summaryrefslogtreecommitdiffstats
path: root/llvm/lib
diff options
context:
space:
mode:
authorChandler Carruth <chandlerc@gmail.com>2017-02-06 19:38:06 +0000
committerChandler Carruth <chandlerc@gmail.com>2017-02-06 19:38:06 +0000
commit2e0fe3e65b223a2239c6892eaeb4906d910c41d3 (patch)
tree4c4a43150a9a4dfdaca7cd01156e39c0ef99025d /llvm/lib
parent8cdfe8ecf3dd14d128148c5ff0b01d74b082e3c2 (diff)
downloadbcm5719-llvm-2e0fe3e65b223a2239c6892eaeb4906d910c41d3.tar.gz
bcm5719-llvm-2e0fe3e65b223a2239c6892eaeb4906d910c41d3.zip
[PM/LCG] Remove the lazy RefSCC formation from the LazyCallGraph during
iteration. The lazy formation of RefSCCs isn't really the most important part of the laziness here -- that has to do with walking the functions themselves -- and isn't essential to maintain. Originally, there were incremental update algorithms that relied on updates happening predominantly near the most recent RefSCC formed, but those have been replaced with ones that have much tighter general case bounds at this point. We do still perform asserts that only scale well due to this incrementality, but those are easy to place behind EXPENSIVE_CHECKS. Removing this simplifies the entire analysis by having a single up-front step that builds all of the RefSCCs in a direct Tarjan walk. We can even easily replace this with other or better algorithms at will and with much less confusion now that there is no iterator-based incremental logic involved. This removes a lot of complexity from LCG. Another advantage of moving in this direction is that it simplifies testing the system substantially as we no longer have to worry about observing and mutating the graph half-way through the RefSCC formation. We still need a somewhat special iterator for RefSCCs because we want the iterator to remain stable in the face of graph updates. However, this now merely involves relative indexing to the current RefSCC's position in the sequence which isn't too hard. Differential Revision: https://reviews.llvm.org/D29381 llvm-svn: 294227
Diffstat (limited to 'llvm/lib')
-rw-r--r--llvm/lib/Analysis/CGSCCPassManager.cpp1
-rw-r--r--llvm/lib/Analysis/LazyCallGraph.cpp288
2 files changed, 118 insertions, 171 deletions
diff --git a/llvm/lib/Analysis/CGSCCPassManager.cpp b/llvm/lib/Analysis/CGSCCPassManager.cpp
index 55ef7b99f63..c93d584668d 100644
--- a/llvm/lib/Analysis/CGSCCPassManager.cpp
+++ b/llvm/lib/Analysis/CGSCCPassManager.cpp
@@ -117,6 +117,7 @@ bool CGSCCAnalysisManagerModuleProxy::Result::invalidate(
PA.allAnalysesInSetPreserved<AllAnalysesOn<LazyCallGraph::SCC>>();
// Ok, we have a graph, so we can propagate the invalidation down into it.
