diff options
| author | Artur Pilipenko <apilipenko@azulsystems.com> | 2017-09-22 13:13:57 +0000 |
|---|---|---|
| committer | Artur Pilipenko <apilipenko@azulsystems.com> | 2017-09-22 13:13:57 +0000 |
| commit | 889dc1e3a58cb9c2e38d49138f6e338242315de3 (patch) | |
| tree | c556411a1f4880e56c775e087646fff01ab70edd /llvm/lib | |
| parent | cea42b7fff23a7637a641cb62666ca0756b9b81d (diff) | |
| download | bcm5719-llvm-889dc1e3a58cb9c2e38d49138f6e338242315de3.tar.gz bcm5719-llvm-889dc1e3a58cb9c2e38d49138f6e338242315de3.zip | |
Rework loop predication pass
We've found a serious issue with the current implementation of loop predication.
The current implementation relies on SCEV and this turned out to be problematic.
To fix the problem we had to rework the pass substantially. We have had the
reworked implementation in our downstream tree for a while. This is the initial
patch of the series of changes to upstream the new implementation.
For now the transformation is limited to the following case:
* The loop has a single latch with either ult or slt icmp condition.
* The step of the IV used in the latch condition is 1.
* The IV of the latch condition is the same as the post increment IV of the guard condition.
* The guard condition is ult.
See the review or the LoopPredication.cpp header for the details about the
problem and the new implementation.
Reviewed By: sanjoy, mkazantsev
Differential Revision: https://reviews.llvm.org/D37569
llvm-svn: 313981
Diffstat (limited to 'llvm/lib')
| -rw-r--r-- | llvm/lib/Transforms/Scalar/LoopPredication.cpp | 258 |
1 files changed, 220 insertions, 38 deletions
diff --git a/llvm/lib/Transforms/Scalar/LoopPredication.cpp b/llvm/lib/Transforms/Scalar/LoopPredication.cpp index 9b12ba18044..84577dd182a 100644 --- a/llvm/lib/Transforms/Scalar/LoopPredication.cpp +++ b/llvm/lib/Transforms/Scalar/LoopPredication.cpp @@ -34,6 +34,120 @@ // else // deoptimize // +// It's tempting to rely on SCEV here, but it has proven to be problematic. +// Generally the facts SCEV provides about the increment step of add +// recurrences are true if the backedge of the loop is taken, which implicitly +// assumes that the guard doesn't fail. Using these facts to optimize the +// guard results in a circular logic where the guard is optimized under the +// assumption that it never fails. +// +// For example, in the loop below the induction variable will be marked as nuw +// basing on the guard. Basing on nuw the guard predicate will be considered +// monotonic. Given a monotonic condition it's tempting to replace the induction +// variable in the condition with its value on the last iteration. But this +// transformation is not correct, e.g. e = 4, b = 5 breaks the loop. +// +// for (int i = b; i != e; i++) +// guard(i u< len) +// +// One of the ways to reason about this problem is to use an inductive proof +// approach. Given the loop: +// +// if (B(Start)) { +// do { +// I = PHI(Start, I.INC) +// I.INC = I + Step +// guard(G(I)); +// } while (B(I.INC)); +// } +// +// where B(x) and G(x) are predicates that map integers to booleans, we want a +// loop invariant expression M such the following program has the same semantics +// as the above: +// +// if (B(Start)) { +// do { +// I = PHI(Start, I.INC) +// I.INC = I + Step +// guard(G(Start) && M); +// } while (B(I.INC)); +// } +// +// One solution for M is M = forall X . (G(X) && B(X + Step)) => G(X + Step) +// +// Informal proof that the transformation above is correct: +// +// By the definition of guards we can rewrite the guard condition to: +// G(I) && G(Start) && M +// +// Let's prove that for each iteration of the loop: +// G(Start) && M => G(I) +// And the condition above can be simplified to G(Start) && M. +// +// Induction base. +// G(Start) && M => G(Start) +// +// Induction step. Assuming G(Start) && M => G(I) on the subsequent +// iteration: +// +// B(I + Step) is true because it's the backedge condition. +// G(I) is true because the backedge is guarded by this condition. +// +// So M = forall X . (G(X) && B(X + Step)) => G(X + Step) implies +// G(I + Step). +// +// Note that we can use anything stronger than M, i.e. any condition which +// implies M. +// +// For now the transformation is limited to the following case: +// * The loop has a single latch with either ult or slt icmp condition. +// * The step of the IV used in the latch