summaryrefslogtreecommitdiffstats
path: root/llvm/lib
diff options
context:
space:
mode:
authorStephan Bergmann <sbergman@redhat.com>2016-12-14 11:57:17 +0000
committerStephan Bergmann <sbergman@redhat.com>2016-12-14 11:57:17 +0000
commit17c7f703620f5c788322c45408236a04332e5c8b (patch)
tree4b772470b19084796d0d8692ce259eb64ebc2f57 /llvm/lib
parentf3ee444010a3fe11f1e631a10a6db4bde290b415 (diff)
downloadbcm5719-llvm-17c7f703620f5c788322c45408236a04332e5c8b.tar.gz
bcm5719-llvm-17c7f703620f5c788322c45408236a04332e5c8b.zip
Replace APFloatBase static fltSemantics data members with getter functions
At least the plugin used by the LibreOffice build (<https://wiki.documentfoundation.org/Development/Clang_plugins>) indirectly uses those members (through inline functions in LLVM/Clang include files in turn using them), but they are not exported by utils/extract_symbols.py on Windows, and accessing data across DLL/EXE boundaries on Windows is generally problematic. Differential Revision: https://reviews.llvm.org/D26671 llvm-svn: 289647
Diffstat (limited to 'llvm/lib')
-rw-r--r--llvm/lib/Analysis/ConstantFolding.cpp8
-rw-r--r--llvm/lib/AsmParser/LLLexer.cpp14
-rw-r--r--llvm/lib/AsmParser/LLParser.cpp6
-rw-r--r--llvm/lib/Bitcode/Reader/BitcodeReader.cpp12
-rw-r--r--llvm/lib/CodeGen/AsmPrinter/AsmPrinter.cpp2
-rw-r--r--llvm/lib/CodeGen/MachineInstr.cpp2
-rw-r--r--llvm/lib/CodeGen/SelectionDAG/LegalizeFloatTypes.cpp4
-rw-r--r--llvm/lib/CodeGen/SelectionDAG/SelectionDAG.cpp8
-rw-r--r--llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp2
-rw-r--r--llvm/lib/CodeGen/SelectionDAG/SelectionDAGDumper.cpp4
-rw-r--r--llvm/lib/ExecutionEngine/ExecutionEngine.cpp6
-rw-r--r--llvm/lib/IR/AsmWriter.cpp18
-rw-r--r--llvm/lib/IR/ConstantFold.cpp14
-rw-r--r--llvm/lib/IR/Constants.cpp82
-rw-r--r--llvm/lib/IR/Core.cpp2
-rw-r--r--llvm/lib/IR/LLVMContextImpl.h4
-rw-r--r--llvm/lib/IR/Verifier.cpp2
-rw-r--r--llvm/lib/MC/MCParser/AsmParser.cpp10
-rw-r--r--llvm/lib/Support/APFloat.cpp190
-rw-r--r--llvm/lib/Support/ScaledNumber.cpp2
-rw-r--r--llvm/lib/Target/AArch64/AsmParser/AArch64AsmParser.cpp6
-rw-r--r--llvm/lib/Target/AMDGPU/AMDGPUISelLowering.cpp4
-rw-r--r--llvm/lib/Target/AMDGPU/AsmParser/AMDGPUAsmParser.cpp14
-rw-r--r--llvm/lib/Target/ARM/ARMMCInstLower.cpp2
-rw-r--r--llvm/lib/Target/ARM/AsmParser/ARMAsmParser.cpp2
-rw-r--r--llvm/lib/Target/NVPTX/NVPTXAsmPrinter.cpp4
-rw-r--r--llvm/lib/Target/NVPTX/NVPTXInstrInfo.td4
-rw-r--r--llvm/lib/Target/NVPTX/NVPTXMCExpr.cpp4
-rw-r--r--llvm/lib/Target/X86/X86ISelLowering.cpp28
-rw-r--r--llvm/lib/Transforms/InstCombine/InstCombineCasts.cpp6
-rw-r--r--llvm/lib/Transforms/InstCombine/InstCombineCompares.cpp12
-rw-r--r--llvm/lib/Transforms/Utils/SimplifyLibCalls.cpp4
32 files changed, 252 insertions, 230 deletions
diff --git a/llvm/lib/Analysis/ConstantFolding.cpp b/llvm/lib/Analysis/ConstantFolding.cpp
index 1c0bf01af1d..cf0d5e4ec79 100644
--- a/llvm/lib/Analysis/ConstantFolding.cpp
+++ b/llvm/lib/Analysis/ConstantFolding.cpp
@@ -1442,7 +1442,7 @@ Constant *GetConstantFoldFPValue(double V, Type *Ty) {
if (Ty->isHalfTy()) {
APFloat APF(V);
bool unused;
- APF.convert(APFloat::IEEEhalf, APFloat::rmNearestTiesToEven, &unused);
+ APF.convert(APFloat::IEEEhalf(), APFloat::rmNearestTiesToEven, &unused);
return ConstantFP::get(Ty->getContext(), APF);
}
if (Ty->isFloatTy())
@@ -1533,7 +1533,7 @@ double getValueAsDouble(ConstantFP *Op) {
bool unused;
APFloat APF = Op->getValueAPF();
- APF.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven, &unused);
+ APF.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, &unused);
return APF.convertToDouble();
}
@@ -1551,7 +1551,7 @@ Constant *ConstantFoldScalarCall(StringRef Name, unsigned IntrinsicID, Type *Ty,
APFloat Val(Op->getValueAPF());
bool lost = false;
- Val.convert(APFloat::IEEEhalf, APFloat::rmNearestTiesToEven, &lost);
+ Val.convert(APFloat::IEEEhalf(), APFloat::rmNearestTiesToEven, &lost);
return ConstantInt::get(Ty->getContext(), Val.bitcastToAPInt());
}
@@ -1726,7 +1726,7 @@ Constant *ConstantFoldScalarCall(StringRef Name, unsigned IntrinsicID, Type *Ty,
case Intrinsic::bitreverse:
return ConstantInt::get(Ty->getContext(), Op->getValue().reverseBits());
case Intrinsic::convert_from_fp16: {
- APFloat Val(APFloat::IEEEhalf, Op->getValue());
+ APFloat Val(APFloat::IEEEhalf(), Op->getValue());
bool lost = false;
APFloat::opStatus status = Val.convert(
diff --git a/llvm/lib/AsmParser/LLLexer.cpp b/llvm/lib/AsmParser/LLLexer.cpp
index ca30a4f1c78..bed5306cc07 100644
--- a/llvm/lib/AsmParser/LLLexer.cpp
+++ b/llvm/lib/AsmParser/LLLexer.cpp
@@ -876,7 +876,7 @@ lltok::Kind LLLexer::Lex0x() {
// HexFPConstant - Floating point constant represented in IEEE format as a
// hexadecimal number for when exponential notation is not precise enough.
// Half, Float, and double only.
- APFloatVal = APFloat(APFloat::IEEEdouble,
+ APFloatVal = APFloat(APFloat::IEEEdouble(),
APInt(64, HexIntToVal(TokStart + 2, CurPtr)));
return lltok::APFloat;
}
@@ -887,20 +887,20 @@ lltok::Kind LLLexer::Lex0x() {
case 'K':
// F80HexFPConstant - x87 long double in hexadecimal format (10 bytes)
FP80HexToIntPair(TokStart+3, CurPtr, Pair);
- APFloatVal = APFloat(APFloat::x87DoubleExtended, APInt(80, Pair));
+ APFloatVal = APFloat(APFloat::x87DoubleExtended(), APInt(80, Pair));
return lltok::APFloat;
case 'L':
// F128HexFPConstant - IEEE 128-bit in hexadecimal format (16 bytes)
HexToIntPair(TokStart+3, CurPtr, Pair);
- APFloatVal = APFloat(APFloat::IEEEquad, APInt(128, Pair));
+ APFloatVal = APFloat(APFloat::IEEEquad(), APInt(128, Pair));
return lltok::APFloat;
case 'M':
// PPC128HexFPConstant - PowerPC 128-bit in hexadecimal format (16 bytes)
HexToIntPair(TokStart+3, CurPtr, Pair);
- APFloatVal = APFloat(APFloat::PPCDoubleDouble, APInt(128, Pair));
+ APFloatVal = APFloat(APFloat::PPCDoubleDouble(), APInt(128, Pair));
return lltok::APFloat;
case 'H':
- APFloatVal = APFloat(APFloat::IEEEhalf,
+ APFloatVal = APFloat(APFloat::IEEEhalf(),
APInt(16,HexIntToVal(TokStart+3, CurPtr)));
return lltok::APFloat;
}
@@ -967,7 +967,7 @@ lltok::Kind LLLexer::LexDigitOrNegative() {
}
}
- APFloatVal = APFloat(APFloat::IEEEdouble,
+ APFloatVal = APFloat(APFloat::IEEEdouble(),
StringRef(TokStart, CurPtr - TokStart));
return lltok::APFloat;
}
@@ -1004,7 +1004,7 @@ lltok::Kind LLLexer::LexPositive() {
}
}
- APFloatVal = APFloat(APFloat::IEEEdouble,
+ APFloatVal = APFloat(APFloat::IEEEdouble(),
StringRef(TokStart, CurPtr - TokStart));
return lltok::APFloat;
}
diff --git a/llvm/lib/AsmParser/LLParser.cpp b/llvm/lib/AsmParser/LLParser.cpp
index d73818d2b86..d4de28e2c1f 100644
--- a/llvm/lib/AsmParser/LLParser.cpp
+++ b/llvm/lib/AsmParser/LLParser.cpp
@@ -4460,13 +4460,13 @@ bool LLParser::ConvertValIDToValue(Type *Ty, ValID &ID, Value *&V,
// The lexer has no type info, so builds all half, float, and double FP
// constants as double. Fix this here. Long double does not need this.
