B, EFLAGS)))), - (SETB_C32r)>; -def : Pat<(i32 (anyext (i16 (X86setcc_c X86_COND_B, EFLAGS)))), - (SETB_C32r)>; - - - - -//===----------------------------------------------------------------------===// -// EFLAGS-defining Patterns -//===----------------------------------------------------------------------===// - -// add reg, reg -def : Pat<(add GR8 :$src1, GR8 :$src2), (ADD8rr GR8 :$src1, GR8 :$src2)>; -def : Pat<(add GR16:$src1, GR16:$src2), (ADD16rr GR16:$src1, GR16:$src2)>; -def : Pat<(add GR32:$src1, GR32:$src2), (ADD32rr GR32:$src1, GR32:$src2)>; - -// add reg, mem -def : Pat<(add GR8:$src1, (loadi8 addr:$src2)), - (ADD8rm GR8:$src1, addr:$src2)>; -def : Pat<(add GR16:$src1, (loadi16 addr:$src2)), - (ADD16rm GR16:$src1, addr:$src2)>; -def : Pat<(add GR32:$src1, (loadi32 addr:$src2)), - (ADD32rm GR32:$src1, addr:$src2)>; - -// add reg, imm -def : Pat<(add GR8 :$src1, imm:$src2), (ADD8ri GR8:$src1 , imm:$src2)>; -def : Pat<(add GR16:$src1, imm:$src2), (ADD16ri GR16:$src1, imm:$src2)>; -def : Pat<(add GR32:$src1, imm:$src2), (ADD32ri GR32:$src1, imm:$src2)>; -def : Pat<(add GR16:$src1, i16immSExt8:$src2), - (ADD16ri8 GR16:$src1, i16immSExt8:$src2)>; -def : Pat<(add GR32:$src1, i32immSExt8:$src2), - (ADD32ri8 GR32:$src1, i32immSExt8:$src2)>; - -// sub reg, reg -def : Pat<(sub GR8 :$src1, GR8 :$src2), (SUB8rr GR8 :$src1, GR8 :$src2)>; -def : Pat<(sub GR16:$src1, GR16:$src2), (SUB16rr GR16:$src1, GR16:$src2)>; -def : Pat<(sub GR32:$src1, GR32:$src2), (SUB32rr GR32:$src1, GR32:$src2)>; - -// sub reg, mem -def : Pat<(sub GR8:$src1, (loadi8 addr:$src2)), - (SUB8rm GR8:$src1, addr:$src2)>; -def : Pat<(sub GR16:$src1, (loadi16 addr:$src2)), - (SUB16rm GR16:$src1, addr:$src2)>; -def : Pat<(sub GR32:$src1, (loadi32 addr:$src2)), - (SUB32rm GR32:$src1, addr:$src2)>; - -// sub reg, imm -def : Pat<(sub GR8:$src1, imm:$src2), - (SUB8ri GR8:$src1, imm:$src2)>; -def : Pat<(sub GR16:$src1, imm:$src2), - (SUB16ri GR16:$src1, imm:$src2)>; -def : Pat<(sub GR32:$src1, imm:$src2), - (SUB32ri GR32:$src1, imm:$src2)>; -def : Pat<(sub GR16:$src1, i16immSExt8:$src2), - (SUB16ri8 GR16:$src1, i16immSExt8:$src2)>; -def : Pat<(sub GR32:$src1, i32immSExt8:$src2), - (SUB32ri8 GR32:$src1, i32immSExt8:$src2)>; - -// sub 0, reg -def : Pat<(X86sub_flag 0, GR8 :$src), (NEG8r GR8 :$src)>; -def : Pat<(X86sub_flag 0, GR16:$src), (NEG16r GR16:$src)>; -def : Pat<(X86sub_flag 0, GR32:$src), (NEG32r GR32:$src)>; -def : Pat<(X86sub_flag 0, GR64:$src), (NEG64r GR64:$src)>; - -// mul reg, reg -def : Pat<(mul GR16:$src1, GR16:$src2), - (IMUL16rr GR16:$src1, GR16:$src2)>; -def : Pat<(mul GR32:$src1, GR32:$src2), - (IMUL32rr GR32:$src1, GR32:$src2)>; - -// mul reg, mem -def : Pat<(mul GR16:$src1, (loadi16 addr:$src2)), - (IMUL16rm GR16:$src1, addr:$src2)>; -def : Pat<(mul GR32:$src1, (loadi32 addr:$src2)), - (IMUL32rm GR32:$src1, addr:$src2)>; - -// mul reg, imm -def : Pat<(mul GR16:$src1, imm:$src2), - (IMUL16rri GR16:$src1, imm:$src2)>; -def : Pat<(mul GR32:$src1, imm:$src2), - (IMUL32rri GR32:$src1, imm:$src2)>; -def : Pat<(mul GR16:$src1, i16immSExt8:$src2), - (IMUL16rri8 GR16:$src1, i16immSExt8:$src2)>; -def : Pat<(mul GR32:$src1, i32immSExt8:$src2), - (IMUL32rri8 GR32:$src1, i32immSExt8:$src2)>; - -// reg = mul mem, imm -def : Pat<(mul (loadi16 addr:$src1), imm:$src2), - (IMUL16rmi addr:$src1, imm:$src2)>; -def : Pat<(mul (loadi32 addr:$src1), imm:$src2), - (IMUL32rmi addr:$src1, imm:$src2)>; -def : Pat<(mul (loadi16 addr:$src1), i16immSExt8:$src2), - (IMUL16rmi8 addr:$src1, i16immSExt8:$src2)>; -def : Pat<(mul (loadi32 addr:$src1), i32immSExt8:$src2), - (IMUL32rmi8 addr:$src1, i32immSExt8:$src2)>; - -// Patterns for nodes that do not produce flags, for instructions that do. - -// addition -def : Pat<(add GR64:$src1, GR64:$src2), - (ADD64rr GR64:$src1, GR64:$src2)>; -def : Pat<(add GR64:$src1, i64immSExt8:$src2), - (ADD64ri8 GR64:$src1, i64immSExt8:$src2)>; -def : Pat<(add GR64:$src1, i64immSExt32:$src2), - (ADD64ri32 GR64:$src1, i64immSExt32:$src2)>; -def : Pat<(add GR64:$src1, (loadi64 addr:$src2)), - (ADD64rm GR64:$src1, addr:$src2)>; - -// subtraction -def : Pat<(sub GR64:$src1, GR64:$src2), - (SUB64rr GR64:$src1, GR64:$src2)>; -def : Pat<(sub GR64:$src1, (loadi64 addr:$src2)), - (SUB64rm GR64:$src1, addr:$src2)>; -def : Pat<(sub GR64:$src1, i64immSExt8:$src2), - (SUB64ri8 GR64:$src1, i64immSExt8:$src2)>; -def : Pat<(sub GR64:$src1, i64immSExt32:$src2), - (SUB64ri32 GR64:$src1, i64immSExt32:$src2)>; - -// Multiply -def : Pat<(mul GR64:$src1, GR64:$src2), - (IMUL64rr GR64:$src1, GR64:$src2)>; -def : Pat<(mul GR64:$src1, (loadi64 addr:$src2)), - (IMUL64rm GR64:$src1, addr:$src2)>; -def : Pat<(mul GR64:$src1, i64immSExt8:$src2), - (IMUL64rri8 GR64:$src1, i64immSExt8:$src2)>; -def : Pat<(mul GR64:$src1, i64immSExt32:$src2), - (IMUL64rri32 GR64:$src1, i64immSExt32:$src2)>; -def : Pat<(mul (loadi64 addr:$src1), i64immSExt8:$src2), - (IMUL64rmi8 addr:$src1, i64immSExt8:$src2)>; -def : Pat<(mul (loadi64 addr:$src1), i64immSExt32:$src2), - (IMUL64rmi32 addr:$src1, i64immSExt32:$src2)>; - -// Increment/Decrement reg. -// Do not make INC/DEC if it is slow -let Predicates = [NotSlowIncDec] in { - def : Pat<(add GR8:$src, 1), (INC8r GR8:$src)>; - def : Pat<(add GR16:$src, 1), (INC16r GR16:$src)>; - def : Pat<(add GR32:$src, 1), (INC32r GR32:$src)>; - def : Pat<(add GR64:$src, 1), (INC64r GR64:$src)>; - def : Pat<(add GR8:$src, -1), (DEC8r GR8:$src)>; - def : Pat<(add GR16:$src, -1), (DEC16r GR16:$src)>; - def : Pat<(add GR32:$src, -1), (DEC32r GR32:$src)>; - def : Pat<(add GR64:$src, -1), (DEC64r GR64:$src)>; -} - -// or reg/reg. -def : Pat<(or GR8 :$src1, GR8 :$src2), (OR8rr GR8 :$src1, GR8 :$src2)>; -def : Pat<(or GR16:$src1, GR16:$src2), (OR16rr GR16:$src1, GR16:$src2)>; -def : Pat<(or GR32:$src1, GR32:$src2), (OR32rr GR32:$src1, GR32:$src2)>; -def : Pat<(or GR64:$src1, GR64:$src2), (OR64rr GR64:$src1, GR64:$src2)>; - -// or reg/mem -def : Pat<(or GR8:$src1, (loadi8 addr:$src2)), - (OR8rm GR8:$src1, addr:$src2)>; -def : Pat<(or GR16:$src1, (loadi16 addr:$src2)), - (OR16rm GR16:$src1, addr:$src2)>; -def : Pat<(or GR32:$src1, (loadi32 addr:$src2)), - (OR32rm GR32:$src1, addr:$src2)>; -def : Pat<(or GR64:$src1, (loadi64 addr:$src2)), - (OR64rm GR64:$src1, addr:$src2)>; - -// or reg/imm -def : Pat<(or GR8:$src1 , imm:$src2), (OR8ri GR8 :$src1, imm:$src2)>; -def : Pat<(or GR16:$src1, imm:$src2), (OR16ri GR16:$src1, imm:$src2)>; -def : Pat<(or GR32:$src1, imm:$src2), (OR32ri GR32:$src1, imm:$src2)>; -def : Pat<(or GR16:$src1, i16immSExt8:$src2), - (OR16ri8 GR16:$src1, i16immSExt8:$src2)>; -def : Pat<(or GR32:$src1, i32immSExt8:$src2), - (OR32ri8 GR32:$src1, i32immSExt8:$src2)>; -def : Pat<(or GR64:$src1, i64immSExt8:$src2), - (OR64ri8 GR64:$src1, i64immSExt8:$src2)>; -def : Pat<(or GR64:$src1, i64immSExt32:$src2), - (OR64ri32 GR64:$src1, i64immSExt32:$src2)>; - -// xor reg/reg -def : Pat<(xor GR8 :$src1, GR8 :$src2), (XOR8rr GR8 :$src1, GR8 :$src2)>; -def : Pat<(xor GR16:$src1, GR16:$src2), (XOR16rr GR16:$src1, GR16:$src2)>; -def : Pat<(xor GR32:$src1, GR32:$src2), (XOR32rr GR32:$src1, GR32:$src2)>; -def : Pat<(xor GR64:$src1, GR64:$src2), (XOR64rr GR64:$src1, GR64:$src2)>; - -// xor reg/mem -def : Pat<(xor GR8:$src1, (loadi8 addr:$src2)), - (XOR8rm GR8:$src1, addr:$src2)>; -def : Pat<(xor GR16:$src1, (loadi16 addr:$src2)), - (XOR16rm GR16:$src1, addr:$src2)>; -def : Pat<(xor GR32:$src1, (loadi32 addr:$src2)), - (XOR32rm GR32:$src1, addr:$src2)>; -def : Pat<(xor GR64:$src1, (loadi64 addr:$src2)), - (XOR64rm GR64:$src1, addr:$src2)>; - -// xor reg/imm -def : Pat<(xor GR8:$src1, imm:$src2), - (XOR8ri GR8:$src1, imm:$src2)>; -def : Pat<(xor GR16:$src1, imm:$src2), - (XOR16ri GR16:$src1, imm:$src2)>; -def : Pat<(xor GR32:$src1, imm:$src2), - (XOR32ri GR32:$src1, imm:$src2)>; -def : Pat<(xor GR16:$src1, i16immSExt8:$src2), - (XOR16ri8 GR16:$src1, i16immSExt8:$src2)>; -def : Pat<(xor GR32:$src1, i32immSExt8:$src2), - (XOR32ri8 GR32:$src1, i32immSExt8:$src2)>; -def : Pat<(xor GR64:$src1, i64immSExt8:$src2), - (XOR64ri8 GR64:$src1, i64immSExt8:$src2)>; -def : Pat<(xor GR64:$src1, i64immSExt32:$src2), - (XOR64ri32 GR64:$src1, i64immSExt32:$src2)>; - -// and reg/reg -def : Pat<(and GR8 :$src1, GR8 :$src2), (AND8rr GR8 :$src1, GR8 :$src2)>; -def : Pat<(and GR16:$src1, GR16:$src2), (AND16rr GR16:$src1, GR16:$src2)>; -def : Pat<(and GR32:$src1, GR32:$src2), (AND32rr GR32:$src1, GR32:$src2)>; -def : Pat<(and GR64:$src1, GR64:$src2), (AND64rr GR64:$src1, GR64:$src2)>; - -// and reg/mem -def : Pat<(and GR8:$src1, (loadi8 addr:$src2)), - (AND8rm GR8:$src1, addr:$src2)>; -def : Pat<(and GR16:$src1, (loadi16 addr:$src2)), - (AND16rm GR16:$src1, addr:$src2)>; -def : Pat<(and GR32:$src1, (loadi32 addr:$src2)), - (AND32rm GR32:$src1, addr:$src2)>; -def : Pat<(and GR64:$src1, (loadi64 addr:$src2)), - (AND64rm GR64:$src1, addr:$src2)>; - -// and reg/imm -def : Pat<(and GR8:$src1, imm:$src2), - (AND8ri GR8:$src1, imm:$src2)>; -def : Pat<(and GR16:$src1, imm:$src2), - (AND16ri GR16:$src1, imm:$src2)>; -def : Pat<(and GR32:$src1, imm:$src2), - (AND32ri GR32:$src1, imm:$src2)>; -def : Pat<(and GR16:$src1, i16immSExt8:$src2), - (AND16ri8 GR16:$src1, i16immSExt8:$src2)>; -def : Pat<(and GR32:$src1, i32immSExt8:$src2), - (AND32ri8 GR32:$src1, i32immSExt8:$src2)>; -def : Pat<(and GR64:$src1, i64immSExt8:$src2), - (AND64ri8 GR64:$src1, i64immSExt8:$src2)>; -def : Pat<(and GR64:$src1, i64immSExt32:$src2), - (AND64ri32 GR64:$src1, i64immSExt32:$src2)>; - -// Bit scan instruction patterns to match explicit zero-undef behavior. -def : Pat<(cttz_zero_undef GR16:$src), (BSF16rr GR16:$src)>; -def : Pat<(cttz_zero_undef GR32:$src), (BSF32rr GR32:$src)>; -def : Pat<(cttz_zero_undef GR64:$src), (BSF64rr GR64:$src)>; -def : Pat<(cttz_zero_undef (loadi16 addr:$src)), (BSF16rm addr:$src)>; -def : Pat<(cttz_zero_undef (loadi32 addr:$src)), (BSF32rm addr:$src)>; -def : Pat<(cttz_zero_undef (loadi64 addr:$src)), (BSF64rm addr:$src)>; - -// When HasMOVBE is enabled it is possible to get a non-legalized -// register-register 16 bit bswap. This maps it to a ROL instruction. -let Predicates = [HasMOVBE] in { - def : Pat<(bswap GR16:$src), (ROL16ri GR16:$src, (i8 8))>; -} +//===- X86InstrCompiler.td - Compiler Pseudos and Patterns -*- tablegen -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file describes the various pseudo instructions used by the compiler,
+// as well as Pat patterns used during instruction selection.
+//
+//===----------------------------------------------------------------------===//
+
+//===----------------------------------------------------------------------===//
+// Pattern Matching Support
+
+def GetLo32XForm : SDNodeXForm<imm, [{
+ // Transformation function: get the low 32 bits.
+ return getI32Imm((unsigned)N->getZExtValue());
+}]>;
+
+def GetLo8XForm : SDNodeXForm<imm, [{
+ // Transformation function: get the low 8 bits.
+ return getI8Imm((uint8_t)N->getZExtValue());
+}]>;
+
+
+//===----------------------------------------------------------------------===//
+// Random Pseudo Instructions.
+
+// PIC base construction. This expands to code that looks like this:
+// call $next_inst
+// popl %destreg"
+let hasSideEffects = 0, isNotDuplicable = 1, Uses = [ESP] in
+ def MOVPC32r : Ii32<0xE8, Pseudo, (outs GR32:$reg), (ins i32imm:$label),
+ "", []>;
+
+
+// ADJCALLSTACKDOWN/UP implicitly use/def ESP because they may be expanded into
+// a stack adjustment and the codegen must know that they may modify the stack
+// pointer before prolog-epilog rewriting occurs.
