diff options
| author | Misha Brukman <brukman+llvm@gmail.com> | 2003-06-02 03:28:00 +0000 | 
|---|---|---|
| committer | Misha Brukman <brukman+llvm@gmail.com> | 2003-06-02 03:28:00 +0000 | 
| commit | 29848417f3959a46cdf266bc87084734688516ad (patch) | |
| tree | c02836ccf4378c5a5c7d3aa0fe6597ea68204d11 /llvm/lib | |
| parent | 6ac7fe7dc009ab9b338c15014500cd4973074035 (diff) | |
| download | bcm5719-llvm-29848417f3959a46cdf266bc87084734688516ad.tar.gz bcm5719-llvm-29848417f3959a46cdf266bc87084734688516ad.zip | |
Renamed MachineCodeEmitter.cpp -> X86CodeEmitter.cpp as it conflicts with the
target-independent lib/CodeGen/MachineCodeEmitter.cpp; preserved CVS history.
llvm-svn: 6528
Diffstat (limited to 'llvm/lib')
| -rw-r--r-- | llvm/lib/Target/X86/MachineCodeEmitter.cpp | 558 | ||||
| -rw-r--r-- | llvm/lib/Target/X86/X86CodeEmitter.cpp | 2 | 
2 files changed, 1 insertions, 559 deletions
| diff --git a/llvm/lib/Target/X86/MachineCodeEmitter.cpp b/llvm/lib/Target/X86/MachineCodeEmitter.cpp deleted file mode 100644 index 07b1a0bcc3f..00000000000 --- a/llvm/lib/Target/X86/MachineCodeEmitter.cpp +++ /dev/null @@ -1,558 +0,0 @@ -//===-- X86/MachineCodeEmitter.cpp - Convert X86 code to machine code -----===// -// -// This file contains the pass that transforms the X86 machine instructions into -// actual executable machine code. -// -//===----------------------------------------------------------------------===// - -#include "X86TargetMachine.h" -#include "X86.h" -#include "llvm/PassManager.h" -#include "llvm/CodeGen/MachineCodeEmitter.h" -#include "llvm/CodeGen/MachineFunctionPass.h" -#include "llvm/CodeGen/MachineInstr.h" -#include "llvm/Value.h" - -namespace { -  class JITResolver { -    MachineCodeEmitter &MCE; - -    // LazyCodeGenMap - Keep track of call sites for functions that are to be -    // lazily resolved. -    std::map<unsigned, Function*> LazyCodeGenMap; - -    // LazyResolverMap - Keep track of the lazy resolver created for a -    // particular function so that we can reuse them if necessary. -    std::map<Function*, unsigned> LazyResolverMap; -  public: -    JITResolver(MachineCodeEmitter &mce) : MCE(mce) {} -    unsigned getLazyResolver(Function *F); -    unsigned addFunctionReference(unsigned Address, Function *F); -     -  private: -    unsigned emitStubForFunction(Function *F); -    static void CompilationCallback(); -    unsigned resolveFunctionReference(unsigned RetAddr); -  }; - -  JITResolver *TheJITResolver; -} - - -/// addFunctionReference - This method is called when we need to emit the -/// address of a function that has not yet been emitted, so we don't know the -/// address.  Instead, we emit a call to the CompilationCallback method, and -/// keep track of where we are. -/// -unsigned JITResolver::addFunctionReference(unsigned Address, Function *F) { -  LazyCodeGenMap[Address] = F;   -  return (intptr_t)&JITResolver::CompilationCallback; -} - -unsigned JITResolver::resolveFunctionReference(unsigned RetAddr) { -  std::map<unsigned, Function*>::iterator I = LazyCodeGenMap.find(RetAddr); -  assert(I != LazyCodeGenMap.end() && "Not in map!"); -  Function *F = I->second; -  LazyCodeGenMap.erase(I); -  return MCE.forceCompilationOf(F); -} - -unsigned