+ G->buildRefSCCs();
for (auto &RC : G->postorder_ref_sccs())
for (auto &C : RC) {
Optional<PreservedAnalyses> InnerPA;
diff --git a/llvm/lib/Analysis/LazyCallGraph.cpp b/llvm/lib/Analysis/LazyCallGraph.cpp
index 43f47ccc737..1b9e6d36916 100644
--- a/llvm/lib/Analysis/LazyCallGraph.cpp
+++ b/llvm/lib/Analysis/LazyCallGraph.cpp
@@ -18,6 +18,7 @@
#include "llvm/IR/PassManager.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/GraphWriter.h"
+#include <utility>
using namespace llvm;
@@ -114,7 +115,7 @@ LLVM_DUMP_METHOD void LazyCallGraph::Node::dump() const {
}
#endif
-LazyCallGraph::LazyCallGraph(Module &M) : NextDFSNumber(0) {
+LazyCallGraph::LazyCallGraph(Module &M) {
DEBUG(dbgs() << "Building CG for module: " << M.getModuleIdentifier()
<< "\n");
for (Function &F : M)
@@ -138,19 +139,13 @@ LazyCallGraph::LazyCallGraph(Module &M) : NextDFSNumber(0) {
visitReferences(Worklist, Visited, [&](Function &F) {
addEdge(EntryEdges, EntryIndexMap, F, LazyCallGraph::Edge::Ref);
});
-
- for (const Edge &E : EntryEdges)
- RefSCCEntryNodes.push_back(&E.getFunction());
}
LazyCallGraph::LazyCallGraph(LazyCallGraph &&G)
: BPA(std::move(G.BPA)), NodeMap(std::move(G.NodeMap)),
EntryEdges(std::move(G.EntryEdges)),
EntryIndexMap(std::move(G.EntryIndexMap)), SCCBPA(std::move(G.SCCBPA)),
- SCCMap(std::move(G.SCCMap)), LeafRefSCCs(std::move(G.LeafRefSCCs)),
- DFSStack(std::move(G.DFSStack)),
- RefSCCEntryNodes(std::move(G.RefSCCEntryNodes)),
- NextDFSNumber(G.NextDFSNumber) {
+ SCCMap(std::move(G.SCCMap)), LeafRefSCCs(std::move(G.LeafRefSCCs)) {
updateGraphPtrs();
}
@@ -162,9 +157,6 @@ LazyCallGraph &LazyCallGraph::operator=(LazyCallGraph &&G) {
SCCBPA = std::move(G.SCCBPA);
SCCMap = std::move(G.SCCMap);
LeafRefSCCs = std::move(G.LeafRefSCCs);
- DFSStack = std::move(G.DFSStack);
- RefSCCEntryNodes = std::move(G.RefSCCEntryNodes);
- NextDFSNumber = G.NextDFSNumber;
updateGraphPtrs();
return *this;
}
@@ -828,8 +820,10 @@ void LazyCallGraph::RefSCC::switchOutgoingEdgeToCall(Node &SourceN,
assert(G->lookupRefSCC(SourceN) == this && "Source must be in this RefSCC.");
assert(G->lookupRefSCC(TargetN) != this &&
"Target must not be in this RefSCC.");
+#ifdef EXPENSIVE_CEHCKS
assert(G->lookupRefSCC(TargetN)->isDescendantOf(*this) &&
"Target must be a descendant of the Source.");
+#endif
// Edges between RefSCCs are the same regardless of call or ref, so we can
// just flip the edge here.
@@ -848,8 +842,10 @@ void LazyCallGraph::RefSCC::switchOutgoingEdgeToRef(Node &SourceN,
assert(G->lookupRefSCC(SourceN) == this && "Source must be in this RefSCC.");
assert(G->lookupRefSCC(TargetN) != this &&
"Target must not be in this RefSCC.");
+#ifdef EXPENSIVE_CEHCKS
assert(G->lookupRefSCC(TargetN)->isDescendantOf(*this) &&
"Target must be a descendant of the Source.");
+#endif
// Edges between RefSCCs are the same regardless of call or ref, so we can
// just flip the edge here.
@@ -883,8 +879,10 @@ void LazyCallGraph::RefSCC::insertOutgoingEdge(Node &SourceN, Node &TargetN,
RefSCC &TargetC = *G->lookupRefSCC(TargetN);
assert(&TargetC != this && "Target must not be in this RefSCC.");
+#ifdef EXPENSIVE_CEHCKS
assert(TargetC.isDescendantOf(*this) &&
"Target must be a descendant of the Source.");
+#endif
// The only change required is to add this SCC to the parent set of the
// callee.
@@ -901,8 +899,10 @@ LazyCallGraph::RefSCC::insertIncomingRefEdge(Node &SourceN, Node &TargetN) {
assert(G->lookupRefSCC(TargetN) == this && "Target must be in this RefSCC.");
RefSCC &SourceC = *G->lookupRefSCC(SourceN);
assert(&SourceC != this && "Source must not be in this RefSCC.");
+#ifdef EXPENSIVE_CEHCKS
assert(SourceC.isDescendantOf(*this) &&
"Source must be a descendant of the Target.");
+#endif
SmallVector<RefSCC *, 1> DeletedRefSCCs;
@@ -1454,8 +1454,10 @@ void LazyCallGraph::RefSCC::handleTrivialEdgeInsertion(Node &SourceN,
return;
}
+#ifdef EXPENSIVE_CEHCKS
assert(TargetRC.isDescendantOf(*this) &&
"Target must be a descendant of the Source.");
+#endif
// The only change required is to add this RefSCC to the parent set of the
// target. This is a set and so idempotent if the edge already existed.
