diff options
| author | Matthias Braun <matze@braunis.de> | 2017-06-15 22:14:55 +0000 |
|---|---|---|
| committer | Matthias Braun <matze@braunis.de> | 2017-06-15 22:14:55 +0000 |
| commit | a42c537912118fd0e42cb2e38d1ffcc69404a0f5 (patch) | |
| tree | 4ffab891fce89cc5d4415b581fab5cbcaf1ed470 /llvm/lib | |
| parent | daa550059a4b28adc86d3674263d8066645bf583 (diff) | |
| download | bcm5719-llvm-a42c537912118fd0e42cb2e38d1ffcc69404a0f5.tar.gz bcm5719-llvm-a42c537912118fd0e42cb2e38d1ffcc69404a0f5.zip | |
RegScavenging: Add scavengeRegisterBackwards()
Re-apply r276044/r279124. Trying to reproduce or disprove the ppc64
problems reported in the stage2 build last time, which I cannot
reproduce right now.
This is a variant of scavengeRegister() that works for
enterBasicBlockEnd()/backward(). The benefit of the backward mode is
that it is not affected by incomplete kill flags.
This patch also changes
PrologEpilogInserter::doScavengeFrameVirtualRegs() to use the register
scavenger in backwards mode.
Differential Revision: http://reviews.llvm.org/D21885
llvm-svn: 305516
Diffstat (limited to 'llvm/lib')
| -rw-r--r-- | llvm/lib/CodeGen/RegisterScavenging.cpp | 431 |
1 files changed, 315 insertions, 116 deletions
diff --git a/llvm/lib/CodeGen/RegisterScavenging.cpp b/llvm/lib/CodeGen/RegisterScavenging.cpp index 1aed58c36e1..571f6788db3 100644 --- a/llvm/lib/CodeGen/RegisterScavenging.cpp +++ b/llvm/lib/CodeGen/RegisterScavenging.cpp @@ -35,6 +35,7 @@ #include "llvm/Target/TargetInstrInfo.h" #include "llvm/Target/TargetRegisterInfo.h" #include "llvm/Target/TargetSubtargetInfo.h" +#include <algorithm> #include <cassert> #include <iterator> #include <limits> @@ -260,6 +261,14 @@ void RegScavenger::backward() { const MachineInstr &MI = *MBBI; LiveUnits.stepBackward(MI); + // Expire scavenge spill frameindex uses. + for (ScavengedInfo &I : Scavenged) { + if (I.Restore == &MI) { + I.Reg = 0; + I.Restore = nullptr; + } + } + if (MBBI == MBB->begin()) { MBBI = MachineBasicBlock::iterator(nullptr); Tracking = false; @@ -356,6 +365,76 @@ unsigned RegScavenger::findSurvivorReg(MachineBasicBlock::iterator StartMI, return Survivor; } +/// Given the bitvector \p Available of free register units at position +/// \p From. Search backwards to find a register that is part of \p +/// Candidates and not used/clobbered until the point \p To. If there is +/// multiple candidates continue searching and pick the one that is not used/ +/// clobbered for the longest time. +/// Returns the register and the earliest position we know it to be free or +/// the position MBB.end() if no register is available. +static std::pair<unsigned, MachineBasicBlock::iterator> +findSurvivorBackwards(const TargetRegisterInfo &TRI, + MachineBasicBlock::iterator From, MachineBasicBlock::iterator To, + BitVector &Available, BitVector &Candidates) { + bool FoundTo = false; + unsigned Survivor = 0; + MachineBasicBlock::iterator Pos; + MachineBasicBlock &MBB = *From->getParent(); + unsigned InstrLimit = 25; + unsigned InstrCountDown = InstrLimit; + for (MachineBasicBlock::iterator I = From;; --I) { + const MachineInstr &MI = *I; + + // Remove any candidates touched by instruction. + bool FoundVReg = false; + for (const MachineOperand &MO : MI.operands()) { + if (MO.isRegMask()) { + Candidates.clearBitsNotInMask(MO.getRegMask()); + continue; + } + if (!MO.isReg() || MO.isUndef() || MO.isDebug()) + continue; + unsigned Reg = MO.getReg(); + if (TargetRegisterInfo::isVirtualRegister(Reg)) { + FoundVReg = true; + } else if (TargetRegisterInfo::isPhysicalRegister(Reg)) { + for (MCRegAliasIterator AI(Reg, &TRI, true); AI.isValid(); ++AI) + Candidates.reset(*AI); + } + } + + if (I == To) { + // If one of the available registers survived this long take it. + Available &= Candidates; + int Reg = Available.find_first(); + if (Reg != -1) + return std::make_pair(Reg, MBB.end()); + // Otherwise we will continue up to InstrLimit instructions to find + // the register which is not defined/used for the longest time. + FoundTo = true; + Pos = To; + } + if (FoundTo) { + if (Survivor == 0 || !Candidates.test(Survivor)) { + int Reg = Candidates.find_first(); + if (Reg == -1) + break; + Survivor = Reg; + } + if (--InstrCountDown == 0 || I == MBB.begin()) + break; + if (FoundVReg) { + // Keep searching when we find a vreg since the spilled register will + // be usefull for this other vreg as well later. + InstrCountDown = InstrLimit; + Pos = I; + } + } + } + + return std::make_pair(Survivor, Pos); +} + static unsigned getFrameIndexOperandNum(MachineInstr &MI) { unsigned i = 0; while (!MI.getOperand(i).isFI()) { @@ -365,44 +444,16 @@ static unsigned getFrameIndexOperandNum(MachineInstr &MI) { return i; } -unsigned RegScavenger::scavengeRegister(const TargetRegisterClass *RC, - MachineBasicBlock::iterator I, - int SPAdj) { - MachineInstr &MI = *I; - const MachineFunction &MF = *MI.getParent()->getParent(); - // Consider all allocatable registers in the register class initially - BitVector Candidates = TRI->getAllocatableSet(MF, RC); - - // Exclude all the registers being used by the instruction. - for (const MachineOperand &MO : MI.operands()) { - if (MO.isReg() && MO.getReg() != 0 && !(MO.isUse() && MO.isUndef()) && - !TargetRegisterInfo::isVirtualRegister(MO.getReg())) - for (MCRegAliasIterator AI(MO.getReg(), TRI, true); AI.isValid(); ++AI) - Candidates.reset(*AI); - } - - // Try to find a register that's unused if there is one, as then we won't - // have to spill. - BitVector Available = getRegsAvailable(RC); - Available &= Candidates; - if (Available.any()) - Candidates = Available; - - // Find the register whose use is furthest away. - MachineBasicBlock::iterator UseMI; - unsigned SReg = findSurvivorReg(I, Candidates, 25, UseMI); - - // If we found an unused register there is no reason to spill it. - if (!isRegUsed(SReg)) { - DEBUG(dbgs() << "Scavenged register: " << TRI->getName(SReg) << "\n"); - return SReg; - } - +RegScavenger::ScavengedInfo & +RegScavenger::spill(unsigned Reg, const TargetRegisterClass &RC, int SPAdj, + MachineBasicBlock::iterator Before, + MachineBasicBlock::iterator &UseMI) { // Find an available scavenging slot with size and alignment matching // the requirements of the class RC. + const MachineFunction &MF = *Before->getParent()->getParent(); const MachineFrameInfo &MFI = MF.getFrameInfo(); - unsigned NeedSize = TRI->getSpillSize(*RC); - unsigned NeedAlign = TRI->getSpillAlignment(*RC); + unsigned NeedSize = TRI->getSpillSize(RC); + unsigned NeedAlign = TRI->getSpillAlignment(RC); unsigned SI = Scavenged.size(), Diff = std::numeric_limits<unsigned>::max(); int FIB = MFI.getObjectIndexBegin(), FIE = MFI.getObjectIndexEnd(); @@ -437,39 +488,72 @@ unsigned RegScavenger::scavengeRegister(const TargetRegisterClass *RC, } // Avoid infinite regress - Scavenged[SI].Reg = SReg; + Scavenged[SI].Reg = Reg; // If the target knows how to save/restore