- if (&ID.APFloatVal.getSemantics() == &APFloat::IEEEdouble) {
+ if (&ID.APFloatVal.getSemantics() == &APFloat::IEEEdouble()) {
bool Ignored;
if (Ty->isHalfTy())
- ID.APFloatVal.convert(APFloat::IEEEhalf, APFloat::rmNearestTiesToEven,
+ ID.APFloatVal.convert(APFloat::IEEEhalf(), APFloat::rmNearestTiesToEven,
&Ignored);
else if (Ty->isFloatTy())
- ID.APFloatVal.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven,
+ ID.APFloatVal.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven,
&Ignored);
}
V = ConstantFP::get(Context, ID.APFloatVal);
diff --git a/llvm/lib/Bitcode/Reader/BitcodeReader.cpp b/llvm/lib/Bitcode/Reader/BitcodeReader.cpp
index 1bf758b4122..36f3239c2e0 100644
--- a/llvm/lib/Bitcode/Reader/BitcodeReader.cpp
+++ b/llvm/lib/Bitcode/Reader/BitcodeReader.cpp
@@ -1996,26 +1996,26 @@ Error BitcodeReader::parseConstants() {
if (Record.empty())
return error("Invalid record");
if (CurTy->isHalfTy())
- V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf,
+ V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf(),
APInt(16, (uint16_t)Record[0])));
else if (CurTy->isFloatTy())
- V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle,
+ V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle(),
APInt(32, (uint32_t)Record[0])));
else if (CurTy->isDoubleTy())
- V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble,
+ V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble(),
APInt(64, Record[0])));
else if (CurTy->isX86_FP80Ty()) {
// Bits are not stored the same way as a normal i80 APInt, compensate.
uint64_t Rearrange[2];
Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16);
Rearrange[1] = Record[0] >> 48;
- V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended,
+ V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended(),
APInt(80, Rearrange)));
} else if (CurTy->isFP128Ty())
- V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad,
+ V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad(),
APInt(128, Record)));
else if (CurTy->isPPC_FP128Ty())
- V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble,
+ V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble(),
APInt(128, Record)));
else
V = UndefValue::get(CurTy);
diff --git a/llvm/lib/CodeGen/AsmPrinter/AsmPrinter.cpp b/llvm/lib/CodeGen/AsmPrinter/AsmPrinter.cpp
index b43d73988f4..7adac4cbf94 100644
--- a/llvm/lib/CodeGen/AsmPrinter/AsmPrinter.cpp
+++ b/llvm/lib/CodeGen/AsmPrinter/AsmPrinter.cpp
@@ -758,7 +758,7 @@ static bool emitDebugValueComment(const MachineInstr *MI, AsmPrinter &AP) {
// There is no good way to print long double. Convert a copy to
// double. Ah well, it's only a comment.
bool ignored;
- APF.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven,
+ APF.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven,
&ignored);
OS << "(long double) " << APF.convertToDouble();
}
diff --git a/llvm/lib/CodeGen/MachineInstr.cpp b/llvm/lib/CodeGen/MachineInstr.cpp
index 4567654b5e0..56fa41ebf4d 100644
--- a/llvm/lib/CodeGen/MachineInstr.cpp
+++ b/llvm/lib/CodeGen/MachineInstr.cpp
@@ -401,7 +401,7 @@ void MachineOperand::print(raw_ostream &OS, ModuleSlotTracker &MST,
} else if (getFPImm()->getType()->isHalfTy()) {
APFloat APF = getFPImm()->getValueAPF();
bool Unused;
- APF.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven, &Unused);
+ APF.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven, &Unused);
OS << "half " << APF.convertToFloat();
} else {
OS << getFPImm()->getValueAPF().convertToDouble();
diff --git a/llvm/lib/CodeGen/SelectionDAG/LegalizeFloatTypes.cpp b/llvm/lib/CodeGen/SelectionDAG/LegalizeFloatTypes.cpp
index 37163650474..72b56d84d94 100644
--- a/llvm/lib/CodeGen/SelectionDAG/LegalizeFloatTypes.cpp
+++ b/llvm/lib/CodeGen/SelectionDAG/LegalizeFloatTypes.cpp
@@ -1466,7 +1466,7 @@ void DAGTypeLegalizer::ExpandFloatRes_XINT_TO_FP(SDNode *N, SDValue &Lo,
// TODO: Are there fast-math-flags to propagate to this FADD?
Lo = DAG.getNode(ISD::FADD, dl, VT, Hi,
- DAG.getConstantFP(APFloat(APFloat::PPCDoubleDouble,
+ DAG.getConstantFP(APFloat(APFloat::PPCDoubleDouble(),
APInt(128, Parts)),
dl, MVT::ppcf128));
Lo = DAG.getSelectCC(dl, Src, DAG.getConstant(0, dl, SrcVT),
@@ -1631,7 +1631,7 @@ SDValue DAGTypeLegalizer::ExpandFloatOp_FP_TO_UINT(SDNode *N) {
assert(N->getOperand(0).getValueType() == MVT::ppcf128 &&
"Logic only correct for ppcf128!");
const uint64_t TwoE31[] = {0x41e0000000000000LL, 0};
- APFloat APF = APFloat(APFloat::PPCDoubleDouble, APInt(128, TwoE31));
+ APFloat APF = APFloat(APFloat::PPCDoubleDouble(), APInt(128, TwoE31));
SDValue Tmp = DAG.getConstantFP(APF, dl, MVT::ppcf128);
// X>=2^31 ? (int)(X-2^31)+0x80000000 : (int)X
// FIXME: generated code sucks.
diff --git a/llvm/lib/CodeGen/SelectionDAG/SelectionDAG.cpp b/llvm/lib/CodeGen/SelectionDAG/SelectionDAG.cpp
index 33c40f27c77..8c98eacdf1a 100644
--- a/llvm/lib/CodeGen/SelectionDAG/SelectionDAG.cpp
+++ b/llvm/lib/CodeGen/SelectionDAG/SelectionDAG.cpp
@@ -3191,13 +3191,13 @@ SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
}
case ISD::BITCAST:
if (VT == MVT::f16 && C->getValueType(0) == MVT::i16)
- return getConstantFP(APFloat(APFloat::IEEEhalf, Val), DL, VT);
+ return getConstantFP(APFloat(APFloat::IEEEhalf(), Val), DL, VT);
if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
- return getConstantFP(APFloat(APFloat::IEEEsingle, Val), DL, VT);
+ return getConstantFP(APFloat(APFloat::IEEEsingle(), Val), DL, VT);
if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
- return getConstantFP(APFloat(APFloat::IEEEdouble, Val), DL, VT);
+ return getConstantFP(APFloat(APFloat::IEEEdouble(), Val), DL, VT);
if (VT == MVT::f128 && C->getValueType(0) == MVT::i128)
- return getConstantFP(APFloat(APFloat::IEEEquad, Val), DL, VT);
+ return getConstantFP(APFloat(APFloat::IEEEquad(), Val), DL, VT);
break;
case ISD::BSWAP:
return getConstant(Val.byteSwap(), DL, VT, C->isTargetOpcode(),
diff --git a/llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp b/llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp
index 3c9862d7205..50ddc4bfd46 100644
--- a/llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp
+++ b/llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp
@@ -4172,7 +4172,7 @@ static SDValue GetExponent(SelectionDAG &DAG, SDValue Op,
/// getF32Constant - Get 32-bit floating point constant.
static SDValue getF32Constant(SelectionDAG &DAG, unsigned Flt,
const SDLoc &dl) {
- return DAG.getConstantFP(APFloat(APFloat::IEEEsingle, APInt(32, Flt)), dl,
+ return DAG.getConstantFP(APFloat(APFloat::IEEEsingle(), APInt(32, Flt)), dl,
MVT::f32);
}
diff --git a/llvm/lib/CodeGen/SelectionDAG/SelectionDAGDumper.cpp b/llvm/lib/CodeGen/SelectionDAG/SelectionDAGDumper.cpp
index 07e01c309f1..340088a5fc9 100644
--- a/llvm/lib/CodeGen/SelectionDAG/SelectionDAGDumper.cpp
+++ b/llvm/lib/CodeGen/SelectionDAG/SelectionDAGDumper.cpp
@@ -425,9 +425,9 @@ void SDNode::print_details(raw_ostream &OS, const SelectionDAG *G) const {
} else if (const ConstantSDNode *CSDN = dyn_cast<ConstantSDNode>(this)) {
OS << '<' << CSDN->getAPIntValue() << '>';
} else if (const ConstantFPSDNode *CSDN = dyn_cast<ConstantFPSDNode>(this)) {
- if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEsingle)
+ if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEsingle())
OS << '<' << CSDN->getValueAPF().convertToFloat() << '>';
- else if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEdouble)
+ else if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEdouble())
OS << '<' << CSDN->getValueAPF().convertToDouble() << '>';
else {
OS << "<APFloat(";
diff --git a/llvm/lib/ExecutionEngine/ExecutionEngine.cpp b/llvm/lib/ExecutionEngine/ExecutionEngine.cpp
index 1dd1812ce14..b4bed325f49 100644
--- a/llvm/lib/ExecutionEngine/ExecutionEngine.cpp
+++ b/llvm/lib/ExecutionEngine/ExecutionEngine.cpp
@@ -692,7 +692,7 @@ GenericValue ExecutionEngine::getConstantValue(const Constant *C) {
else if (CE->getType()->isDoubleTy())
GV.DoubleVal = GV.IntVal.roundToDouble();
else if (CE->getType()->isX86_FP80Ty()) {
- APFloat apf = APFloat::getZero(APFloat::x87DoubleExtended);
+ APFloat apf = APFloat::getZero(APFloat::x87DoubleExtended());
(void)apf.convertFromAPInt(GV.IntVal,
false,
APFloat::rmNearestTiesToEven);
@@ -707,7 +707,7 @@ GenericValue ExecutionEngine::getConstantValue(const Constant *C) {
else if (CE->getType()->isDoubleTy())
GV.DoubleVal = GV.IntVal.signedRoundToDouble();
else if (CE->getType()->isX86_FP80Ty()) {
- APFloat apf = APFloat::getZero(APFloat::x87DoubleExtended);
+ APFloat apf = APFloat::getZero(APFloat::x87DoubleExtended());
(void)apf.convertFromAPInt(GV.IntVal,
true,
APFloat::rmNearestTiesToEven);
@@ -724,7 +724,7 @@ GenericValue ExecutionEngine::getConstantValue(const Constant *C) {
else if (Op0->getType()->isDoubleTy())
GV.IntVal = APIntOps::RoundDoubleToAPInt(GV.DoubleVal, BitWidth);
else if (Op0->getType()->isX86_FP80Ty()) {
- APFloat apf = APFloat(APFloat::x87DoubleExtended, GV.IntVal);
+ APFloat apf = APFloat(APFloat::x87DoubleExtended(), GV.IntVal);
uint64_t v;
bool ignored;
(void)apf.convertToInteger(&v, BitWidth,
diff --git a/llvm/lib/IR/AsmWriter.cpp b/llvm/lib/IR/AsmWriter.cpp
index 5eb93ceda32..d58618f99ff 100644
--- a/llvm/lib/IR/AsmWriter.cpp
+++ b/llvm/lib/IR/AsmWriter.cpp
@@ -1106,15 +1106,15 @@ static void WriteConstantInternal(raw_ostream &Out, const Constant *CV,
}
if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) {
- if (&CFP->getValueAPF().getSemantics() == &APFloat::IEEEsingle ||
- &CFP->getValueAPF().getSemantics() == &APFloat::IEEEdouble) {
+ if (&CFP->getValueAPF().getSemantics() == &APFloat::IEEEsingle() ||
+ &CFP->getValueAPF().getSemantics() == &APFloat::IEEEdouble()) {
// We would like to output the FP constant value in exponential notation,
// but we cannot do this if doing so will lose precision. Check here to
// make sure that we only output it in exponential format if we can parse
// the value back and get the same value.
//
bool ignored;
- bool isDouble = &CFP->getValueAPF().getSemantics()==&APFloat::IEEEdouble;
+ bool isDouble = &CFP->getValueAPF().getSemantics()==&APFloat::IEEEdouble();
bool isInf = CFP->getValueAPF().isInfinity();
bool isNaN = CFP->getValueAPF().isNaN();
if (!isInf && !isNaN) {
@@ -1131,7 +1131,7 @@ static void WriteConstantInternal(raw_ostream &Out, const Constant *CV,
((StrVal[0] == '-' || StrVal[0] == '+') &&
(StrVal[1] >= '0' && StrVal[1] <= '9'))) {
// Reparse stringized version!