+// Pessimistically assume ADJCALLSTACKDOWN / ADJCALLSTACKUP will become
+// sub / add which can clobber EFLAGS.
+let Defs = [ESP, EFLAGS], Uses = [ESP] in {
+def ADJCALLSTACKDOWN32 : I<0, Pseudo, (outs), (ins i32imm:$amt1, i32imm:$amt2),
+ "#ADJCALLSTACKDOWN",
+ []>,
+ Requires<[NotLP64]>;
+def ADJCALLSTACKUP32 : I<0, Pseudo, (outs), (ins i32imm:$amt1, i32imm:$amt2),
+ "#ADJCALLSTACKUP",
+ [(X86callseq_end timm:$amt1, timm:$amt2)]>,
+ Requires<[NotLP64]>;
+}
+def : Pat<(X86callseq_start timm:$amt1),
+ (ADJCALLSTACKDOWN32 i32imm:$amt1, 0)>, Requires<[NotLP64]>;
+
+
+// ADJCALLSTACKDOWN/UP implicitly use/def RSP because they may be expanded into
+// a stack adjustment and the codegen must know that they may modify the stack
+// pointer before prolog-epilog rewriting occurs.
+// Pessimistically assume ADJCALLSTACKDOWN / ADJCALLSTACKUP will become
+// sub / add which can clobber EFLAGS.
+let Defs = [RSP, EFLAGS], Uses = [RSP] in {
+def ADJCALLSTACKDOWN64 : I<0, Pseudo, (outs), (ins i32imm:$amt1, i32imm:$amt2),
+ "#ADJCALLSTACKDOWN",
+ []>,
+ Requires<[IsLP64]>;
+def ADJCALLSTACKUP64 : I<0, Pseudo, (outs), (ins i32imm:$amt1, i32imm:$amt2),
+ "#ADJCALLSTACKUP",
+ [(X86callseq_end timm:$amt1, timm:$amt2)]>,
+ Requires<[IsLP64]>;
+}
+def : Pat<(X86callseq_start timm:$amt1),
+ (ADJCALLSTACKDOWN64 i32imm:$amt1, 0)>, Requires<[IsLP64]>;
+
+
+// x86-64 va_start lowering magic.
+let usesCustomInserter = 1, Defs = [EFLAGS] in {
+def VASTART_SAVE_XMM_REGS : I<0, Pseudo,
+ (outs),
+ (ins GR8:$al,
+ i64imm:$regsavefi, i64imm:$offset,
+ variable_ops),
+ "#VASTART_SAVE_XMM_REGS $al, $regsavefi, $offset",
+ [(X86vastart_save_xmm_regs GR8:$al,
+ imm:$regsavefi,
+ imm:$offset),
+ (implicit EFLAGS)]>;
+
+// The VAARG_64 pseudo-instruction takes the address of the va_list,
+// and places the address of the next argument into a register.
+let Defs = [EFLAGS] in
+def VAARG_64 : I<0, Pseudo,
+ (outs GR64:$dst),
+ (ins i8mem:$ap, i32imm:$size, i8imm:$mode, i32imm:$align),
+ "#VAARG_64 $dst, $ap, $size, $mode, $align",
+ [(set GR64:$dst,
+ (X86vaarg64 addr:$ap, imm:$size, imm:$mode, imm:$align)),
+ (implicit EFLAGS)]>;
+
+// Dynamic stack allocation yields a _chkstk or _alloca call for all Windows
+// targets. These calls are needed to probe the stack when allocating more than
+// 4k bytes in one go. Touching the stack at 4K increments is necessary to
+// ensure that the guard pages used by the OS virtual memory manager are
+// allocated in correct sequence.
+// The main point of having separate instruction are extra unmodelled effects
+// (compared to ordinary calls) like stack pointer change.
+
+let Defs = [EAX, ESP, EFLAGS], Uses = [ESP] in
+ def WIN_ALLOCA : I<0, Pseudo, (outs), (ins),
+ "# dynamic stack allocation",
+ [(X86WinAlloca)]>;
+
+// When using segmented stacks these are lowered into instructions which first
+// check if the current stacklet has enough free memory. If it does, memory is
+// allocated by bumping the stack pointer. Otherwise memory is allocated from
+// the heap.
+
+let Defs = [EAX, ESP, EFLAGS], Uses = [ESP] in
+def SEG_ALLOCA_32 : I<0, Pseudo, (outs GR32:$dst), (ins GR32:$size),
+ "# variable sized alloca for segmented stacks",
+ [(set GR32:$dst,
+ (X86SegAlloca GR32:$size))]>,
+ Requires<[NotLP64]>;
+
+let Defs = [RAX, RSP, EFLAGS], Uses = [RSP] in
+def SEG_ALLOCA_64 : I<0, Pseudo, (outs GR64:$dst), (ins GR64:$size),
+ "# variable sized alloca for segmented stacks",
+ [(set GR64:$dst,
+ (X86SegAlloca GR64:$size))]>,
+ Requires<[In64BitMode]>;
+}
+
+// The MSVC runtime contains an _ftol2 routine for converting floating-point
+// to integer values. It has a strange calling convention: the input is
+// popped from the x87 stack, and the return value is given in EDX:EAX. ECX is
+// used as a temporary register. No other registers (aside from flags) are
+// touched.
+// Microsoft toolchains do not support 80-bit precision, so a WIN_FTOL_80
+// variant is unnecessary.
+
+let Defs = [EAX, EDX, ECX, EFLAGS], FPForm = SpecialFP in {
+ def WIN_FTOL_32 : I<0, Pseudo, (outs), (ins RFP32:$src),
+ "# win32 fptoui",
+ [(X86WinFTOL RFP32:$src)]>,
+ Requires<[Not64BitMode]>;
+
+ def WIN_FTOL_64 : I<0, Pseudo, (outs), (ins RFP64:$src),
+ "# win32 fptoui",
+ [(X86WinFTOL RFP64:$src)]>,
+ Requires<[Not64BitMode]>;
+}
+
+//===----------------------------------------------------------------------===//
+// EH Pseudo Instructions
+//
+let SchedRW = [WriteSystem] in {
+let isTerminator = 1, isReturn = 1, isBarrier = 1,
+ hasCtrlDep = 1, isCodeGenOnly = 1 in {
+def EH_RETURN : I<0xC3, RawFrm, (outs), (ins GR32:$addr),
+ "ret\t#eh_return, addr: $addr",
+ [(X86ehret GR32:$addr)], IIC_RET>, Sched<[WriteJumpLd]>;
+
+}
+
+let isTerminator = 1, isReturn = 1, isBarrier = 1,
+ hasCtrlDep = 1, isCodeGenOnly = 1 in {
+def EH_RETURN64 : I<0xC3, RawFrm, (outs), (ins GR64:$addr),
+ "ret\t#eh_return, addr: $addr",
+ [(X86ehret GR64:$addr)], IIC_RET>, Sched<[WriteJumpLd]>;
+
+}
+
+let hasSideEffects = 1, isBarrier = 1, isCodeGenOnly = 1,
+ usesCustomInserter = 1 in {
+ def EH_SjLj_SetJmp32 : I<0, Pseudo, (outs GR32:$dst), (ins i32mem:$buf),
+ "#EH_SJLJ_SETJMP32",
+ [(set GR32:$dst, (X86eh_sjlj_setjmp addr:$buf))]>,
+ Requires<[Not64BitMode]>;
+ def EH_SjLj_SetJmp64 : I<0, Pseudo, (outs GR32:$dst), (ins i64mem:$buf),
+ "#EH_SJLJ_SETJMP64",
+ [(set GR32:$dst, (X86eh_sjlj_setjmp addr:$buf))]>,
+ Requires<[In64BitMode]>;
+ let isTerminator = 1 in {
+ def EH_SjLj_LongJmp32 : I<0, Pseudo, (outs), (ins i32mem:$buf),
+ "#EH_SJLJ_LONGJMP32",
+ [(X86eh_sjlj_longjmp addr:$buf)]>,
+ Requires<[Not64BitMode]>;
+ def EH_SjLj_LongJmp64 : I<0, Pseudo, (outs), (ins i64mem:$buf),
+ "#EH_SJLJ_LONGJMP64",
+ [(X86eh_sjlj_longjmp addr:$buf)]>,
+ Requires<[In64BitMode]>;
+ }
+}
+} // SchedRW
+
+let isBranch = 1, isTerminator = 1, isCodeGenOnly = 1 in {
+ def EH_SjLj_Setup : I<0, Pseudo, (outs), (ins brtarget:$dst),
+ "#EH_SjLj_Setup\t$dst", []>;
+}
+
+//===----------------------------------------------------------------------===//
+// Pseudo instructions used by unwind info.
+//
+let isPseudo = 1 in {
+ def SEH_PushReg : I<0, Pseudo, (outs), (ins i32imm:$reg),
+ "#SEH_PushReg $reg", []>;
+ def SEH_SaveReg : I<0, Pseudo, (outs), (ins i32imm:$reg, i32imm:$dst),
+ "#SEH_SaveReg $reg, $dst", []>;
+ def SEH_SaveXMM : I<0, Pseudo, (outs), (ins i32imm:$reg, i32imm:$dst),
+ "#SEH_SaveXMM $reg, $dst", []>;
+ def SEH_StackAlloc : I<0, Pseudo, (outs), (ins i32imm:$size),
+ "#SEH_StackAlloc $size", []>;
+ def SEH_SetFrame : I<0, Pseudo, (outs), (ins i32imm:$reg, i32imm:$offset),
+ "#SEH_SetFrame $reg, $offset", []>;
+ def SEH_PushFrame : I<0, Pseudo, (outs), (ins i1imm:$mode),
+ "#SEH_PushFrame $mode", []>;
+ def SEH_EndPrologue : I<0, Pseudo, (outs), (ins),
+ "#SEH_EndPrologue", []>;
+ def SEH_Epilogue : I<0, Pseudo, (outs), (ins),
+ "#SEH_Epilogue", []>;
+}
+
+//===----------------------------------------------------------------------===//
+// Pseudo instructions used by segmented stacks.
+//
+
+// This is lowered into a RET instruction by MCInstLower. We need
+// this so that we don't have to have a MachineBasicBlock which ends
+// with a RET and also has successors.
+let isPseudo = 1 in {
+def MORESTACK_RET: I<0, Pseudo, (outs), (ins),
+ "", []>;
+
+// This instruction is lowered to a RET followed by a MOV. The two
+// instructions are not generated on a higher level since then the
+// verifier sees a MachineBasicBlock ending with a non-terminator.
+def MORESTACK_RET_RESTORE_R10 : I<0, Pseudo, (outs), (ins),
+ "", []>;
+}
+
+//===----------------------------------------------------------------------===//
+// Alias Instructions
+//===----------------------------------------------------------------------===//
+
+// Alias instruction mapping movr0 to xor.
+// FIXME: remove when we can teach regalloc that xor reg, reg is ok.
+let Defs = [EFLAGS], isReMaterializable = 1, isAsCheapAsAMove = 1,
+ isPseudo = 1 in
+def MOV32r0 : I<0, Pseudo, (outs GR32:$dst), (ins), "",
+ [(set GR32:$dst, 0)], IIC_ALU_NONMEM>, Sched<[WriteZero]>;
+
+// Other widths can also make use of the 32-bit xor, which may have a smaller
+// encoding and avoid partial register updates.
+def : Pat<(i8 0), (EXTRACT_SUBREG (MOV32r0), sub_8bit)>;
+def : Pat<(i16 0), (EXTRACT_SUBREG (MOV32r0), sub_16bit)>;
+def : Pat<(i64 0), (SUBREG_TO_REG (i64 0), (MOV32r0), sub_32bit)> {
+ let AddedComplexity = 20;
+}
+
+// Materialize i64 constant where top 32-bits are zero. This could theoretically
+// use MOV32ri with a SUBREG_TO_REG to represent the zero-extension, however
+// that would make it more difficult to rematerialize.
+let AddedComplexity = 1, isReMaterializable = 1, isAsCheapAsAMove = 1,
+ isCodeGenOnly = 1, hasSideEffects = 0 in
+def MOV32ri64 : Ii32<0xb8, AddRegFrm, (outs GR32:$dst), (ins i64i32imm:$src),
+ "", [], IIC_ALU_NONMEM>, Sched<[WriteALU]>;
+
+// This 64-bit pseudo-move can be used for both a 64-bit constant that is
+// actually the zero-extension of a 32-bit constant, and for labels in the
+// x86-64 small code model.
+def mov64imm32 : ComplexPattern<i64, 1, "SelectMOV64Imm32", [imm, X86Wrapper]>;
+
+let AddedComplexity = 1 in
+def : Pat<(i64 mov64imm32:$src),
+ (SUBREG_TO_REG (i64 0), (MOV32ri64 mov64imm32:$src), sub_32bit)>;
+
+// Use sbb to materialize carry bit.
+let Uses = [EFLAGS], Defs = [EFLAGS], isPseudo = 1, SchedRW = [WriteALU] in {
+// FIXME: These are pseudo ops that should be replaced with Pat<> patterns.
+// However, Pat<> can't replicate the destination reg into the inputs of the
+// result.
+def SETB_C8r : I<0, Pseudo, (outs GR8:$dst), (ins), "",
+ [(set GR8:$dst, (X86setcc_c X86_COND_B, EFLAGS))]>;
+def SETB_C16r : I<0, Pseudo, (outs GR16:$dst), (ins), "",
+ [(set GR16:$dst, (X86setcc_c X86_COND_B, EFLAGS))]>;
+def SETB_C32r : I<0, Pseudo, (outs GR32:$dst), (ins), "",
+ [(set GR32:$dst, (X86setcc_c X86_COND_B, EFLAGS))]>;
+def SETB_C64r : I<0, Pseudo, (outs GR64:$dst), (ins), "",
+ [(set GR64:$dst, (X86setcc_c X86_COND_B, EFLAGS))]>;
+} // isCodeGenOnly
+
+
+def : Pat<(i16 (anyext (i8 (X86setcc_c X86_COND_B, EFLAGS)))),
+ (SETB_C16r)>;
+def : Pat<(i32 (anyext (i8 (X86setcc_c X86_COND_B, EFLAGS)))),
+ (SETB_C32r)>;
+def : Pat<(i64 (anyext (i8 (X86setcc_c X86_COND_B, EFLAGS)))),
+ (SETB_C64r)>;
+
+def : Pat<(i16 (sext (i8 (X86setcc_c X86_COND_B, EFLAGS)))),
+ (SETB_C16r)>;
+def : Pat<(i32 (sext (i8 (X86setcc_c X86_COND_B, EFLAGS)))),
+ (SETB_C32r)>;
+def : Pat<(i64 (sext (i8 (X86setcc_c X86_COND_B, EFLAGS)))),
+ (SETB_C64r)>;
+
+// We canonicalize 'setb' to "(and (sbb reg,reg), 1)" on the hope that the and
+// will be eliminated and that the sbb can be extended up to a wider type. When
+// this happens, it is great. However, if we are left with an 8-bit sbb and an
+// and, we might as well just match it as a setb.