JITResolver::getLazyResolver(Function *F) { -  std::map<Function*, unsigned>::iterator I = LazyResolverMap.lower_bound(F); -  if (I != LazyResolverMap.end() && I->first == F) return I->second; -   -//std::cerr << "Getting lazy resolver for : " << ((Value*)F)->getName() << "\n"; - -  unsigned Stub = emitStubForFunction(F); -  LazyResolverMap.insert(I, std::make_pair(F, Stub)); -  return Stub; -} - -void JITResolver::CompilationCallback() { -  unsigned *StackPtr = (unsigned*)__builtin_frame_address(0); -  unsigned RetAddr = (unsigned)__builtin_return_address(0); - -  assert(StackPtr[1] == RetAddr && -         "Could not find return address on the stack!"); -  bool isStub = ((unsigned char*)RetAddr)[0] == 0xCD;  // Interrupt marker? - -  // The call instruction should have pushed the return value onto the stack... -  RetAddr -= 4;  // Backtrack to the reference itself... - -#if 0 -  DEBUG(std::cerr << "In callback! Addr=0x" << std::hex << RetAddr -                  << " ESP=0x" << (unsigned)StackPtr << std::dec -                  << ": Resolving call to function: " -                  << TheVM->getFunctionReferencedName((void*)RetAddr) << "\n"); -#endif - -  // Sanity check to make sure this really is a call instruction... -  assert(((unsigned char*)RetAddr)[-1] == 0xE8 && "Not a call instr!"); -   -  unsigned NewVal = TheJITResolver->resolveFunctionReference(RetAddr); - -  // Rewrite the call target... so that we don't fault every time we execute -  // the call. -  *(unsigned*)RetAddr = NewVal-RetAddr-4;     - -  if (isStub) { -    // If this is a stub, rewrite the call into an unconditional branch -    // instruction so that two return addresses are not pushed onto the stack -    // when the requested function finally gets called.  This also makes the -    // 0xCD byte (interrupt) dead, so the marker doesn't effect anything. -    ((unsigned char*)RetAddr)[-1] = 0xE9; -  } - -  // Change the return address to reexecute the call instruction... -  StackPtr[1] -= 5; -} - -/// emitStubForFunction - This method is used by the JIT when it needs to emit -/// the address of a function for a function whose code has not yet been -/// generated.  In order to do this, it generates a stub which jumps to the lazy -/// function compiler, which will eventually get fixed to call the function -/// directly. -/// -unsigned JITResolver::emitStubForFunction(Function *F) { -  MCE.startFunctionStub(*F, 6); -  MCE.emitByte(0xE8);   // Call with 32 bit pc-rel destination... - -  unsigned Address = addFunctionReference(MCE.getCurrentPCValue(), F); -  MCE.emitWord(Address-MCE.getCurrentPCValue()-4); - -  MCE.emitByte(0xCD);   // Interrupt - Just a marker identifying the stub! -  return (intptr_t)MCE.finishFunctionStub(*F); -} - - - -namespace { -  class Emitter : public MachineFunctionPass { -    const X86InstrInfo  *II; -    MachineCodeEmitter  &MCE; -    std::map<BasicBlock*, unsigned> BasicBlockAddrs; -    std::vector<std::pair<BasicBlock*, unsigned> > BBRefs; -  public: -    Emitter(MachineCodeEmitter &mce) : II(0), MCE(mce) {} - -    bool runOnMachineFunction(MachineFunction &MF); - -    virtual const char *getPassName() const { -      return "X86 Machine Code Emitter"; -    } - -  private: -    void