TargetRC.Parents.insert(this);
@@ -1467,13 +1469,17 @@ void LazyCallGraph::RefSCC::insertTrivialCallEdge(Node &SourceN,
// Check that the RefSCC is still valid when we finish.
auto ExitVerifier = make_scope_exit([this] { verify(); });
- // Check that we aren't breaking some invariants of the SCC graph.
+#ifdef EXPENSIVE_CHECKS
+ // Check that we aren't breaking some invariants of the SCC graph. Note that
+ // this is quadratic in the number of edges in the call graph!
SCC &SourceC = *G->lookupSCC(SourceN);
SCC &TargetC = *G->lookupSCC(TargetN);
if (&SourceC != &TargetC)
assert(SourceC.isAncestorOf(TargetC) &&
"Call edge is not trivial in the SCC graph!");
-#endif
+#endif // EXPENSIVE_CHECKS
+#endif // NDEBUG
+
// First insert it into the source or find the existing edge.
auto InsertResult = SourceN.EdgeIndexMap.insert(
{&TargetN.getFunction(), SourceN.Edges.size()});
@@ -1497,13 +1503,16 @@ void LazyCallGraph::RefSCC::insertTrivialRefEdge(Node &SourceN, Node &TargetN) {
// Check that the RefSCC is still valid when we finish.
auto ExitVerifier = make_scope_exit([this] { verify(); });
+#ifdef EXPENSIVE_CHECKS
// Check that we aren't breaking some invariants of the RefSCC graph.
RefSCC &SourceRC = *G->lookupRefSCC(SourceN);
RefSCC &TargetRC = *G->lookupRefSCC(TargetN);
if (&SourceRC != &TargetRC)
assert(SourceRC.isAncestorOf(TargetRC) &&
"Ref edge is not trivial in the RefSCC graph!");
-#endif
+#endif // EXPENSIVE_CHECKS
+#endif // NDEBUG
+
// First insert it into the source or find the existing edge.
auto InsertResult = SourceN.EdgeIndexMap.insert(
{&TargetN.getFunction(), SourceN.Edges.size()});
@@ -1519,14 +1528,14 @@ void LazyCallGraph::RefSCC::insertTrivialRefEdge(Node &SourceN, Node &TargetN) {
}
void LazyCallGraph::insertEdge(Node &SourceN, Function &Target, Edge::Kind EK) {
- assert(SCCMap.empty() && DFSStack.empty() &&
+ assert(SCCMap.empty() &&
"This method cannot be called after SCCs have been formed!");
return SourceN.insertEdgeInternal(Target, EK);
}
void LazyCallGraph::removeEdge(Node &SourceN, Function &Target) {
- assert(SCCMap.empty() && DFSStack.empty() &&
+ assert(SCCMap.empty() &&
"This method cannot be called after SCCs have been formed!");
return SourceN.removeEdgeInternal(Target);
@@ -1544,13 +1553,6 @@ void LazyCallGraph::removeDeadFunction(Function &F) {
EntryIndexMap.erase(EII);
}
- // It's safe to just remove un-visited functions from the RefSCC entry list.
- // FIXME: This is a linear operation which could become hot and benefit from
- // an index map.
- auto RENI = find(RefSCCEntryNodes, &F);
- if (RENI != RefSCCEntryNodes.end())
- RefSCCEntryNodes.erase(RENI);
-
auto NI = NodeMap.find(&F);
if (NI == NodeMap.end())
// Not in the graph at all!
@@ -1559,22 +1561,13 @@ void LazyCallGraph::removeDeadFunction(Function &F) {
Node &N = *NI->second;
NodeMap.erase(NI);
- if (SCCMap.empty() && DFSStack.empty()) {
- // No SCC walk has begun, so removing this is fine and there is nothing
+ if (SCCMap.empty()) {
+ // No SCCs have been formed, so removing this is fine and there is nothing
// else necessary at this point but clearing out the node.