+def : Pat<(and (i8 (X86setcc_c X86_COND_B, EFLAGS)), 1),
+ (SETBr)>;
+
+// (add OP, SETB) -> (adc OP, 0)
+def : Pat<(add (and (i8 (X86setcc_c X86_COND_B, EFLAGS)), 1), GR8:$op),
+ (ADC8ri GR8:$op, 0)>;
+def : Pat<(add (and (i32 (X86setcc_c X86_COND_B, EFLAGS)), 1), GR32:$op),
+ (ADC32ri8 GR32:$op, 0)>;
+def : Pat<(add (and (i64 (X86setcc_c X86_COND_B, EFLAGS)), 1), GR64:$op),
+ (ADC64ri8 GR64:$op, 0)>;
+
+// (sub OP, SETB) -> (sbb OP, 0)
+def : Pat<(sub GR8:$op, (and (i8 (X86setcc_c X86_COND_B, EFLAGS)), 1)),
+ (SBB8ri GR8:$op, 0)>;
+def : Pat<(sub GR32:$op, (and (i32 (X86setcc_c X86_COND_B, EFLAGS)), 1)),
+ (SBB32ri8 GR32:$op, 0)>;
+def : Pat<(sub GR64:$op, (and (i64 (X86setcc_c X86_COND_B, EFLAGS)), 1)),
+ (SBB64ri8 GR64:$op, 0)>;
+
+// (sub OP, SETCC_CARRY) -> (adc OP, 0)
+def : Pat<(sub GR8:$op, (i8 (X86setcc_c X86_COND_B, EFLAGS))),
+ (ADC8ri GR8:$op, 0)>;
+def : Pat<(sub GR32:$op, (i32 (X86setcc_c X86_COND_B, EFLAGS))),
+ (ADC32ri8 GR32:$op, 0)>;
+def : Pat<(sub GR64:$op, (i64 (X86setcc_c X86_COND_B, EFLAGS))),
+ (ADC64ri8 GR64:$op, 0)>;
+
+//===----------------------------------------------------------------------===//
+// String Pseudo Instructions
+//
+let SchedRW = [WriteMicrocoded] in {
+let Defs = [ECX,EDI,ESI], Uses = [ECX,EDI,ESI], isCodeGenOnly = 1 in {
+def REP_MOVSB_32 : I<0xA4, RawFrm, (outs), (ins), "{rep;movsb|rep movsb}",
+ [(X86rep_movs i8)], IIC_REP_MOVS>, REP,
+ Requires<[Not64BitMode]>;
+def REP_MOVSW_32 : I<0xA5, RawFrm, (outs), (ins), "{rep;movsw|rep movsw}",
+ [(X86rep_movs i16)], IIC_REP_MOVS>, REP, OpSize16,
+ Requires<[Not64BitMode]>;
+def REP_MOVSD_32 : I<0xA5, RawFrm, (outs), (ins), "{rep;movsl|rep movsd}",
+ [(X86rep_movs i32)], IIC_REP_MOVS>, REP, OpSize32,
+ Requires<[Not64BitMode]>;
+}
+
+let Defs = [RCX,RDI,RSI], Uses = [RCX,RDI,RSI], isCodeGenOnly = 1 in {
+def REP_MOVSB_64 : I<0xA4, RawFrm, (outs), (ins), "{rep;movsb|rep movsb}",
+ [(X86rep_movs i8)], IIC_REP_MOVS>, REP,
+ Requires<[In64BitMode]>;
+def REP_MOVSW_64 : I<0xA5, RawFrm, (outs), (ins), "{rep;movsw|rep movsw}",
+ [(X86rep_movs i16)], IIC_REP_MOVS>, REP, OpSize16,
+ Requires<[In64BitMode]>;
+def REP_MOVSD_64 : I<0xA5, RawFrm, (outs), (ins), "{rep;movsl|rep movsd}",
+ [(X86rep_movs i32)], IIC_REP_MOVS>, REP, OpSize32,
+ Requires<[In64BitMode]>;
+def REP_MOVSQ_64 : RI<0xA5, RawFrm, (outs), (ins), "{rep;movsq|rep movsq}",
+ [(X86rep_movs i64)], IIC_REP_MOVS>, REP,
+ Requires<[In64BitMode]>;
+}
+
+// FIXME: Should use "(X86rep_stos AL)" as the pattern.
+let Defs = [ECX,EDI], isCodeGenOnly = 1 in {
+ let Uses = [AL,ECX,EDI] in
+ def REP_STOSB_32 : I<0xAA, RawFrm, (outs), (ins), "{rep;stosb|rep stosb}",
+ [(X86rep_stos i8)], IIC_REP_STOS>, REP,
+ Requires<[Not64BitMode]>;
+ let Uses = [AX,ECX,EDI] in
+ def REP_STOSW_32 : I<0xAB, RawFrm, (outs), (ins), "{rep;stosw|rep stosw}",
+ [(X86rep_stos i16)], IIC_REP_STOS>, REP, OpSize16,
+ Requires<[Not64BitMode]>;
+ let Uses = [EAX,ECX,EDI] in
+ def REP_STOSD_32 : I<0xAB, RawFrm, (outs), (ins), "{rep;stosl|rep stosd}",
+ [(X86rep_stos i32)], IIC_REP_STOS>, REP, OpSize32,
+ Requires<[Not64BitMode]>;
+}
+
+let Defs = [RCX,RDI], isCodeGenOnly = 1 in {
+ let Uses = [AL,RCX,RDI] in
+ def REP_STOSB_64 : I<0xAA, RawFrm, (outs), (ins), "{rep;stosb|rep stosb}",
+ [(X86rep_stos i8)], IIC_REP_STOS>, REP,
+ Requires<[In64BitMode]>;
+ let Uses = [AX,RCX,RDI] in
+ def REP_STOSW_64 : I<0xAB, RawFrm, (outs), (ins), "{rep;stosw|rep stosw}",
+ [(X86rep_stos i16)], IIC_REP_STOS>, REP, OpSize16,
+ Requires<[In64BitMode]>;
+ let Uses = [RAX,RCX,RDI] in
+ def REP_STOSD_64 : I<0xAB, RawFrm, (outs), (ins), "{rep;stosl|rep stosd}",
+ [(X86rep_stos i32)], IIC_REP_STOS>, REP, OpSize32,
+ Requires<[In64BitMode]>;
+
+ let Uses = [RAX,RCX,RDI] in
+ def REP_STOSQ_64 : RI<0xAB, RawFrm, (outs), (ins), "{rep;stosq|rep stosq}",
+ [(X86rep_stos i64)], IIC_REP_STOS>, REP,
+ Requires<[In64BitMode]>;
+}
+} // SchedRW
+
+//===----------------------------------------------------------------------===//
+// Thread Local Storage Instructions
+//
+
+// ELF TLS Support
+// All calls clobber the non-callee saved registers. ESP is marked as
+// a use to prevent stack-pointer assignments that appear immediately
+// before calls from potentially appearing dead.
+let Defs = [EAX, ECX, EDX, FP0, FP1, FP2, FP3, FP4, FP5, FP6, FP7,
+ ST0, ST1, ST2, ST3, ST4, ST5, ST6, ST7,
+ MM0, MM1, MM2, MM3, MM4, MM5, MM6, MM7,
+ XMM0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7,
+ XMM8, XMM9, XMM10, XMM11, XMM12, XMM13, XMM14, XMM15, EFLAGS],
+ Uses = [ESP] in {
+def TLS_addr32 : I<0, Pseudo, (outs), (ins i32mem:$sym),
+ "# TLS_addr32",
+ [(X86tlsaddr tls32addr:$sym)]>,
+ Requires<[Not64BitMode]>;
+def TLS_base_addr32 : I<0, Pseudo, (outs), (ins i32mem:$sym),
+ "# TLS_base_addr32",
+ [(X86tlsbaseaddr tls32baseaddr:$sym)]>,
+ Requires<[Not64BitMode]>;
+}
+
+// All calls clobber the non-callee saved registers. RSP is marked as
+// a use to prevent stack-pointer assignments that appear immediately
+// before calls from potentially appearing dead.
+let Defs = [RAX, RCX, RDX, RSI, RDI, R8, R9, R10, R11,
+ FP0, FP1, FP2, FP3, FP4, FP5, FP6, FP7,
+ ST0, ST1, ST2, ST3, ST4, ST5, ST6, ST7,
+ MM0, MM1, MM2, MM3, MM4, MM5, MM6, MM7,
+ XMM0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7,
+ XMM8, XMM9, XMM10, XMM11, XMM12, XMM13, XMM14, XMM15, EFLAGS],
+ Uses = [RSP] in {
+def TLS_addr64 : I<0, Pseudo, (outs), (ins i64mem:$sym),
+ "# TLS_addr64",
+ [(X86tlsaddr tls64addr:$sym)]>,
+ Requires<[In64BitMode]>;
+def TLS_base_addr64 : I<0, Pseudo, (outs), (ins i64mem:$sym),
+ "# TLS_base_addr64",
+ [(X86tlsbaseaddr tls64baseaddr:$sym)]>,
+ Requires<[In64BitMode]>;
+}
+
+// Darwin TLS Support
+// For i386, the address of the thunk is passed on the stack, on return the
+// address of the variable is in %eax. %ecx is trashed during the function
+// call. All other registers are preserved.
+let Defs = [EAX, ECX, EFLAGS],
+ Uses = [ESP],
+ usesCustomInserter = 1 in
+def TLSCall_32 : I<0, Pseudo, (outs), (ins i32mem:$sym),
+ "# TLSCall_32",
+ [(X86TLSCall addr:$sym)]>,
+ Requires<[Not64BitMode]>;
+
+// For x86_64, the address of the thunk is passed in %rdi, on return
+// the address of the variable is in %rax. All other registers are preserved.
+let Defs = [RAX, EFLAGS],
+ Uses = [RSP, RDI],
+ usesCustomInserter = 1 in
+def TLSCall_64 : I<0, Pseudo, (outs), (ins i64mem:$sym),
+ "# TLSCall_64",
+ [(X86TLSCall addr:$sym)]>,
+ Requires<[In64BitMode]>;
+
+
+//===----------------------------------------------------------------------===//
+// Conditional Move Pseudo Instructions
+
+// X86 doesn't have 8-bit conditional moves. Use a customInserter to
+// emit control flow. An alternative to this is to mark i8 SELECT as Promote,
+// however that requires promoting the operands, and can induce additional
+// i8 register pressure.
+let usesCustomInserter = 1, Uses = [EFLAGS] in {
+def CMOV_GR8 : I<0, Pseudo,
+ (outs GR8:$dst), (ins GR8:$src1, GR8:$src2, i8imm:$cond),
+ "#CMOV_GR8 PSEUDO!",
+ [(set GR8:$dst, (X86cmov GR8:$src1, GR8:$src2,
+ imm:$cond, EFLAGS))]>;
+
+let Predicates = [NoCMov] in {
+def CMOV_GR32 : I<0, Pseudo,
+ (outs GR32:$dst), (ins GR32:$src1, GR32:$src2, i8imm:$cond),
+ "#CMOV_GR32* PSEUDO!",
+ [(set GR32:$dst,
+ (X86cmov GR32:$src1, GR32:$src2, imm:$cond, EFLAGS))]>;
+def CMOV_GR16 : I<0, Pseudo,
+ (outs GR16:$dst), (ins GR16:$src1, GR16:$src2, i8imm:$cond),
+ "#CMOV_GR16* PSEUDO!",
+ [(set GR16:$dst,
+ (X86cmov GR16:$src1, GR16:$src2, imm:$cond, EFLAGS))]>;
+} // Predicates = [NoCMov]
+
+// fcmov doesn't handle all possible EFLAGS, provide a fallback if there is no
+// SSE1.
+let Predicates = [FPStackf32] in
+def CMOV_RFP32 : I<0, Pseudo,
+ (outs RFP32:$dst),
+ (ins RFP32:$src1, RFP32:$src2, i8imm:$cond),
+ "#CMOV_RFP32 PSEUDO!",
+ [(set RFP32:$dst,
+ (X86cmov RFP32:$src1, RFP32:$src2, imm:$cond,
+ EFLAGS))]>;
+// fcmov doesn't handle all possible EFLAGS, provide a fallback if there is no
+// SSE2.
+let Predicates = [FPStackf64] in
+def CMOV_RFP64 : I<0, Pseudo,
+ (outs RFP64:$dst),
+ (ins RFP64:$src1, RFP64:$src2, i8imm:$cond),
+ "#CMOV_RFP64 PSEUDO!",
+ [(set RFP64:$dst,
+ (X86cmov RFP64:$src1, RFP64:$src2, imm:$cond,
+ EFLAGS))]>;
+def CMOV_RFP80 : I<0, Pseudo,
+ (outs RFP80:$dst),
+ (ins RFP80:$src1, RFP80:$src2, i8imm:$cond),
+ "#CMOV_RFP80 PSEUDO!",
+ [(set RFP80:$dst,
+ (X86cmov RFP80:$src1, RFP80:$src2, imm:$cond,
+ EFLAGS))]>;
+} // UsesCustomInserter = 1, Uses = [EFLAGS]
+
+
+//===----------------------------------------------------------------------===//
+// Normal-Instructions-With-Lock-Prefix Pseudo Instructions
+//===----------------------------------------------------------------------===//
+
+// FIXME: Use normal instructions and add lock prefix dynamically.
+
+// Memory barriers
+
+// TODO: Get this to fold the constant into the instruction.
+let isCodeGenOnly = 1, Defs = [EFLAGS] in
+def OR32mrLocked : I<0x09, MRMDestMem, (outs), (ins i32mem:$dst, GR32:$zero),
+ "or{l}\t{$zero, $dst|$dst, $zero}",
+ [], IIC_ALU_MEM>, Requires<[Not64BitMode]>, LOCK,
+ Sched<[WriteALULd, WriteRMW]>;
+
+let hasSideEffects = 1 in
+def Int_MemBarrier : I<0, Pseudo, (outs), (ins),
+ "#MEMBARRIER",
+ [(X86MemBarrier)]>, Sched<[WriteLoad]>;
+
+// RegOpc corresponds to the mr version of the instruction
+// ImmOpc corresponds to the mi version of the instruction
+// ImmOpc8 corresponds to the mi8 version of the instruction
+// ImmMod corresponds to the instruction format of the mi and mi8 versions
+multiclass LOCK_ArithBinOp<bits<8> RegOpc, bits<8> ImmOpc, bits<8> ImmOpc8,
+ Format ImmMod, string mnemonic> {
+let Defs = [EFLAGS], mayLoad = 1, mayStore = 1, isCodeGenOnly = 1,
+ SchedRW = [WriteALULd, WriteRMW] in {
+
+def NAME#8mr : I<{RegOpc{7}, RegOpc{6}, RegOpc{5}, RegOpc{4},
+ RegOpc{3}, RegOpc{2}, RegOpc{1}, 0 },
+ MRMDestMem, (outs), (ins i8mem:$dst, GR8:$src2),
+ !strconcat(mnemonic, "{b}\t",
+ "{$src2, $dst|$dst, $src2}"),
+ [], IIC_ALU_NONMEM>, LOCK;
+def NAME#16mr : I<{RegOpc{7}, RegOpc{6}, RegOpc{5}, RegOpc{4},
+ RegOpc{3}, RegOpc{2}, RegOpc{1}, 1 },
+ MRMDestMem, (outs), (ins i16mem:$dst, GR16:$src2),
+ !strconcat(mnemonic, "{w}\t",
+ "{$src2, $dst|$dst, $src2}"),
+ [], IIC_ALU_NONMEM>, OpSize16, LOCK;
+def NAME#32mr : I<{RegOpc{7}, RegOpc{6}, RegOpc{5}, RegOpc{4},
+ RegOpc{3}, RegOpc{2}, RegOpc{1}, 1 },
+ MRMDestMem, (outs), (ins i32mem:$dst, GR32:$src2),
+ !strconcat(mnemonic, "{l}\t",
+ "{$src2, $dst|$dst, $src2}"),
+ [], IIC_ALU_NONMEM>, OpSize32, LOCK;
+def NAME#64mr : RI<{RegOpc{7}, RegOpc{6}, RegOpc{5}, RegOpc{4},
+ RegOpc{3}, RegOpc{2}, RegOpc{1}, 1 },
+ MRMDestMem, (outs), (ins i64mem:$dst, GR64:$src2),
+ !strconcat(mnemonic, "{q}\t",
+ "{$src2, $dst|$dst, $src2}"),
+ [], IIC_ALU_NONMEM>, LOCK;
+
+def NAME#8mi : Ii8<{ImmOpc{7}, ImmOpc{6}, ImmOpc{5}, ImmOpc{4},
+ ImmOpc{3}, ImmOpc{2}, ImmOpc{1}, 0 },
+ ImmMod, (outs), (ins i8mem :$dst, i8imm :$src2),
+ !strconcat(mnemonic, "{b}\t",
+ "{$src2, $dst|$dst, $src2}"),
+ [], IIC_ALU_MEM>, LOCK;
+
+def NAME#16mi : Ii16<{ImmOpc{7}, ImmOpc{6}, ImmOpc{5}, ImmOpc{4},
+ ImmOpc{3}, ImmOpc{2}, ImmOpc{1}, 1 },
+ ImmMod, (outs), (ins i16mem :$dst, i16imm :$src2),
+ !strconcat(mnemonic, "{w}\t",
+ "{$src2, $dst|$dst, $src2}"),
+ [], IIC_ALU_MEM>, OpSize16, LOCK;
+
+def NAME#32mi : Ii32<{ImmOpc{7}, ImmOpc{6}, ImmOpc{5}, ImmOpc{4},
+ ImmOpc{3}, ImmOpc{2}, ImmOpc{1}, 1 },
+ ImmMod, (outs), (ins i32mem :$dst, i32imm :$src2),
+ !strconcat(mnemonic, "{l}\t",
+ "{$src2, $dst|$dst, $src2}"),
+ [], IIC_ALU_MEM>, OpSize32, LOCK;
+
+def NAME#64mi32 : RIi32S<{ImmOpc{7}, ImmOpc{6}, ImmOpc{5}, ImmOpc{4},
+ ImmOpc{3}, ImmOpc{2}, ImmOpc{1}, 1 },
+ ImmMod, (outs), (ins i64mem :$dst, i64i32imm :$src2),
+ !strconcat(mnemonic, "{q}\t",
+ "{$src2, $dst|$dst, $src2}"),
+ [], IIC_ALU_MEM>, LOCK;
+
+def NAME#16mi8 : Ii8<{ImmOpc8{7}, ImmOpc8{6}, ImmOpc8{5}, ImmOpc8{4},
+ ImmOpc8{3}, ImmOpc8{2}, ImmOpc8{1}, 1 },
+ ImmMod, (outs), (ins i16mem :$dst, i16i8imm :$src2),
+ !strconcat(mnemonic, "{w}\t",
+ "{$src2, $dst|$dst, $src2}"),
+ [], IIC_ALU_MEM>, OpSize16, LOCK;
+def NAME#32mi8 : Ii8<{ImmOpc8{7}, ImmOpc8{6}, ImmOpc8{5}, ImmOpc8{4},
+ ImmOpc8{3}, ImmOpc8{2}, ImmOpc8{1}, 1 },
+ ImmMod, (outs), (ins i32mem :$dst, i32i8imm :$src2),
+ !strconcat(mnemonic, "{l}\t",
+ "{$src2, $dst|$dst, $src2}"),
+ [], IIC_ALU_MEM>, OpSize32, LOCK;
+def NAME#64mi8 : RIi8<{ImmOpc8{7}, ImmOpc8{6}, ImmOpc8{5}, ImmOpc8{4},
+ ImmOpc8{3}, ImmOpc8{2}, ImmOpc8{1}, 1 },
+ ImmMod, (outs), (ins i64mem :$dst, i64i8imm :$src2),
+ !strconcat(mnemonic, "{q}\t",
+ "{$src2, $dst|$dst, $src2}"),
+ [], IIC_ALU_MEM>, LOCK;
+
+}
+
+}
+
+defm LOCK_ADD : LOCK_ArithBinOp<0x00, 0x80, 0x83, MRM0m, "add">;
+defm LOCK_SUB : LOCK_ArithBinOp<0x28, 0x80, 0x83, MRM5m, "sub">;
+defm LOCK_OR : LOCK_ArithBinOp<0x08, 0x80, 0x83, MRM1m, "or">;
+defm LOCK_AND : LOCK_ArithBinOp<0x20, 0x80, 0x83, MRM4m, "and">;
+defm LOCK_XOR : LOCK_ArithBinOp<0x30, 0x80, 0x83, MRM6m, "xor">;
+
+// Optimized codegen when the non-memory output is not used.