- if (APFloat(APFloat::IEEEdouble, StrVal).convertToDouble() == Val) {
+ if (APFloat(APFloat::IEEEdouble(), StrVal).convertToDouble() == Val) {
Out << StrVal;
return;
}
@@ -1146,7 +1146,7 @@ static void WriteConstantInternal(raw_ostream &Out, const Constant *CV,
APFloat apf = CFP->getValueAPF();
// Floats are represented in ASCII IR as double, convert.
if (!isDouble)
- apf.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven,
+ apf.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven,
&ignored);
Out << format_hex(apf.bitcastToAPInt().getZExtValue(), 0, /*Upper=*/true);
return;
@@ -1157,26 +1157,26 @@ static void WriteConstantInternal(raw_ostream &Out, const Constant *CV,
// fixed number of hex digits.
Out << "0x";
APInt API = CFP->getValueAPF().bitcastToAPInt();
- if (&CFP->getValueAPF().getSemantics() == &APFloat::x87DoubleExtended) {
+ if (&CFP->getValueAPF().getSemantics() == &APFloat::x87DoubleExtended()) {
Out << 'K';
Out << format_hex_no_prefix(API.getHiBits(16).getZExtValue(), 4,
/*Upper=*/true);
Out << format_hex_no_prefix(API.getLoBits(64).getZExtValue(), 16,
/*Upper=*/true);
return;
- } else if (&CFP->getValueAPF().getSemantics() == &APFloat::IEEEquad) {
+ } else if (&CFP->getValueAPF().getSemantics() == &APFloat::IEEEquad()) {
Out << 'L';
Out << format_hex_no_prefix(API.getLoBits(64).getZExtValue(), 16,
/*Upper=*/true);
Out << format_hex_no_prefix(API.getHiBits(64).getZExtValue(), 16,
/*Upper=*/true);
- } else if (&CFP->getValueAPF().getSemantics() == &APFloat::PPCDoubleDouble) {
+ } else if (&CFP->getValueAPF().getSemantics() == &APFloat::PPCDoubleDouble()) {
Out << 'M';
Out << format_hex_no_prefix(API.getLoBits(64).getZExtValue(), 16,
/*Upper=*/true);
Out << format_hex_no_prefix(API.getHiBits(64).getZExtValue(), 16,
/*Upper=*/true);
- } else if (&CFP->getValueAPF().getSemantics() == &APFloat::IEEEhalf) {
+ } else if (&CFP->getValueAPF().getSemantics() == &APFloat::IEEEhalf()) {
Out << 'H';
Out << format_hex_no_prefix(API.getZExtValue(), 4,
/*Upper=*/true);
diff --git a/llvm/lib/IR/ConstantFold.cpp b/llvm/lib/IR/ConstantFold.cpp
index e14ea78c27f..098ff90a0a9 100644
--- a/llvm/lib/IR/ConstantFold.cpp
+++ b/llvm/lib/IR/ConstantFold.cpp
@@ -590,13 +590,13 @@ Constant *llvm::ConstantFoldCastInstruction(unsigned opc, Constant *V,
if (ConstantFP *FPC = dyn_cast<ConstantFP>(V)) {
bool ignored;
APFloat Val = FPC->getValueAPF();
- Val.convert(DestTy->isHalfTy() ? APFloat::IEEEhalf :
- DestTy->isFloatTy() ? APFloat::IEEEsingle :
- DestTy->isDoubleTy() ? APFloat::IEEEdouble :
- DestTy->isX86_FP80Ty() ? APFloat::x87DoubleExtended :
- DestTy->isFP128Ty() ? APFloat::IEEEquad :
- DestTy->isPPC_FP128Ty() ? APFloat::PPCDoubleDouble :
- APFloat::Bogus,
+ Val.convert(DestTy->isHalfTy() ? APFloat::IEEEhalf() :
+ DestTy->isFloatTy() ? APFloat::IEEEsingle() :
+ DestTy->isDoubleTy() ? APFloat::IEEEdouble() :
+ DestTy->isX86_FP80Ty() ? APFloat::x87DoubleExtended() :
+ DestTy->isFP128Ty() ? APFloat::IEEEquad() :
+ DestTy->isPPC_FP128Ty() ? APFloat::PPCDoubleDouble() :
+ APFloat::Bogus(),
APFloat::rmNearestTiesToEven, &ignored);
return ConstantFP::get(V->getContext(), Val);
}
diff --git a/llvm/lib/IR/Constants.cpp b/llvm/lib/IR/Constants.cpp
index a3db1525931..533b9245277 100644
--- a/llvm/lib/IR/Constants.cpp
+++ b/llvm/lib/IR/Constants.cpp
@@ -198,22 +198,22 @@ Constant *Constant::getNullValue(Type *Ty) {
return ConstantInt::get(Ty, 0);
case Type::HalfTyID:
return ConstantFP::get(Ty->getContext(),
- APFloat::getZero(APFloat::IEEEhalf));
+ APFloat::getZero(APFloat::IEEEhalf()));
case Type::FloatTyID:
return ConstantFP::get(Ty->getContext(),
- APFloat::getZero(APFloat::IEEEsingle));
+ APFloat::getZero(APFloat::IEEEsingle()));
case Type::DoubleTyID:
return ConstantFP::get(Ty->getContext(),
- APFloat::getZero(APFloat::IEEEdouble));
+ APFloat::getZero(APFloat::IEEEdouble()));
case Type::X86_FP80TyID:
return ConstantFP::get(Ty->getContext(),
- APFloat::getZero(APFloat::x87DoubleExtended));
+ APFloat::getZero(APFloat::x87DoubleExtended()));
case Type::FP128TyID:
return ConstantFP::get(Ty->getContext(),
- APFloat::getZero(APFloat::IEEEquad));
+ APFloat::getZero(APFloat::IEEEquad()));
case Type::PPC_FP128TyID:
return ConstantFP::get(Ty->getContext(),
- APFloat(APFloat::PPCDoubleDouble,
+ APFloat(APFloat::PPCDoubleDouble(),
APInt::getNullValue(128)));
case Type::PointerTyID:
return ConstantPointerNull::get(cast<PointerType>(Ty));
@@ -604,18 +604,18 @@ void ConstantInt::destroyConstantImpl() {
static const fltSemantics *TypeToFloatSemantics(Type *Ty) {
if (Ty->isHalfTy())
- return &APFloat::IEEEhalf;
+ return &APFloat::IEEEhalf();
if (Ty->isFloatTy())
- return &APFloat::IEEEsingle;
+ return &APFloat::IEEEsingle();
if (Ty->isDoubleTy())
- return &APFloat::IEEEdouble;
+ return &APFloat::IEEEdouble();
if (Ty->isX86_FP80Ty())
- return &APFloat::x87DoubleExtended;
+ return &APFloat::x87DoubleExtended();
else if (Ty->isFP128Ty())
- return &APFloat::IEEEquad;
+ return &APFloat::IEEEquad();
assert(Ty->isPPC_FP128Ty() && "Unknown FP format");
- return &APFloat::PPCDoubleDouble;
+ return &APFloat::PPCDoubleDouble();
}
void ConstantFP::anchor() { }
@@ -689,18 +689,18 @@ ConstantFP* ConstantFP::get(LLVMContext &Context, const APFloat& V) {
if (!Slot) {
Type *Ty;
- if (&V.getSemantics() == &APFloat::IEEEhalf)
+ if (&V.getSemantics() == &APFloat::IEEEhalf())
Ty = Type::getHalfTy(Context);
- else if (&V.getSemantics() == &APFloat::IEEEsingle)
+ else if (&V.getSemantics() == &APFloat::IEEEsingle())
Ty = Type::getFloatTy(Context);
- else if (&V.getSemantics() == &APFloat::IEEEdouble)
+ else if (&V.getSemantics() == &APFloat::IEEEdouble())
Ty = Type::getDoubleTy(Context);
- else if (&V.getSemantics() == &APFloat::x87DoubleExtended)
+ else if (&V.getSemantics() == &APFloat::x87DoubleExtended())
Ty = Type::getX86_FP80Ty(Context);
- else if (&V.getSemantics() == &APFloat::IEEEquad)
+ else if (&V.getSemantics() == &APFloat::IEEEquad())
Ty = Type::getFP128Ty(Context);
else {
- assert(&V.getSemantics() == &APFloat::PPCDoubleDouble &&
+ assert(&V.getSemantics() == &APFloat::PPCDoubleDouble() &&
"Unknown FP format");
Ty = Type::getPPC_FP128Ty(Context);
}
@@ -1210,40 +1210,40 @@ bool ConstantFP::isValueValidForType(Type *Ty, const APFloat& Val) {
// FIXME rounding mode needs to be more flexible
case Type::HalfTyID: {
- if (&Val2.getSemantics() == &APFloat::IEEEhalf)
+ if (&Val2.getSemantics() == &APFloat::IEEEhalf())
return true;
- Val2.convert(APFloat::IEEEhalf, APFloat::rmNearestTiesToEven, &losesInfo);
+ Val2.convert(APFloat::IEEEhalf(), APFloat::rmNearestTiesToEven, &losesInfo);
return !losesInfo;
}
case Type::FloatTyID: {
- if (&Val2.getSemantics() == &APFloat::IEEEsingle)
+ if (&Val2.getSemantics() == &APFloat::IEEEsingle())
return true;
- Val2.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven, &losesInfo);
+ Val2.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven, &losesInfo);
return !losesInfo;
}
case Type::DoubleTyID: {
- if (&Val2.getSemantics() == &APFloat::IEEEhalf ||
- &Val2.getSemantics() == &APFloat::IEEEsingle ||
- &Val2.getSemantics() == &APFloat::IEEEdouble)
+ if (&Val2.getSemantics() == &APFloat::IEEEhalf() ||
+ &Val2.getSemantics() == &APFloat::IEEEsingle() ||
+ &Val2.getSemantics() == &APFloat::IEEEdouble())
return true;
- Val2.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven, &losesInfo);
+ Val2.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, &losesInfo);
return !losesInfo;
}
case Type::X86_FP80TyID:
- return &Val2.getSemantics() == &APFloat::IEEEhalf ||
- &Val2.getSemantics() == &APFloat::IEEEsingle ||
- &Val2.getSemantics() == &APFloat::IEEEdouble ||
- &Val2.getSemantics() == &APFloat::x87DoubleExtended;
+ return &Val2.getSemantics() == &APFloat::IEEEhalf() ||
+ &Val2.getSemantics() == &APFloat::IEEEsingle() ||
+ &Val2.getSemantics() == &APFloat::IEEEdouble() ||
+ &Val2.getSemantics() == &APFloat::x87DoubleExtended();
case Type::FP128TyID:
- return &Val2.getSemantics() == &APFloat::IEEEhalf ||
- &Val2.getSemantics() == &APFloat::IEEEsingle ||
