diff options
| author | Chris Lattner <sabre@nondot.org> | 2010-01-05 07:44:46 +0000 | 
|---|---|---|
| committer | Chris Lattner <sabre@nondot.org> | 2010-01-05 07:44:46 +0000 | 
| commit | dc67e1344232d344b2e3793d733982cfedb3f9c2 (patch) | |
| tree | 1e4b112eb574d8825f6a9dd78bf66ac9d6208ff5 /llvm/lib/Transforms | |
| parent | e903f38b4df820511934e1316dd6f1891d842d80 (diff) | |
| download | bcm5719-llvm-dc67e1344232d344b2e3793d733982cfedb3f9c2.tar.gz bcm5719-llvm-dc67e1344232d344b2e3793d733982cfedb3f9c2.zip | |
split instcombine of shifts out to its own file.
llvm-svn: 92709
Diffstat (limited to 'llvm/lib/Transforms')
| -rw-r--r-- | llvm/lib/Transforms/InstCombine/CMakeLists.txt | 1 | ||||
| -rw-r--r-- | llvm/lib/Transforms/InstCombine/InstCombineShifts.cpp | 436 | 
2 files changed, 437 insertions, 0 deletions
| diff --git a/llvm/lib/Transforms/InstCombine/CMakeLists.txt b/llvm/lib/Transforms/InstCombine/CMakeLists.txt index 142b4622d95..29a53de3cad 100644 --- a/llvm/lib/Transforms/InstCombine/CMakeLists.txt +++ b/llvm/lib/Transforms/InstCombine/CMakeLists.txt @@ -8,6 +8,7 @@ add_llvm_library(LLVMInstCombine    InstCombineMulDivRem.cpp    InstCombinePHI.cpp    InstCombineSelect.cpp +  InstCombineShifts.cpp     InstCombineSimplifyDemanded.cpp    InstCombineVectorOps.cpp    ) diff --git a/llvm/lib/Transforms/InstCombine/InstCombineShifts.cpp b/llvm/lib/Transforms/InstCombine/InstCombineShifts.cpp new file mode 100644 index 00000000000..404fcecc334 --- /dev/null +++ b/llvm/lib/Transforms/InstCombine/InstCombineShifts.cpp @@ -0,0 +1,436 @@ +//===- InstCombineShifts.cpp ----------------------------------------------===// +// +//                     The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This file implements the visitShl, visitLShr, and visitAShr functions. +// +//===----------------------------------------------------------------------===// + +#include "InstCombine.h" +#include "llvm/Support/PatternMatch.h" +using namespace llvm; +using namespace PatternMatch; + +Instruction *InstCombiner::commonShiftTransforms(BinaryOperator &I) { +  assert(I.getOperand(1)->getType() == I.getOperand(0)->getType()); +  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); + +  // shl X, 0 == X and shr X, 0 == X +  // shl 0, X == 0 and shr 0, X == 0 +  if (Op1 == Constant::getNullValue(Op1->getType()) || +      Op0 == Constant::getNullValue(Op0->getType())) +    return ReplaceInstUsesWith(I, Op0); +   +  if (isa<UndefValue>(Op0)) {             +    if (I.getOpcode() == Instruction::AShr) // undef >>s X -> undef +      return ReplaceInstUsesWith(I, Op0); +    else                                    // undef << X -> 0, undef >>u X -> 0 +      return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType())); +  } +  if (isa<UndefValue>(Op1)) { +    if (I.getOpcode() == Instruction::AShr)  // X >>s undef -> X +      return ReplaceInstUsesWith(I, Op0);           +    else                                     // X << undef, X >>u undef -> 0 +      return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType())); +  } + +  // See if we can fold away this shift. +  if (SimplifyDemandedInstructionBits(I)) +    return &I; + +  // Try to fold constant and into select arguments. +  if (isa<Constant>(Op0)) +    if (SelectInst *SI = dyn_cast<SelectInst>(Op1)) +      if (Instruction *R = FoldOpIntoSelect(I, SI)) +        return R; + +  if (ConstantInt *CUI = dyn_cast<ConstantInt>(Op1)) +    if (Instruction *Res = FoldShiftByConstant(Op0, CUI, I)) +      return Res; +  return 0; +} + +Instruction *InstCombiner::FoldShiftByConstant(Value *Op0, ConstantInt *Op1, +                                               BinaryOperator &I) { +  bool isLeftShift = I.getOpcode() == Instruction::Shl; + +  // See if we can simplify any instructions used by the instruction whose sole  +  // purpose is to compute bits we don't care about. +  uint32_t TypeBits = Op0->getType()->getScalarSizeInBits(); +   +  // shl i32 X, 32 = 0 and srl i8 Y, 9 = 0, ... just don't eliminate +  // a signed shift. +  // +  if (Op1->uge(TypeBits)) { +    if (I.getOpcode() != Instruction::AShr) +      return ReplaceInstUsesWith(I, Constant::getNullValue(Op0->getType())); +    else { +      I.setOperand(1, ConstantInt::get(I.getType(), TypeBits-1)); +      return &I; +    } +  } +   +  // ((X*C1) << C2) == (X * (C1 << C2)) +  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Op0)) +    if (BO->getOpcode() == Instruction::Mul && isLeftShift) +      if (Constant *BOOp = dyn_cast<Constant>(BO->getOperand(1))) +        return BinaryOperator::CreateMul(BO->getOperand(0), +                                        ConstantExpr::getShl(BOOp, Op1)); +   +  // Try to fold constant and into select arguments. +  if (SelectInst *SI = dyn_cast<SelectInst>(Op0)) +    if (Instruction *R = FoldOpIntoSelect(I, SI)) +      return R; +  if (isa<PHINode>(Op0)) +    if (Instruction *NV = FoldOpIntoPhi(I)) +      return NV; +   +  // Fold shift2(trunc(shift1(x,c1)), c2) -> trunc(shift2(shift1(x,c1),c2)) +  if (TruncInst *TI = dyn_cast<TruncInst>(Op0)) { +    Instruction *TrOp = dyn_cast<Instruction>(TI->getOperand(0)); +    // If 'shift2' is an ashr, we would have to get the sign bit into a funny +    // place.  Don't try to do this transformation in this case.  Also, we +    // require that the input operand is a shift-by-constant so that we have +    // confidence that the shifts will get folded together.  We could do this +    // xform in more cases, but it is unlikely to be profitable. +    if (TrOp && I.isLogicalShift() && TrOp->isShift() &&  +        isa<ConstantInt>(TrOp->getOperand(1))) { +      // Okay, we'll do this xform.  Make the shift of shift. +      Constant *ShAmt = ConstantExpr::getZExt(Op1, TrOp->getType()); +      // (shift2 (shift1 & 0x00FF), c2) +      Value *NSh = Builder->CreateBinOp(I.getOpcode(), TrOp, ShAmt,I.getName()); + +      // For logical shifts, the truncation has the effect of making the high +      // part of the register be zeros.  Emulate this by inserting an AND to +      // clear the top bits as needed.  This 'and' will usually be zapped by +      // other xforms later if dead. +      unsigned SrcSize = TrOp->getType()->getScalarSizeInBits(); +      unsigned DstSize = TI->getType()->getScalarSizeInBits(); +      APInt MaskV(APInt::getLowBitsSet(SrcSize, DstSize)); +       +      // The mask we constructed says what the trunc would do if occurring +      // between the shifts.  We want to know the effect *after* the second +      // shift.  We know that it is a logical shift by a constant, so adjust the +      // mask as appropriate. +      if (I.getOpcode() == Instruction::Shl) +        MaskV <<= Op1->getZExtValue(); +      else { +        assert(I.getOpcode() == Instruction::LShr && "Unknown logical shift"); +        MaskV = MaskV.lshr(Op1->getZExtValue()); +      } + +      // shift1 & 0x00FF +      Value *And = Builder->CreateAnd(NSh, +                                      ConstantInt::get(I.getContext(), MaskV), +                                      TI->getName()); + +      // Return the value truncated to the interesting size. +      return new TruncInst(And, I.getType()); +    } +  } +   +  if (Op0->hasOneUse()) { +    if (BinaryOperator *Op0BO = dyn_cast<BinaryOperator>(Op0)) { +      // Turn ((X >> C) + Y) << C  ->  (X + (Y << C)) & (~0 << C) +      Value *V1, *V2; +      ConstantInt *CC; +      switch (Op0BO->getOpcode()) { +        default: break; +        case Instruction::Add: +        case Instruction::And: +        case Instruction::Or: +        case Instruction::Xor: { +          // These operators commute. +          // Turn (Y + (X >> C)) << C  ->  (X + (Y << C)) & (~0 << C) +          if (isLeftShift && Op0BO->getOperand(1)->hasOneUse() && +              match(Op0BO->getOperand(1), m_Shr(m_Value(V1), +                    m_Specific(Op1)))) { +            Value *YS =         // (Y << C) +              Builder->CreateShl(Op0BO->getOperand(0), Op1, Op0BO->getName()); +            // (X + (Y << C)) +            Value *X = Builder->CreateBinOp(Op0BO->getOpcode(), YS, V1, +                                            Op0BO->getOperand(1)->getName()); +            uint32_t Op1Val = Op1->getLimitedValue(TypeBits); +            return BinaryOperator::CreateAnd(X, ConstantInt::get(I.getContext(), +                       APInt::getHighBitsSet(TypeBits, TypeBits-Op1Val))); +          } +           +          // Turn (Y + ((X >> C) & CC)) << C  ->  ((X & (CC << C)) + (Y << C)) +          Value *Op0BOOp1 = Op0BO->getOperand(1); +          if (isLeftShift && Op0BOOp1->hasOneUse() && +              match(Op0BOOp1,  +                    m_And(m_Shr(m_Value(V1), m_Specific(Op1)), +                          m_ConstantInt(CC))) && +              cast<BinaryOperator>(Op0BOOp1)->getOperand(0)->hasOneUse()) { +            Value *YS =   // (Y << C) +              Builder->CreateShl(Op0BO->getOperand(0), Op1, +                                           Op0BO->getName()); +            // X & (CC << C) +            Value *XM = Builder->CreateAnd(V1, ConstantExpr::getShl(CC, Op1), +                                           V1->getName()+".mask"); +            return BinaryOperator::Create(Op0BO->getOpcode(), YS, XM); +          } +        } +           +        // FALL THROUGH. +        case Instruction::Sub: { +          // Turn ((X >> C) + Y) << C  ->  (X + (Y << C)) & (~0 << C) +          if (isLeftShift && Op0BO->getOperand(0)->hasOneUse() && +              match(Op0BO->getOperand(0), m_Shr(m_Value(V1), +                    m_Specific(Op1)))) { +            Value *YS =  // (Y << C) +              Builder->CreateShl(Op0BO->getOperand(1), Op1, Op0BO->getName()); +            // (X + (Y << C)) +            Value *X = Builder->CreateBinOp(Op0BO->getOpcode(), V1, YS, +                                            Op0BO->getOperand(0)->getName()); +            uint32_t Op1Val = Op1->getLimitedValue(TypeBits); +            return BinaryOperator::CreateAnd(X, ConstantInt::get(I.getContext(), +                       APInt::getHighBitsSet(TypeBits, TypeBits-Op1Val))); +          } +           +          // Turn (((X >> C)&CC) + Y) << C  ->  (X + (Y << C)) & (CC << C) +          if (isLeftShift && Op0BO->getOperand(0)->hasOneUse() && +              match(Op0BO->getOperand(0), +                    m_And(m_Shr(m_Value(V1), m_Value(V2)), +                          m_ConstantInt(CC))) && V2 == Op1 && +              cast<BinaryOperator>(Op0BO->getOperand(0)) +                  ->getOperand(0)->hasOneUse()) { +            Value *YS = // (Y << C) +              Builder->CreateShl(Op0BO->getOperand(1), Op1, Op0BO->getName()); +            // X & (CC << C) +            Value *XM = Builder->CreateAnd(V1, ConstantExpr::getShl(CC, Op1), +                                           V1->getName()+".mask"); +             +            return BinaryOperator::Create(Op0BO->getOpcode(), XM, YS); +          } +           +          break; +        } +      } +       +       +      // If the operand is an bitwise operator with a constant RHS, and the +      // shift is the only use, we can pull it out of the shift. +      if (ConstantInt *Op0C = dyn_cast<ConstantInt>(Op0BO->getOperand(1))) { +        bool isValid = true;     // Valid only for And, Or, Xor +        bool highBitSet = false; // Transform if high bit of constant set? +         +        switch (Op0BO->getOpcode()) { +          default: isValid = false; break;   // Do not perform transform! +          case Instruction::Add: +            isValid = isLeftShift; +            break; +          case Instruction::Or: +          case Instruction::Xor: +            highBitSet = false; +            break; +          case Instruction::And: +            highBitSet = true; +            break; +        } +         +        // If this is a signed shift right, and the high bit is modified +        // by the logical operation, do not perform the transformation. +        // The highBitSet boolean indicates the value of the high bit