emitBasicBlock(MachineBasicBlock &MBB); -    void emitInstruction(MachineInstr &MI); - -    void emitPCRelativeBlockAddress(BasicBlock *BB); -    void emitMaybePCRelativeValue(unsigned Address, bool isPCRelative); -    void emitGlobalAddressForCall(GlobalValue *GV); -    void emitGlobalAddressForPtr(GlobalValue *GV); - -    void emitRegModRMByte(unsigned ModRMReg, unsigned RegOpcodeField); -    void emitSIBByte(unsigned SS, unsigned Index, unsigned Base); -    void emitConstant(unsigned Val, unsigned Size); - -    void emitMemModRMByte(const MachineInstr &MI, -                          unsigned Op, unsigned RegOpcodeField); - -  }; -} - -/// addPassesToEmitMachineCode - Add passes to the specified pass manager to get -/// machine code emitted.  This uses a MAchineCodeEmitter object to handle -/// actually outputting the machine code and resolving things like the address -/// of functions.  This method should returns true if machine code emission is -/// not supported. -/// -bool X86TargetMachine::addPassesToEmitMachineCode(PassManager &PM, -                                                  MachineCodeEmitter &MCE) { -  PM.add(new Emitter(MCE)); -  return false; -} - -bool Emitter::runOnMachineFunction(MachineFunction &MF) { -  II = &((X86TargetMachine&)MF.getTarget()).getInstrInfo(); - -  MCE.startFunction(MF); -  MCE.emitConstantPool(MF.getConstantPool()); -  for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I) -    emitBasicBlock(*I); -  MCE.finishFunction(MF); - -  // Resolve all forward branches now... -  for (unsigned i = 0, e = BBRefs.size(); i != e; ++i) { -    unsigned Location = BasicBlockAddrs[BBRefs[i].first]; -    unsigned Ref = BBRefs[i].second; -    *(unsigned*)Ref = Location-Ref-4; -  } -  BBRefs.clear(); -  BasicBlockAddrs.clear(); -  return false; -} - -void Emitter::emitBasicBlock(MachineBasicBlock &MBB) { -  if (uint64_t Addr = MCE.getCurrentPCValue()) -    BasicBlockAddrs[MBB.getBasicBlock()] = Addr; - -  for (MachineBasicBlock::iterator I = MBB.begin(), E = MBB.end(); I != E; ++I) -    emitInstruction(**I); -} - - -/// emitPCRelativeBlockAddress - This method emits the PC relative address of -/// the specified basic block, or if the basic block hasn't been emitted yet -/// (because this is a forward branch), it keeps track of the information -/// necessary to resolve this address later (and emits a dummy value). -/// -void Emitter::emitPCRelativeBlockAddress(BasicBlock *BB) { -  // FIXME: Emit backward branches directly -  BBRefs.push_back(std::make_pair(BB, MCE.getCurrentPCValue())); -  MCE.emitWord(0);   // Emit a dummy value -} - -/// emitMaybePCRelativeValue - Emit a 32-bit address which may be PC relative. -/// -void Emitter::emitMaybePCRelativeValue(unsigned Address, bool isPCRelative) { -  if (isPCRelative) -    MCE.emitWord(Address-MCE.getCurrentPCValue()-4); -  else -    MCE.emitWord(Address); -} - -/// emitGlobalAddressForCall - Emit the specified address to the code stream -/// assuming this is part of a function call, which is PC relative. -/// -void Emitter::emitGlobalAddressForCall(GlobalValue *GV) { -  // Get the address from the backend... -  unsigned Address = MCE.getGlobalValueAddress(GV); -   -  // If the machine code emitter doesn't know