the register, let it do so; // otherwise, use the emergency stack spill slot. - if (!TRI->saveScavengerRegister(*MBB, I, UseMI, RC, SReg)) { - // Spill the scavenged register before I. + if (!TRI->saveScavengerRegister(*MBB, Before, UseMI, &RC, Reg)) { + // Spill the scavenged register before \p Before. int FI = Scavenged[SI].FrameIndex; if (FI < FIB || FI >= FIE) { std::string Msg = std::string("Error while trying to spill ") + - TRI->getName(SReg) + " from class " + TRI->getRegClassName(RC) + + TRI->getName(Reg) + " from class " + TRI->getRegClassName(&RC) + ": Cannot scavenge register without an emergency spill slot!"; report_fatal_error(Msg.c_str()); } - TII->storeRegToStackSlot(*MBB, I, SReg, true, Scavenged[SI].FrameIndex, - RC, TRI); - MachineBasicBlock::iterator II = std::prev(I); + TII->storeRegToStackSlot(*MBB, Before, Reg, true, Scavenged[SI].FrameIndex, + &RC, TRI); + MachineBasicBlock::iterator II = std::prev(Before); unsigned FIOperandNum = getFrameIndexOperandNum(*II); TRI->eliminateFrameIndex(II, SPAdj, FIOperandNum, this); // Restore the scavenged register before its use (or first terminator). - TII->loadRegFromStackSlot(*MBB, UseMI, SReg, Scavenged[SI].FrameIndex, - RC, TRI); + TII->loadRegFromStackSlot(*MBB, UseMI, Reg, Scavenged[SI].FrameIndex, + &RC, TRI); II = std::prev(UseMI); FIOperandNum = getFrameIndexOperandNum(*II); TRI->eliminateFrameIndex(II, SPAdj, FIOperandNum, this); } + return Scavenged[SI]; +} + +unsigned RegScavenger::scavengeRegister(const TargetRegisterClass *RC, + MachineBasicBlock::iterator I, + int SPAdj) { + MachineInstr &MI = *I; + const MachineFunction &MF = *MI.getParent()->getParent(); + // Consider all allocatable registers in the register class initially + BitVector Candidates = TRI->getAllocatableSet(MF, RC); + + // Exclude all the registers being used by the instruction. + for (const MachineOperand &MO : MI.operands()) { + if (MO.isReg() && MO.getReg() != 0 && !(MO.isUse() && MO.isUndef()) && + !TargetRegisterInfo::isVirtualRegister(MO.getReg())) + for (MCRegAliasIterator AI(MO.getReg(), TRI, true); AI.isValid(); ++AI) + Candidates.reset(*AI); + } + + // Try to find a register that's unused if there is one, as then we won't + // have to spill. + BitVector Available = getRegsAvailable(RC); + Available &= Candidates; + if (Available.any()) + Candidates = Available; + + // Find the register whose use is furthest away. + MachineBasicBlock::iterator UseMI; + unsigned SReg = findSurvivorReg(I, Candidates, 25, UseMI); - Scavenged[SI].Restore = &*std::prev(UseMI); + // If we found an unused register there is no reason to spill it. + if (!isRegUsed(SReg)) { + DEBUG(dbgs() << "Scavenged register: " << TRI->getName(SReg) << "\n"); + return SReg; + } - // Doing this here leads to infinite regress. - // Scavenged[SI].Reg = SReg; + ScavengedInfo &Scavenged = spill(SReg, *RC, SPAdj, I, UseMI); + Scavenged.Restore = &*std::prev(UseMI); DEBUG(dbgs() << "Scavenged register (with spill): " << TRI->getName(SReg) << "\n"); @@ -477,85 +561,200 @@ unsigned RegScavenger::scavengeRegister(const TargetRegisterClass *RC, return SReg; } -void llvm::scavengeFrameVirtualRegs(MachineFunction &MF, RegScavenger &RS) { - // FIXME: Iterating over the instruction stream is unnecessary. We can simply - // iterate over the vreg use list, which at this point only contains machine - // operands for which eliminateFrameIndex need a new scratch reg. +unsigned RegScavenger::scavengeRegisterBackwards(const