N.clear();
return;
}
- // Check that we aren't going to break the DFS walk.
- assert(all_of(DFSStack,
- [&N](const std::pair<Node *, edge_iterator> &Element) {
- return Element.first != &N;
- }) &&
- "Tried to remove a function currently in the DFS stack!");
- assert(find(PendingRefSCCStack, &N) == PendingRefSCCStack.end() &&
- "Tried to remove a function currently pending to add to a RefSCC!");
-
// Cannot remove a function which has yet to be visited in the DFS walk, so
// if we have a node at all then we must have an SCC and RefSCC.
auto CI = SCCMap.find(&N);
@@ -1653,34 +1646,18 @@ void LazyCallGraph::updateGraphPtrs() {
}
}
-/// Build the internal SCCs for a RefSCC from a sequence of nodes.
-///
-/// Appends the SCCs to the provided vector and updates the map with their
-/// indices. Both the vector and map must be empty when passed into this
-/// routine.
-void LazyCallGraph::buildSCCs(RefSCC &RC, node_stack_range Nodes) {
- assert(RC.SCCs.empty() && "Already built SCCs!");
- assert(RC.SCCIndices.empty() && "Already mapped SCC indices!");
+template <typename RootsT, typename GetBeginT, typename GetEndT,
+ typename GetNodeT, typename FormSCCCallbackT>
+void LazyCallGraph::buildGenericSCCs(RootsT &&Roots, GetBeginT &&GetBegin,
+ GetEndT &&GetEnd, GetNodeT &&GetNode,
+ FormSCCCallbackT &&FormSCC) {
+ typedef decltype(GetBegin(std::declval<Node &>())) EdgeItT;
- for (Node *N : Nodes) {
- assert(N->LowLink >= (*Nodes.begin())->LowLink &&
- "We cannot have a low link in an SCC lower than its root on the "
- "stack!");
-
- // This node will go into the next RefSCC, clear out its DFS and low link
- // as we scan.
- N->DFSNumber = N->LowLink = 0;
- }
-
- // Each RefSCC contains a DAG of the call SCCs. To build these, we do
- // a direct walk of the call edges using Tarjan's algorithm. We reuse the
- // internal storage as we won't need it for the outer graph's DFS any longer.
-
- SmallVector<std::pair<Node *, call_edge_iterator>, 16> DFSStack;
+ SmallVector<std::pair<Node *, EdgeItT>, 16> DFSStack;
SmallVector<Node *, 16> PendingSCCStack;
// Scan down the stack and DFS across the call edges.
- for (Node *RootN : Nodes) {
+ for (Node *RootN : Roots) {
assert(DFSStack.empty() &&
"Cannot begin a new root with a non-empty DFS stack!");
assert(PendingSCCStack.empty() &&
@@ -1696,25 +1673,23 @@ void LazyCallGraph::buildSCCs(RefSCC &RC, node_stack_range Nodes) {
RootN->DFSNumber = RootN->LowLink = 1;
int NextDFSNumber = 2;
- DFSStack.push_back({RootN, RootN->call_begin()});
+ DFSStack.push_back({RootN, GetBegin(*RootN)});
do {
Node *N;
- call_edge_iterator I;
+ EdgeItT I;
std::tie(N, I) = DFSStack.pop_back_val();
- auto E = N->call_end();
+ auto E = GetEnd(*N);
while (I != E) {
- Node &ChildN = *I->getNode();
+ Node &ChildN = GetNode(I);
if (ChildN.DFSNumber == 0) {
// We haven't yet visited this child, so descend, pushing the current
// node onto the stack.
DFSStack.push_back({N, I});
- assert(!lookupSCC(ChildN) &&
- "Found a node with 0 DFS number but already in an SCC!");
ChildN.DFSNumber = ChildN.LowLink = NextDFSNumber++;
N = &ChildN;
- I = N->call_begin();
- E = N->call_end();
+ I = GetBegin(*N);
+ E = GetEnd(*N);
continue;
}
@@ -1756,20 +1731,90 @@ void LazyCallGraph::buildSCCs(RefSCC &RC, node_stack_range Nodes) {
}));
// Form a new SCC out of these nodes and then clear them off our pending
// stack.
