summaryrefslogtreecommitdiffstats
path: root/llvm/lib
diff options
context:
space:
mode:
authorWei Mi <wmi@google.com>2017-07-06 15:52:14 +0000
committerWei Mi <wmi@google.com>2017-07-06 15:52:14 +0000
commit90707394e37ffade2d9a14caed4e875423b5a101 (patch)
tree190c62859d3293db390abd0427f7c4943f49c61d /llvm/lib
parent713600747e93574c1b3ec76d7df5b40e5d19b2e3 (diff)
downloadbcm5719-llvm-90707394e37ffade2d9a14caed4e875423b5a101.tar.gz
bcm5719-llvm-90707394e37ffade2d9a14caed4e875423b5a101.zip
[LSR] Narrow search space by filtering non-optimal formulae with the same ScaledReg and Scale.
When the formulae search space is huge, LSR uses a series of heuristic to keep pruning the search space until the number of possible solutions are within certain limit. The big hammer of the series of heuristics is NarrowSearchSpaceByPickingWinnerRegs, which picks the register which is used by the most LSRUses and deletes the other formulae which don't use the register. This is a effective way to prune the search space, but quite often not a good way to keep the best solution. We saw cases before that the heuristic pruned the best formula candidate out of search space. To relieve the problem, we introduce a new heuristic called NarrowSearchSpaceByFilterFormulaWithSameScaledReg. The basic idea is in order to reduce the search space while keeping the best formula, we want to keep as many formulae with different Scale and ScaledReg as possible. That is because the central idea of LSR is to choose a group of loop induction variables and use those induction variables to represent LSRUses. An induction variable candidate is often represented by the Scale and ScaledReg in a formula. If we have more formulae with different ScaledReg and Scale to choose, we have better opportunity to find the best solution. That is why we believe pruning search space by only keeping the best formula with the same Scale and ScaledReg should be more effective than PickingWinnerReg. And we use two criteria to choose the best formula with the same Scale and ScaledReg. The first criteria is to select the formula using less non shared registers, and the second criteria is to select the formula with less cost got from RateFormula. The patch implements the heuristic before NarrowSearchSpaceByPickingWinnerRegs, which is the last resort. Testing shows we get 1.8% and 2% on two internal benchmarks on x86. llvm nightly testsuite performance is neutral. We also tried lsr-exp-narrow and it didn't help on the two improved internal cases we saw. Differential Revision: https://reviews.llvm.org/D34583 llvm-svn: 307269
Diffstat (limited to 'llvm/lib')
-rw-r--r--llvm/lib/Transforms/Scalar/LoopStrengthReduce.cpp108
1 files changed, 108 insertions, 0 deletions
diff --git a/llvm/lib/Transforms/Scalar/LoopStrengthReduce.cpp b/llvm/lib/Transforms/Scalar/LoopStrengthReduce.cpp
index 73436f13c94..b4a3591079e 100644
--- a/llvm/lib/Transforms/Scalar/LoopStrengthReduce.cpp
+++ b/llvm/lib/Transforms/Scalar/LoopStrengthReduce.cpp
@@ -140,6 +140,13 @@ static cl::opt<bool> LSRExpNarrow(
cl::desc("Narrow LSR complex solution using"
" expectation of registers number"));
+// Flag to narrow search space by filtering non-optimal formulae with
+// the same ScaledReg and Scale.
+static cl::opt<bool> FilterSameScaledReg(
+ "lsr-filter-same-scaled-reg", cl::Hidden, cl::init(true),
+ cl::desc("Narrow LSR search space by filtering non-optimal formulae"
+ " with the same ScaledReg and Scale"));
+
#ifndef NDEBUG
// Stress test IV chain generation.
static cl::opt<bool> StressIVChain(
@@ -1902,6 +1909,7 @@ class LSRInstance {
void NarrowSearchSpaceByDetectingSupersets();
void NarrowSearchSpaceByCollapsingUnrolledCode();
void NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters();
+ void NarrowSearchSpaceByFilterFormulaWithSameScaledReg();
void NarrowSearchSpaceByDeletingCostlyFormulas();
void NarrowSearchSpaceByPickingWinnerRegs();
void NarrowSearchSpaceUsingHeuristics();
@@ -4306,6 +4314,104 @@ void LSRInstance::NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters(){
}
}
+/// If a LSRUse has multiple formulae with the same ScaledReg and Scale.
+/// Pick the best one and delete the others.
+/// This narrowing heuristic is to keep as many formulae with different
+/// Scale and ScaledReg pair as possible while narrowing the search space.