what the address IS yet, we have -  // to take special measures. -  // -  if (Address == 0) { -    // FIXME: this is JIT specific! -    if (TheJITResolver == 0) -      TheJITResolver = new JITResolver(MCE); -    Address = TheJITResolver->addFunctionReference(MCE.getCurrentPCValue(), -                                                   (Function*)GV); -  } -  emitMaybePCRelativeValue(Address, true); -} - -/// emitGlobalAddress - Emit the specified address to the code stream assuming -/// this is part of a "take the address of a global" instruction, which is not -/// PC relative. -/// -void Emitter::emitGlobalAddressForPtr(GlobalValue *GV) { -  // Get the address from the backend... -  unsigned Address = MCE.getGlobalValueAddress(GV); - -  // If the machine code emitter doesn't know what the address IS yet, we have -  // to take special measures. -  // -  if (Address == 0) { -    // FIXME: this is JIT specific! -    if (TheJITResolver == 0) -      TheJITResolver = new JITResolver(MCE); -    Address = TheJITResolver->getLazyResolver((Function*)GV); -  } - -  emitMaybePCRelativeValue(Address, false); -} - - - - -namespace N86 {  // Native X86 Register numbers... -  enum { -    EAX = 0, ECX = 1, EDX = 2, EBX = 3, ESP = 4, EBP = 5, ESI = 6, EDI = 7 -  }; -} - - -// getX86RegNum - This function maps LLVM register identifiers to their X86 -// specific numbering, which is used in various places encoding instructions. -// -static unsigned getX86RegNum(unsigned RegNo) { -  switch(RegNo) { -  case X86::EAX: case X86::AX: case X86::AL: return N86::EAX; -  case X86::ECX: case X86::CX: case X86::CL: return N86::ECX; -  case X86::EDX: case X86::DX: case X86::DL: return N86::EDX; -  case X86::EBX: case X86::BX: case X86::BL: return N86::EBX; -  case X86::ESP: case X86::SP: case X86::AH: return N86::ESP; -  case X86::EBP: case X86::BP: case X86::CH: return N86::EBP; -  case X86::ESI: case X86::SI: case X86::DH: return N86::ESI; -  case X86::EDI: case X86::DI: case X86::BH: return N86::EDI; - -  case X86::ST0: case X86::ST1: case X86::ST2: case X86::ST3: -  case X86::ST4: case X86::ST5: case X86::ST6: case X86::ST7: -    return RegNo-X86::ST0; -  default: -    assert(RegNo >= MRegisterInfo::FirstVirtualRegister && -           "Unknown physical register!"); -    assert(0 && "Register allocator hasn't allocated reg correctly yet!"); -    return 0; -  } -} - -inline static unsigned char ModRMByte(unsigned Mod, unsigned RegOpcode, -                                      unsigned RM) { -  assert(Mod < 4 && RegOpcode < 8 && RM < 8 && "ModRM Fields out of range!"); -  return RM | (RegOpcode << 3) | (Mod << 6); -} - -void Emitter::emitRegModRMByte(unsigned ModRMReg, unsigned RegOpcodeFld){ -  MCE.emitByte(ModRMByte(3, RegOpcodeFld, getX86RegNum(ModRMReg))); -} - -void Emitter::emitSIBByte(unsigned SS, unsigned Index, unsigned Base) { -  // SIB byte is in the same format as the ModRMByte... -  MCE.emitByte(ModRMByte(SS, Index, Base)); -} - -void Emitter::emitConstant(unsigned Val, unsigned Size) { -  // Output the constant in little endian byte order... -  for (unsigned i = 0; i != Size; ++i) { -    MCE.emitByte(Val & 255); -    Val >>= 8; -  } -} - -static bool isDisp8(int Value) { -  return Value == (signed