- &Val2.getSemantics() == &APFloat::IEEEdouble ||
- &Val2.getSemantics() == &APFloat::IEEEquad;
+ return &Val2.getSemantics() == &APFloat::IEEEhalf() ||
+ &Val2.getSemantics() == &APFloat::IEEEsingle() ||
+ &Val2.getSemantics() == &APFloat::IEEEdouble() ||
+ &Val2.getSemantics() == &APFloat::IEEEquad();
case Type::PPC_FP128TyID:
- return &Val2.getSemantics() == &APFloat::IEEEhalf ||
- &Val2.getSemantics() == &APFloat::IEEEsingle ||
- &Val2.getSemantics() == &APFloat::IEEEdouble ||
- &Val2.getSemantics() == &APFloat::PPCDoubleDouble;
+ return &Val2.getSemantics() == &APFloat::IEEEhalf() ||
+ &Val2.getSemantics() == &APFloat::IEEEsingle() ||
+ &Val2.getSemantics() == &APFloat::IEEEdouble() ||
+ &Val2.getSemantics() == &APFloat::PPCDoubleDouble();
}
}
@@ -2610,15 +2610,15 @@ APFloat ConstantDataSequential::getElementAsAPFloat(unsigned Elt) const {
llvm_unreachable("Accessor can only be used when element is float/double!");
case Type::HalfTyID: {
auto EltVal = *reinterpret_cast<const uint16_t *>(EltPtr);
- return APFloat(APFloat::IEEEhalf, APInt(16, EltVal));
+ return APFloat(APFloat::IEEEhalf(), APInt(16, EltVal));
}
case Type::FloatTyID: {
auto EltVal = *reinterpret_cast<const uint32_t *>(EltPtr);
- return APFloat(APFloat::IEEEsingle, APInt(32, EltVal));
+ return APFloat(APFloat::IEEEsingle(), APInt(32, EltVal));
}
case Type::DoubleTyID: {
auto EltVal = *reinterpret_cast<const uint64_t *>(EltPtr);
- return APFloat(APFloat::IEEEdouble, APInt(64, EltVal));
+ return APFloat(APFloat::IEEEdouble(), APInt(64, EltVal));
}
}
}
diff --git a/llvm/lib/IR/Core.cpp b/llvm/lib/IR/Core.cpp
index 7f1d5d249e2..00bb476c0b3 100644
--- a/llvm/lib/IR/Core.cpp
+++ b/llvm/lib/IR/Core.cpp
@@ -983,7 +983,7 @@ double LLVMConstRealGetDouble(LLVMValueRef ConstantVal, LLVMBool *LosesInfo) {
bool APFLosesInfo;
APFloat APF = cFP->getValueAPF();
- APF.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven, &APFLosesInfo);
+ APF.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, &APFLosesInfo);
*LosesInfo = APFLosesInfo;
return APF.convertToDouble();
}
diff --git a/llvm/lib/IR/LLVMContextImpl.h b/llvm/lib/IR/LLVMContextImpl.h
index 20f00e2ac43..f1cc12a2902 100644
--- a/llvm/lib/IR/LLVMContextImpl.h
+++ b/llvm/lib/IR/LLVMContextImpl.h
@@ -68,8 +68,8 @@ struct DenseMapAPIntKeyInfo {
};
struct DenseMapAPFloatKeyInfo {
- static inline APFloat getEmptyKey() { return APFloat(APFloat::Bogus, 1); }
- static inline APFloat getTombstoneKey() { return APFloat(APFloat::Bogus, 2); }
+ static inline APFloat getEmptyKey() { return APFloat(APFloat::Bogus(), 1); }
+ static inline APFloat getTombstoneKey() { return APFloat(APFloat::Bogus(), 2); }
static unsigned getHashValue(const APFloat &Key) {
return static_cast<unsigned>(hash_value(Key));
}
diff --git a/llvm/lib/IR/Verifier.cpp b/llvm/lib/IR/Verifier.cpp
index 037506a389c..34f7bf16849 100644
--- a/llvm/lib/IR/Verifier.cpp
+++ b/llvm/lib/IR/Verifier.cpp
@@ -4030,7 +4030,7 @@ void Verifier::visitInstruction(Instruction &I) {
if (ConstantFP *CFP0 =
mdconst::dyn_extract_or_null<ConstantFP>(MD->getOperand(0))) {
const APFloat &Accuracy = CFP0->getValueAPF();
- Assert(&Accuracy.getSemantics() == &APFloat::IEEEsingle,
+ Assert(&Accuracy.getSemantics() == &APFloat::IEEEsingle(),
"fpmath accuracy must have float type", &I);
Assert(Accuracy.isFiniteNonZero() && !Accuracy.isNegative(),
"fpmath accuracy not a positive number!", &I);
diff --git a/llvm/lib/MC/MCParser/AsmParser.cpp b/llvm/lib/MC/MCParser/AsmParser.cpp
index 90a210f364d..da54155b3b9 100644
--- a/llvm/lib/MC/MCParser/AsmParser.cpp
+++ b/llvm/lib/MC/MCParser/AsmParser.cpp
@@ -1042,7 +1042,7 @@ bool AsmParser::parsePrimaryExpr(const MCExpr *&Res, SMLoc &EndLoc) {
return false;
}
case AsmToken::Real: {
- APFloat RealVal(APFloat::IEEEdouble, getTok().getString());
+ APFloat RealVal(APFloat::IEEEdouble(), getTok().getString());
uint64_t IntVal = RealVal.bitcastToAPInt().getZExtValue();
Res = MCConstantExpr::create(IntVal, getContext());
EndLoc = Lexer.getTok().getEndLoc();
@@ -1761,10 +1761,10 @@ bool AsmParser::parseStatement(ParseStatementInfo &Info,
case DK_SINGLE:
case DK_FLOAT:
case DK_DC_S:
- return parseDirectiveRealValue(IDVal, APFloat::IEEEsingle);
+ return parseDirectiveRealValue(IDVal, APFloat::IEEEsingle());
case DK_DOUBLE:
case DK_DC_D:
- return parseDirectiveRealValue(IDVal, APFloat::IEEEdouble);
+ return parseDirectiveRealValue(IDVal, APFloat::IEEEdouble());
case DK_ALIGN: {
bool IsPow2 = !getContext().getAsmInfo()->getAlignmentIsInBytes();
return parseDirectiveAlign(IsPow2, /*ExprSize=*/1);
@@ -1943,11 +1943,11 @@ bool AsmParser::parseStatement(ParseStatementInfo &Info,
case DK_DCB_B:
return parseDirectiveDCB(IDVal, 1);
case DK_DCB_D:
- return parseDirectiveRealDCB(IDVal, APFloat::IEEEdouble);
+ return parseDirectiveRealDCB(IDVal, APFloat::IEEEdouble());
case DK_DCB_L:
return parseDirectiveDCB(IDVal, 4);
case DK_DCB_S:
- return parseDirectiveRealDCB(IDVal, APFloat::IEEEsingle);
+ return parseDirectiveRealDCB(IDVal, APFloat::IEEEsingle());
case DK_DC_X:
case DK_DCB_X:
return TokError(Twine(IDVal) +
diff --git a/llvm/lib/Support/APFloat.cpp b/llvm/lib/Support/APFloat.cpp
index 3549aa303fd..4ad6b07ed2b 100644
--- a/llvm/lib/Support/APFloat.cpp
+++ b/llvm/lib/Support/APFloat.cpp
@@ -59,12 +59,12 @@ namespace llvm {
unsigned int sizeInBits;
};
- const fltSemantics APFloatBase::IEEEhalf = {15, -14, 11, 16};
- const fltSemantics APFloatBase::IEEEsingle = {127, -126, 24, 32};
- const fltSemantics APFloatBase::IEEEdouble = {1023, -1022, 53, 64};
- const fltSemantics APFloatBase::IEEEquad = {16383, -16382, 113, 128};
- const fltSemantics APFloatBase::x87DoubleExtended = {16383, -16382, 64, 80};
- const fltSemantics APFloatBase::Bogus = {0, 0, 0, 0};
+ static const fltSemantics semIEEEhalf = {15, -14, 11, 16};
+ static const fltSemantics semIEEEsingle = {127, -126, 24, 32};
+ static const fltSemantics semIEEEdouble = {1023, -1022, 53, 64};
+ static const fltSemantics semIEEEquad = {16383, -16382, 113, 128};
+ static const fltSemantics semX87DoubleExtended = {16383, -16382, 64, 80};
+ static const fltSemantics semBogus = {0, 0, 0, 0};
/* The PowerPC format consists of two doubles. It does not map cleanly
onto the usual format above. It is approximated using twice the
@@ -77,7 +77,7 @@ namespace llvm {
to represent all possible values held by a PPC double-double number,
for example: (long double) 1.0 + (long double) 0x1p-106
Should this be replaced by a full emulation of PPC double-double? */
- const fltSemantics APFloatBase::PPCDoubleDouble = {0, 0, 0, 0};
+ static const fltSemantics semPPCDoubleDouble = {0, 0, 0, 0};
/* There are temporary semantics for the real PPCDoubleDouble implementation.
Currently, APFloat of PPCDoubleDouble holds one PPCDoubleDoubleImpl as the
@@ -87,8 +87,30 @@ namespace llvm {
TODO: Once all functions support DoubleAPFloat mode, we'll change all
PPCDoubleDoubleImpl to IEEEdouble and remove PPCDoubleDoubleImpl. */
- static const fltSemantics PPCDoubleDoubleImpl = {1023, -1022 + 53, 53 + 53,
- 128};
+ static const fltSemantics semPPCDoubleDoubleImpl = {1023, -1022 + 53, 53 + 53,
+ 128};
+
+ const fltSemantics &APFloatBase::IEEEhalf() {
+ return semIEEEhalf;
+ }
+ const fltSemantics &APFloatBase::IEEEsingle() {
+ return semIEEEsingle;
+ }
+ const fltSemantics &APFloatBase::IEEEdouble() {
+ return semIEEEdouble;
+ }
+ const fltSemantics &APFloatBase::IEEEquad() {
+ return semIEEEquad;
+ }
+ const fltSemantics &APFloatBase::x87DoubleExtended() {
+ return semX87DoubleExtended;
+ }
+ const fltSemantics &APFloatBase::Bogus() {
+ return semBogus;
+ }
+ const fltSemantics &APFloatBase::PPCDoubleDouble() {
+ return semPPCDoubleDouble;
+ }
/* A tight upper bound on number of parts required to hold the value
pow(5, power) is
@@ -685,7 +707,7 @@ void IEEEFloat::makeNaN(bool SNaN, bool Negative, const APInt *fill) {
// For x87 extended precision, we want to make a NaN, not a
// pseudo-NaN. Maybe we should expose the ability to make
// pseudo-NaNs?