of +        // the constant which would cause it to be modified for this +        // operation. +        // +        if (isValid && I.getOpcode() == Instruction::AShr) +          isValid = Op0C->getValue()[TypeBits-1] == highBitSet; +         +        if (isValid) { +          Constant *NewRHS = ConstantExpr::get(I.getOpcode(), Op0C, Op1); +           +          Value *NewShift = +            Builder->CreateBinOp(I.getOpcode(), Op0BO->getOperand(0), Op1); +          NewShift->takeName(Op0BO); +           +          return BinaryOperator::Create(Op0BO->getOpcode(), NewShift, +                                        NewRHS); +        } +      } +    } +  } +   +  // Find out if this is a shift of a shift by a constant. +  BinaryOperator *ShiftOp = dyn_cast<BinaryOperator>(Op0); +  if (ShiftOp && !ShiftOp->isShift()) +    ShiftOp = 0; +   +  if (ShiftOp && isa<ConstantInt>(ShiftOp->getOperand(1))) { +    ConstantInt *ShiftAmt1C = cast<ConstantInt>(ShiftOp->getOperand(1)); +    uint32_t ShiftAmt1 = ShiftAmt1C->getLimitedValue(TypeBits); +    uint32_t ShiftAmt2 = Op1->getLimitedValue(TypeBits); +    assert(ShiftAmt2 != 0 && "Should have been simplified earlier"); +    if (ShiftAmt1 == 0) return 0;  // Will be simplified in the future. +    Value *X = ShiftOp->getOperand(0); +     +    uint32_t AmtSum = ShiftAmt1+ShiftAmt2;   // Fold into one big shift. +     +    const IntegerType *Ty = cast<IntegerType>(I.getType()); +     +    // Check for (X << c1) << c2  and  (X >> c1) >> c2 +    if (I.getOpcode() == ShiftOp->getOpcode()) { +      // If this is oversized composite shift, then unsigned shifts get 0, ashr +      // saturates. +      if (AmtSum >= TypeBits) { +        if (I.getOpcode() != Instruction::AShr) +          return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType())); +        AmtSum = TypeBits-1;  // Saturate to 31 for i32 ashr. +      } +       +      return BinaryOperator::Create(I.getOpcode(), X, +                                    ConstantInt::get(Ty, AmtSum)); +    } +     +    if (ShiftOp->getOpcode() == Instruction::LShr && +        I.getOpcode() == Instruction::AShr) { +      if (AmtSum >= TypeBits) +        return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType())); +       +      // ((X >>u C1) >>s C2) -> (X >>u (C1+C2))  since C1 != 0. +      return BinaryOperator::CreateLShr(X, ConstantInt::get(Ty, AmtSum)); +    } +     +    if (ShiftOp->getOpcode() == Instruction::AShr && +        I.getOpcode() == Instruction::LShr) { +      // ((X >>s C1) >>u C2) -> ((X >>s (C1+C2)) & mask) since C1 != 0. +      if (AmtSum >= TypeBits) +        AmtSum = TypeBits-1; +       +      Value *Shift = Builder->CreateAShr(X, ConstantInt::get(Ty, AmtSum)); + +      APInt Mask(APInt::getLowBitsSet(TypeBits, TypeBits - ShiftAmt2)); +      return BinaryOperator::CreateAnd(Shift, +                                       ConstantInt::get(I.getContext(), Mask)); +    } +     +    // Okay, if we get here, one shift must be left, and the other shift must be +    // right.  See if the amounts are equal. +    if (ShiftAmt1 == ShiftAmt2) { +      // If we have ((X >>? C) << C), turn this into X & (-1 << C). +      if (I.getOpcode() == Instruction::Shl) { +        APInt Mask(APInt::getHighBitsSet(TypeBits, TypeBits - ShiftAmt1)); +        return BinaryOperator::CreateAnd(X, +                                         ConstantInt::get(I.getContext(),Mask)); +      } +      // If we have ((X << C) >>u C), turn this into X & (-1 >>u C). +      if (I.getOpcode() == Instruction::LShr) { +        APInt Mask(APInt::getLowBitsSet(TypeBits, TypeBits - ShiftAmt1)); +        return BinaryOperator::CreateAnd(X, +                                        ConstantInt::get(I.getContext(), Mask)); +      } +      // We can simplify ((X << C) >>s C) into a trunc + sext. +      // NOTE: we could do this for any C, but that would make 'unusual' integer +      // types.  