char)Value; -} - -void Emitter::emitMemModRMByte(const MachineInstr &MI, -                               unsigned Op, unsigned RegOpcodeField) { -  const MachineOperand &Disp     = MI.getOperand(Op+3); -  if (MI.getOperand(Op).isConstantPoolIndex()) { -    // Emit a direct address reference [disp32] where the displacement of the -    // constant pool entry is controlled by the MCE. -    MCE.emitByte(ModRMByte(0, RegOpcodeField, 5)); -    unsigned Index = MI.getOperand(Op).getConstantPoolIndex(); -    unsigned Address = MCE.getConstantPoolEntryAddress(Index); -    MCE.emitWord(Address+Disp.getImmedValue()); -    return; -  } - -  const MachineOperand &BaseReg  = MI.getOperand(Op); -  const MachineOperand &Scale    = MI.getOperand(Op+1); -  const MachineOperand &IndexReg = MI.getOperand(Op+2); - -  // Is a SIB byte needed? -  if (IndexReg.getReg() == 0 && BaseReg.getReg() != X86::ESP) { -    if (BaseReg.getReg() == 0) {  // Just a displacement? -      // Emit special case [disp32] encoding -      MCE.emitByte(ModRMByte(0, RegOpcodeField, 5)); -      emitConstant(Disp.getImmedValue(), 4); -    } else { -      unsigned BaseRegNo = getX86RegNum(BaseReg.getReg()); -      if (Disp.getImmedValue() == 0 && BaseRegNo != N86::EBP) { -        // Emit simple indirect register encoding... [EAX] f.e. -        MCE.emitByte(ModRMByte(0, RegOpcodeField, BaseRegNo)); -      } else if (isDisp8(Disp.getImmedValue())) { -        // Emit the disp8 encoding... [REG+disp8] -        MCE.emitByte(ModRMByte(1, RegOpcodeField, BaseRegNo)); -        emitConstant(Disp.getImmedValue(), 1); -      } else { -        // Emit the most general non-SIB encoding: [REG+disp32] -        MCE.emitByte(ModRMByte(2, RegOpcodeField, BaseRegNo)); -        emitConstant(Disp.getImmedValue(), 4); -      } -    } - -  } else {  // We need a SIB byte, so start by outputting the ModR/M byte first -    assert(IndexReg.getReg() != X86::ESP && "Cannot use ESP as index reg!"); - -    bool ForceDisp32 = false; -    bool ForceDisp8  = false; -    if (BaseReg.getReg() == 0) { -      // If there is no base register, we emit the special case SIB byte with -      // MOD=0, BASE=5, to JUST get the index, scale, and displacement. -      MCE.emitByte(ModRMByte(0, RegOpcodeField, 4)); -      ForceDisp32 = true; -    } else if (Disp.getImmedValue() == 0 && BaseReg.getReg() != X86::EBP) { -      // Emit no displacement ModR/M byte -      MCE.emitByte(ModRMByte(0, RegOpcodeField, 4)); -    } else if (isDisp8(Disp.getImmedValue())) { -      // Emit the disp8 encoding... -      MCE.emitByte(ModRMByte(1, RegOpcodeField, 4)); -      ForceDisp8 = true;           // Make sure to force 8 bit disp if Base=EBP -    } else { -      // Emit the normal disp32 encoding... -      MCE.emitByte(ModRMByte(2, RegOpcodeField, 4)); -    } - -    // Calculate what the SS field value should be... -    static const unsigned SSTable[] = { ~0, 0, 1, ~0, 2, ~0, ~0, ~0, 3 }; -    unsigned SS = SSTable[Scale.getImmedValue()]; - -    if (BaseReg.getReg() == 0) { -      // Handle the SIB byte for the case where there is no base.  