+multiclass LOCK_ArithUnOp<bits<8> Opc8, bits<8> Opc, Format Form,
+ string mnemonic> {
+let Defs = [EFLAGS], mayLoad = 1, mayStore = 1, isCodeGenOnly = 1,
+ SchedRW = [WriteALULd, WriteRMW] in {
+
+def NAME#8m : I<Opc8, Form, (outs), (ins i8mem :$dst),
+ !strconcat(mnemonic, "{b}\t$dst"),
+ [], IIC_UNARY_MEM>, LOCK;
+def NAME#16m : I<Opc, Form, (outs), (ins i16mem:$dst),
+ !strconcat(mnemonic, "{w}\t$dst"),
+ [], IIC_UNARY_MEM>, OpSize16, LOCK;
+def NAME#32m : I<Opc, Form, (outs), (ins i32mem:$dst),
+ !strconcat(mnemonic, "{l}\t$dst"),
+ [], IIC_UNARY_MEM>, OpSize32, LOCK;
+def NAME#64m : RI<Opc, Form, (outs), (ins i64mem:$dst),
+ !strconcat(mnemonic, "{q}\t$dst"),
+ [], IIC_UNARY_MEM>, LOCK;
+}
+}
+
+defm LOCK_INC : LOCK_ArithUnOp<0xFE, 0xFF, MRM0m, "inc">;
+defm LOCK_DEC : LOCK_ArithUnOp<0xFE, 0xFF, MRM1m, "dec">;
+
+// Atomic compare and swap.
+multiclass LCMPXCHG_UnOp<bits<8> Opc, Format Form, string mnemonic,
+ SDPatternOperator frag, X86MemOperand x86memop,
+ InstrItinClass itin> {
+let isCodeGenOnly = 1 in {
+ def NAME : I<Opc, Form, (outs), (ins x86memop:$ptr),
+ !strconcat(mnemonic, "\t$ptr"),
+ [(frag addr:$ptr)], itin>, TB, LOCK;
+}
+}
+
+multiclass LCMPXCHG_BinOp<bits<8> Opc8, bits<8> Opc, Format Form,
+ string mnemonic, SDPatternOperator frag,
+ InstrItinClass itin8, InstrItinClass itin> {
+let isCodeGenOnly = 1, SchedRW = [WriteALULd, WriteRMW] in {
+ let Defs = [AL, EFLAGS], Uses = [AL] in
+ def NAME#8 : I<Opc8, Form, (outs), (ins i8mem:$ptr, GR8:$swap),
+ !strconcat(mnemonic, "{b}\t{$swap, $ptr|$ptr, $swap}"),
+ [(frag addr:$ptr, GR8:$swap, 1)], itin8>, TB, LOCK;
+ let Defs = [AX, EFLAGS], Uses = [AX] in
+ def NAME#16 : I<Opc, Form, (outs), (ins i16mem:$ptr, GR16:$swap),
+ !strconcat(mnemonic, "{w}\t{$swap, $ptr|$ptr, $swap}"),
+ [(frag addr:$ptr, GR16:$swap, 2)], itin>, TB, OpSize16, LOCK;
+ let Defs = [EAX, EFLAGS], Uses = [EAX] in
+ def NAME#32 : I<Opc, Form, (outs), (ins i32mem:$ptr, GR32:$swap),
+ !strconcat(mnemonic, "{l}\t{$swap, $ptr|$ptr, $swap}"),
+ [(frag addr:$ptr, GR32:$swap, 4)], itin>, TB, OpSize32, LOCK;
+ let Defs = [RAX, EFLAGS], Uses = [RAX] in
+ def NAME#64 : RI<Opc, Form, (outs), (ins i64mem:$ptr, GR64:$swap),
+ !strconcat(mnemonic, "{q}\t{$swap, $ptr|$ptr, $swap}"),
+ [(frag addr:$ptr, GR64:$swap, 8)], itin>, TB, LOCK;
+}
+}
+
+let Defs = [EAX, EDX, EFLAGS], Uses = [EAX, EBX, ECX, EDX],
+ SchedRW = [WriteALULd, WriteRMW] in {
+defm LCMPXCHG8B : LCMPXCHG_UnOp<0xC7, MRM1m, "cmpxchg8b",
+ X86cas8, i64mem,
+ IIC_CMPX_LOCK_8B>;
+}
+
+let Defs = [RAX, RDX, EFLAGS], Uses = [RAX, RBX, RCX, RDX],
+ Predicates = [HasCmpxchg16b], SchedRW = [WriteALULd, WriteRMW] in {
+defm LCMPXCHG16B : LCMPXCHG_UnOp<0xC7, MRM1m, "cmpxchg16b",
+ X86cas16, i128mem,
+ IIC_CMPX_LOCK_16B>, REX_W;
+}
+
+defm LCMPXCHG : LCMPXCHG_BinOp<0xB0, 0xB1, MRMDestMem, "cmpxchg",
+ X86cas, IIC_CMPX_LOCK_8, IIC_CMPX_LOCK>;
+
+// Atomic exchange and add
+multiclass ATOMIC_LOAD_BINOP<bits<8> opc8, bits<8> opc, string mnemonic,
+ string frag,
+ InstrItinClass itin8, InstrItinClass itin> {
+ let Constraints = "$val = $dst", Defs = [EFLAGS], isCodeGenOnly = 1,
+ SchedRW = [WriteALULd, WriteRMW] in {
+ def NAME#8 : I<opc8, MRMSrcMem, (outs GR8:$dst),
+ (ins GR8:$val, i8mem:$ptr),
+ !strconcat(mnemonic, "{b}\t{$val, $ptr|$ptr, $val}"),
+ [(set GR8:$dst,
+ (!cast<PatFrag>(frag # "_8") addr:$ptr, GR8:$val))],
+ itin8>;
+ def NAME#16 : I<opc, MRMSrcMem, (outs GR16:$dst),
+ (ins GR16:$val, i16mem:$ptr),
+ !strconcat(mnemonic, "{w}\t{$val, $ptr|$ptr, $val}"),
+ [(set
+ GR16:$dst,
+ (!cast<PatFrag>(frag # "_16") addr:$ptr, GR16:$val))],
+ itin>, OpSize16;
+ def NAME#32 : I<opc, MRMSrcMem, (outs GR32:$dst),
+ (ins GR32:$val, i32mem:$ptr),
+ !strconcat(mnemonic, "{l}\t{$val, $ptr|$ptr, $val}"),
+ [(set
+ GR32:$dst,
+ (!cast<PatFrag>(frag # "_32") addr:$ptr, GR32:$val))],
+ itin>, OpSize32;
+ def NAME#64 : RI<opc, MRMSrcMem, (outs GR64:$dst),
+ (ins GR64:$val, i64mem:$ptr),
+ !strconcat(mnemonic, "{q}\t{$val, $ptr|$ptr, $val}"),
+ [(set
+ GR64:$dst,
+ (!cast<PatFrag>(frag # "_64") addr:$ptr, GR64:$val))],
+ itin>;
+ }
+}
+
+defm LXADD : ATOMIC_LOAD_BINOP<0xc0, 0xc1, "xadd", "atomic_load_add",
+ IIC_XADD_LOCK_MEM8, IIC_XADD_LOCK_MEM>,
+ TB, LOCK;
+
+/* The following multiclass tries to make sure that in code like
+ * x.store (immediate op x.load(acquire), release)
+ * an operation directly on memory is generated instead of wasting a register.
+ * It is not automatic as atomic_store/load are only lowered to MOV instructions
+ * extremely late to prevent them from being accidentally reordered in the backend
+ * (see below the RELEASE_MOV* / ACQUIRE_MOV* pseudo-instructions)
+ */
+multiclass RELEASE_BINOP_MI<string op> {
+ def NAME#8mi : I<0, Pseudo, (outs), (ins i8mem:$dst, i8imm:$src),
+ "#RELEASE_BINOP PSEUDO!",
+ [(atomic_store_8 addr:$dst, (!cast<PatFrag>(op)
+ (atomic_load_8 addr:$dst), (i8 imm:$src)))]>;
+ // NAME#16 is not generated as 16-bit arithmetic instructions are considered
+ // costly and avoided as far as possible by this backend anyway
+ def NAME#32mi : I<0, Pseudo, (outs), (ins i32mem:$dst, i32imm:$src),
+ "#RELEASE_BINOP PSEUDO!",
+ [(atomic_store_32 addr:$dst, (!cast<PatFrag>(op)
+ (atomic_load_32 addr:$dst), (i32 imm:$src)))]>;
+ def NAME#64mi32 : I<0, Pseudo, (outs), (ins i64mem:$dst, i64i32imm:$src),
+ "#RELEASE_BINOP PSEUDO!",
+ [(atomic_store_64 addr:$dst, (!cast<PatFrag>(op)
+ (atomic_load_64 addr:$dst), (i64immSExt32:$src)))]>;
+}
+defm RELEASE_ADD : RELEASE_BINOP_MI<"add">;
+defm RELEASE_AND : RELEASE_BINOP_MI<"and">;
+defm RELEASE_OR : RELEASE_BINOP_MI<"or">;
+defm RELEASE_XOR : RELEASE_BINOP_MI<"xor">;
+// Note: we don't deal with sub, because substractions of constants are
+// optimized into additions before this code can run
+
+multiclass RELEASE_UNOP<dag dag8, dag dag16, dag dag32, dag dag64> {
+ def NAME#8m : I<0, Pseudo, (outs), (ins i8mem:$dst),
+ "#RELEASE_UNOP PSEUDO!",
+ [(atomic_store_8 addr:$dst, dag8)]>;
+ def NAME#16m : I<0, Pseudo, (outs), (ins i16mem:$dst),
+ "#RELEASE_UNOP PSEUDO!",
+ [(atomic_store_16 addr:$dst, dag16)]>;
+ def NAME#32m : I<0, Pseudo, (outs), (ins i32mem:$dst),
+ "#RELEASE_UNOP PSEUDO!",
+ [(atomic_store_32 addr:$dst, dag32)]>;
+ def NAME#64m : I<0, Pseudo, (outs), (ins i64mem:$dst),
+ "#RELEASE_UNOP PSEUDO!",
+ [(atomic_store_64 addr:$dst, dag64)]>;
+}
+
+defm RELEASE_INC : RELEASE_UNOP<
+ (add (atomic_load_8 addr:$dst), (i8 1)),
+ (add (atomic_load_16 addr:$dst), (i16 1)),
+ (add (atomic_load_32 addr:$dst), (i32 1)),
+ (add (atomic_load_64 addr:$dst), (i64 1))>, Requires<[NotSlowIncDec]>;
+defm RELEASE_DEC : RELEASE_UNOP<
+ (add (atomic_load_8 addr:$dst), (i8 -1)),
+ (add (atomic_load_16 addr:$dst), (i16 -1)),
+ (add (atomic_load_32 addr:$dst), (i32 -1)),
+ (add (atomic_load_64 addr:$dst), (i64 -1))>, Requires<[NotSlowIncDec]>;
+/*
+TODO: These don't work because the type inference of TableGen fails.
+TODO: find a way to fix it.
+defm RELEASE_NEG : RELEASE_UNOP<
+ (ineg (atomic_load_8 addr:$dst)),
+ (ineg (atomic_load_16 addr:$dst)),
+ (ineg (atomic_load_32 addr:$dst)),
+ (ineg (atomic_load_64 addr:$dst))>;
+defm RELEASE_NOT : RELEASE_UNOP<
+ (not (atomic_load_8 addr:$dst)),
+ (not (atomic_load_16 addr:$dst)),
+ (not (atomic_load_32 addr:$dst)),
+ (not (atomic_load_64 addr:$dst))>;
+*/
+
+def RELEASE_MOV8mi : I<0, Pseudo, (outs), (ins i8mem:$dst, i8imm:$src),
+ "#RELEASE_MOV PSEUDO !",
+ [(atomic_store_8 addr:$dst, (i8 imm:$src))]>;
+def RELEASE_MOV16mi : I<0, Pseudo, (outs), (ins i16mem:$dst, i16imm:$src),
+ "#RELEASE_MOV PSEUDO !",
+ [(atomic_store_16 addr:$dst, (i16 imm:$src))]>;
+def RELEASE_MOV32mi : I<0, Pseudo, (outs), (ins i32mem:$dst, i32imm:$src),
+ "#RELEASE_MOV PSEUDO !",
+ [(atomic_store_32 addr:$dst, (i32 imm:$src))]>;
+def RELEASE_MOV64mi32 : I<0, Pseudo, (outs), (ins i64mem:$dst, i64i32imm:$src),
+ "#RELEASE_MOV PSEUDO !",
+ [(atomic_store_64 addr:$dst, i64immSExt32:$src)]>;
+
+def RELEASE_MOV8mr : I<0, Pseudo, (outs), (ins i8mem :$dst, GR8 :$src),
+ "#RELEASE_MOV PSEUDO!",
+ [(atomic_store_8 addr:$dst, GR8 :$src)]>;
+def RELEASE_MOV16mr : I<0, Pseudo, (outs), (ins i16mem:$dst, GR16:$src),
+ "#RELEASE_MOV PSEUDO!",
+ [(atomic_store_16 addr:$dst, GR16:$src)]>;
+def RELEASE_MOV32mr : I<0, Pseudo, (outs), (ins i32mem:$dst, GR32:$src),
+ "#RELEASE_MOV PSEUDO!",
+ [(atomic_store_32 addr:$dst, GR32:$src)]>;
+def RELEASE_MOV64mr : I<0, Pseudo, (outs), (ins i64mem:$dst, GR64:$src),
+ "#RELEASE_MOV PSEUDO!",
+ [(atomic_store_64 addr:$dst, GR64:$src)]>;
+
+def ACQUIRE_MOV8rm : I<0, Pseudo, (outs GR8 :$dst), (ins i8mem :$src),
+ "#ACQUIRE_MOV PSEUDO!",
+ [(set GR8:$dst, (atomic_load_8 addr:$src))]>;
+def ACQUIRE_MOV16rm : I<0, Pseudo, (outs GR16:$dst), (ins i16mem:$src),
+ "#ACQUIRE_MOV PSEUDO!",
+ [(set GR16:$dst, (atomic_load_16 addr:$src))]>;
+def ACQUIRE_MOV32rm : I<0, Pseudo, (outs GR32:$dst), (ins i32mem:$src),
+ "#ACQUIRE_MOV PSEUDO!",
+ [(set GR32:$dst, (atomic_load_32 addr:$src))]>;
+def ACQUIRE_MOV64rm : I<0, Pseudo, (outs GR64:$dst), (ins i64mem:$src),
+ "#ACQUIRE_MOV PSEUDO!",
+ [(set GR64:$dst, (atomic_load_64 addr:$src))]>;
+//===----------------------------------------------------------------------===//
+// Conditional Move Pseudo Instructions.