- RC.SCCs.push_back(createSCC(RC, SCCNodes));
- for (Node &N : *RC.SCCs.back()) {
- N.DFSNumber = N.LowLink = -1;
- SCCMap[&N] = RC.SCCs.back();
- }
+ FormSCC(SCCNodes);
PendingSCCStack.erase(SCCNodes.end().base(), PendingSCCStack.end());
} while (!DFSStack.empty());
}
+}
+
+/// Build the internal SCCs for a RefSCC from a sequence of nodes.
+///
+/// Appends the SCCs to the provided vector and updates the map with their
+/// indices. Both the vector and map must be empty when passed into this
+/// routine.
+void LazyCallGraph::buildSCCs(RefSCC &RC, node_stack_range Nodes) {
+ assert(RC.SCCs.empty() && "Already built SCCs!");
+ assert(RC.SCCIndices.empty() && "Already mapped SCC indices!");
+
+ for (Node *N : Nodes) {
+ assert(N->LowLink >= (*Nodes.begin())->LowLink &&
+ "We cannot have a low link in an SCC lower than its root on the "
+ "stack!");
+
+ // This node will go into the next RefSCC, clear out its DFS and low link
+ // as we scan.
+ N->DFSNumber = N->LowLink = 0;
+ }
+
+ // Each RefSCC contains a DAG of the call SCCs. To build these, we do
+ // a direct walk of the call edges using Tarjan's algorithm. We reuse the
+ // internal storage as we won't need it for the outer graph's DFS any longer.
+ buildGenericSCCs(Nodes, [](Node &N) { return N.call_begin(); },
+ [](Node &N) { return N.call_end(); },
+ [](call_edge_iterator I) -> Node & {
+ // For SCCs, all the nodes should already be formed.
+ return *I->getNode();
+ },
+ [this, &RC](node_stack_range Nodes) {
+ RC.SCCs.push_back(createSCC(RC, Nodes));
+ for (Node &N : *RC.SCCs.back()) {
+ N.DFSNumber = N.LowLink = -1;
+ SCCMap[&N] = RC.SCCs.back();
+ }
+ });
// Wire up the SCC indices.
for (int i = 0, Size = RC.SCCs.size(); i < Size; ++i)
RC.SCCIndices[RC.SCCs[i]] = i;
}
+void LazyCallGraph::buildRefSCCs() {
+ if (EntryEdges.empty() || !PostOrderRefSCCs.empty())
+ // RefSCCs are either non-existent or already built!
+ return;
+
+ assert(RefSCCIndices.empty() && "Already mapped RefSCC indices!");
+
+ SmallVector<Node *, 16> Roots;
+ for (Edge &E : *this)
+ Roots.push_back(&E.getNode(*this));
+
+ // The roots will be popped of a stack, so use reverse to get a less
+ // surprising order. This doesn't change any of the semantics anywhere.
+ std::reverse(Roots.begin(), Roots.end());
+
+ buildGenericSCCs(
+ Roots, [](Node &N) { return N.begin(); }, [](Node &N) { return N.end(); },
+ [this](edge_iterator I) -> Node & {
+ // Form the node if we haven't yet.
+ return I->getNode(*this);
+ },
+ [this](node_stack_range Nodes) {
+ RefSCC *NewRC = createRefSCC(*this);
+ buildSCCs(*NewRC, Nodes);
+ connectRefSCC(*NewRC);
+
+ // Push the new node into the postorder list and remember its position
+ // in the index map.
+ bool Inserted =
+ RefSCCIndices.insert({NewRC, PostOrderRefSCCs.size()}).second;
+ (void)Inserted;
+ assert(Inserted && "Cannot already have this RefSCC in the index map!");
+ PostOrderRefSCCs.push_back(NewRC);
+ NewRC->verify();
+ });
+}
+
// FIXME: We should move callers of this to embed the parent linking and leaf
// tracking into their DFS in order to remove a full walk of all edges.
void LazyCallGraph::connectRefSCC(RefSCC &RC) {
@@ -1794,106 +1839,6 @@ void LazyCallGraph::connectRefSCC(RefSCC &RC) {
LeafRefSCCs.push_back(&RC);
}
-bool LazyCallGraph::buildNextRefSCCInPostOrder() {
- if (DFSStack.empty()) {
- Node *N;
- do {
- // If we've handled all candidate entry nodes to the SCC forest, we're
- // done.