- if (semantics == &APFloat::x87DoubleExtended)
+ if (semantics == &semX87DoubleExtended)
APInt::tcSetBit(significand, QNaNBit + 1);
}
@@ -710,7 +732,7 @@ IEEEFloat &IEEEFloat::operator=(IEEEFloat &&rhs) {
category = rhs.category;
sign = rhs.sign;
- rhs.semantics = &Bogus;
+ rhs.semantics = &semBogus;
return *this;
}
@@ -830,7 +852,7 @@ IEEEFloat::IEEEFloat(const IEEEFloat &rhs) {
assign(rhs);
}
-IEEEFloat::IEEEFloat(IEEEFloat &&rhs) : semantics(&Bogus) {
+IEEEFloat::IEEEFloat(IEEEFloat &&rhs) : semantics(&semBogus) {
*this = std::move(rhs);
}
@@ -1929,8 +1951,8 @@ IEEEFloat::opStatus IEEEFloat::convert(const fltSemantics &toSemantics,
shift = toSemantics.precision - fromSemantics.precision;
bool X86SpecialNan = false;
- if (&fromSemantics == &IEEEFloat::x87DoubleExtended &&
- &toSemantics != &IEEEFloat::x87DoubleExtended && category == fcNaN &&
+ if (&fromSemantics == &semX87DoubleExtended &&
+ &toSemantics != &semX87DoubleExtended && category == fcNaN &&
(!(*significandParts() & 0x8000000000000000ULL) ||
!(*significandParts() & 0x4000000000000000ULL))) {
// x86 has some unusual NaNs which cannot be represented in any other
@@ -1994,7 +2016,7 @@ IEEEFloat::opStatus IEEEFloat::convert(const fltSemantics &toSemantics,
// For x87 extended precision, we want to make a NaN, not a special NaN if
// the input wasn't special either.
- if (!X86SpecialNan && semantics == &IEEEFloat::x87DoubleExtended)
+ if (!X86SpecialNan && semantics == &semX87DoubleExtended)
APInt::tcSetBit(significandParts(), semantics->precision - 1);
// gcc forces the Quiet bit on, which means (float)(double)(float_sNan)
@@ -2796,7 +2818,7 @@ hash_code hash_value(const IEEEFloat &Arg) {
// the actual IEEE respresentations. We compensate for that here.
APInt IEEEFloat::convertF80LongDoubleAPFloatToAPInt() const {
- assert(semantics == (const llvm::fltSemantics*)&x87DoubleExtended);
+ assert(semantics == (const llvm::fltSemantics*)&semX87DoubleExtended);
assert(partCount()==2);
uint64_t myexponent, mysignificand;
@@ -2826,7 +2848,7 @@ APInt IEEEFloat::convertF80LongDoubleAPFloatToAPInt() const {
}
APInt IEEEFloat::convertPPCDoubleDoubleAPFloatToAPInt() const {
- assert(semantics == (const llvm::fltSemantics *)&PPCDoubleDoubleImpl);
+ assert(semantics == (const llvm::fltSemantics *)&semPPCDoubleDoubleImpl);
assert(partCount()==2);
uint64_t words[2];
@@ -2840,14 +2862,14 @@ APInt IEEEFloat::convertPPCDoubleDoubleAPFloatToAPInt() const {
// Declare fltSemantics before APFloat that uses it (and
// saves pointer to it) to ensure correct destruction order.
fltSemantics extendedSemantics = *semantics;
- extendedSemantics.minExponent = IEEEdouble.minExponent;
+ extendedSemantics.minExponent = semIEEEdouble.minExponent;
IEEEFloat extended(*this);
fs = extended.convert(extendedSemantics, rmNearestTiesToEven, &losesInfo);
assert(fs == opOK && !losesInfo);
(void)fs;
IEEEFloat u(extended);
- fs = u.convert(IEEEdouble, rmNearestTiesToEven, &losesInfo);
+ fs = u.convert(semIEEEdouble, rmNearestTiesToEven, &losesInfo);
assert(fs == opOK || fs == opInexact);
(void)fs;
words[0] = *u.convertDoubleAPFloatToAPInt().getRawData();
@@ -2863,7 +2885,7 @@ APInt IEEEFloat::convertPPCDoubleDoubleAPFloatToAPInt() const {
IEEEFloat v(extended);
v.subtract(u, rmNearestTiesToEven);
- fs = v.convert(IEEEdouble, rmNearestTiesToEven, &losesInfo);
+ fs = v.convert(semIEEEdouble, rmNearestTiesToEven, &losesInfo);
assert(fs == opOK && !losesInfo);
(void)fs;
words[1] = *v.convertDoubleAPFloatToAPInt().getRawData();
@@ -2875,7 +2897,7 @@ APInt IEEEFloat::convertPPCDoubleDoubleAPFloatToAPInt() const {
}
APInt IEEEFloat::convertQuadrupleAPFloatToAPInt() const {
- assert(semantics == (const llvm::fltSemantics*)&IEEEquad);
+ assert(semantics == (const llvm::fltSemantics*)&semIEEEquad);
assert(partCount()==2);
uint64_t myexponent, mysignificand, mysignificand2;
@@ -2909,7 +2931,7 @@ APInt IEEEFloat::convertQuadrupleAPFloatToAPInt() const {
}
APInt IEEEFloat::convertDoubleAPFloatToAPInt() const {
- assert(semantics == (const llvm::fltSemantics*)&IEEEdouble);
+ assert(semantics == (const llvm::fltSemantics*)&semIEEEdouble);
assert(partCount()==1);
uint64_t myexponent, mysignificand;
@@ -2937,7 +2959,7 @@ APInt IEEEFloat::convertDoubleAPFloatToAPInt() const {
}
APInt IEEEFloat::convertFloatAPFloatToAPInt() const {
- assert(semantics == (const llvm::fltSemantics*)&IEEEsingle);
+ assert(semantics == (const llvm::fltSemantics*)&semIEEEsingle);
assert(partCount()==1);
uint32_t myexponent, mysignificand;
@@ -2964,7 +2986,7 @@ APInt IEEEFloat::convertFloatAPFloatToAPInt() const {
}
APInt IEEEFloat::convertHalfAPFloatToAPInt() const {
- assert(semantics == (const llvm::fltSemantics*)&IEEEhalf);
+ assert(semantics == (const llvm::fltSemantics*)&semIEEEhalf);
assert(partCount()==1);
uint32_t myexponent, mysignificand;
@@ -2995,35 +3017,35 @@ APInt IEEEFloat::convertHalfAPFloatToAPInt() const {
// and treating the result as a normal integer is unlikely to be useful.
APInt IEEEFloat::bitcastToAPInt() const {
- if (semantics == (const llvm::fltSemantics*)&IEEEhalf)
+ if (semantics == (const llvm::fltSemantics*)&semIEEEhalf)
return convertHalfAPFloatToAPInt();
- if (semantics == (const llvm::fltSemantics*)&IEEEsingle)
+ if (semantics == (const llvm::fltSemantics*)&semIEEEsingle)
return convertFloatAPFloatToAPInt();
- if (semantics == (const llvm::fltSemantics*)&IEEEdouble)
+ if (semantics == (const llvm::fltSemantics*)&semIEEEdouble)
return convertDoubleAPFloatToAPInt();
- if (semantics == (const llvm::fltSemantics*)&IEEEquad)
+ if (semantics == (const llvm::fltSemantics*)&semIEEEquad)
return convertQuadrupleAPFloatToAPInt();
- if (semantics == (const llvm::fltSemantics *)&PPCDoubleDoubleImpl)
+ if (semantics == (const llvm::fltSemantics *)&semPPCDoubleDoubleImpl)
return convertPPCDoubleDoubleAPFloatToAPInt();
- assert(semantics == (const llvm::fltSemantics*)&x87DoubleExtended &&
+ assert(semantics == (const llvm::fltSemantics*)&semX87DoubleExtended &&
"unknown format!");
return convertF80LongDoubleAPFloatToAPInt();
}
float IEEEFloat::convertToFloat() const {
- assert(semantics == (const llvm::fltSemantics*)&IEEEsingle &&
+ assert(semantics == (const llvm::fltSemantics*)&semIEEEsingle &&
"Float semantics are not IEEEsingle");
APInt api = bitcastToAPInt();
return api.bitsToFloat();
}
double IEEEFloat::convertToDouble() const {
- assert(semantics == (const llvm::fltSemantics*)&IEEEdouble &&
+ assert(semantics == (const llvm::fltSemantics*)&semIEEEdouble &&
"Float semantics are not IEEEdouble");
APInt api = bitcastToAPInt();
return api.bitsToDouble();
@@ -3043,7 +3065,7 @@ void IEEEFloat::initFromF80LongDoubleAPInt(const APInt &api) {
uint64_t myexponent = (i2 & 0x7fff);
uint64_t mysignificand = i1;
- initialize(&IEEEFloat::x87DoubleExtended);
+ initialize(&semX87DoubleExtended);
assert(partCount()==2);
sign = static_cast<unsigned int>(i2>>15);
@@ -3077,14 +3099,14 @@ void IEEEFloat::initFromPPCDoubleDoubleAPInt(const APInt &api) {
// Get the first double and convert to our format.
initFromDoubleAPInt(APInt(64, i1));
- fs = convert(PPCDoubleDoubleImpl, rmNearestTiesToEven, &losesInfo);
+ fs = convert(semPPCDoubleDoubleImpl, rmNearestTiesToEven, &losesInfo);
assert(fs == opOK && !losesInfo);
(void)fs;
// Unless we have a special case, add in second double.
if (isFiniteNonZero()) {
- IEEEFloat v(IEEEdouble, APInt(64, i2));
- fs = v.convert(PPCDoubleDoubleImpl, rmNearestTiesToEven, &losesInfo);
+ IEEEFloat v(semIEEEdouble, APInt(64, i2));
+ fs = v.convert(semPPCDoubleDoubleImpl, rmNearestTiesToEven, &losesInfo);
assert(fs == opOK && !losesInfo);
(void)fs;
@@ -3100,7 +3122,7 @@ void IEEEFloat::initFromQuadrupleAPInt(const APInt &api) {
uint64_t mysignificand = i1;
uint64_t mysignificand2 = i2 & 0xffffffffffffLL;
- initialize(&IEEEFloat::IEEEquad);
+ initialize(&semIEEEquad);
assert(partCount()==2);
sign = static_cast<unsigned int>(i2>>63);
@@ -3136,7 +3158,7 @@ void IEEEFloat::initFromDoubleAPInt(const APInt &api) {
uint64_t myexponent = (i >> 52) & 0x7ff;
uint64_t mysignificand = i & 0xfffffffffffffLL;
- initialize(&IEEEFloat::IEEEdouble);
+ initialize(&semIEEEdouble);
assert(partCount()==1);
sign = static_cast<unsigned int>(i>>63);
@@ -3167,7 +3189,7 @@ void IEEEFloat::initFromFloatAPInt(const APInt &api) {
uint32_t myexponent = (i >> 23) & 0xff;
uint32_t mysignificand = i & 0x7fffff;
- initialize(&IEEEFloat::IEEEsingle);
+ initialize(&semIEEEsingle);
assert(partCount()==1);
sign = i >> 31;
@@ -3198,7 +3220,7 @@ void IEEEFloat::initFromHalfAPInt(const APInt &api) {
uint32_t myexponent = (i >> 10) & 0x1f;
uint32_t mysignificand = i & 0x3ff;
- initialize(&IEEEFloat::IEEEhalf);
+ initialize(&semIEEEhalf);
assert(partCount()==1);
sign = i >> 15;
@@ -3228,17 +3250,17 @@ void IEEEFloat::initFromHalfAPInt(const APInt &api) {
/// isIEEE argument distinguishes between PPC128 and IEEE128 (not meaningful
/// when the size is anything else).