+//===----------------------------------------------------------------------===//
+
+// CMOV* - Used to implement the SSE SELECT DAG operation. Expanded after
+// instruction selection into a branch sequence.
+let Uses = [EFLAGS], usesCustomInserter = 1 in {
+ def CMOV_FR32 : I<0, Pseudo,
+ (outs FR32:$dst), (ins FR32:$t, FR32:$f, i8imm:$cond),
+ "#CMOV_FR32 PSEUDO!",
+ [(set FR32:$dst, (X86cmov FR32:$t, FR32:$f, imm:$cond,
+ EFLAGS))]>;
+ def CMOV_FR64 : I<0, Pseudo,
+ (outs FR64:$dst), (ins FR64:$t, FR64:$f, i8imm:$cond),
+ "#CMOV_FR64 PSEUDO!",
+ [(set FR64:$dst, (X86cmov FR64:$t, FR64:$f, imm:$cond,
+ EFLAGS))]>;
+ def CMOV_V4F32 : I<0, Pseudo,
+ (outs VR128:$dst), (ins VR128:$t, VR128:$f, i8imm:$cond),
+ "#CMOV_V4F32 PSEUDO!",
+ [(set VR128:$dst,
+ (v4f32 (X86cmov VR128:$t, VR128:$f, imm:$cond,
+ EFLAGS)))]>;
+ def CMOV_V2F64 : I<0, Pseudo,
+ (outs VR128:$dst), (ins VR128:$t, VR128:$f, i8imm:$cond),
+ "#CMOV_V2F64 PSEUDO!",
+ [(set VR128:$dst,
+ (v2f64 (X86cmov VR128:$t, VR128:$f, imm:$cond,
+ EFLAGS)))]>;
+ def CMOV_V2I64 : I<0, Pseudo,
+ (outs VR128:$dst), (ins VR128:$t, VR128:$f, i8imm:$cond),
+ "#CMOV_V2I64 PSEUDO!",
+ [(set VR128:$dst,
+ (v2i64 (X86cmov VR128:$t, VR128:$f, imm:$cond,
+ EFLAGS)))]>;
+ def CMOV_V8F32 : I<0, Pseudo,
+ (outs VR256:$dst), (ins VR256:$t, VR256:$f, i8imm:$cond),
+ "#CMOV_V8F32 PSEUDO!",
+ [(set VR256:$dst,
+ (v8f32 (X86cmov VR256:$t, VR256:$f, imm:$cond,
+ EFLAGS)))]>;
+ def CMOV_V4F64 : I<0, Pseudo,
+ (outs VR256:$dst), (ins VR256:$t, VR256:$f, i8imm:$cond),
+ "#CMOV_V4F64 PSEUDO!",
+ [(set VR256:$dst,
+ (v4f64 (X86cmov VR256:$t, VR256:$f, imm:$cond,
+ EFLAGS)))]>;
+ def CMOV_V4I64 : I<0, Pseudo,
+ (outs VR256:$dst), (ins VR256:$t, VR256:$f, i8imm:$cond),
+ "#CMOV_V4I64 PSEUDO!",
+ [(set VR256:$dst,
+ (v4i64 (X86cmov VR256:$t, VR256:$f, imm:$cond,
+ EFLAGS)))]>;
+ def CMOV_V8I64 : I<0, Pseudo,
+ (outs VR512:$dst), (ins VR512:$t, VR512:$f, i8imm:$cond),
+ "#CMOV_V8I64 PSEUDO!",
+ [(set VR512:$dst,
+ (v8i64 (X86cmov VR512:$t, VR512:$f, imm:$cond,
+ EFLAGS)))]>;
+ def CMOV_V8F64 : I<0, Pseudo,
+ (outs VR512:$dst), (ins VR512:$t, VR512:$f, i8imm:$cond),
+ "#CMOV_V8F64 PSEUDO!",
+ [(set VR512:$dst,
+ (v8f64 (X86cmov VR512:$t, VR512:$f, imm:$cond,
+ EFLAGS)))]>;
+ def CMOV_V16F32 : I<0, Pseudo,
+ (outs VR512:$dst), (ins VR512:$t, VR512:$f, i8imm:$cond),
+ "#CMOV_V16F32 PSEUDO!",
+ [(set VR512:$dst,
+ (v16f32 (X86cmov VR512:$t, VR512:$f, imm:$cond,
+ EFLAGS)))]>;
+}
+
+
+//===----------------------------------------------------------------------===//
+// DAG Pattern Matching Rules
+//===----------------------------------------------------------------------===//
+
+// ConstantPool GlobalAddress, ExternalSymbol, and JumpTable
+def : Pat<(i32 (X86Wrapper tconstpool :$dst)), (MOV32ri tconstpool :$dst)>;
+def : Pat<(i32 (X86Wrapper tjumptable :$dst)), (MOV32ri tjumptable :$dst)>;
+def : Pat<(i32 (X86Wrapper tglobaltlsaddr:$dst)),(MOV32ri tglobaltlsaddr:$dst)>;
+def : Pat<(i32 (X86Wrapper tglobaladdr :$dst)), (MOV32ri tglobaladdr :$dst)>;
+def : Pat<(i32 (X86Wrapper texternalsym:$dst)), (MOV32ri texternalsym:$dst)>;
+def : Pat<(i32 (X86Wrapper tblockaddress:$dst)), (MOV32ri tblockaddress:$dst)>;
+
+def : Pat<(add GR32:$src1, (X86Wrapper tconstpool:$src2)),
+ (ADD32ri GR32:$src1, tconstpool:$src2)>;
+def : Pat<(add GR32:$src1, (X86Wrapper tjumptable:$src2)),
+ (ADD32ri GR32:$src1, tjumptable:$src2)>;
+def : Pat<(add GR32:$src1, (X86Wrapper tglobaladdr :$src2)),
+ (ADD32ri GR32:$src1, tglobaladdr:$src2)>;
+def : Pat<(add GR32:$src1, (X86Wrapper texternalsym:$src2)),
+ (ADD32ri GR32:$src1, texternalsym:$src2)>;
+def : Pat<(add GR32:$src1, (X86Wrapper tblockaddress:$src2)),
+ (ADD32ri GR32:$src1, tblockaddress:$src2)>;
+
+def : Pat<(store (i32 (X86Wrapper tglobaladdr:$src)), addr:$dst),
+ (MOV32mi addr:$dst, tglobaladdr:$src)>;
+def : Pat<(store (i32 (X86Wrapper texternalsym:$src)), addr:$dst),
+ (MOV32mi addr:$dst, texternalsym:$src)>;
+def : Pat<(store (i32 (X86Wrapper tblockaddress:$src)), addr:$dst),
+ (MOV32mi addr:$dst, tblockaddress:$src)>;
+
+// ConstantPool GlobalAddress, ExternalSymbol, and JumpTable when not in small
+// code model mode, should use 'movabs'. FIXME: This is really a hack, the
+// 'movabs' predicate should handle this sort of thing.
+def : Pat<(i64 (X86Wrapper tconstpool :$dst)),
+ (MOV64ri tconstpool :$dst)>, Requires<[FarData]>;
+def : Pat<(i64 (X86Wrapper tjumptable :$dst)),
+ (MOV64ri tjumptable :$dst)>, Requires<[FarData]>;
+def : Pat<(i64 (X86Wrapper tglobaladdr :$dst)),
+ (MOV64ri tglobaladdr :$dst)>, Requires<[FarData]>;
+def : Pat<(i64 (X86Wrapper texternalsym:$dst)),
+ (MOV64ri texternalsym:$dst)>, Requires<[FarData]>;
+def : Pat<(i64 (X86Wrapper tblockaddress:$dst)),
+ (MOV64ri tblockaddress:$dst)>, Requires<[FarData]>;
+
+// In kernel code model, we can get the address of a label
+// into a register with 'movq'. FIXME: This is a hack, the 'imm' predicate of
+// the MOV64ri32 should accept these.
+def : Pat<(i64 (X86Wrapper tconstpool :$dst)),
+ (MOV64ri32 tconstpool :$dst)>, Requires<[KernelCode]>;
+def : Pat<(i64 (X86Wrapper tjumptable :$dst)),
+ (MOV64ri32 tjumptable :$dst)>, Requires<[KernelCode]>;
+def : Pat<(i64 (X86Wrapper tglobaladdr :$dst)),
+ (MOV64ri32 tglobaladdr :$dst)>, Requires<[KernelCode]>;
+def : Pat<(i64 (X86Wrapper texternalsym:$dst)),
+ (MOV64ri32 texternalsym:$dst)>, Requires<[KernelCode]>;
+def : Pat<(i64 (X86Wrapper tblockaddress:$dst)),
+ (MOV64ri32 tblockaddress:$dst)>, Requires<[KernelCode]>;
+
+// If we have small model and -static mode, it is safe to store global addresses
+// directly as immediates. FIXME: This is really a hack, the 'imm' predicate
+// for MOV64mi32 should handle this sort of thing.
+def : Pat<(store (i64 (X86Wrapper tconstpool:$src)), addr:$dst),
+ (MOV64mi32 addr:$dst, tconstpool:$src)>,
+ Requires<[NearData, IsStatic]>;
+def : Pat<(store (i64 (X86Wrapper tjumptable:$src)), addr:$dst),
+ (MOV64mi32 addr:$dst, tjumptable:$src)>,
+ Requires<[NearData, IsStatic]>;
+def : Pat<(store (i64 (X86Wrapper tglobaladdr:$src)), addr:$dst),
+ (MOV64mi32 addr:$dst, tglobaladdr:$src)>,
+ Requires<[NearData, IsStatic]>;
+def : Pat<(store (i64 (X86Wrapper texternalsym:$src)), addr:$dst),
+ (MOV64mi32 addr:$dst, texternalsym:$src)>,
+ Requires<[NearData, IsStatic]>;
+def : Pat<(store (i64 (X86Wrapper tblockaddress:$src)), addr:$dst),
+ (MOV64mi32 addr:$dst, tblockaddress:$src)>,
+ Requires<[NearData, IsStatic]>;
+
+def : Pat<(i32 (X86RecoverFrameAlloc texternalsym:$dst)), (MOV32ri texternalsym:$dst)>;
+def : Pat<(i64 (X86RecoverFrameAlloc texternalsym:$dst)), (MOV64ri texternalsym:$dst)>;
+
+// Calls
+
+// tls has some funny stuff here...
+// This corresponds to movabs $foo@tpoff, %rax
+def : Pat<(i64 (X86Wrapper tglobaltlsaddr :$dst)),
+ (MOV64ri32 tglobaltlsaddr :$dst)>;
+// This corresponds to add $foo@tpoff, %rax
+def : Pat<(add GR64:$src1, (X86Wrapper tglobaltlsaddr :$dst)),
+ (ADD64ri32 GR64:$src1, tglobaltlsaddr :$dst)>;
+
+
+// Direct PC relative function call for small code model. 32-bit displacement
+// sign extended to 64-bit.
+def : Pat<(X86call (i64 tglobaladdr:$dst)),
+ (CALL64pcrel32 tglobaladdr:$dst)>;
+def : Pat<(X86call (i64 texternalsym:$dst)),
+ (CALL64pcrel32 texternalsym:$dst)>;
+
+// Tailcall stuff. The TCRETURN instructions execute after the epilog, so they
+// can never use callee-saved registers. That is the purpose of the GR64_TC
+// register classes.
+//
+// The only volatile register that is never used by the calling convention is
+// %r11. This happens when calling a vararg function with 6 arguments.
+//
+// Match an X86tcret that uses less than 7 volatile registers.
+def X86tcret_6regs : PatFrag<(ops node:$ptr, node:$off),
+ (X86tcret node:$ptr, node:$off), [{
+ // X86tcret args: (*chain, ptr, imm, regs..., glue)
+ unsigned NumRegs = 0;
+ for (unsigned i = 3, e = N->getNumOperands(); i != e; ++i)
+ if (isa<RegisterSDNode>(N->getOperand(i)) && ++NumRegs > 6)
+ return false;
+ return true;
+}]>;
+
+def : Pat<(X86tcret ptr_rc_tailcall:$dst, imm:$off),
+ (TCRETURNri ptr_rc_tailcall:$dst, imm:$off)>,
+ Requires<[Not64BitMode]>;
+
+// FIXME: This is disabled for 32-bit PIC mode because the global base
+// register which is part of the address mode may be assigned a
+// callee-saved register.
+def : Pat<(X86tcret (load addr:$dst), imm:$off),
+ (TCRETURNmi addr:$dst, imm:$off)>,
+ Requires<[Not64BitMode, IsNotPIC]>;
+
+def : Pat<(X86tcret (i32 tglobaladdr:$dst), imm:$off),
+ (TCRETURNdi tglobaladdr:$dst, imm:$off)>,
+ Requires<[NotLP64]>;
+
+def : Pat<(X86tcret (i32 texternalsym:$dst), imm:$off),
+ (TCRETURNdi texternalsym:$dst, imm:$off)>,
+ Requires<[NotLP64]>;
+
+def : Pat<(X86tcret ptr_rc_tailcall:$dst, imm:$off),
+ (TCRETURNri64 ptr_rc_tailcall:$dst, imm:$off)>,
+ Requires<[In64BitMode]>;
+
+// Don't fold loads into X86tcret requiring more than 6 regs.
+// There wouldn't be enough scratch registers for base+index.
+def : Pat<(X86tcret_6regs (load addr:$dst), imm:$off),
+ (TCRETURNmi64 addr:$dst, imm:$off)>,
+ Requires<[In64BitMode]>;
+
+def : Pat<(X86tcret (i64 tglobaladdr:$dst), imm:$off),
+ (TCRETURNdi64 tglobaladdr:$dst, imm:$off)>,
+ Requires<[IsLP64]>;
+
+def : Pat<(X86tcret (i64 texternalsym:$dst), imm:$off),
+ (TCRETURNdi64 texternalsym:$dst, imm:$off)>,
+ Requires<[IsLP64]>;
+
+// Normal calls, with various flavors of addresses.
+def : Pat<(X86call (i32 tglobaladdr:$dst)),
+ (CALLpcrel32 tglobaladdr:$dst)>;
+def : Pat<(X86call (i32 texternalsym:$dst)),
+ (CALLpcrel32 texternalsym:$dst)>;
+def : Pat<(X86call (i32 imm:$dst)),
+ (CALLpcrel32 imm:$dst)>, Requires<[CallImmAddr]>;
+
+// Comparisons.
+
+// TEST R,R is smaller than CMP R,0
+def : Pat<(X86cmp GR8:$src1, 0),
+ (TEST8rr GR8:$src1, GR8:$src1)>;
+def : Pat<(X86cmp GR16:$src1, 0),
+ (TEST16rr GR16:$src1, GR16:$src1)>;
+def : Pat<(X86cmp GR32:$src1, 0),
+ (TEST32rr GR32:$src1, GR32:$src1)>;
+def : Pat<(X86cmp GR64:$src1, 0),
+ (TEST64rr GR64:$src1, GR64:$src1)>;
+
+// Conditional moves with folded loads with operands swapped and conditions
+// inverted.
