diff options
author | Alexandre Isoard <alexandre.isoard@gmail.com> | 2017-09-01 14:59:59 +0000 |
---|---|---|
committer | Alexandre Isoard <alexandre.isoard@gmail.com> | 2017-09-01 14:59:59 +0000 |
commit | 405728fd47a555e51196a6883d33318f22fab9a4 (patch) | |
tree | 0aa242b490a05acf28737503cd6324006e5b3951 /llvm/lib | |
parent | 65528f29913a541f3d250dbee2d93a3b1db68e4d (diff) | |
download | bcm5719-llvm-405728fd47a555e51196a6883d33318f22fab9a4.tar.gz bcm5719-llvm-405728fd47a555e51196a6883d33318f22fab9a4.zip |
[SCEV] Add URem support to SCEV
In LLVM IR the following code:
%r = urem <ty> %t, %b
is equivalent to
%q = udiv <ty> %t, %b
%s = mul <ty> nuw %q, %b
%r = sub <ty> nuw %t, %q ; (t / b) * b + (t % b) = t
As UDiv, Mul and Sub are already supported by SCEV, URem can be implemented
with minimal effort using that relation:
%r --> (-%b * (%t /u %b)) + %t
We implement two special cases:
- if %b is 1, the result is always 0
- if %b is a power-of-two, we produce a zext/trunc based expression instead
That is, the following code:
%r = urem i32 %t, 65536
Produces:
%r --> (zext i16 (trunc i32 %a to i16) to i32)
Note that while this helps get a tighter bound on the range analysis and the
known-bits analysis, this exposes some normalization shortcoming of SCEVs:
%div = udim i32 %a, 65536
%mul = mul i32 %div, 65536
%rem = urem i32 %a, 65536
%add = add i32 %mul, %rem
Will usually not be reduced.
llvm-svn: 312329
Diffstat (limited to 'llvm/lib')
-rw-r--r-- | llvm/lib/Analysis/ScalarEvolution.cpp | 31 |
1 files changed, 31 insertions, 0 deletions
diff --git a/llvm/lib/Analysis/ScalarEvolution.cpp b/llvm/lib/Analysis/ScalarEvolution.cpp index 25decab88ed..e3bd30a9e3c 100644 --- a/llvm/lib/Analysis/ScalarEvolution.cpp +++ b/llvm/lib/Analysis/ScalarEvolution.cpp @@ -2981,6 +2981,34 @@ const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops, return getOrCreateMulExpr(Ops, Flags); } +/// Represents an unsigned remainder expression based on unsigned division. +const SCEV *ScalarEvolution::getURemExpr(const SCEV *LHS, + const SCEV *RHS) { + assert(getEffectiveSCEVType(LHS->getType()) == + getEffectiveSCEVType(RHS->getType()) && + "SCEVURemExpr operand types don't match!"); + + // Short-circuit easy cases + if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) { + // If constant is one, the result is trivial + if (RHSC->getValue()->isOne()) + return getZero(LHS->getType()); // X urem 1 --> 0 + + // If constant is a power of two, fold into a zext(trunc(LHS)). + if (RHSC->getAPInt().isPowerOf2()) { + Type *FullTy = LHS->getType(); + Type *TruncTy = + IntegerType::get(getContext(), RHSC->getAPInt().logBase2()); + return getZeroExtendExpr(getTruncateExpr(LHS, TruncTy), FullTy); + } + } + + // Fallback to %a == %x urem %y == %x -<nuw> ((%x udiv %y) *<nuw> %y) + const SCEV *UDiv = getUDivExpr(LHS, RHS); + const SCEV *Mult = getMulExpr(UDiv, RHS, SCEV::FlagNUW); + return getMinusSCEV(LHS, Mult, SCEV::FlagNUW); +} + /// Get a canonical unsigned division expression, or something simpler if /// possible. const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS, @@ -4144,6 +4172,7 @@ static Optional<BinaryOp> MatchBinaryOp(Value *V, DominatorTree &DT) { case Instruction::Sub: case Instruction::Mul: case Instruction::UDiv: + case Instruction::URem: case Instruction::And: case Instruction::Or: case Instruction::AShr: @@ -5782,6 +5811,8 @@ const SCEV *ScalarEvolution::createSCEV(Value *V) { } case Instruction::UDiv: return getUDivExpr(getSCEV(BO->LHS), getSCEV(BO->RHS)); + case Instruction::URem: + return getURemExpr(getSCEV(BO->LHS), getSCEV(BO->RHS)); case Instruction::Sub: { SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap; if (BO->Op) |