condition is 1. +// * The IV of the latch condition is the same as the post increment IV of the +// guard condition. +// * The guard condition is ult. +// +// In this case the latch is of the from: +// ++i u< latchLimit or ++i s< latchLimit +// and the guard is of the form: +// i u< guardLimit +// +// For the unsigned latch comparison case M is: +// forall X . X u< guardLimit && (X + 1) u< latchLimit => +// (X + 1) u< guardLimit +// +// This is true if latchLimit u<= guardLimit since then +// (X + 1) u< latchLimit u<= guardLimit == (X + 1) u< guardLimit. +// +// So the widened condition is: +// i.start u< guardLimit && latchLimit u<= guardLimit +// +// For the signed latch comparison case M is: +// forall X . X u< guardLimit && (X + 1) s< latchLimit => +// (X + 1) u< guardLimit +// +// The only way the antecedent can be true and the consequent can be false is +// if +// X == guardLimit - 1 +// (and guardLimit is non-zero, but we won't use this latter fact). +// If X == guardLimit - 1 then the second half of the antecedent is +// guardLimit s< latchLimit +// and its negation is +// latchLimit s<= guardLimit. +// +// In other words, if latchLimit s<= guardLimit then: +// (the ranges below are written in ConstantRange notation, where [A, B) is the +// set for (I = A; I != B; I++ /*maywrap*/) yield(I);) +// +// forall X . X u< guardLimit && (X + 1) s< latchLimit => (X + 1) u< guardLimit +// == forall X . X u< guardLimit && (X + 1) s< guardLimit => (X + 1) u< guardLimit +// == forall X . X in [0, guardLimit) && (X + 1) in [INT_MIN, guardLimit) => (X + 1) in [0, guardLimit) +// == forall X . X in [0, guardLimit) && X in [INT_MAX, guardLimit-1) => X in [-1, guardLimit-1) +// == forall X . X in [0, guardLimit-1) => X in [-1, guardLimit-1) +// == true +// +// So the widened condition is: +// i.start u< guardLimit && latchLimit s<= guardLimit +// //===----------------------------------------------------------------------===// #include "llvm/Transforms/Scalar/LoopPredication.h" @@ -75,8 +189,16 @@ class LoopPredication { Loop *L; const DataLayout *DL; BasicBlock *Preheader; + LoopICmp LatchCheck; - Optional<LoopICmp> parseLoopICmp(ICmpInst *ICI); + Optional<LoopICmp> parseLoopICmp(ICmpInst *ICI) { + return parseLoopICmp(ICI->getPredicate(), ICI->getOperand(0), + ICI->getOperand(1)); + } + Optional<LoopICmp> parseLoopICmp(ICmpInst::Predicate Pred, Value *LHS, + Value *RHS); + + Optional<LoopICmp> parseLoopLatchICmp(); Value *expandCheck(SCEVExpander &Expander, IRBuilder<> &Builder, ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, @@ -135,11 +257,8 @@ PreservedAnalyses LoopPredicationPass::run(Loop &L, LoopAnalysisManager &AM, } Optional<LoopPredication::LoopICmp> -LoopPredication::parseLoopICmp(ICmpInst *ICI) { - ICmpInst::Predicate Pred = ICI->getPredicate(); - - Value *LHS = ICI->getOperand(0); - Value *RHS = ICI->getOperand(1); +LoopPredication::parseLoopICmp(ICmpInst::Predicate Pred, Value *LHS, + Value *RHS) { const SCEV *LHSS = SE->getSCEV(LHS); if (isa<SCEVCouldNotCompute>(LHSS)) return None; @@ -165,6 +284,8 @@ Value *LoopPredication::expandCheck(SCEVExpander &Expander, IRBuilder<> &Builder, ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, Instruction *InsertAt) { + // TODO: we can check isLoopEntryGuardedByCond before emitting the check + Type *Ty = LHS->getType(); assert(Ty == RHS->getType() && "expandCheck operands have different types?"); Value *LHSV = Expander.expandCodeFor(LHS, Ty, InsertAt); @@ -181,51 +302,54 @@ Optional<Value *> LoopPredication::widenICmpRangeCheck(ICmpInst *ICI, DEBUG(dbgs() << "Analyzing ICmpInst condition:\n"); DEBUG(ICI->dump()); + // parseLoopStructure guarantees that the latch condition is: + // ++i u< latchLimit or ++i s< latchLimit + // We are looking for the range checks of the form: + // i u< guardLimit auto RangeCheck = parseLoopICmp(ICI); if (!RangeCheck) { DEBUG(dbgs() << "Failed to parse the loop latch condition!\n"); return None; } - - ICmpInst::Predicate Pred = RangeCheck->Pred; - const SCEVAddRecExpr *IndexAR = RangeCheck->IV; - const SCEV *RHSS = RangeCheck->Limit; - - auto CanExpand = [this](const SCEV *S) { - return SE->isLoopInvariant(S, L) && isSafeToExpand(S, *SE); - }; - if (!CanExpand(RHSS)) + if (RangeCheck->Pred != ICmpInst::ICMP_ULT) { + DEBUG(dbgs() << "Unsupported range check predicate(" << RangeCheck->Pred + << ")!