+multiclass CMOVmr<PatLeaf InvertedCond, Instruction Inst16, Instruction Inst32,
+ Instruction Inst64> {
+ let Predicates = [HasCMov] in {
+ def : Pat<(X86cmov (loadi16 addr:$src1), GR16:$src2, InvertedCond, EFLAGS),
+ (Inst16 GR16:$src2, addr:$src1)>;
+ def : Pat<(X86cmov (loadi32 addr:$src1), GR32:$src2, InvertedCond, EFLAGS),
+ (Inst32 GR32:$src2, addr:$src1)>;
+ def : Pat<(X86cmov (loadi64 addr:$src1), GR64:$src2, InvertedCond, EFLAGS),
+ (Inst64 GR64:$src2, addr:$src1)>;
+ }
+}
+
+defm : CMOVmr<X86_COND_B , CMOVAE16rm, CMOVAE32rm, CMOVAE64rm>;
+defm : CMOVmr<X86_COND_AE, CMOVB16rm , CMOVB32rm , CMOVB64rm>;
+defm : CMOVmr<X86_COND_E , CMOVNE16rm, CMOVNE32rm, CMOVNE64rm>;
+defm : CMOVmr<X86_COND_NE, CMOVE16rm , CMOVE32rm , CMOVE64rm>;
+defm : CMOVmr<X86_COND_BE, CMOVA16rm , CMOVA32rm , CMOVA64rm>;
+defm : CMOVmr<X86_COND_A , CMOVBE16rm, CMOVBE32rm, CMOVBE64rm>;
+defm : CMOVmr<X86_COND_L , CMOVGE16rm, CMOVGE32rm, CMOVGE64rm>;
+defm : CMOVmr<X86_COND_GE, CMOVL16rm , CMOVL32rm , CMOVL64rm>;
+defm : CMOVmr<X86_COND_LE, CMOVG16rm , CMOVG32rm , CMOVG64rm>;
+defm : CMOVmr<X86_COND_G , CMOVLE16rm, CMOVLE32rm, CMOVLE64rm>;
+defm : CMOVmr<X86_COND_P , CMOVNP16rm, CMOVNP32rm, CMOVNP64rm>;
+defm : CMOVmr<X86_COND_NP, CMOVP16rm , CMOVP32rm , CMOVP64rm>;
+defm : CMOVmr<X86_COND_S , CMOVNS16rm, CMOVNS32rm, CMOVNS64rm>;
+defm : CMOVmr<X86_COND_NS, CMOVS16rm , CMOVS32rm , CMOVS64rm>;
+defm : CMOVmr<X86_COND_O , CMOVNO16rm, CMOVNO32rm, CMOVNO64rm>;
+defm : CMOVmr<X86_COND_NO, CMOVO16rm , CMOVO32rm , CMOVO64rm>;
+
+// zextload bool -> zextload byte
+def : Pat<(zextloadi8i1 addr:$src), (MOV8rm addr:$src)>;
+def : Pat<(zextloadi16i1 addr:$src), (MOVZX16rm8 addr:$src)>;
+def : Pat<(zextloadi32i1 addr:$src), (MOVZX32rm8 addr:$src)>;
+def : Pat<(zextloadi64i1 addr:$src),
+ (SUBREG_TO_REG (i64 0), (MOVZX32rm8 addr:$src), sub_32bit)>;
+
+// extload bool -> extload byte
+// When extloading from 16-bit and smaller memory locations into 64-bit
+// registers, use zero-extending loads so that the entire 64-bit register is
+// defined, avoiding partial-register updates.
+
+def : Pat<(extloadi8i1 addr:$src), (MOV8rm addr:$src)>;
+def : Pat<(extloadi16i1 addr:$src), (MOVZX16rm8 addr:$src)>;
+def : Pat<(extloadi32i1 addr:$src), (MOVZX32rm8 addr:$src)>;
+def : Pat<(extloadi16i8 addr:$src), (MOVZX16rm8 addr:$src)>;
+def : Pat<(extloadi32i8 addr:$src), (MOVZX32rm8 addr:$src)>;
+def : Pat<(extloadi32i16 addr:$src), (MOVZX32rm16 addr:$src)>;
+
+// For other extloads, use subregs, since the high contents of the register are
+// defined after an extload.
+def : Pat<(extloadi64i1 addr:$src),
+ (SUBREG_TO_REG (i64 0), (MOVZX32rm8 addr:$src), sub_32bit)>;
+def : Pat<(extloadi64i8 addr:$src),
+ (SUBREG_TO_REG (i64 0), (MOVZX32rm8 addr:$src), sub_32bit)>;
+def : Pat<(extloadi64i16 addr:$src),
+ (SUBREG_TO_REG (i64 0), (MOVZX32rm16 addr:$src), sub_32bit)>;
+def : Pat<(extloadi64i32 addr:$src),
+ (SUBREG_TO_REG (i64 0), (MOV32rm addr:$src), sub_32bit)>;
+
+// anyext. Define these to do an explicit zero-extend to
+// avoid partial-register updates.
+def : Pat<(i16 (anyext GR8 :$src)), (EXTRACT_SUBREG
+ (MOVZX32rr8 GR8 :$src), sub_16bit)>;
+def : Pat<(i32 (anyext GR8 :$src)), (MOVZX32rr8 GR8 :$src)>;
+
+// Except for i16 -> i32 since isel expect i16 ops to be promoted to i32.
+def : Pat<(i32 (anyext GR16:$src)),
+ (INSERT_SUBREG (i32 (IMPLICIT_DEF)), GR16:$src, sub_16bit)>;
+
+def : Pat<(i64 (anyext GR8 :$src)),
+ (SUBREG_TO_REG (i64 0), (MOVZX32rr8 GR8 :$src), sub_32bit)>;
+def : Pat<(i64 (anyext GR16:$src)),
+ (SUBREG_TO_REG (i64 0), (MOVZX32rr16 GR16 :$src), sub_32bit)>;
+def : Pat<(i64 (anyext GR32:$src)),
+ (SUBREG_TO_REG (i64 0), GR32:$src, sub_32bit)>;
+
+
+// Any instruction that defines a 32-bit result leaves the high half of the
+// register. Truncate can be lowered to EXTRACT_SUBREG. CopyFromReg may
+// be copying from a truncate. And x86's cmov doesn't do anything if the
+// condition is false. But any other 32-bit operation will zero-extend
+// up to 64 bits.
+def def32 : PatLeaf<(i32 GR32:$src), [{
+ return N->getOpcode() != ISD::TRUNCATE &&
+ N->getOpcode() != TargetOpcode::EXTRACT_SUBREG &&
+ N->getOpcode() != ISD::CopyFromReg &&
+ N->getOpcode() != ISD::AssertSext &&
+ N->getOpcode() != X86ISD::CMOV;
+}]>;
+
+// In the case of a 32-bit def that is known to implicitly zero-extend,
+// we can use a SUBREG_TO_REG.
+def : Pat<(i64 (zext def32:$src)),
+ (SUBREG_TO_REG (i64 0), GR32:$src, sub_32bit)>;
+
+//===----------------------------------------------------------------------===//
+// Pattern match OR as ADD
+//===----------------------------------------------------------------------===//
+
+// If safe, we prefer to pattern match OR as ADD at isel time. ADD can be
+// 3-addressified into an LEA instruction to avoid copies. However, we also
+// want to finally emit these instructions as an or at the end of the code
+// generator to make the generated code easier to read. To do this, we select
+// into "disjoint bits" pseudo ops.
+
+// Treat an 'or' node is as an 'add' if the or'ed bits are known to be zero.
+def or_is_add : PatFrag<(ops node:$lhs, node:$rhs), (or node:$lhs, node:$rhs),[{
+ if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N->getOperand(1)))
+ return CurDAG->MaskedValueIsZero(N->getOperand(0), CN->getAPIntValue());
+
+ APInt KnownZero0, KnownOne0;
+ CurDAG->computeKnownBits(N->getOperand(0), KnownZero0, KnownOne0, 0);
+ APInt KnownZero1, KnownOne1;
+ CurDAG->computeKnownBits(N->getOperand(1), KnownZero1, KnownOne1, 0);
+ return (~KnownZero0 & ~KnownZero1) == 0;
+}]>;
+
+
+// (or x1, x2) -> (add x1, x2) if two operands are known not to share bits.
+// Try this before the selecting to OR.
+let AddedComplexity = 5, SchedRW = [WriteALU] in {
+
+let isConvertibleToThreeAddress = 1,
+ Constraints = "$src1 = $dst", Defs = [EFLAGS] in {
+let isCommutable = 1 in {
+def ADD16rr_DB : I<0, Pseudo, (outs GR16:$dst), (ins GR16:$src1, GR16:$src2),
+ "", // orw/addw REG, REG
+ [(set GR16:$dst, (or_is_add GR16:$src1, GR16:$src2))]>;
+def ADD32rr_DB : I<0, Pseudo, (outs GR32:$dst), (ins GR32:$src1, GR32:$src2),
+ "", // orl/addl REG, REG
+ [(set GR32:$dst, (or_is_add GR32:$src1, GR32:$src2))]>;
+def ADD64rr_DB : I<0, Pseudo, (outs GR64:$dst), (ins GR64:$src1, GR64:$src2),
+ "", // orq/addq REG, REG
+ [(set GR64:$dst, (or_is_add GR64:$src1, GR64:$src2))]>;
+} // isCommutable
+
+// NOTE: These are order specific, we want the ri8 forms to be listed
+// first so that they are slightly preferred to the ri forms.
+
+def ADD16ri8_DB : I<0, Pseudo,
+ (outs GR16:$dst), (ins GR16:$src1, i16i8imm:$src2),
+ "", // orw/addw REG, imm8
+ [(set GR16:$dst,(or_is_add GR16:$src1,i16immSExt8:$src2))]>;
+def ADD16ri_DB : I<0, Pseudo, (outs GR16:$dst), (ins GR16:$src1, i16imm:$src2),
+ "", // orw/addw REG, imm
+ [(set GR16:$dst, (or_is_add GR16:$src1, imm:$src2))]>;
+
+def ADD32ri8_DB : I<0, Pseudo,
+ (outs GR32:$dst), (ins GR32:$src1, i32i8imm:$src2),
+ "", // orl/addl REG, imm8
+ [(set GR32:$dst,(or_is_add GR32:$src1,i32immSExt8:$src2))]>;
+def ADD32ri_DB : I<0, Pseudo, (outs GR32:$dst), (ins GR32:$src1, i32imm:$src2),
+ "", // orl/addl REG, imm
+ [(set GR32:$dst, (or_is_add GR32:$src1, imm:$src2))]>;
+
+
+def ADD64ri8_DB : I<0, Pseudo,
+ (outs GR64:$dst), (ins GR64:$src1, i64i8imm:$src2),
+ "", // orq/addq REG, imm8
+ [(set GR64:$dst, (or_is_add GR64:$src1,
+ i64immSExt8:$src2))]>;
+def ADD64ri32_DB : I<0, Pseudo,
+ (outs GR64:$dst), (ins GR64:$src1, i64i32imm:$src2),
+ "", // orq/addq REG, imm
+ [(set GR64:$dst, (or_is_add GR64:$src1,
+ i64immSExt32:$src2))]>;
+}
+} // AddedComplexity, SchedRW
+
+
+//===----------------------------------------------------------------------===//
+// Some peepholes
+//===----------------------------------------------------------------------===//
+
+// Odd encoding trick: -128 fits into an 8-bit immediate field while
+// +128 doesn't, so in this special case use a sub instead of an add.
+def : Pat<(add GR16:$src1, 128),
+ (SUB16ri8 GR16:$src1, -128)>;
+def : Pat<(store (add (loadi16 addr:$dst), 128), addr:$dst),
+ (SUB16mi8 addr:$dst, -128)>;
+
+def : Pat<(add GR32:$src1, 128),
+ (SUB32ri8 GR32:$src1, -128)>;
+def : Pat<(store (add (loadi32 addr:$dst), 128), addr:$dst),
+ (SUB32mi8 addr:$dst, -128)>;
+
+def : Pat<(add GR64:$src1, 128),
+ (SUB64ri8 GR64:$src1, -128)>;
+def : Pat<(store (add (loadi64 addr:$dst), 128), addr:$dst),
+ (SUB64mi8 addr:$dst, -128)>;
+
+// The same trick applies for 32-bit immediate fields in 64-bit
+// instructions.
+def : Pat<(add GR64:$src1, 0x0000000080000000),
+ (SUB64ri32 GR64:$src1, 0xffffffff80000000)>;
+def : Pat<(store (add (loadi64 addr:$dst), 0x00000000800000000), addr:$dst),
+ (SUB64mi32 addr:$dst, 0xffffffff80000000)>;
+
+// To avoid needing to materialize an immediate in a register, use a 32-bit and
+// with implicit zero-extension instead of a 64-bit and if the immediate has at
+// least 32 bits of leading zeros. If in addition the last 32 bits can be
+// represented with a sign extension of a 8 bit constant, use that.
+
+def : Pat<(and GR64:$src, i64immZExt32SExt8:$imm),
+ (SUBREG_TO_REG
+ (i64 0),
+ (AND32ri8
+ (EXTRACT_SUBREG GR64:$src, sub_32bit),
+ (i32 (GetLo8XForm imm:$imm))),
+ sub_32bit)>;
+
+def : Pat<(and GR64:$src, i64immZExt32:$imm),
+ (SUBREG_TO_REG
+ (i64 0),
+ (AND32ri
+ (EXTRACT_SUBREG GR64:$src, sub_32bit),
+ (i32 (GetLo32XForm imm:$imm))),
+ sub_32bit)>;
+
+
+// r & (2^16-1) ==> movz
+def : Pat<(and GR32:$src1, 0xffff),
+ (MOVZX32rr16 (EXTRACT_SUBREG GR32:$src1, sub_16bit))>;
+// r & (2^8-1) ==> movz
+def : Pat<(and GR32:$src1, 0xff),
+ (MOVZX32rr8 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src1,
+ GR32_ABCD)),
+ sub_8bit))>,
+ Requires<[Not64BitMode]>;
+// r & (2^8-1) ==> movz
+def : Pat<(and GR16:$src1, 0xff),
+ (EXTRACT_SUBREG (MOVZX32rr8 (EXTRACT_SUBREG
+ (i16 (COPY_TO_REGCLASS GR16:$src1, GR16_ABCD)), sub_8bit)),
+ sub_16bit)>,
+ Requires<[Not64BitMode]>;
+
+// r & (2^32-1) ==> movz
+def : Pat<(and GR64:$src, 0x00000000FFFFFFFF),
+ (SUBREG_TO_REG (i64 0),
+ (MOV32rr (EXTRACT_SUBREG GR64:$src, sub_32bit)),
+ sub_32bit)>;
+// r & (2^16-1) ==> movz
+def : Pat<(and GR64:$src, 0xffff),
+ (SUBREG_TO_REG (i64 0),
+ (MOVZX32rr16 (i16 (EXTRACT_SUBREG GR64:$src, sub_16bit))),
+ sub_32bit)>;
+// r & (2^8-1) ==> movz
+def : Pat<(and GR64:$src, 0xff),
+ (SUBREG_TO_REG (i64 0),
+ (MOVZX32rr8 (i8 (EXTRACT_SUBREG GR64:$src, sub_8bit))),
+ sub_32bit)>;
+// r & (2^8-1) ==> movz
+def : Pat<(and GR32:$src1, 0xff),
+ (MOVZX32rr8 (EXTRACT_SUBREG GR32:$src1, sub_8bit))>,
+ Requires<[In64BitMode]>;
+// r & (2^8-1) ==> movz
+def : Pat<(and GR16:$src1, 0xff),
+ (EXTRACT_SUBREG (MOVZX32rr8 (i8
+ (EXTRACT_SUBREG GR16:$src1, sub_8bit))), sub_16bit)>,
+ Requires<[In64BitMode]>;
+
+
+// sext_inreg patterns
+def : Pat<(sext_inreg GR32:$src, i16),
+ (MOVSX32rr16 (EXTRACT_SUBREG GR32:$src, sub_16bit))>;
+def : Pat<(sext_inreg GR32:$src, i8),
+ (MOVSX32rr8 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src,
+ GR32_ABCD)),
+ sub_8bit))>,
+ Requires<[Not64BitMode]>;
+
+def : Pat<(sext_inreg GR16:$src, i8),
+ (EXTRACT_SUBREG (i32 (MOVSX32rr8 (EXTRACT_SUBREG
+ (i32 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)), sub_8bit))),
+ sub_16bit)>,
+ Requires<[Not64BitMode]>;
+
+def : Pat<(sext_inreg GR64:$src, i32),
+ (MOVSX64rr32 (EXTRACT_SUBREG GR64:$src, sub_32bit))>;
+def : Pat<(sext_inreg GR64:$src, i16),
+ (MOVSX64rr16 (EXTRACT_SUBREG GR64:$src, sub_16bit))>;
+def : Pat<(sext_inreg GR64:$src, i8),
+ (MOVSX64rr8 (EXTRACT_SUBREG GR64:$src, sub_8bit))>;
+def : Pat<(sext_inreg GR32:$src, i8),
+ (MOVSX32rr8 (EXTRACT_SUBREG GR32:$src, sub_8bit))>,
+ Requires<[In64BitMode]>;
+def : Pat<(sext_inreg GR16:$src, i8),
+ (EXTRACT_SUBREG (MOVSX32rr8
+ (EXTRACT_SUBREG GR16:$src, sub_8bit)), sub_16bit)>,
+ Requires<[In64BitMode]>;
+
+// sext, sext_load, zext, zext_load
+def: Pat<(i16 (sext GR8:$src)),
+ (EXTRACT_SUBREG (MOVSX32rr8 GR8:$src), sub_16bit)>;
+def: Pat<(sextloadi16i8 addr:$src),
+ (EXTRACT_SUBREG (MOVSX32rm8 addr:$src), sub_16bit)>;
+def: Pat<(i16 (zext GR8:$src)),
+ (EXTRACT_SUBREG (MOVZX32rr8 GR8:$src), sub_16bit)>;
+def: Pat<(zextloadi16i8 addr:$src),
+ (EXTRACT_SUBREG (MOVZX32rm8 addr:$src), sub_16bit)>;
+
+// trunc patterns
+def : Pat<(i16 (trunc GR32:$src)),
+ (EXTRACT_SUBREG GR32:$src, sub_16bit)>;
+def : Pat<(i8 (trunc GR32:$src)),
+ (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src, GR32_ABCD)),
+ sub_8bit)>,
+ Requires<[Not64BitMode]>;
+def : Pat<(i8 (trunc GR16:$src)),
+ (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
+ sub_8bit)>,
+ Requires<[Not64BitMode]>;
+def : Pat<(i32 (trunc GR64:$src)),
+ (EXTRACT_SUBREG GR64:$src, sub_32bit)>;
+def : Pat<(i16 (trunc GR64:$src)),
+ (EXTRACT_SUBREG GR64:$src, sub_16bit)>;
+def : Pat<(i8 (trunc GR64:$src)),
+ (EXTRACT_SUBREG GR64:$src, sub_8bit)>;
+def : Pat<(i8 (trunc GR32:$src)),
+ (EXTRACT_SUBREG GR32:$src, sub_8bit)>,
+ Requires<[In64BitMode]>;
+def : Pat<(i8 (trunc GR16:$src)),
+ (EXTRACT_SUBREG GR16:$src, sub_8bit)>,
+ Requires<[In64BitMode]>;
+
+// h-register tricks
+def : Pat<(i8 (trunc (srl_su GR16:$src, (i8 8)))),
+ (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
+ sub_8bit_hi)>,
+ Requires<[Not64BitMode]>;
+def : Pat<(i8 (trunc (srl_su GR32:$src, (i8 8)))),
+ (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src, GR32_ABCD)),
+ sub_8bit_hi)>,
+ Requires<[Not64BitMode]>;
+def : Pat<(srl GR16:$src, (i8 8)),
+ (EXTRACT_SUBREG
+ (MOVZX32rr8
+ (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
+ sub_8bit_hi)),
+ sub_16bit)>,
+ Requires<[Not64BitMode]>;
+def : Pat<(i32 (zext (srl_su GR16:$src, (i8 8)))),
+ (MOVZX32rr8 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src,
+ GR16_ABCD)),
+ sub_8bit_hi))>,
+ Requires<[Not64BitMode]>;
+def : Pat<(i32 (anyext (srl_su GR16:$src, (i8 8)))),
+ (MOVZX32rr8 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src,
+ GR16_ABCD)),
+ sub_8bit_hi))>,
+ Requires<[Not64BitMode]>;
+def : Pat<(and (srl_su GR32:$src, (i8 8)), (i32 255)),
+ (MOVZX32rr8 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src,
+ GR32_ABCD)),
+ sub_8bit_hi))>,
+ Requires<[Not64BitMode]>;
+def : Pat<(srl (and_su GR32:$src, 0xff00), (i8 8)),
+ (MOVZX32rr8 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src,
+ GR32_ABCD)),
+ sub_8bit_hi))>,
+ Requires<[Not64BitMode]>;
+
+// h-register tricks.