void IEEEFloat::initFromAPInt(const fltSemantics *Sem, const APInt &api) {
- if (Sem == &IEEEhalf)
+ if (Sem == &semIEEEhalf)
return initFromHalfAPInt(api);
- if (Sem == &IEEEsingle)
+ if (Sem == &semIEEEsingle)
return initFromFloatAPInt(api);
- if (Sem == &IEEEdouble)
+ if (Sem == &semIEEEdouble)
return initFromDoubleAPInt(api);
- if (Sem == &x87DoubleExtended)
+ if (Sem == &semX87DoubleExtended)
return initFromF80LongDoubleAPInt(api);
- if (Sem == &IEEEquad)
+ if (Sem == &semIEEEquad)
return initFromQuadrupleAPInt(api);
- if (Sem == &PPCDoubleDoubleImpl)
+ if (Sem == &semPPCDoubleDoubleImpl)
return initFromPPCDoubleDoubleAPInt(api);
llvm_unreachable(nullptr);
@@ -3301,11 +3323,11 @@ IEEEFloat::IEEEFloat(const fltSemantics &Sem, const APInt &API) {
}
IEEEFloat::IEEEFloat(float f) {
- initFromAPInt(&IEEEsingle, APInt::floatToBits(f));
+ initFromAPInt(&semIEEEsingle, APInt::floatToBits(f));
}
IEEEFloat::IEEEFloat(double d) {
- initFromAPInt(&IEEEdouble, APInt::doubleToBits(d));
+ initFromAPInt(&semIEEEdouble, APInt::doubleToBits(d));
}
namespace {
@@ -3830,40 +3852,40 @@ IEEEFloat frexp(const IEEEFloat &Val, int &Exp, IEEEFloat::roundingMode RM) {
}
DoubleAPFloat::DoubleAPFloat(const fltSemantics &S)
- : Semantics(&S), Floats(new APFloat[2]{APFloat(PPCDoubleDoubleImpl),
- APFloat(IEEEdouble)}) {
- assert(Semantics == &PPCDoubleDouble);
+ : Semantics(&S), Floats(new APFloat[2]{APFloat(semPPCDoubleDoubleImpl),
+ APFloat(semIEEEdouble)}) {
+ assert(Semantics == &semPPCDoubleDouble);
}
DoubleAPFloat::DoubleAPFloat(const fltSemantics &S, uninitializedTag)
: Semantics(&S),
- Floats(new APFloat[2]{APFloat(PPCDoubleDoubleImpl, uninitialized),
- APFloat(IEEEdouble, uninitialized)}) {
- assert(Semantics == &PPCDoubleDouble);
+ Floats(new APFloat[2]{APFloat(semPPCDoubleDoubleImpl, uninitialized),
+ APFloat(semIEEEdouble, uninitialized)}) {
+ assert(Semantics == &semPPCDoubleDouble);
}
DoubleAPFloat::DoubleAPFloat(const fltSemantics &S, integerPart I)
- : Semantics(&S), Floats(new APFloat[2]{APFloat(PPCDoubleDoubleImpl, I),
- APFloat(IEEEdouble)}) {
- assert(Semantics == &PPCDoubleDouble);
+ : Semantics(&S), Floats(new APFloat[2]{APFloat(semPPCDoubleDoubleImpl, I),
+ APFloat(semIEEEdouble)}) {
+ assert(Semantics == &semPPCDoubleDouble);
}
DoubleAPFloat::DoubleAPFloat(const fltSemantics &S, const APInt &I)
: Semantics(&S), Floats(new APFloat[2]{
- APFloat(PPCDoubleDoubleImpl, I),
- APFloat(IEEEdouble, APInt(64, I.getRawData()[1]))}) {
- assert(Semantics == &PPCDoubleDouble);
+ APFloat(semPPCDoubleDoubleImpl, I),
+ APFloat(semIEEEdouble, APInt(64, I.getRawData()[1]))}) {
+ assert(Semantics == &semPPCDoubleDouble);
}
DoubleAPFloat::DoubleAPFloat(const fltSemantics &S, APFloat &&First,
APFloat &&Second)
: Semantics(&S),
Floats(new APFloat[2]{std::move(First), std::move(Second)}) {
- assert(Semantics == &PPCDoubleDouble);
+ assert(Semantics == &semPPCDoubleDouble);
// TODO Check for First == &IEEEdouble once the transition is done.
- assert(&Floats[0].getSemantics() == &PPCDoubleDoubleImpl ||
- &Floats[0].getSemantics() == &IEEEdouble);
- assert(&Floats[1].getSemantics() == &IEEEdouble);
+ assert(&Floats[0].getSemantics() == &semPPCDoubleDoubleImpl ||
+ &Floats[0].getSemantics() == &semIEEEdouble);
+ assert(&Floats[1].getSemantics() == &semIEEEdouble);
}
DoubleAPFloat::DoubleAPFloat(const DoubleAPFloat &RHS)
@@ -3871,13 +3893,13 @@ DoubleAPFloat::DoubleAPFloat(const DoubleAPFloat &RHS)
Floats(RHS.Floats ? new APFloat[2]{APFloat(RHS.Floats[0]),
APFloat(RHS.Floats[1])}
: nullptr) {
- assert(Semantics == &PPCDoubleDouble);
+ assert(Semantics == &semPPCDoubleDouble);
}
DoubleAPFloat::DoubleAPFloat(DoubleAPFloat &&RHS)
: Semantics(RHS.Semantics), Floats(std::move(RHS.Floats)) {
- RHS.Semantics = &Bogus;
- assert(Semantics == &PPCDoubleDouble);
+ RHS.Semantics = &semBogus;
+ assert(Semantics == &semPPCDoubleDouble);
}
DoubleAPFloat &DoubleAPFloat::operator=(const DoubleAPFloat &RHS) {
@@ -4009,22 +4031,22 @@ APFloat::opStatus DoubleAPFloat::addWithSpecial(const DoubleAPFloat &LHS,
// These conversions will go away once PPCDoubleDoubleImpl goes away.
// (PPCDoubleDoubleImpl, IEEEDouble) -> (IEEEDouble, IEEEDouble)
- APFloat A(IEEEdouble,
+ APFloat A(semIEEEdouble,
APInt(64, LHS.Floats[0].bitcastToAPInt().getRawData()[0])),
AA(LHS.Floats[1]),
- C(IEEEdouble, APInt(64, RHS.Floats[0].bitcastToAPInt().getRawData()[0])),
+ C(semIEEEdouble, APInt(64, RHS.Floats[0].bitcastToAPInt().getRawData()[0])),
CC(RHS.Floats[1]);
- assert(&AA.getSemantics() == &IEEEdouble);
- assert(&CC.getSemantics() == &IEEEdouble);
- Out.Floats[0] = APFloat(IEEEdouble);
- assert(&Out.Floats[1].getSemantics() == &IEEEdouble);
+ assert(&AA.getSemantics() == &semIEEEdouble);
+ assert(&CC.getSemantics() == &semIEEEdouble);
+ Out.Floats[0] = APFloat(semIEEEdouble);
+ assert(&Out.Floats[1].getSemantics() == &semIEEEdouble);
auto Ret = Out.addImpl(A, AA, C, CC, RM);
// (IEEEDouble, IEEEDouble) -> (PPCDoubleDoubleImpl, IEEEDouble)
uint64_t Buffer[] = {Out.Floats[0].bitcastToAPInt().getRawData()[0],
Out.Floats[1].bitcastToAPInt().getRawData()[0]};
- Out.Floats[0] = APFloat(PPCDoubleDoubleImpl, APInt(128, 2, Buffer));
+ Out.Floats[0] = APFloat(semPPCDoubleDoubleImpl, APInt(128, 2, Buffer));
return Ret;
}
@@ -4091,7 +4113,7 @@ APFloat::Storage::Storage(IEEEFloat F, const fltSemantics &Semantics) {
} else if (usesLayout<DoubleAPFloat>(Semantics)) {
new (&Double)
DoubleAPFloat(Semantics, APFloat(std::move(F), F.getSemantics()),
- APFloat(IEEEdouble));
+ APFloat(semIEEEdouble));
} else {
llvm_unreachable("Unexpected semantics");
}
@@ -4117,10 +4139,10 @@ APFloat::opStatus APFloat::convert(const fltSemantics &ToSemantics,
return U.IEEE.convert(ToSemantics, RM, losesInfo);
} else if (usesLayout<IEEEFloat>(getSemantics()) &&
usesLayout<DoubleAPFloat>(ToSemantics)) {
- assert(&ToSemantics == &PPCDoubleDouble);
- auto Ret = U.IEEE.convert(PPCDoubleDoubleImpl, RM, losesInfo);
+ assert(&ToSemantics == &semPPCDoubleDouble);
+ auto Ret = U.IEEE.convert(semPPCDoubleDoubleImpl, RM, losesInfo);
*this = APFloat(
- DoubleAPFloat(PPCDoubleDouble, std::move(*this), APFloat(IEEEdouble)),
+ DoubleAPFloat(semPPCDoubleDouble, std::move(*this), APFloat(semIEEEdouble)),
ToSemantics);
return Ret;
} else if (usesLayout<DoubleAPFloat>(getSemantics()) &&
@@ -4137,21 +4159,21 @@ APFloat APFloat::getAllOnesValue(unsigned BitWidth, bool isIEEE) {
if (isIEEE) {
switch (BitWidth) {
case 16:
- return APFloat(IEEEhalf, APInt::getAllOnesValue(BitWidth));
+ return APFloat(semIEEEhalf, APInt::getAllOnesValue(BitWidth));
case 32:
- return APFloat(IEEEsingle, APInt::getAllOnesValue(BitWidth));
+ return APFloat(semIEEEsingle, APInt::getAllOnesValue(BitWidth));
case 64:
- return APFloat(IEEEdouble, APInt::getAllOnesValue(BitWidth));
+ return APFloat(semIEEEdouble, APInt::getAllOnesValue(BitWidth));
case 80:
- return APFloat(x87DoubleExtended, APInt::getAllOnesValue(BitWidth));
+ return APFloat(semX87DoubleExtended, APInt::getAllOnesValue(BitWidth));
case 128:
- return APFloat(IEEEquad, APInt::getAllOnesValue(BitWidth));
+ return APFloat(semIEEEquad, APInt::getAllOnesValue(BitWidth));
default:
llvm_unreachable("Unknown floating bit width");
}
} else {
assert(BitWidth == 128);
- return APFloat(PPCDoubleDouble, APInt::getAllOnesValue(BitWidth));
+ return APFloat(semPPCDoubleDouble, APInt::getAllOnesValue(BitWidth));
}
}
diff --git a/llvm/lib/Support/ScaledNumber.cpp b/llvm/lib/Support/ScaledNumber.cpp
index b9432d46f9b..807c9fa521d 100644
--- a/llvm/lib/Support/ScaledNumber.cpp
+++ b/llvm/lib/Support/ScaledNumber.cpp
@@ -183,7 +183,7 @@ static std::string toStringAPFloat(uint64_t D, int E, unsigned Precision) {
// Build the float and print it.
uint64_t RawBits[2] = {D, AdjustedE};
- APFloat Float(APFloat::x87DoubleExtended, APInt(80, RawBits));
+ APFloat Float(APFloat::x87DoubleExtended(), APInt(80, RawBits));
SmallVector<char, 24> Chars;
Float.toString(Chars, Precision, 0);
return std::string(Chars.begin(), Chars.end());
diff --git a/llvm/lib/Target/AArch64/AsmParser/AArch64AsmParser.cpp b/llvm/lib/Target/AArch64/AsmParser/AArch64AsmParser.cpp
index 402b1e3e223..1a7cc023bd6 100644
--- a/llvm/lib/Target/AArch64/AsmParser/AArch64AsmParser.cpp
+++ b/llvm/lib/Target/AArch64/AsmParser/AArch64AsmParser.cpp
@@ -2206,7 +2206,7 @@ AArch64AsmParser::tryParseFPImm(OperandVector &Operands) {
const AsmToken &Tok = Parser.getTok();
if (Tok.is(AsmToken::Real)) {
- APFloat RealVal(APFloat::IEEEdouble, Tok.getString());
+ APFloat RealVal(APFloat::IEEEdouble(), Tok.getString());
if (isNegative)
RealVal.changeSign();
@@ -2232,7 +2232,7 @@ AArch64AsmParser::tryParseFPImm(OperandVector &Operands) {
return MatchOperand_ParseFail;
}
} else {
- APFloat RealVal(APFloat::IEEEdouble, Tok.getString());
+ APFloat RealVal(APFloat::IEEEdouble(), Tok.getString());
uint64_t IntVal = RealVal.bitcastToAPInt().getZExtValue();
// If we had a '-' in front, toggle the sign bit.