The -      // displacement has already been output. -      assert(IndexReg.getReg() && "Index register must be specified!"); -      emitSIBByte(SS, getX86RegNum(IndexReg.getReg()), 5); -    } else { -      unsigned BaseRegNo = getX86RegNum(BaseReg.getReg()); -      unsigned IndexRegNo; -      if (IndexReg.getReg()) -	IndexRegNo = getX86RegNum(IndexReg.getReg()); -      else -	IndexRegNo = 4;   // For example [ESP+1*<noreg>+4] -      emitSIBByte(SS, IndexRegNo, BaseRegNo); -    } - -    // Do we need to output a displacement? -    if (Disp.getImmedValue() != 0 || ForceDisp32 || ForceDisp8) { -      if (!ForceDisp32 && isDisp8(Disp.getImmedValue())) -        emitConstant(Disp.getImmedValue(), 1); -      else -        emitConstant(Disp.getImmedValue(), 4); -    } -  } -} - -static unsigned sizeOfPtr(const TargetInstrDescriptor &Desc) { -  switch (Desc.TSFlags & X86II::ArgMask) { -  case X86II::Arg8:   return 1; -  case X86II::Arg16:  return 2; -  case X86II::Arg32:  return 4; -  case X86II::ArgF32: return 4; -  case X86II::ArgF64: return 8; -  case X86II::ArgF80: return 10; -  default: assert(0 && "Memory size not set!"); -    return 0; -  } -} - -void Emitter::emitInstruction(MachineInstr &MI) { -  unsigned Opcode = MI.getOpcode(); -  const TargetInstrDescriptor &Desc = II->get(Opcode); - -  // Emit instruction prefixes if neccesary -  if (Desc.TSFlags & X86II::OpSize) MCE.emitByte(0x66);// Operand size... - -  switch (Desc.TSFlags & X86II::Op0Mask) { -  case X86II::TB: -    MCE.emitByte(0x0F);   // Two-byte opcode prefix -    break; -  case X86II::D8: case X86II::D9: case X86II::DA: case X86II::DB: -  case X86II::DC: case X86II::DD: case X86II::DE: case X86II::DF: -    MCE.emitByte(0xD8+ -		 (((Desc.TSFlags & X86II::Op0Mask)-X86II::D8) -		                   >> X86II::Op0Shift)); -    break; // Two-byte opcode prefix -  default: assert(0 && "Invalid prefix!"); -  case 0: break;  // No prefix! -  } - -  unsigned char BaseOpcode = II->getBaseOpcodeFor(Opcode); -  switch (Desc.TSFlags & X86II::FormMask) { -  default: assert(0 && "Unknown FormMask value in X86 MachineCodeEmitter!"); -  case X86II::Pseudo: -    if (Opcode != X86::IMPLICIT_USE) -      std::cerr << "X86 Machine Code Emitter: No 'form', not emitting: " << MI; -    break; - -  case X86II::RawFrm: -    MCE.emitByte(BaseOpcode); -    if (MI.getNumOperands() == 1) { -      MachineOperand &MO = MI.getOperand(0); -      if (MO.isPCRelativeDisp()) { -        // Conditional branch... FIXME: this should use an MBB destination! -        emitPCRelativeBlockAddress(cast<BasicBlock>(MO.getVRegValue())); -      } else if (MO.isGlobalAddress()) { -        assert(MO.isPCRelative() && "Call target is not PC Relative?"); -        emitGlobalAddressForCall(MO.getGlobal()); -      } else if (MO.isExternalSymbol()) { -        unsigned Address = MCE.getGlobalValueAddress(MO.getSymbolName()); -        assert(Address && "Unknown external symbol!"); -        emitMaybePCRelativeValue(Address, MO.isPCRelative()); -      } else { -	assert(0 && "Unknown RawFrm operand!"); -      } -    } -    break; - -  case X86II::AddRegFrm: -    MCE.emitByte(BaseOpcode + getX86RegNum(MI.getOperand(0).getReg())); -    if (MI.getNumOperands() == 2) { -      MachineOperand &MO1 = MI.getOperand(1); -      if (MO1.isImmediate() || MO1.getVRegValueOrNull() || -	  MO1.isGlobalAddress() || MO1.isExternalSymbol()) { -	