For now, just stick to ones well-supported by the code +      // generators. +      const Type *SExtType = 0; +      switch (Ty->getBitWidth() - ShiftAmt1) { +      case 1  : +      case 8  : +      case 16 : +      case 32 : +      case 64 : +      case 128: +        SExtType = IntegerType::get(I.getContext(), +                                    Ty->getBitWidth() - ShiftAmt1); +        break; +      default: break; +      } +      if (SExtType) +        return new SExtInst(Builder->CreateTrunc(X, SExtType, "sext"), Ty); +      // Otherwise, we can't handle it yet. +    } else if (ShiftAmt1 < ShiftAmt2) { +      uint32_t ShiftDiff = ShiftAmt2-ShiftAmt1; +       +      // (X >>? C1) << C2 --> X << (C2-C1) & (-1 << C2) +      if (I.getOpcode() == Instruction::Shl) { +        assert(ShiftOp->getOpcode() == Instruction::LShr || +               ShiftOp->getOpcode() == Instruction::AShr); +        Value *Shift = Builder->CreateShl(X, ConstantInt::get(Ty, ShiftDiff)); +         +        APInt Mask(APInt::getHighBitsSet(TypeBits, TypeBits - ShiftAmt2)); +        return BinaryOperator::CreateAnd(Shift, +                                         ConstantInt::get(I.getContext(),Mask)); +      } +       +      // (X << C1) >>u C2  --> X >>u (C2-C1) & (-1 >> C2) +      if (I.getOpcode() == Instruction::LShr) { +        assert(ShiftOp->getOpcode() == Instruction::Shl); +        Value *Shift = Builder->CreateLShr(X, ConstantInt::get(Ty, ShiftDiff)); +         +        APInt Mask(APInt::getLowBitsSet(TypeBits, TypeBits - ShiftAmt2)); +        return BinaryOperator::CreateAnd(Shift, +                                         ConstantInt::get(I.getContext(),Mask)); +      } +       +      // We can't handle (X << C1) >>s C2, it shifts arbitrary bits in. +    } else { +      assert(ShiftAmt2 < ShiftAmt1); +      uint32_t ShiftDiff = ShiftAmt1-ShiftAmt2; + +      // (X >>? C1) << C2 --> X >>? (C1-C2) & (-1 << C2) +      if (I.getOpcode() == Instruction::Shl) { +        assert(ShiftOp->getOpcode() == Instruction::LShr || +               ShiftOp->getOpcode() == Instruction::AShr); +        Value *Shift = Builder->CreateBinOp(ShiftOp->getOpcode(), X, +                                            ConstantInt::get(Ty, ShiftDiff)); +         +        APInt Mask(APInt::getHighBitsSet(TypeBits, TypeBits - ShiftAmt2)); +        return BinaryOperator::CreateAnd(Shift, +                                         ConstantInt::get(I.getContext(),Mask)); +      } +       +      // (X << C1) >>u C2  --> X << (C1-C2) & (-1 >> C2) +      if (I.getOpcode() == Instruction::LShr) { +        assert(ShiftOp->getOpcode() == Instruction::Shl); +        Value *Shift = Builder->CreateShl(X, ConstantInt::get(Ty, ShiftDiff)); +         +        APInt Mask(APInt::getLowBitsSet(TypeBits, TypeBits - ShiftAmt2)); +        return BinaryOperator::CreateAnd(Shift, +                                         ConstantInt::get(I.getContext(),Mask)); +      } +       +      // We can't handle (X << C1) >>a C2, it shifts arbitrary bits in. +    } +  } +  return 0; +} + +Instruction *InstCombiner::visitShl(BinaryOperator &I) { +  return commonShiftTransforms(I); +} + +Instruction *InstCombiner::visitLShr(BinaryOperator &I) { +  return commonShiftTransforms(I); +} + +Instruction *InstCombiner::visitAShr(BinaryOperator &I) { +  if (Instruction *R = commonShiftTransforms(I)) +    return R; +   +  Value *Op0 = I.getOperand(0); +   +  // ashr int -1, X = -1   (for any arithmetic shift rights of ~0) +  if (ConstantInt *CSI = dyn_cast<ConstantInt>(Op0)) +    if (CSI->isAllOnesValue()) +      return ReplaceInstUsesWith(I, CSI); +   +  // See if we can turn a signed shr into an unsigned shr. +  if (MaskedValueIsZero(Op0, +                        APInt::getSignBit(I.getType()->getScalarSizeInBits()))) +    return BinaryOperator::CreateLShr(Op0, I.getOperand(1)); +   +  // Arithmetic shifting an all-sign-bit value is a no-op. +  unsigned NumSignBits = ComputeNumSignBits(Op0); +  if (NumSignBits == Op0->getType()->getScalarSizeInBits()) +    return ReplaceInstUsesWith(I, Op0); +   +  return 0; +} + | 