IntVal ^= (uint64_t)isNegative << 63;
@@ -3154,7 +3154,7 @@ bool AArch64AsmParser::parseOperand(OperandVector &Operands, bool isCondCode,
// so convert the value.
const AsmToken &Tok = Parser.getTok();
if (Tok.is(AsmToken::Real)) {
- APFloat RealVal(APFloat::IEEEdouble, Tok.getString());
+ APFloat RealVal(APFloat::IEEEdouble(), Tok.getString());
uint64_t IntVal = RealVal.bitcastToAPInt().getZExtValue();
if (Mnemonic != "fcmp" && Mnemonic != "fcmpe" && Mnemonic != "fcmeq" &&
Mnemonic != "fcmge" && Mnemonic != "fcmgt" && Mnemonic != "fcmle" &&
diff --git a/llvm/lib/Target/AMDGPU/AMDGPUISelLowering.cpp b/llvm/lib/Target/AMDGPU/AMDGPUISelLowering.cpp
index d9abecd8224..baf27971dd7 100644
--- a/llvm/lib/Target/AMDGPU/AMDGPUISelLowering.cpp
+++ b/llvm/lib/Target/AMDGPU/AMDGPUISelLowering.cpp
@@ -1614,7 +1614,7 @@ SDValue AMDGPUTargetLowering::LowerFRINT(SDValue Op, SelectionDAG &DAG) const {
assert(Op.getValueType() == MVT::f64);
- APFloat C1Val(APFloat::IEEEdouble, "0x1.0p+52");
+ APFloat C1Val(APFloat::IEEEdouble(), "0x1.0p+52");
SDValue C1 = DAG.getConstantFP(C1Val, SL, MVT::f64);
SDValue CopySign = DAG.getNode(ISD::FCOPYSIGN, SL, MVT::f64, C1, Src);
@@ -1625,7 +1625,7 @@ SDValue AMDGPUTargetLowering::LowerFRINT(SDValue Op, SelectionDAG &DAG) const {
SDValue Fabs = DAG.getNode(ISD::FABS, SL, MVT::f64, Src);
- APFloat C2Val(APFloat::IEEEdouble, "0x1.fffffffffffffp+51");
+ APFloat C2Val(APFloat::IEEEdouble(), "0x1.fffffffffffffp+51");
SDValue C2 = DAG.getConstantFP(C2Val, SL, MVT::f64);
EVT SetCCVT =
diff --git a/llvm/lib/Target/AMDGPU/AsmParser/AMDGPUAsmParser.cpp b/llvm/lib/Target/AMDGPU/AsmParser/AMDGPUAsmParser.cpp
index 80c815e830b..55eee67a9ee 100644
--- a/llvm/lib/Target/AMDGPU/AsmParser/AMDGPUAsmParser.cpp
+++ b/llvm/lib/Target/AMDGPU/AsmParser/AMDGPUAsmParser.cpp
@@ -882,11 +882,11 @@ struct OptionalOperand {
static const fltSemantics *getFltSemantics(unsigned Size) {
switch (Size) {
case 4:
- return &APFloat::IEEEsingle;
+ return &APFloat::IEEEsingle();
case 8:
- return &APFloat::IEEEdouble;
+ return &APFloat::IEEEdouble();
case 2:
- return &APFloat::IEEEhalf;
+ return &APFloat::IEEEhalf();
default:
llvm_unreachable("unsupported fp type");
}
@@ -935,7 +935,7 @@ bool AMDGPUOperand::isInlinableImm(MVT type) const {
AsmParser->hasInv2PiInlineImm());
}
- APFloat FPLiteral(APFloat::IEEEdouble, APInt(64, Imm.Val));
+ APFloat FPLiteral(APFloat::IEEEdouble(), APInt(64, Imm.Val));
if (!canLosslesslyConvertToFPType(FPLiteral, type))
return false;
@@ -993,7 +993,7 @@ bool AMDGPUOperand::isLiteralImm(MVT type) const {
return false;
}
- APFloat FPLiteral(APFloat::IEEEdouble, APInt(64, Imm.Val));
+ APFloat FPLiteral(APFloat::IEEEdouble(), APInt(64, Imm.Val));
return canLosslesslyConvertToFPType(FPLiteral, type);
}
@@ -1062,7 +1062,7 @@ void AMDGPUOperand::addLiteralImmOperand(MCInst &Inst, int64_t Val) const {
case 4:
case 2: {
bool lost;
- APFloat FPLiteral(APFloat::IEEEdouble, Literal);
+ APFloat FPLiteral(APFloat::IEEEdouble(), Literal);
// Convert literal to single precision
FPLiteral.convert(*getFltSemantics(OpSize),
APFloat::rmNearestTiesToEven, &lost);
@@ -1130,7 +1130,7 @@ void AMDGPUOperand::addKImmFPOperands(MCInst &Inst, unsigned N) const {
}
bool Lost;
- APFloat FPLiteral(APFloat::IEEEdouble, Literal);
+ APFloat FPLiteral(APFloat::IEEEdouble(), Literal);
FPLiteral.convert(*getFltSemantics(Bitwidth / 8),
APFloat::rmNearestTiesToEven, &Lost);
Inst.addOperand(MCOperand::createImm(FPLiteral.bitcastToAPInt().getZExtValue()));
diff --git a/llvm/lib/Target/ARM/ARMMCInstLower.cpp b/llvm/lib/Target/ARM/ARMMCInstLower.cpp
index dde91a7e04e..d5848e6cd06 100644
--- a/llvm/lib/Target/ARM/ARMMCInstLower.cpp
+++ b/llvm/lib/Target/ARM/ARMMCInstLower.cpp
@@ -99,7 +99,7 @@ bool ARMAsmPrinter::lowerOperand(const MachineOperand &MO,
case MachineOperand::MO_FPImmediate: {
APFloat Val = MO.getFPImm()->getValueAPF();
bool ignored;
- Val.convert(APFloat::IEEEdouble, APFloat::rmTowardZero, &ignored);
+ Val.convert(APFloat::IEEEdouble(), APFloat::rmTowardZero, &ignored);
MCOp = MCOperand::createFPImm(Val.convertToDouble());
break;
}
diff --git a/llvm/lib/Target/ARM/AsmParser/ARMAsmParser.cpp b/llvm/lib/Target/ARM/AsmParser/ARMAsmParser.cpp
index 61062e44a02..159c79e8273 100644
--- a/llvm/lib/Target/ARM/AsmParser/ARMAsmParser.cpp
+++ b/llvm/lib/Target/ARM/AsmParser/ARMAsmParser.cpp
@@ -5295,7 +5295,7 @@ ARMAsmParser::parseFPImm(OperandVector &Operands) {
const AsmToken &Tok = Parser.getTok();
SMLoc Loc = Tok.getLoc();
if (Tok.is(AsmToken::Real) && isVmovf) {
- APFloat RealVal(APFloat::IEEEsingle, Tok.getString());
+ APFloat RealVal(APFloat::IEEEsingle(), Tok.getString());
uint64_t IntVal = RealVal.bitcastToAPInt().getZExtValue();
// If we had a '-' in front, toggle the sign bit.