unsigned Size = sizeOfPtr(Desc); -	if (Value *V = MO1.getVRegValueOrNull()) { -	  assert(Size == 4 && "Don't know how to emit non-pointer values!"); -          emitGlobalAddressForPtr(cast<GlobalValue>(V)); -	} else if (MO1.isGlobalAddress()) { -	  assert(Size == 4 && "Don't know how to emit non-pointer values!"); -          assert(!MO1.isPCRelative() && "Function pointer ref is PC relative?"); -          emitGlobalAddressForPtr(MO1.getGlobal()); -	} else if (MO1.isExternalSymbol()) { -	  assert(Size == 4 && "Don't know how to emit non-pointer values!"); - -          unsigned Address = MCE.getGlobalValueAddress(MO1.getSymbolName()); -          assert(Address && "Unknown external symbol!"); -          emitMaybePCRelativeValue(Address, MO1.isPCRelative()); -	} else { -	  emitConstant(MO1.getImmedValue(), Size); -	} -      } -    } -    break; - -  case X86II::MRMDestReg: { -    MCE.emitByte(BaseOpcode); -    MachineOperand &SrcOp = MI.getOperand(1+II->isTwoAddrInstr(Opcode)); -    emitRegModRMByte(MI.getOperand(0).getReg(), getX86RegNum(SrcOp.getReg())); -    if (MI.getNumOperands() == 4) -      emitConstant(MI.getOperand(3).getImmedValue(), sizeOfPtr(Desc)); -    break; -  } -  case X86II::MRMDestMem: -    MCE.emitByte(BaseOpcode); -    emitMemModRMByte(MI, 0, getX86RegNum(MI.getOperand(4).getReg())); -    break; - -  case X86II::MRMSrcReg: -    MCE.emitByte(BaseOpcode); -    emitRegModRMByte(MI.getOperand(MI.getNumOperands()-1).getReg(), -                     getX86RegNum(MI.getOperand(0).getReg())); -    break; - -  case X86II::MRMSrcMem: -    MCE.emitByte(BaseOpcode); -    emitMemModRMByte(MI, MI.getNumOperands()-4, -                     getX86RegNum(MI.getOperand(0).getReg())); -    break; - -  case X86II::MRMS0r: case X86II::MRMS1r: -  case X86II::MRMS2r: case X86II::MRMS3r: -  case X86II::MRMS4r: case X86II::MRMS5r: -  case X86II::MRMS6r: case X86II::MRMS7r: -    MCE.emitByte(BaseOpcode); -    emitRegModRMByte(MI.getOperand(0).getReg(), -                     (Desc.TSFlags & X86II::FormMask)-X86II::MRMS0r); - -    if (MI.getOperand(MI.getNumOperands()-1).isImmediate()) { -      unsigned Size = sizeOfPtr(Desc); -      emitConstant(MI.getOperand(MI.getNumOperands()-1).getImmedValue(), Size); -    } -    break; - -  case X86II::MRMS0m: case X86II::MRMS1m: -  case X86II::MRMS2m: case X86II::MRMS3m: -  case X86II::MRMS4m: case X86II::MRMS5m: -  case X86II::MRMS6m: case X86II::MRMS7m:  -    MCE.emitByte(BaseOpcode); -    emitMemModRMByte(MI, 0, (Desc.TSFlags & X86II::FormMask)-X86II::MRMS0m); - -    if (MI.getNumOperands() == 5) { -      unsigned Size = sizeOfPtr(Desc); -      emitConstant(MI.getOperand(4).getImmedValue(), Size); -    } -    break; -  } -} diff --git a/llvm/lib/Target/X86/X86CodeEmitter.cpp b/llvm/lib/Target/X86/X86CodeEmitter.cpp index 07b1a0bcc3f..48885c96ee1 100644 --- a/llvm/lib/Target/X86/X86CodeEmitter.cpp +++ b/llvm/lib/Target/X86/X86CodeEmitter.cpp @@ -1,4 +1,4 @@ -//===-- X86/MachineCodeEmitter.cpp - Convert X86 code to machine code -----===// +//===-- X86/X86CodeEmitter.cpp - Convert X86 code to machine code ---------===//  //  // This file contains the pass that transforms the X86 machine instructions into  // actual executable machine code. | 