- if (RefSCCEntryNodes.empty())
- return false;
-
- N = &get(*RefSCCEntryNodes.pop_back_val());
- } while (N->DFSNumber != 0);
-
- // Found a new root, begin the DFS here.
- N->LowLink = N->DFSNumber = 1;
- NextDFSNumber = 2;
- DFSStack.push_back({N, N->begin()});
- }
-
- for (;;) {
- Node *N;
- edge_iterator I;
- std::tie(N, I) = DFSStack.pop_back_val();
-
- assert(N->DFSNumber > 0 && "We should always assign a DFS number "
- "before placing a node onto the stack.");
-
- auto E = N->end();
- while (I != E) {
- Node &ChildN = I->getNode(*this);
- if (ChildN.DFSNumber == 0) {
- // We haven't yet visited this child, so descend, pushing the current
- // node onto the stack.
- DFSStack.push_back({N, N->begin()});
-
- assert(!SCCMap.count(&ChildN) &&
- "Found a node with 0 DFS number but already in an SCC!");
- ChildN.LowLink = ChildN.DFSNumber = NextDFSNumber++;
- N = &ChildN;
- I = N->begin();
- E = N->end();
- continue;
- }
-
- // If the child has already been added to some child component, it
- // couldn't impact the low-link of this parent because it isn't
- // connected, and thus its low-link isn't relevant so skip it.
- if (ChildN.DFSNumber == -1) {
- ++I;
- continue;
- }
-
- // Track the lowest linked child as the lowest link for this node.
- assert(ChildN.LowLink > 0 && "Must have a positive low-link number!");
- if (ChildN.LowLink < N->LowLink)
- N->LowLink = ChildN.LowLink;
-
- // Move to the next edge.
- ++I;
- }
-
- // We've finished processing N and its descendents, put it on our pending
- // SCC stack to eventually get merged into an SCC of nodes.
- PendingRefSCCStack.push_back(N);
-
- // If this node is linked to some lower entry, continue walking up the
- // stack.
- if (N->LowLink != N->DFSNumber) {
- assert(!DFSStack.empty() &&
- "We never found a viable root for an SCC to pop off!");
- continue;
- }
-
- // Otherwise, form a new RefSCC from the top of the pending node stack.
- int RootDFSNumber = N->DFSNumber;
- // Find the range of the node stack by walking down until we pass the
- // root DFS number.
- auto RefSCCNodes = node_stack_range(
- PendingRefSCCStack.rbegin(),
- find_if(reverse(PendingRefSCCStack), [RootDFSNumber](const Node *N) {
- return N->DFSNumber < RootDFSNumber;
- }));
- // Form a new RefSCC out of these nodes and then clear them off our pending
- // stack.
- RefSCC *NewRC = createRefSCC(*this);
- buildSCCs(*NewRC, RefSCCNodes);
- connectRefSCC(*NewRC);
- PendingRefSCCStack.erase(RefSCCNodes.end().base(),
- PendingRefSCCStack.end());
-
- // Push the new node into the postorder list and return true indicating we
- // successfully grew the postorder sequence by one.
- bool Inserted =
- RefSCCIndices.insert({NewRC, PostOrderRefSCCs.size()}).second;
- (void)Inserted;
- assert(Inserted && "Cannot already have this RefSCC in the index map!");
- PostOrderRefSCCs.push_back(NewRC);
- return true;
- }
-}
-
AnalysisKey LazyCallGraphAnalysis::Key;
LazyCallGraphPrinterPass::LazyCallGraphPrinterPass(raw_ostream &OS) : OS(OS) {}
@@ -1935,6 +1880,7 @@ PreservedAnalyses LazyCallGraphPrinterPass::run(Module &M,
for (Function &F : M)
printNode(OS, G.get(F));
+ G.buildRefSCCs();
for (LazyCallGraph::RefSCC &C : G.postorder_ref_sccs())
printRefSCC(OS, C);
OpenPOWER on IntegriCloud