IntVal ^= (uint64_t)isNegative << 31;
diff --git a/llvm/lib/Target/NVPTX/NVPTXAsmPrinter.cpp b/llvm/lib/Target/NVPTX/NVPTXAsmPrinter.cpp
index 0b4dc15708b..9d21629016a 100644
--- a/llvm/lib/Target/NVPTX/NVPTXAsmPrinter.cpp
+++ b/llvm/lib/Target/NVPTX/NVPTXAsmPrinter.cpp
@@ -1723,11 +1723,11 @@ void NVPTXAsmPrinter::printFPConstant(const ConstantFP *Fp, raw_ostream &O) {
if (Fp->getType()->getTypeID() == Type::FloatTyID) {
numHex = 8;
lead = "0f";
- APF.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven, &ignored);
+ APF.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven, &ignored);
} else if (Fp->getType()->getTypeID() == Type::DoubleTyID) {
numHex = 16;
lead = "0d";
- APF.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven, &ignored);
+ APF.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, &ignored);
} else
llvm_unreachable("unsupported fp type");
diff --git a/llvm/lib/Target/NVPTX/NVPTXInstrInfo.td b/llvm/lib/Target/NVPTX/NVPTXInstrInfo.td
index dee0eca4d27..92a88c7f250 100644
--- a/llvm/lib/Target/NVPTX/NVPTXInstrInfo.td
+++ b/llvm/lib/Target/NVPTX/NVPTXInstrInfo.td
@@ -739,12 +739,12 @@ def INEG64 :
// Constant 1.0f
def FloatConst1 : PatLeaf<(fpimm), [{
- return &N->getValueAPF().getSemantics() == &llvm::APFloat::IEEEsingle &&
+ return &N->getValueAPF().getSemantics() == &llvm::APFloat::IEEEsingle() &&
N->getValueAPF().convertToFloat() == 1.0f;
}]>;
// Constant 1.0 (double)
def DoubleConst1 : PatLeaf<(fpimm), [{
- return &N->getValueAPF().getSemantics() == &llvm::APFloat::IEEEdouble &&
+ return &N->getValueAPF().getSemantics() == &llvm::APFloat::IEEEdouble() &&
N->getValueAPF().convertToDouble() == 1.0;
}]>;
diff --git a/llvm/lib/Target/NVPTX/NVPTXMCExpr.cpp b/llvm/lib/Target/NVPTX/NVPTXMCExpr.cpp
index 84d5239ec09..eab5ee80561 100644
--- a/llvm/lib/Target/NVPTX/NVPTXMCExpr.cpp
+++ b/llvm/lib/Target/NVPTX/NVPTXMCExpr.cpp
@@ -30,12 +30,12 @@ void NVPTXFloatMCExpr::printImpl(raw_ostream &OS, const MCAsmInfo *MAI) const {
case VK_NVPTX_SINGLE_PREC_FLOAT:
OS << "0f";
NumHex = 8;
- APF.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven, &Ignored);
+ APF.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven, &Ignored);
break;
case VK_NVPTX_DOUBLE_PREC_FLOAT:
OS << "0d";
NumHex = 16;
- APF.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven, &Ignored);
+ APF.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, &Ignored);
break;
}
diff --git a/llvm/lib/Target/X86/X86ISelLowering.cpp b/llvm/lib/Target/X86/X86ISelLowering.cpp
index d0a12b53a4c..faed8140bc2 100644
--- a/llvm/lib/Target/X86/X86ISelLowering.cpp
+++ b/llvm/lib/Target/X86/X86ISelLowering.cpp
@@ -599,14 +599,14 @@ X86TargetLowering::X86TargetLowering(const X86TargetMachine &TM,
setOperationAction(ISD::UNDEF, MVT::f80, Expand);
setOperationAction(ISD::FCOPYSIGN, MVT::f80, Expand);
{
- APFloat TmpFlt = APFloat::getZero(APFloat::x87DoubleExtended);
+ APFloat TmpFlt = APFloat::getZero(APFloat::x87DoubleExtended());
addLegalFPImmediate(TmpFlt); // FLD0
TmpFlt.changeSign();
addLegalFPImmediate(TmpFlt); // FLD0/FCHS
bool ignored;
APFloat TmpFlt2(+1.0);
- TmpFlt2.convert(APFloat::x87DoubleExtended, APFloat::rmNearestTiesToEven,
+ TmpFlt2.convert(APFloat::x87DoubleExtended(), APFloat::rmNearestTiesToEven,
&ignored);
addLegalFPImmediate(TmpFlt2); // FLD1
TmpFlt2.changeSign();
@@ -4767,10 +4767,10 @@ static SDValue getConstVector(ArrayRef<APInt> Bits, SmallBitVector &Undefs,
Ops.push_back(DAG.getConstant(V.trunc(32), dl, EltVT));
Ops.push_back(DAG.getConstant(V.lshr(32).trunc(32), dl, EltVT));
} else if (EltVT == MVT::f32) {
- APFloat FV(APFloat::IEEEsingle, V);
+ APFloat FV(APFloat::IEEEsingle(), V);
Ops.push_back(DAG.getConstantFP(FV, dl, EltVT));
} else if (EltVT == MVT::f64) {
- APFloat FV(APFloat::IEEEdouble, V);
+ APFloat FV(APFloat::IEEEdouble(), V);
Ops.push_back(DAG.getConstantFP(FV, dl, EltVT));
} else {
Ops.push_back(DAG.getConstant(V, dl, EltVT));
@@ -14378,10 +14378,10 @@ SDValue X86TargetLowering::LowerUINT_TO_FP_i64(SDValue Op,
SmallVector<Constant*,2> CV1;
CV1.push_back(
- ConstantFP::get(*Context, APFloat(APFloat::IEEEdouble,
+ ConstantFP::get(*Context, APFloat(APFloat::IEEEdouble(),
APInt(64, 0x4330000000000000ULL))));
CV1.push_back(
- ConstantFP::get(*Context, APFloat(APFloat::IEEEdouble,
+ ConstantFP::get(*Context, APFloat(APFloat::IEEEdouble(),
APInt(64, 0x4530000000000000ULL))));
Constant *C1 = ConstantVector::get(CV1);
SDValue CPIdx1 = DAG.getConstantPool(C1, PtrVT, 16);
@@ -14583,7 +14583,7 @@ static SDValue lowerUINT_TO_FP_vXi32(SDValue Op, SelectionDAG &DAG,
// Create the vector constant for -(0x1.0p39f + 0x1.0p23f).
SDValue VecCstFAdd = DAG.getConstantFP(
- APFloat(APFloat::IEEEsingle, APInt(32, 0xD3000080)), DL, VecFloatVT);
+ APFloat(APFloat::IEEEsingle(), APInt(32, 0xD3000080)), DL, VecFloatVT);
// float4 fhi = (float4) hi - (0x1.0p39f + 0x1.0p23f);
SDValue HighBitcast = DAG.getBitcast(VecFloatVT, High);
@@ -14821,15 +14821,15 @@ X86TargetLowering::FP_TO_INTHelper(SDValue Op, SelectionDAG &DAG,
// For X87 we'd like to use the smallest FP type for this constant, but
// for DAG type consistency we have to match the FP operand type.
- APFloat Thresh(APFloat::IEEEsingle, APInt(32, 0x5f000000));
+ APFloat Thresh(APFloat::IEEEsingle(), APInt(32, 0x5f000000));
LLVM_ATTRIBUTE_UNUSED APFloat::opStatus Status = APFloat::opOK;
bool LosesInfo = false;
if (TheVT == MVT::f64)
// The rounding mode is irrelevant as the conversion should be exact.
- Status = Thresh.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven,
+ Status = Thresh.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven,
&LosesInfo);
else if (TheVT == MVT::f80)
- Status = Thresh.convert(APFloat::x87DoubleExtended,
+ Status = Thresh.convert(APFloat::x87DoubleExtended(),
APFloat::rmNearestTiesToEven, &LosesInfo);
assert(Status == APFloat::opOK && !LosesInfo &&
@@ -15379,8 +15379,8 @@ static SDValue LowerFABSorFNEG(SDValue Op, SelectionDAG &DAG) {
APInt MaskElt =
IsFABS ? APInt::getSignedMaxValue(EltBits) : APInt::getSignBit(EltBits);
const fltSemantics &Sem =
- EltVT == MVT::f64 ? APFloat::IEEEdouble :
- (IsF128 ? APFloat::IEEEquad : APFloat::IEEEsingle);
+ EltVT == MVT::f64 ? APFloat::IEEEdouble() :
+ (IsF128 ? APFloat::IEEEquad() : APFloat::IEEEsingle());
SDValue Mask = DAG.getConstantFP(APFloat(Sem, MaskElt), dl, LogicVT);
SDValue Op0 = Op.getOperand(0);
@@ -15424,8 +15424,8 @@ static SDValue LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) {
MVT EltVT = VT.getScalarType();
const fltSemantics &Sem =
- EltVT == MVT::f64 ? APFloat::IEEEdouble
- : (IsF128 ? APFloat::IEEEquad : APFloat::IEEEsingle);
+ EltVT == MVT::f64 ? APFloat::IEEEdouble()
+ : (IsF128 ? APFloat::IEEEquad() : APFloat::IEEEsingle());
// Perform all scalar logic operations as 16-byte vectors because there are no
// scalar FP logic instructions in SSE.
diff --git a/llvm/lib/Transforms/InstCombine/InstCombineCasts.cpp b/llvm/lib/Transforms/InstCombine/InstCombineCasts.cpp
index 445f72f4353..e74b590e2b7 100644
--- a/llvm/lib/Transforms/InstCombine/InstCombineCasts.cpp
+++ b/llvm/lib/Transforms/InstCombine/InstCombineCasts.cpp
@@ -1239,14 +1239,14 @@ static Value *lookThroughFPExtensions(Value *V) {
if (CFP->getType() == Type::getPPC_FP128Ty(V->getContext()))
return V; // No constant folding of this.
// See if the value can be truncated to half and then reextended.
- if (Value *V = fitsInFPType(CFP, APFloat::IEEEhalf))
+ if (Value *V = fitsInFPType(CFP, APFloat::IEEEhalf()))
return V;
// See if the value can be truncated to float and then reextended.
- if (Value *V = fitsInFPType(CFP, APFloat::IEEEsingle))
+ if (Value *V = fitsInFPType(CFP, APFloat::IEEEsingle()))
return V;
if (CFP->getType()->isDoubleTy())
return V; // Won't shrink.
- if (Value *V = fitsInFPType(CFP, APFloat::IEEEdouble))
+ if (Value *V = fitsInFPType(CFP, APFloat::IEEEdouble()))
return V;
// Don't try to shrink to various long double types.
}
diff --git a/llvm/lib/Transforms/InstCombine/InstCombineCompares.cpp b/llvm/lib/Transforms/InstCombine/InstCombineCompares.cpp
index c6100027abc..400e008dc13 100644
--- a/llvm/lib/Transforms/InstCombine/InstCombineCompares.cpp
+++ b/llvm/lib/Transforms/InstCombine/InstCombineCompares.cpp
@@ -4661,17 +4661,17 @@ Instruction *InstCombiner::visitFCmpInst(FCmpInst &I) {
const fltSemantics *Sem;
// FIXME: This shouldn't be here.
if (LHSExt->getSrcTy()->isHalfTy())
- Sem = &APFloat::IEEEhalf;
+ Sem = &APFloat::IEEEhalf();
else if (LHSExt->getSrcTy()->isFloatTy())
- Sem = &APFloat::IEEEsingle;
+ Sem = &APFloat::IEEEsingle();
else if (LHSExt->getSrcTy()->isDoubleTy())
- Sem = &APFloat::IEEEdouble;
+ Sem = &APFloat::IEEEdouble();
else if (LHSExt->getSrcTy()->isFP128Ty())
- Sem = &APFloat::IEEEquad;
+ Sem = &APFloat::IEEEquad();
else if (LHSExt->getSrcTy()->isX86_FP80Ty())
- Sem = &APFloat::x87DoubleExtended;
+ Sem = &APFloat::x87DoubleExtended();
else if (LHSExt->getSrcTy()->isPPC_FP128Ty())
- Sem = &APFloat::PPCDoubleDouble;
+ Sem = &APFloat::PPCDoubleDouble();
else
break;
diff --git a/llvm/lib/Transforms/Utils/SimplifyLibCalls.cpp b/llvm/lib/Transforms/Utils/SimplifyLibCalls.cpp
index 221947e1976..121693b9d6c 100644
--- a/llvm/lib/Transforms/Utils/SimplifyLibCalls.cpp
+++ b/llvm/lib/Transforms/Utils/SimplifyLibCalls.cpp
@@ -900,7 +900,7 @@ static Value *valueHasFloatPrecision(Value *Val) {
if (ConstantFP *Const = dyn_cast<ConstantFP>(Val)) {
APFloat F = Const->getValueAPF();
bool losesInfo;
- (void)F.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven,
+ (void)F.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven,
&losesInfo);
if (!losesInfo)
return ConstantFP::get(Const->getContext(), F);
@@ -1129,7 +1129,7 @@ Value *LibCallSimplifier::optimizePow(CallInst *CI, IRBuilder<> &B) {
// We cannot readily convert a non-double type (like float) to a double.
// So we first convert V to something which could be converted to double.
bool ignored;
- V.convert(APFloat::IEEEdouble, APFloat::rmTowardZero, &ignored);
+ V.convert(APFloat::IEEEdouble(), APFloat::rmTowardZero, &ignored);
// TODO: Should the new instructions propagate the 'fast' flag of the pow()?
Value *FMul = getPow(InnerChain, V.convertToDouble(), B);
OpenPOWER on IntegriCloud