+// For now, be conservative on x86-64 and use an h-register extract only if the
+// value is immediately zero-extended or stored, which are somewhat common
+// cases. This uses a bunch of code to prevent a register requiring a REX prefix
+// from being allocated in the same instruction as the h register, as there's
+// currently no way to describe this requirement to the register allocator.
+
+// h-register extract and zero-extend.
+def : Pat<(and (srl_su GR64:$src, (i8 8)), (i64 255)),
+ (SUBREG_TO_REG
+ (i64 0),
+ (MOVZX32_NOREXrr8
+ (EXTRACT_SUBREG (i64 (COPY_TO_REGCLASS GR64:$src, GR64_ABCD)),
+ sub_8bit_hi)),
+ sub_32bit)>;
+def : Pat<(and (srl_su GR32:$src, (i8 8)), (i32 255)),
+ (MOVZX32_NOREXrr8
+ (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src, GR32_ABCD)),
+ sub_8bit_hi))>,
+ Requires<[In64BitMode]>;
+def : Pat<(srl (and_su GR32:$src, 0xff00), (i8 8)),
+ (MOVZX32_NOREXrr8 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src,
+ GR32_ABCD)),
+ sub_8bit_hi))>,
+ Requires<[In64BitMode]>;
+def : Pat<(srl GR16:$src, (i8 8)),
+ (EXTRACT_SUBREG
+ (MOVZX32_NOREXrr8
+ (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
+ sub_8bit_hi)),
+ sub_16bit)>,
+ Requires<[In64BitMode]>;
+def : Pat<(i32 (zext (srl_su GR16:$src, (i8 8)))),
+ (MOVZX32_NOREXrr8
+ (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
+ sub_8bit_hi))>,
+ Requires<[In64BitMode]>;
+def : Pat<(i32 (anyext (srl_su GR16:$src, (i8 8)))),
+ (MOVZX32_NOREXrr8
+ (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
+ sub_8bit_hi))>,
+ Requires<[In64BitMode]>;
+def : Pat<(i64 (zext (srl_su GR16:$src, (i8 8)))),
+ (SUBREG_TO_REG
+ (i64 0),
+ (MOVZX32_NOREXrr8
+ (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
+ sub_8bit_hi)),
+ sub_32bit)>;
+def : Pat<(i64 (anyext (srl_su GR16:$src, (i8 8)))),
+ (SUBREG_TO_REG
+ (i64 0),
+ (MOVZX32_NOREXrr8
+ (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
+ sub_8bit_hi)),
+ sub_32bit)>;
+
+// h-register extract and store.
+def : Pat<(store (i8 (trunc_su (srl_su GR64:$src, (i8 8)))), addr:$dst),
+ (MOV8mr_NOREX
+ addr:$dst,
+ (EXTRACT_SUBREG (i64 (COPY_TO_REGCLASS GR64:$src, GR64_ABCD)),
+ sub_8bit_hi))>;
+def : Pat<(store (i8 (trunc_su (srl_su GR32:$src, (i8 8)))), addr:$dst),
+ (MOV8mr_NOREX
+ addr:$dst,
+ (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src, GR32_ABCD)),
+ sub_8bit_hi))>,
+ Requires<[In64BitMode]>;
+def : Pat<(store (i8 (trunc_su (srl_su GR16:$src, (i8 8)))), addr:$dst),
+ (MOV8mr_NOREX
+ addr:$dst,
+ (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
+ sub_8bit_hi))>,
+ Requires<[In64BitMode]>;
+
+
+// (shl x, 1) ==> (add x, x)
+// Note that if x is undef (immediate or otherwise), we could theoretically
+// end up with the two uses of x getting different values, producing a result
+// where the least significant bit is not 0. However, the probability of this
+// happening is considered low enough that this is officially not a
+// "real problem".
+def : Pat<(shl GR8 :$src1, (i8 1)), (ADD8rr GR8 :$src1, GR8 :$src1)>;
+def : Pat<(shl GR16:$src1, (i8 1)), (ADD16rr GR16:$src1, GR16:$src1)>;
+def : Pat<(shl GR32:$src1, (i8 1)), (ADD32rr GR32:$src1, GR32:$src1)>;
+def : Pat<(shl GR64:$src1, (i8 1)), (ADD64rr GR64:$src1, GR64:$src1)>;
+
+// Helper imms that check if a mask doesn't change significant shift bits.
+def immShift32 : ImmLeaf<i8, [{ return CountTrailingOnes_32(Imm) >= 5; }]>;
+def immShift64 : ImmLeaf<i8, [{ return CountTrailingOnes_32(Imm) >= 6; }]>;
+
+// Shift amount is implicitly masked.
+multiclass MaskedShiftAmountPats<SDNode frag, string name> {
+ // (shift x (and y, 31)) ==> (shift x, y)
+ def : Pat<(frag GR8:$src1, (and CL, immShift32)),
+ (!cast<Instruction>(name # "8rCL") GR8:$src1)>;
+ def : Pat<(frag GR16:$src1, (and CL, immShift32)),
+ (!cast<Instruction>(name # "16rCL") GR16:$src1)>;
+ def : Pat<(frag GR32:$src1, (and CL, immShift32)),
+ (!cast<Instruction>(name # "32rCL") GR32:$src1)>;
+ def : Pat<(store (frag (loadi8 addr:$dst), (and CL, immShift32)), addr:$dst),
+ (!cast<Instruction>(name # "8mCL") addr:$dst)>;
+ def : Pat<(store (frag (loadi16 addr:$dst), (and CL, immShift32)), addr:$dst),
+ (!cast<Instruction>(name # "16mCL") addr:$dst)>;
+ def : Pat<(store (frag (loadi32 addr:$dst), (and CL, immShift32)), addr:$dst),
+ (!cast<Instruction>(name # "32mCL") addr:$dst)>;
+
+ // (shift x (and y, 63)) ==> (shift x, y)
+ def : Pat<(frag GR64:$src1, (and CL, immShift64)),
+ (!cast<Instruction>(name # "64rCL") GR64:$src1)>;
+ def : Pat<(store (frag (loadi64 addr:$dst), (and CL, 63)), addr:$dst),
+ (!cast<Instruction>(name # "64mCL") addr:$dst)>;
+}
+
+defm : MaskedShiftAmountPats<shl, "SHL">;
+defm : MaskedShiftAmountPats<srl, "SHR">;
+defm : MaskedShiftAmountPats<sra, "SAR">;
+defm : MaskedShiftAmountPats<rotl, "ROL">;
+defm : MaskedShiftAmountPats<rotr, "ROR">;
+
+// (anyext (setcc_carry)) -> (setcc_carry)
+def : Pat<(i16 (anyext (i8 (X86setcc_c X86_COND_B, EFLAGS)))),
+ (SETB_C16r)>;
+def : Pat<(i32 (anyext (i8 (X86setcc_c X86_COND_B, EFLAGS)))),
+ (SETB_C32r)>;
+def : Pat<(i32 (anyext (i16 (X86setcc_c X86_COND_B, EFLAGS)))),
+ (SETB_C32r)>;
+
+
+
+
+//===----------------------------------------------------------------------===//
+// EFLAGS-defining Patterns
+//===----------------------------------------------------------------------===//
+
+// add reg, reg
+def : Pat<(add GR8 :$src1, GR8 :$src2), (ADD8rr GR8 :$src1, GR8 :$src2)>;
+def : Pat<(add GR16:$src1, GR16:$src2), (ADD16rr GR16:$src1, GR16:$src2)>;
+def : Pat<(add GR32:$src1, GR32:$src2), (ADD32rr GR32:$src1, GR32:$src2)>;
+
+// add reg, mem
+def : Pat<(add GR8:$src1, (loadi8 addr:$src2)),
+ (ADD8rm GR8:$src1, addr:$src2)>;
+def : Pat<(add GR16:$src1, (loadi16 addr:$src2)),
+ (ADD16rm GR16:$src1, addr:$src2)>;
+def : Pat<(add GR32:$src1, (loadi32 addr:$src2)),
+ (ADD32rm GR32:$src1, addr:$src2)>;
+
+// add reg, imm
+def : Pat<(add GR8 :$src1, imm:$src2), (ADD8ri GR8:$src1 , imm:$src2)>;
+def : Pat<(add GR16:$src1, imm:$src2), (ADD16ri GR16:$src1, imm:$src2)>;
+def : Pat<(add GR32:$src1, imm:$src2), (ADD32ri GR32:$src1, imm:$src2)>;
+def : Pat<(add GR16:$src1, i16immSExt8:$src2),
+ (ADD16ri8 GR16:$src1, i16immSExt8:$src2)>;
+def : Pat<(add GR32:$src1, i32immSExt8:$src2),
+ (ADD32ri8 GR32:$src1, i32immSExt8:$src2)>;
+
+// sub reg, reg
+def : Pat<(sub GR8 :$src1, GR8 :$src2), (SUB8rr GR8 :$src1, GR8 :$src2)>;
+def : Pat<(sub GR16:$src1, GR16:$src2), (SUB16rr GR16:$src1, GR16:$src2)>;
+def : Pat<(sub GR32:$src1, GR32:$src2), (SUB32rr GR32:$src1, GR32:$src2)>;
+
+// sub reg, mem
+def : Pat<(sub GR8:$src1, (loadi8 addr:$src2)),
+ (SUB8rm GR8:$src1, addr:$src2)>;
+def : Pat<(sub GR16:$src1, (loadi16 addr:$src2)),
+ (SUB16rm GR16:$src1, addr:$src2)>;
+def : Pat<(sub GR32:$src1, (loadi32 addr:$src2)),
+ (SUB32rm GR32:$src1, addr:$src2)>;
+
+// sub reg, imm
+def : Pat<(sub GR8:$src1, imm:$src2),
+ (SUB8ri GR8:$src1, imm:$src2)>;
+def : Pat<(sub GR16:$src1, imm:$src2),
+ (SUB16ri GR16:$src1, imm:$src2)>;
+def : Pat<(sub GR32:$src1, imm:$src2),
+ (SUB32ri GR32:$src1, imm:$src2)>;
+def : Pat<(sub GR16:$src1, i16immSExt8:$src2),
+ (SUB16ri8 GR16:$src1, i16immSExt8:$src2)>;
+def : Pat<(sub GR32:$src1, i32immSExt8:$src2),
+ (SUB32ri8 GR32:$src1, i32immSExt8:$src2)>;
+
+// sub 0, reg
+def : Pat<(X86sub_flag 0, GR8 :$src), (NEG8r GR8 :$src)>;
+def : Pat<(X86sub_flag 0, GR16:$src), (NEG16r GR16:$src)>;
+def : Pat<(X86sub_flag 0, GR32:$src), (NEG32r GR32:$src)>;
+def : Pat<(X86sub_flag 0, GR64:$src), (NEG64r GR64:$src)>;
+
+// mul reg, reg
+def : Pat<(mul GR16:$src1, GR16:$src2),
+ (IMUL16rr GR16:$src1, GR16:$src2)>;
+def : Pat<(mul GR32:$src1, GR32:$src2),
+ (IMUL32rr GR32:$src1, GR32:$src2)>;
+
+// mul reg, mem
+def : Pat<(mul GR16:$src1, (loadi16 addr:$src2)),
+ (IMUL16rm GR16:$src1, addr:$src2)>;
+def : Pat<(mul GR32:$src1, (loadi32 addr:$src2)),
+ (IMUL32rm GR32:$src1, addr:$src2)>;
+
+// mul reg, imm
+def : Pat<(mul GR16:$src1, imm:$src2),
+ (IMUL16rri GR16:$src1, imm:$src2)>;
+def : Pat<(mul GR32:$src1, imm:$src2),
+ (IMUL32rri GR32:$src1, imm:$src2)>;
+def : Pat<(mul GR16:$src1, i16immSExt8:$src2),
+ (IMUL16rri8 GR16:$src1, i16immSExt8:$src2)>;
+def : Pat<(mul GR32:$src1, i32immSExt8:$src2),
+ (IMUL32rri8 GR32:$src1, i32immSExt8:$src2)>;
+
+// reg = mul mem, imm
+def : Pat<(mul (loadi16 addr:$src1), imm:$src2),
+ (IMUL16rmi addr:$src1, imm:$src2)>;
+def : Pat<(mul (loadi32 addr:$src1), imm:$src2),
+ (IMUL32rmi addr:$src1, imm:$src2)>;
+def : Pat<(mul (loadi16 addr:$src1), i16immSExt8:$src2),
+ (IMUL16rmi8 addr:$src1, i16immSExt8:$src2)>;
+def : Pat<(mul (loadi32 addr:$src1), i32immSExt8:$src2),
+ (IMUL32rmi8 addr:$src1, i32immSExt8:$src2)>;
+
+// Patterns for nodes that do not produce flags, for instructions that do.