\n"); return None; - - DEBUG(dbgs() << "IndexAR: "); - DEBUG(IndexAR->dump()); - - bool IsIncreasing = false; - if (!SE->isMonotonicPredicate(IndexAR, Pred, IsIncreasing)) - return None; - - // If the predicate is increasing the condition can change from false to true - // as the loop progresses, in this case take the value on the first iteration - // for the widened check. Otherwise the condition can change from true to - // false as the loop progresses, so take the value on the last iteration. - const SCEV *NewLHSS = IsIncreasing - ? IndexAR->getStart() - : SE->getSCEVAtScope(IndexAR, L->getParentLoop()); - if (NewLHSS == IndexAR) { - DEBUG(dbgs() << "Can't compute NewLHSS!\n"); + } + auto *RangeCheckIV = RangeCheck->IV; + auto *PostIncRangeCheckIV = RangeCheckIV->getPostIncExpr(*SE); + if (LatchCheck.IV != PostIncRangeCheckIV) { + DEBUG(dbgs() << "Post increment range check IV (" << *PostIncRangeCheckIV + << ") is not the same as latch IV (" << *LatchCheck.IV + << ")!\n"); return None; } + assert(RangeCheckIV->getStepRecurrence(*SE)->isOne() && "must be one"); + const SCEV *Start = RangeCheckIV->getStart(); - DEBUG(dbgs() << "NewLHSS: "); - DEBUG(NewLHSS->dump()); + // Generate the widened condition. See the file header comment for reasoning. + // If the latch condition is unsigned: + // i.start u< guardLimit && latchLimit u<= guardLimit + // If the latch condition is signed: + // i.start u< guardLimit && latchLimit s<= guardLimit - if (!CanExpand(NewLHSS)) - return None; + auto LimitCheckPred = ICmpInst::isSigned(LatchCheck.Pred) + ? ICmpInst::ICMP_SLE + : ICmpInst::ICMP_ULE; - DEBUG(dbgs() << "NewLHSS is loop invariant and safe to expand. Expand!\n"); + auto CanExpand = [this](const SCEV *S) { + return SE->isLoopInvariant(S, L) && isSafeToExpand(S, *SE); + }; + if (!CanExpand(Start) || !CanExpand(LatchCheck.Limit) || + !CanExpand(RangeCheck->Limit)) + return None; Instruction *InsertAt = Preheader->getTerminator(); - return expandCheck(Expander, Builder, Pred, NewLHSS, RHSS, InsertAt); + auto *FirstIterationCheck = expandCheck(Expander, Builder, RangeCheck->Pred, + Start, RangeCheck->Limit, InsertAt); + auto *LimitCheck = expandCheck(Expander, Builder, LimitCheckPred, + LatchCheck.Limit, RangeCheck->Limit, InsertAt); + return Builder.CreateAnd(FirstIterationCheck, LimitCheck); } bool LoopPredication::widenGuardConditions(IntrinsicInst *Guard, @@ -288,6 +412,59 @@ bool LoopPredication::widenGuardConditions(IntrinsicInst *Guard, return true; } +Optional<LoopPredication::LoopICmp> LoopPredication::parseLoopLatchICmp() { + using namespace PatternMatch; + + BasicBlock *LoopLatch = L->getLoopLatch(); + if (!LoopLatch) { + DEBUG(dbgs() << "The loop doesn't have a single latch!\n"); + return None; + } + + ICmpInst::Predicate Pred; + Value *LHS, *RHS; + BasicBlock *TrueDest, *FalseDest; + + if (!match(LoopLatch->getTerminator(), + m_Br(m_ICmp(Pred, m_Value(LHS), m_Value(RHS)), TrueDest, + FalseDest))) { + DEBUG(dbgs() << "Failed to match the latch terminator!\n"); + return None; + } + assert((TrueDest == L->getHeader() || FalseDest == L->getHeader()) && + "One of the latch's destinations must be the header"); + if (TrueDest != L->getHeader()) + Pred = ICmpInst::getInversePredicate(Pred); + + auto Result = parseLoopICmp(Pred, LHS, RHS); + if (!Result) { + DEBUG(dbgs() << "Failed to parse the loop latch condition!\n"); + return None; + } + + if (Result->Pred != ICmpInst::ICMP_ULT && + Result->Pred != ICmpInst::ICMP_SLT) { + DEBUG(dbgs() << "Unsupported loop latch predicate(" << Result->Pred + << ")!\n"); + return None; + } + + // Check affine first, so if it's not we don't try to compute the step + // recurrence. + if (!Result->IV->isAffine()) { + DEBUG(dbgs() << "The induction variable is not affine!\n"); + return None; + } + + auto *Step = Result->IV->getStepRecurrence(*SE); + if (!Step->isOne()) { + DEBUG(dbgs() << "Unsupported loop stride(" << *Step << ")!\n"); + return None; + } + + return Result; +} + bool LoopPredication::runOnLoop(Loop *Loop) { L = Loop; @@ -308,6 +485,11 @@ bool LoopPredication::runOnLoop(Loop *Loop) { if (!Preheader) return false; + auto LatchCheckOpt = parseLoopLatchICmp(); + if (!LatchCheckOpt) + return false; + LatchCheck = *LatchCheckOpt; + // Collect all the guards into a vector and process later, so as not // to invalidate the instruction iterator. SmallVector<IntrinsicInst *, 4> Guards; |