TargetRegisterClass &RC, + MachineBasicBlock::iterator To, + bool RestoreAfter, int SPAdj) { + const MachineBasicBlock &MBB = *To->getParent(); + const MachineFunction &MF = *MBB.getParent(); + // Consider all allocatable registers in the register class initially + BitVector Candidates = TRI->getAllocatableSet(MF, &RC); - // Run through the instructions and find any virtual registers. - MachineRegisterInfo &MRI = MF.getRegInfo(); - for (MachineBasicBlock &MBB : MF) { - RS.enterBasicBlock(MBB); - - int SPAdj = 0; - - // The instruction stream may change in the loop, so check MBB.end() - // directly. - for (MachineBasicBlock::iterator I = MBB.begin(); I != MBB.end(); ) { - // We might end up here again with a NULL iterator if we scavenged a - // register for which we inserted spill code for definition by what was - // originally the first instruction in MBB. - if (I == MachineBasicBlock::iterator(nullptr)) - I = MBB.begin(); - - const MachineInstr &MI = *I; - MachineBasicBlock::iterator J = std::next(I); - MachineBasicBlock::iterator P = - I == MBB.begin() ? MachineBasicBlock::iterator(nullptr) - : std::prev(I); - - // RS should process this instruction before we might scavenge at this - // location. This is because we might be replacing a virtual register - // defined by this instruction, and if so, registers killed by this - // instruction are available, and defined registers are not. - RS.forward(I); - - for (const MachineOperand &MO : MI.operands()) { + // Try to find a register that's unused if there is one, as then we won't + // have to spill. + BitVector Available = getRegsAvailable(&RC); + + // Find the register whose use is furthest away. + MachineBasicBlock::iterator UseMI; + std::pair<unsigned, MachineBasicBlock::iterator> P = + findSurvivorBackwards(*TRI, MBBI, To, Available, Candidates); + unsigned Reg = P.first; + MachineBasicBlock::iterator SpillBefore = P.second; + assert(Reg != 0 && "No register left to scavenge!"); + // Found an available register? + if (SpillBefore != MBB.end()) { + MachineBasicBlock::iterator ReloadAfter = + RestoreAfter ? std::next(MBBI) : MBBI; + MachineBasicBlock::iterator ReloadBefore = std::next(ReloadAfter); + DEBUG(dbgs() << "Reload before: " << *ReloadBefore << '\n'); + ScavengedInfo &Scavenged = spill(Reg, RC, SPAdj, SpillBefore, ReloadBefore); + Scavenged.Restore = &*std::prev(SpillBefore); + LiveUnits.removeReg(Reg); + DEBUG(dbgs() << "Scavenged register with spill: " << PrintReg(Reg, TRI) + << " until " << *SpillBefore); + } else { + DEBUG(dbgs() << "Scavenged free register: " << PrintReg(Reg, TRI) << '\n'); + } + return Reg; +} + +/// Allocate a register for the virtual register \p VReg. The last use of +/// \p VReg is around the current position of the register scavenger \p RS. +/// \p ReserveAfter controls whether the scavenged register needs to be reserved +/// after the current instruction, otherwise it will only be reserved before the +/// current instruction. +static unsigned scavengeVReg(MachineRegisterInfo &MRI, RegScavenger &RS, + unsigned VReg, bool ReserveAfter) { + const TargetRegisterInfo &TRI = *MRI.getTargetRegisterInfo(); +#ifndef NDEBUG + // Verify that all definitions and uses are in the same basic block. + const MachineBasicBlock *CommonMBB = nullptr; + // Real definition for the reg, re-definitions are not considered. + const MachineInstr *RealDef = nullptr; + for (MachineOperand &MO : MRI.reg_nodbg_operands(VReg)) { + MachineBasicBlock *MBB = MO.getParent()->getParent(); + if (CommonMBB == nullptr) + CommonMBB = MBB; + assert(MBB == CommonMBB && "All defs+uses must be in the same basic block"); + if (MO.isDef()) { + const MachineInstr &MI = *MO.getParent(); + if (!MI.readsRegister(VReg, &TRI)) { + assert(!RealDef || RealDef == &MI && + "Can have at most one definition which is not a redefinition"); + RealDef = &MI; + } + } + } + assert(RealDef != nullptr && "Must have at least 1 Def"); +#endif + + // We should only have one definition of the register. However to accomodate + // the requirements of two address code we also allow definitions in + // subsequent instructions provided they also read the register. That way + // we get a single contiguous lifetime. + // + // Definitions in MRI.def_begin() are unordered, search for the first. + MachineRegisterInfo::def_iterator FirstDef = + std::find_if(MRI.def_begin(VReg), MRI.def_end(), + [VReg, &TRI](const MachineOperand &MO) { + return !MO.getParent()->readsRegister(VReg, &TRI); + }); + assert(FirstDef != MRI.def_end() && + "Must have one definition that does not redefine vreg"); + MachineInstr &DefMI = *FirstDef->getParent(); + + // The register scavenger will report a free register inserting an emergency + // spill/reload if necessary. + int SPAdj = 0; + const TargetRegisterClass &RC = *MRI.getRegClass(VReg); + unsigned SReg = RS.scavengeRegisterBackwards(RC, DefMI.getIterator(), + ReserveAfter, SPAdj); + MRI.replaceRegWith(VReg, SReg); + ++NumScavengedRegs; + return SReg; +} + +/// Allocate (scavenge) vregs inside a single basic block. +/// Returns true if the target spill callback created new vregs and a 2nd pass +/// is necessary. +static bool scavengeFrameVirtualRegsInBlock(MachineRegisterInfo &MRI, + RegScavenger &RS, + MachineBasicBlock &MBB) { + const TargetRegisterInfo &TRI = *MRI.getTargetRegisterInfo(); + RS.enterBasicBlockEnd(MBB); + + unsigned InitialNumVirtRegs = MRI.getNumVirtRegs(); + bool NextInstructionReadsVReg = false; + for (MachineBasicBlock::iterator I = MBB.end(); I != MBB.begin(); ) { + --I; + // Move RegScavenger to the position between *I and *std::next(I). + RS.backward(I); + + // Look for unassigned vregs in the uses of *std::next(I). + if (NextInstructionReadsVReg) { + MachineBasicBlock::iterator N = std::next(I); + const MachineInstr &NMI = *N; + for (const MachineOperand &MO : NMI.operands()) { if (!MO.isReg()) continue; unsigned Reg = MO.getReg(); - if (!TargetRegisterInfo::isVirtualRegister(Reg)) + // We only care about virtual registers and ignore virtual registers + // created by the target callbacks in the process (those will be handled + // in a scavenging round). + if (!TargetRegisterInfo::isVirtualRegister(Reg) || + TargetRegisterInfo::virtReg2Index(Reg) >= InitialNumVirtRegs) + continue; + if (!MO.readsReg()) continue; - // When we first encounter a new virtual register, it - // must be a definition. - assert(MO.isDef() && "frame index virtual missing def!"); - // Scavenge a new scratch register - const TargetRegisterClass *RC = MRI.getRegClass(Reg); - unsigned ScratchReg = RS.scavengeRegister(RC, J, SPAdj); + unsigned SReg = scavengeVReg(MRI, RS, Reg, true); + N->addRegisterKilled(SReg, &TRI, false); + RS.setRegUsed(SReg); + } + } + + // Look for unassigned vregs in the defs of *I. + NextInstructionReadsVReg = false; + const MachineInstr &MI = *I; + for (const MachineOperand &MO : MI.operands()) { + if (!MO.isReg()) + continue; + unsigned Reg = MO.getReg(); + // Only vregs, no newly created vregs (see above). + if (!TargetRegisterInfo::isVirtualRegister(Reg) || + TargetRegisterInfo::virtReg2Index(Reg) >= InitialNumVirtRegs) + continue; + // We have to look at all operands anyway so we can precalculate here + // whether there is a reading operand. This allows use to skip the use + // step in the next iteration if there was none. + assert(!MO.isInternalRead() && "Cannot assign inside bundles"); + assert((!MO.isUndef() || MO.isDef()) && "Cannot handle undef uses"); + if (MO.readsReg()) { + NextInstructionReadsVReg = true; + } + if (MO.isDef()) { + unsigned SReg = scavengeVReg(MRI, RS, Reg, false); + I->addRegisterDead(SReg, &TRI, false); + } + } + } +#ifndef NDEBUG + for (const MachineOperand &MO : MBB.front().operands()) { + if (!MO.isReg() || !TargetRegisterInfo::isVirtualRegister(MO.getReg())) + continue; + assert(!MO.isInternalRead() && "Cannot assign inside bundles"); + assert((!MO.isUndef() || MO.isDef()) && "Cannot handle undef uses"); + assert(!MO.readsReg() && "Vreg use in first instruction not allowed"); + } +#endif - ++NumScavengedRegs; + return MRI.getNumVirtRegs() != InitialNumVirtRegs; +} - // Replace this reference to the virtual register with the - // scratch register. - assert(ScratchReg && "Missing scratch register!"); - MRI.replaceRegWith(Reg, ScratchReg); +void llvm::scavengeFrameVirtualRegs(MachineFunction &MF, RegScavenger &RS) { + // FIXME: Iterating over the instruction stream is unnecessary. We can simply + // iterate over the vreg use list, which at this point only contains machine + // operands for which eliminateFrameIndex need a new scratch reg. + MachineRegisterInfo &MRI = MF.getRegInfo(); + // Shortcut. + if (MRI.getNumVirtRegs() == 0) { + MF.getProperties().set(MachineFunctionProperties::Property::NoVRegs); + return; + } - // Because this instruction was processed by the RS before this - // register was allocated, make sure that the RS now records the - // register as being used. - RS.setRegUsed(ScratchReg); - } + // Run through the instructions and find any virtual registers. + for (MachineBasicBlock &MBB : MF) { + if (MBB.empty()) + continue; - // If the scavenger needed to use one of its spill slots, the - // spill code will have been inserted in between I and J. This is a - // problem because we need the spill code before I: Move I to just - // prior to J. - if (I != std::prev(J)) { - MBB.splice(J, &MBB, I); - - // Before we move I, we need to prepare the RS to visit I again. - // Specifically, RS will assert if it sees uses of registers that - // it believes are undefined. Because we have already processed - // register kills in I, when it visits I again, it will believe that - // those registers are undefined. To avoid this situation, unprocess - // the instruction I. - assert(RS.getCurrentPosition() == I && - "The register scavenger has an unexpected position"); - I = P; - RS.unprocess(P); - } else - ++I; + bool Again = scavengeFrameVirtualRegsInBlock(MRI, RS, MBB); + if (Again) { + DEBUG(dbgs() << "Warning: Required two scavenging passes for block " + << MBB.getName() << '\n'); + Again = scavengeFrameVirtualRegsInBlock(MRI, RS, MBB); + // The target required a 2nd run (because it created new vregs while + // spilling). Refuse to do another pass to keep compiletime in check. + if (Again) + report_fatal_error("Incomplete scavenging after 2nd pass"); } } |