+
+// addition
+def : Pat<(add GR64:$src1, GR64:$src2),
+ (ADD64rr GR64:$src1, GR64:$src2)>;
+def : Pat<(add GR64:$src1, i64immSExt8:$src2),
+ (ADD64ri8 GR64:$src1, i64immSExt8:$src2)>;
+def : Pat<(add GR64:$src1, i64immSExt32:$src2),
+ (ADD64ri32 GR64:$src1, i64immSExt32:$src2)>;
+def : Pat<(add GR64:$src1, (loadi64 addr:$src2)),
+ (ADD64rm GR64:$src1, addr:$src2)>;
+
+// subtraction
+def : Pat<(sub GR64:$src1, GR64:$src2),
+ (SUB64rr GR64:$src1, GR64:$src2)>;
+def : Pat<(sub GR64:$src1, (loadi64 addr:$src2)),
+ (SUB64rm GR64:$src1, addr:$src2)>;
+def : Pat<(sub GR64:$src1, i64immSExt8:$src2),
+ (SUB64ri8 GR64:$src1, i64immSExt8:$src2)>;
+def : Pat<(sub GR64:$src1, i64immSExt32:$src2),
+ (SUB64ri32 GR64:$src1, i64immSExt32:$src2)>;
+
+// Multiply
+def : Pat<(mul GR64:$src1, GR64:$src2),
+ (IMUL64rr GR64:$src1, GR64:$src2)>;
+def : Pat<(mul GR64:$src1, (loadi64 addr:$src2)),
+ (IMUL64rm GR64:$src1, addr:$src2)>;
+def : Pat<(mul GR64:$src1, i64immSExt8:$src2),
+ (IMUL64rri8 GR64:$src1, i64immSExt8:$src2)>;
+def : Pat<(mul GR64:$src1, i64immSExt32:$src2),
+ (IMUL64rri32 GR64:$src1, i64immSExt32:$src2)>;
+def : Pat<(mul (loadi64 addr:$src1), i64immSExt8:$src2),
+ (IMUL64rmi8 addr:$src1, i64immSExt8:$src2)>;
+def : Pat<(mul (loadi64 addr:$src1), i64immSExt32:$src2),
+ (IMUL64rmi32 addr:$src1, i64immSExt32:$src2)>;
+
+// Increment/Decrement reg.
+// Do not make INC/DEC if it is slow
+let Predicates = [NotSlowIncDec] in {
+ def : Pat<(add GR8:$src, 1), (INC8r GR8:$src)>;
+ def : Pat<(add GR16:$src, 1), (INC16r GR16:$src)>;
+ def : Pat<(add GR32:$src, 1), (INC32r GR32:$src)>;
+ def : Pat<(add GR64:$src, 1), (INC64r GR64:$src)>;
+ def : Pat<(add GR8:$src, -1), (DEC8r GR8:$src)>;
+ def : Pat<(add GR16:$src, -1), (DEC16r GR16:$src)>;
+ def : Pat<(add GR32:$src, -1), (DEC32r GR32:$src)>;
+ def : Pat<(add GR64:$src, -1), (DEC64r GR64:$src)>;
+}
+
+// or reg/reg.
+def : Pat<(or GR8 :$src1, GR8 :$src2), (OR8rr GR8 :$src1, GR8 :$src2)>;
+def : Pat<(or GR16:$src1, GR16:$src2), (OR16rr GR16:$src1, GR16:$src2)>;
+def : Pat<(or GR32:$src1, GR32:$src2), (OR32rr GR32:$src1, GR32:$src2)>;
+def : Pat<(or GR64:$src1, GR64:$src2), (OR64rr GR64:$src1, GR64:$src2)>;
+
+// or reg/mem
+def : Pat<(or GR8:$src1, (loadi8 addr:$src2)),
+ (OR8rm GR8:$src1, addr:$src2)>;
+def : Pat<(or GR16:$src1, (loadi16 addr:$src2)),
+ (OR16rm GR16:$src1, addr:$src2)>;
+def : Pat<(or GR32:$src1, (loadi32 addr:$src2)),
+ (OR32rm GR32:$src1, addr:$src2)>;
+def : Pat<(or GR64:$src1, (loadi64 addr:$src2)),
+ (OR64rm GR64:$src1, addr:$src2)>;
+
+// or reg/imm
+def : Pat<(or GR8:$src1 , imm:$src2), (OR8ri GR8 :$src1, imm:$src2)>;
+def : Pat<(or GR16:$src1, imm:$src2), (OR16ri GR16:$src1, imm:$src2)>;
+def : Pat<(or GR32:$src1, imm:$src2), (OR32ri GR32:$src1, imm:$src2)>;
+def : Pat<(or GR16:$src1, i16immSExt8:$src2),
+ (OR16ri8 GR16:$src1, i16immSExt8:$src2)>;
+def : Pat<(or GR32:$src1, i32immSExt8:$src2),
+ (OR32ri8 GR32:$src1, i32immSExt8:$src2)>;
+def : Pat<(or GR64:$src1, i64immSExt8:$src2),
+ (OR64ri8 GR64:$src1, i64immSExt8:$src2)>;
+def : Pat<(or GR64:$src1, i64immSExt32:$src2),
+ (OR64ri32 GR64:$src1, i64immSExt32:$src2)>;
+
+// xor reg/reg
+def : Pat<(xor GR8 :$src1, GR8 :$src2), (XOR8rr GR8 :$src1, GR8 :$src2)>;
+def : Pat<(xor GR16:$src1, GR16:$src2), (XOR16rr GR16:$src1, GR16:$src2)>;
+def : Pat<(xor GR32:$src1, GR32:$src2), (XOR32rr GR32:$src1, GR32:$src2)>;
+def : Pat<(xor GR64:$src1, GR64:$src2), (XOR64rr GR64:$src1, GR64:$src2)>;
+
+// xor reg/mem
+def : Pat<(xor GR8:$src1, (loadi8 addr:$src2)),
+ (XOR8rm GR8:$src1, addr:$src2)>;
+def : Pat<(xor GR16:$src1, (loadi16 addr:$src2)),
+ (XOR16rm GR16:$src1, addr:$src2)>;
+def : Pat<(xor GR32:$src1, (loadi32 addr:$src2)),
+ (XOR32rm GR32:$src1, addr:$src2)>;
+def : Pat<(xor GR64:$src1, (loadi64 addr:$src2)),
+ (XOR64rm GR64:$src1, addr:$src2)>;
+
+// xor reg/imm
+def : Pat<(xor GR8:$src1, imm:$src2),
+ (XOR8ri GR8:$src1, imm:$src2)>;
+def : Pat<(xor GR16:$src1, imm:$src2),
+ (XOR16ri GR16:$src1, imm:$src2)>;
+def : Pat<(xor GR32:$src1, imm:$src2),
+ (XOR32ri GR32:$src1, imm:$src2)>;
+def : Pat<(xor GR16:$src1, i16immSExt8:$src2),
+ (XOR16ri8 GR16:$src1, i16immSExt8:$src2)>;
+def : Pat<(xor GR32:$src1, i32immSExt8:$src2),
+ (XOR32ri8 GR32:$src1, i32immSExt8:$src2)>;
+def : Pat<(xor GR64:$src1, i64immSExt8:$src2),
+ (XOR64ri8 GR64:$src1, i64immSExt8:$src2)>;
+def : Pat<(xor GR64:$src1, i64immSExt32:$src2),
+ (XOR64ri32 GR64:$src1, i64immSExt32:$src2)>;
+
+// and reg/reg
+def : Pat<(and GR8 :$src1, GR8 :$src2), (AND8rr GR8 :$src1, GR8 :$src2)>;
+def : Pat<(and GR16:$src1, GR16:$src2), (AND16rr GR16:$src1, GR16:$src2)>;
+def : Pat<(and GR32:$src1, GR32:$src2), (AND32rr GR32:$src1, GR32:$src2)>;
+def : Pat<(and GR64:$src1, GR64:$src2), (AND64rr GR64:$src1, GR64:$src2)>;
+
+// and reg/mem
+def : Pat<(and GR8:$src1, (loadi8 addr:$src2)),
+ (AND8rm GR8:$src1, addr:$src2)>;
+def : Pat<(and GR16:$src1, (loadi16 addr:$src2)),
+ (AND16rm GR16:$src1, addr:$src2)>;
+def : Pat<(and GR32:$src1, (loadi32 addr:$src2)),
+ (AND32rm GR32:$src1, addr:$src2)>;
+def : Pat<(and GR64:$src1, (loadi64 addr:$src2)),
+ (AND64rm GR64:$src1, addr:$src2)>;
+
+// and reg/imm
+def : Pat<(and GR8:$src1, imm:$src2),
+ (AND8ri GR8:$src1, imm:$src2)>;
+def : Pat<(and GR16:$src1, imm:$src2),
+ (AND16ri GR16:$src1, imm:$src2)>;
+def : Pat<(and GR32:$src1, imm:$src2),
+ (AND32ri GR32:$src1, imm:$src2)>;
+def : Pat<(and GR16:$src1, i16immSExt8:$src2),
+ (AND16ri8 GR16:$src1, i16immSExt8:$src2)>;
+def : Pat<(and GR32:$src1, i32immSExt8:$src2),
+ (AND32ri8 GR32:$src1, i32immSExt8:$src2)>;
+def : Pat<(and GR64:$src1, i64immSExt8:$src2),
+ (AND64ri8 GR64:$src1, i64immSExt8:$src2)>;
+def : Pat<(and GR64:$src1, i64immSExt32:$src2),
+ (AND64ri32 GR64:$src1, i64immSExt32:$src2)>;
+
+// Bit scan instruction patterns to match explicit zero-undef behavior.
+def : Pat<(cttz_zero_undef GR16:$src), (BSF16rr GR16:$src)>;
+def : Pat<(cttz_zero_undef GR32:$src), (BSF32rr GR32:$src)>;
+def : Pat<(cttz_zero_undef GR64:$src), (BSF64rr GR64:$src)>;
+def : Pat<(cttz_zero_undef (loadi16 addr:$src)), (BSF16rm addr:$src)>;
+def : Pat<(cttz_zero_undef (loadi32 addr:$src)), (BSF32rm addr:$src)>;
+def : Pat<(cttz_zero_undef (loadi64 addr:$src)), (BSF64rm addr:$src)>;
+
+// When HasMOVBE is enabled it is possible to get a non-legalized
+// register-register 16 bit bswap. This maps it to a ROL instruction.
+let Predicates = [HasMOVBE] in {
+ def : Pat<(bswap GR16:$src), (ROL16ri GR16:$src, (i8 8))>;
+}
diff --git a/llvm/lib/Target/X86/X86InstrInfo.cpp b/llvm/lib/Target/X86/X86InstrInfo.cpp index 765417f64a8..c8d5c591ba9 100644 --- a/llvm/lib/Target/X86/X86InstrInfo.cpp +++ b/llvm/lib/Target/X86/X86InstrInfo.cpp @@ -1804,6 +1804,58 @@ X86InstrInfo::isCoalescableExtInstr(const MachineInstr &MI, return false; } +int X86InstrInfo::getSPAdjust(const MachineInstr *MI) const { + const MachineFunction *MF = MI->getParent()->getParent(); + const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering(); + + if (MI->getOpcode() == getCallFrameSetupOpcode() || + MI->getOpcode() == getCallFrameDestroyOpcode()) { + unsigned StackAlign = TFI->getStackAlignment(); + int SPAdj = (MI->getOperand(0).getImm() + StackAlign - 1) / StackAlign * + StackAlign; + + SPAdj -= MI->getOperand(1).getImm(); + + if (MI->getOpcode() == getCallFrameSetupOpcode()) + return SPAdj; + else + return -SPAdj; + } + + // To know whether a call adjusts the stack, we need information + // that is bound to the following ADJCALLSTACKUP pseudo. + // Look for the next ADJCALLSTACKUP that follows the call. + if (MI->isCall()) { + const MachineBasicBlock* MBB = MI->getParent(); + auto I = ++MachineBasicBlock::const_iterator(MI); + for (auto E = MBB->end(); I != E; ++I) { + if (I->getOpcode() == getCallFrameDestroyOpcode() || + I->isCall()) + break; + } + + // If we could not find a frame destroy opcode, then it has already + // been simplified, so we don't care. + if (I->getOpcode() != getCallFrameDestroyOpcode()) + return 0; + + return -(I->getOperand(1).getImm()); + } + + // Currently handle only PUSHes we can reasonably expect to see + // in call sequences + switch (MI->getOpcode()) { + default: + return 0; + case X86::PUSH32i8: + case X86::PUSH32r: + case X86::PUSH32rmm: + case X86::PUSH32rmr: + case X86::PUSHi32: + return 4; + } +} + /// isFrameOperand - Return true and the FrameIndex if the specified /// operand and follow operands form a reference to the stack frame. bool X86InstrInfo::isFrameOperand(const MachineInstr *MI, unsigned int Op, diff --git a/llvm/lib/Target/X86/X86InstrInfo.h b/llvm/lib/Target/X86/X86InstrInfo.h index 5662e86932c..4d15467f0ca 100644 --- a/llvm/lib/Target/X86/X86InstrInfo.h +++ b/llvm/lib/Target/X86/X86InstrInfo.h @@ -175,6 +175,11 @@ public: /// const X86RegisterInfo &getRegisterInfo() const { return RI; } + /// getSPAdjust - This returns the stack pointer adjustment made by + /// this instruction. For x86, we need to handle more complex call + /// sequences involving PUSHes. + int getSPAdjust(const MachineInstr *MI) const override; + /// isCoalescableExtInstr - Return true if the instruction is a "coalescable" /// extension instruction. That is, it's like a copy where it's legal for the /// source to overlap the destination. e.g. X86::MOVSX64rr32. If this returns diff --git a/llvm/lib/Target/X86/X86MachineFunctionInfo.h b/llvm/lib/Target/X86/X86MachineFunctionInfo.h index b23a744da68..9fd03a7059c 100644 --- a/llvm/lib/Target/X86/X86MachineFunctionInfo.h +++ b/llvm/lib/Target/X86/X86MachineFunctionInfo.h @@ -77,6 +77,9 @@ class X86MachineFunctionInfo : public MachineFunctionInfo { unsigned ArgumentStackSize; /// NumLocalDynamics - Number of local-dynamic TLS accesses. unsigned NumLocalDynamics; + /// HasPushSequences - Keeps track of whether this function uses sequences + /// of pushes to pass function parameters. + bool HasPushSequences; private: /// ForwardedMustTailRegParms - A list of virtual and physical registers @@ -97,7 +100,8 @@ public: VarArgsGPOffset(0), VarArgsFPOffset(0), ArgumentStackSize(0), - NumLocalDynamics(0) {} + NumLocalDynamics(0), + HasPushSequences(false) {} explicit X86MachineFunctionInfo(MachineFunction &MF) : ForceFramePointer(false), @@ -113,11 +117,15 @@ public: VarArgsGPOffset(0), VarArgsFPOffset(0), ArgumentStackSize(0), - NumLocalDynamics(0) {} + NumLocalDynamics(0), + HasPushSequences(false) {} bool getForceFramePointer() const { return ForceFramePointer;} void setForceFramePointer(bool forceFP) { ForceFramePointer = forceFP; } + bool getHasPushSequences() const { return HasPushSequences; } + void setHasPushSequences(bool HasPush) { HasPushSequences = HasPush; } + bool getRestoreBasePointer() const { return RestoreBasePointerOffset!=0; } void setRestoreBasePointer(const MachineFunction *MF); int getRestoreBasePointerOffset() const {return RestoreBasePointerOffset; } diff --git a/llvm/lib/Target/X86/X86RegisterInfo.cpp b/llvm/lib/Target/X86/X86RegisterInfo.cpp index 09e651cebfb..0fa38f45370 100644 --- a/llvm/lib/Target/X86/X86RegisterInfo.cpp +++ b/llvm/lib/Target/X86/X86RegisterInfo.cpp @@ -468,8 +468,6 @@ void X86RegisterInfo::eliminateFrameIndex(MachineBasicBlock::iterator II, int SPAdj, unsigned FIOperandNum, RegScavenger *RS) const { - assert(SPAdj == 0 && "Unexpected"); - MachineInstr &MI = *II; MachineFunction &MF = *MI.getParent()->getParent(); const TargetFrameLowering *TFI = MF.getSubtarget().getFrameLowering(); @@ -506,6 +504,9 @@ X86RegisterInfo::eliminateFrameIndex(MachineBasicBlock::iterator II, } else FIOffset = TFI->getFrameIndexOffset(MF, FrameIndex); + if (BasePtr == StackPtr) + FIOffset += SPAdj; + // The frame index format for stackmaps and patchpoints is different from the // X86 format. It only has a FI and an offset. if (Opc == TargetOpcode::STACKMAP || Opc == TargetOpcode::PATCHPOINT) { diff --git a/llvm/lib/Target/X86/X86TargetMachine.cpp b/llvm/lib/Target/X86/X86TargetMachine.cpp index ea37b29cc5e..2376123de7c 100644 --- a/llvm/lib/Target/X86/X86TargetMachine.cpp +++ b/llvm/lib/Target/X86/X86TargetMachine.cpp @@ -192,6 +192,7 @@ public: void addIRPasses() override; bool addInstSelector() override; bool addILPOpts() override; + void addPreRegAlloc() override; void addPostRegAlloc() override; void addPreEmitPass() override; }; @@ -225,6 +226,10 @@ bool X86PassConfig::addILPOpts() { return true; } +void X86PassConfig::addPreRegAlloc() { + addPass(createX86CallFrameOptimization()); +} + void X86PassConfig::addPostRegAlloc() { addPass(createX86FloatingPointStackifierPass()); } |