+/// The benefit is that it is more likely to find out a better solution
+/// from a formulae set with more Scale and ScaledReg variations than
+/// a formulae set with the same Scale and ScaledReg. The picking winner
+/// reg heurstic will often keep the formulae with the same Scale and
+/// ScaledReg and filter others, and we want to avoid that if possible.
+void LSRInstance::NarrowSearchSpaceByFilterFormulaWithSameScaledReg() {
+ if (EstimateSearchSpaceComplexity() < ComplexityLimit)
+ return;
+
+ DEBUG(dbgs() << "The search space is too complex.\n"
+ "Narrowing the search space by choosing the best Formula "
+ "from the Formulae with the same Scale and ScaledReg.\n");
+
+ // Map the "Scale * ScaledReg" pair to the best formula of current LSRUse.
+ typedef DenseMap<std::pair<const SCEV *, int64_t>, size_t> BestFormulaeTy;
+ BestFormulaeTy BestFormulae;
+#ifndef NDEBUG
+ bool ChangedFormulae = false;
+#endif
+ DenseSet<const SCEV *> VisitedRegs;
+ SmallPtrSet<const SCEV *, 16> Regs;
+
+ for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
+ LSRUse &LU = Uses[LUIdx];
+ DEBUG(dbgs() << "Filtering for use "; LU.print(dbgs()); dbgs() << '\n');
+
+ // Return true if Formula FA is better than Formula FB.
+ auto IsBetterThan = [&](Formula &FA, Formula &FB) {
+ // First we will try to choose the Formula with fewer new registers.
+ // For a register used by current Formula, the more the register is
+ // shared among LSRUses, the less we increase the register number
+ // counter of the formula.
+ size_t FARegNum = 0;
+ for (const SCEV *Reg : FA.BaseRegs) {
+ const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(Reg);
+ FARegNum += (NumUses - UsedByIndices.count() + 1);
+ }
+ size_t FBRegNum = 0;
+ for (const SCEV *Reg : FB.BaseRegs) {
+ const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(Reg);
+ FBRegNum += (NumUses - UsedByIndices.count() + 1);
+ }
+ if (FARegNum != FBRegNum)
+ return FARegNum < FBRegNum;
+
+ // If the new register numbers are the same, choose the Formula with
+ // less Cost.
+ Cost CostFA, CostFB;
+ Regs.clear();
+ CostFA.RateFormula(TTI, FA, Regs, VisitedRegs, L, SE, DT, LU);
+ Regs.clear();
+ CostFB.RateFormula(TTI, FB, Regs, VisitedRegs, L, SE, DT, LU);
+ return CostFA.isLess(CostFB, TTI);
+ };
+
+ bool Any = false;
+ for (size_t FIdx = 0, NumForms = LU.Formulae.size(); FIdx != NumForms;
+ ++FIdx) {
+ Formula &F = LU.Formulae[FIdx];
+ if (!F.ScaledReg)
+ continue;
+ auto P = BestFormulae.insert({{F.ScaledReg, F.Scale}, FIdx});
+ if (P.second)
+ continue;
+
+ Formula &Best = LU.Formulae[P.first->second];
+ if (IsBetterThan(F, Best))
+ std::swap(F, Best);
+ DEBUG(dbgs() << " Filtering out formula "; F.print(dbgs());
+ dbgs() << "\n"
+ " in favor of formula ";
+ Best.print(dbgs()); dbgs() << '\n');
+#ifndef NDEBUG
+ ChangedFormulae = true;
+#endif
+ LU.DeleteFormula(F);
+ --FIdx;
+ --NumForms;
+ Any = true;
+ }
+ if (Any)
+ LU.RecomputeRegs(LUIdx, RegUses);
+
+ // Reset this to prepare for the next use.
+ BestFormulae.clear();
+ }
+
+ DEBUG(if (ChangedFormulae) {
+ dbgs() << "\n"
+ "After filtering out undesirable candidates:\n";
+ print_uses(dbgs());
+ });
+}
+
/// The function delete formulas with high registers number expectation.
/// Assuming we don't know the value of each formula (already delete
/// all inefficient), generate probability of not selecting for each
@@ -4516,6 +4622,8 @@ void LSRInstance::NarrowSearchSpaceUsingHeuristics() {
NarrowSearchSpaceByDetectingSupersets();
NarrowSearchSpaceByCollapsingUnrolledCode();
NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters();
+ if (FilterSameScaledReg)
+ NarrowSearchSpaceByFilterFormulaWithSameScaledReg();
if (LSRExpNarrow)
NarrowSearchSpaceByDeletingCostlyFormulas();
else
OpenPOWER on IntegriCloud